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 Preface

This publication provides, for reference purposes,
a detailed Enterprise Systems Architecture/390*
(ESA/390*) description.

The publication applies only to systems operating
as defined by ESA/390. For systems operating in
accordance with the System/370* or System/370
extended-architecture (370-XA) definitions, the
IBM System/370 Principles of Operation,
GA22-7000, or the IBM 370-XA Principles of
Operation, SA22-7085, should be consulted. For
systems operating in accordance with the Enter-
prise Systems Architecture/370* (ESA/370*) defi-
nition, the IBM ESA/370 Principles of Operation,
SA22-7200, should be consulted.

The publication describes each function at the
level of detail needed to prepare an assembler-
language program that relies on that function. It
does not, however, describe the notation and con-
ventions that must be employed in preparing such
a program, for which the user must instead refer
to the appropriate assembler-language publication.

The information in this publication is provided prin-
cipally for use by assembler-language program-
mers, although anyone concerned with the
functional details of ESA/390 will find it useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge
of data-processing systems.

All facilities discussed in this publication are not
necessarily available on every model. Further-
more, in some instances the definitions have been
structured to allow for some degree of
extendibility, and therefore certain capabilities may
be described or implied that are not offered on
any model. Examples of such capabilities are the
use of a 16-bit field in the subsystem-identification
word to identify the channel subsystem, the size of
the CPU address, and the number of CPUs
sharing main storage. The allowance for this type
of extendibility should not be construed as
implying any intention by IBM to provide such

capabilities. For information about the character-
istics and availability of facilities on a specific
model, see the functional characteristics publica-
tion for that model.

Largely because this publication is arranged for
reference, certain words and phrases appear, of
necessity, earlier in the publication than the prin-
cipal discussions explaining them. The reader
who encounters a problem because of this
arrangement should refer to the index, which indi-
cates the location of the key description.

The information presented in this publication is
grouped in 19 chapters and several appendixes:

Chapter 1, Introduction, highlights the major facili-
ties of the ESA/390 architecture.

Chapter 2, Organization, describes the major
groupings within the system—main storage,
expanded storage, the central processing unit
(CPU), the external time reference (ETR), and
input/output—with some attention given to the
composition and characteristics of those
groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facili-
ties for storage protection. It also deals with
dynamic address translation (DAT), which,
coupled with special programming support, makes
the use of a virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally
initiated operations, for debugging, and for timing.
It deals specifically with CPU states, control
modes, the program-status word (PSW), control
registers, tracing, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use
of the program-status word (PSW), of branching,

Enterprise Systems Architecture/390, ESA/390, Enterprise Systems Architecture/370, ESA/370, and System/370 are trademarks of
the International Business Machines Corporation.
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and of interruptions. It contains the principal
description of the advanced address-space facili-
ties that were introduced in ESA/370. It also
details the aspects of program execution on one
CPU as observed by other CPUs and by channel
programs.

Chapter 6, Interruptions, details the mechanism
that permits the CPU to change its state as a
result of conditions external to the system, within
the system, or within the CPU itself. Six classes
of interruptions are identified and described:
machine-check interruptions, program inter-
ruptions, supervisor-call interruptions, external
interruptions, input/output interruptions, and restart
interruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in
detail decimal data formats and the decimal
instructions.

Chapter 9, Floating-Point Overview and Support
Instructions, includes an introduction to the
floating-point operations, detailed descriptions of
those instructions common to both hexadecimal-
floating-point and binary-floating-point operations,
and summaries of all floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the I/O instructions.

Chapter 11, Machine-Check Handling, describes
the mechanism for detecting, correcting, and
reporting machine malfunctions.

Chapter 12, Operator Facilities, describes the
basic manual functions and controls available for
operating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief
description of the basic components and operation
of the channel subsystem.

Chapter 14, I/O Instructions, contains the
description of the I/O instructions.

Chapter 15, Basic I/O Functions, describes the
basic I/O functions performed by the channel sub-
system, including the initiation, control, and con-
clusion of I/O operations.

Chapter 16, I/O Interruptions, covers I/O inter-
ruptions and interruption conditions.

Chapter 17, I/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

Chapter 18, Hexadecimal-Floating-Point
Instructions, contains detailed descriptions of the
hexadecimal-floating-point (HFP) data formats and
the HFP instructions.

Chapter 19, Binary-Floating-Point Instructions,
contains detailed descriptions of the binary-
floating-point (BFP) data formats and the BFP
instructions.

The Appendixes include:

� Information about number representation
 � Instruction-use examples
� Lists of the instructions arranged in several

sequences
� A summary of the condition-code settings
� A summary of the differences between

ESA/370 and ESA/390
� A summary of the differences between

370-XA and ESA/370
� A summary of the differences between

System/370 and 370-XA
� A table of the powers of 2
� Tabular information helpful in dealing with

hexadecimal numbers
� A table of EBCDIC and other codes.

Certain information about commands that is in
Chapters 15 and 16 of the ESA/370 Principles of
Operation is not in this publication; instead it is in
the publication IBM Enterprise Systems
Architecture/390 Common I/O-Device Commands
and Self Description, SA22-7204.
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Size and Number Notation
In this publication, the letters K, M, G, and T
denote the multipliers 2ñð, 2òð, 2óð, and 2ôð,
respectively. Although the letters are borrowed
from the decimal system and stand for kilo (10ó),
mega (10ö), giga (10ù), and tera (10ñò), they do
not have the decimal meaning but instead repre-
sent the power of 2 closest to the corresponding
power of 10. Their meaning in this publication is
as follows:

┌──────────┬─────────────────────────┐

│ Symbol │ Value │

├──────────┼─────────────────────────┤

│ K (kilo) │ 1,ð24 = 2ñð │

│ │ │

│ M (mega) │ 1,ð48,576 = 2òð │

│ │ │

│ G (giga) │ 1,ð73,741,824 = 2óð │

│ │ │

│ T (tera) │ 1,ð99,511,627,776 = 2ôð │

└──────────┴─────────────────────────┘

The following are some examples of the use of K,
M, G, and T:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
2òô is expressed as 16M.
2óñ is expressed as 2G.
2ôò is expressed as 4T.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned
to them.

All numbers in this publication are in decimal
unless they are explicitly noted as being in binary
or hexadecimal (hex).

Bytes, Characters, and Codes
Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture
are for the most part independent of the external
code which is to be processed by the machine.
For most instructions, all 256 possible combina-
tions of bit patterns for a particular byte can be
processed, independent of the character which the
bit pattern is intended to represent. For
instructions which use the zoned format, and for

those few instructions which are dependent on a
particular external code, the instruction TRANS-
LATE may be used to convert data from one code
to another code. Thus, a machine operating in
accordance with ESA/390 can process EBCDIC,
ASCII, or any other code which can be repres-
ented in eight or fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by
considering the bits of the byte to represent a
binary code. Thus, when a byte is said to contain
a zero, the value 00000000 binary, or 00 hex, is
meant, and not the value for an EBCDIC character
“0,” which would be F0 hex.

 Other Publications
The parallel-I/O interface is described in the publi-
cation IBM System/360 and System/370 I/O Inter-
face Channel to Control Unit Original Equipment
Manufacturers' Information, GA22-6974.

The parallel-I/O channel-to-channel adapter is
described in the publication IBM Enterprise
Systems Architecture/390 Channel-to-Channel
Adapter for the System/360 and System/370 I/O
Interface, SA22-7091.

The Enterprise Systems Connection Architecture*
(ESCON*)  I/O interface, referred to in this publi-
cation as the serial-I/O interface, is described in
the publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

The channel-to-channel adapter for the serial-I/O
interface is described in the publication IBM Enter-
prise Systems Architecture/390 ESCON Channel-
to-Channel-Adapter, SA22-7203.

The commands, status, and sense data that are
common to all I/O devices that comply with
ESA/390 are described in the publication IBM
Enterprise Systems Architecture/390 Common

| I/O-Device Commands and Self Description,
SA22-7204.

Vector operations are described in the publication
IBM Enterprise Systems Architecture/390 Vector
Operations, SA22-7207.

Enterprise Systems Connection Architecture and ESCON are trademarks of the International Business Machines Corporation.
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The compression facility is described in the publi-
cation IBM Enterprise Systems Architecture/390
Data Compression, SA22-7208.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

The mathematical assists are described in the
publication IBM System/370 Mathematical Assists,
SA22-7094, which describes the instructions
ARCTANGENT, COMMON LOGARITHM,
COSINE, EXPONENTIAL, MULTIPLY AND ADD,
NATURAL LOGARITHM, RAISE TO POWER,
SINE, and SQUARE ROOT.

| Summary of Changes in Seventh
| Edition
| The current, seventh edition of this publication
| differs from the previous edition principally by con-
| taining the definitions of the extended-TOD-clock,
| TOD-clock-control-override, extended-translation,
| and store-system-information facilities. The
| seventh edition contains minor clarifications and
| corrections and also the following significant
| changes relative to the previous edition:

| � In Chapter 4, “Control”:

| – The ETR subclass mask, bit 27 of control
| register 0, and the
| TOD-clock-control-override control, bit 10
| of control register 14, are added.

| – An extension to the TOD clock, and the
| TOD programmable register, are added.

| � In Chapter 6, “Interruptions”:

| – The ETR external interruption is added.

| – The TOD-clock-sync-check external inter-
| ruption is affected by the
| extended-TOD-clock facility.

| � In Chapter 7, “General Instructions,” the
| CONVERT UNICODE TO UTF-8, CONVERT
| UTF-8 TO UNICODE, STORE CLOCK
| EXTENDED, and TRANSLATE EXTENDED
| instructions are added.

| � In Chapter 10, “Control Instructions,” the SET
| CLOCK PROGRAMMABLE FIELD and
| STORE SYSTEM INFORMATION instructions
| are added.

| The above changes may affect other chapters
| besides the ones listed. All technical changes to
| the text or to an illustration are indicated by a ver-
| tical line to the left of the change.

Summary of Changes in Sixth
Edition
The sixth edition of this publication differs from the
previous edition principally by containing the defi-
nitions of the basic floating-point, floating-point-
support, and hexadecimal-floating-point (HFP)
extension facilities and the binary-floating-point
(BFP), program-call-fast, resume-program, and
trap facilities. The sixth edition contains minor
clarifications and corrections and also the fol-
lowing significant changes relative to the previous
edition:

� In Chapter 2, “Introduction,” 12 floating-point
registers and the floating-point-control register
are added.

� In Chapter 3, “Storage”:

– In the section “Prefixing,” the term “prefix
area” is changed to mean the 4K-byte
area designated by the prefix instead of
real locations 0-4095. This change is con-
sistent with how the term has been used
in the definition of the SET PREFIX
instruction.

– Assigned storage locations for the
PCF-entry-table origin, data-exception
code, and machine-check and store-status
extended-save-area address are added.

� In Chapter 4, “Control”:

– Bits 22 and 23 of the PSW are renamed
the HFP-exponent-underflow mask and
the HFP-significance mask, respectively.

– The AFP-register control and extended-
save-area control are added in the control
registers.

– RESUME PROGRAM and TRAP cause
branch trace entries to be made.

– RESUME PROGRAM and TRAP cause
successful-branching PER events to occur
and a valid ATMID (addressing-and-
translation-mode identification) to be
stored.
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– The use of an extended save area for
saving floating-point registers 0-15 and the
floating-point-control register by the store-
status operation is added.

 – The store-extended-status-at-address
SIGNAL PROCESSOR order is added.

� In Chapter 5, “Program Execution”:

– The RRF, RXE, and RXF instruction
formats are added.

– A trap-control-block address and
TRAP-enabled bit are added to the
dispatchable-unit control table.

� In Chapter 6, “Interruptions”:

– The exception names “exponent overflow,”
“exponent underflow,” “significance,”
“floating-point divide,” and “square root”
are changed to “HFP exponent overflow,”
“HFP exponent underflow,” “HFP signif-
icance,” “HFP divide,” and “HFP square
root,” respectively.

– The reasons for recognizing a data excep-
tion are expanded to include reasons
related to the new floating-point facilities.
When a data exception is recognized for
an old reason related to decimal oper-
ands, it is called a decimal-operand data
exception. The detailed description of the
reasons for recognizing a decimal-operand
data exception is moved from Chapter 6
to Chapter 8, “Decimal Instructions.”

– When a program interruption for a data
exception occurs, a data-exception code
(DXC) may be stored at real location 147
and placed in the floating-point-control
(FPC) register to indicate the reason for
the exception.

– The instruction ending for a data excep-
tion may be suppression when previously
it was termination, depending on the
model. The ending may be completion in
new cases related to floating point.

– The figure “Priority of Access Exceptions”
has superscripts added indicating when an
exception is not applicable when not in the
access-register mode.

� In Chapter 7, “General Instructions,” additional
details are added to the definition of the
PERFORM LOCKED OPERATION instruction.

� In Chapter 8, “Decimal Instructions,” the
reasons for recognizing a decimal-operand
data exception are described (the definition is
moved to here from Chapter 6).

� Chapter 9, “Floating-Point Overview and
Support Instructions,” replaces the previous
Chapter 9, “Floating-Point Instructions.” The
new Chapter 9 introduces the BFP and HFP
operations, defines instructions that are
common to BFP and HFP or that convert
between BFP and HFP data formats, and
summarizes all floating-point instructions.
Other contents of the old Chapter 9 are
moved to Chapter 18, “Hexadecimal-Floating-
Point Instructions.”

� In Chapter 10, “Control Instructions”:

– The PROGRAM CALL FAST, RESUME
PROGRAM, and TRAP instructions are
added.

– The method of description used in the
figure “Priority of Execution: PROGRAM
RETURN” is changed. The technical
content of the figure is not changed.

� In Chapter 11, “Machine-Check Handling,” the
storing of 16 floating-point registers and the
floating-point-control register in an extended
save area during a machine-check interruption
is added.

� Chapter 18, “Hexadecimal-Floating-Point
Instructions,” is new. It contains definitions of
old and new instructions having operands in
the HFP data format. Also, alternate mne-
monics are assigned to some forms of the
LOAD ROUNDED and MULTIPLY
instructions.

� Chapter 19, “Binary-Floating-Point (BFP)
Instructions,” is new. It contains definitions of
new instructions having operands in the BFP
data format.

� In Appendix A, “Number Representation and
Instruction-Use Examples”:

– The term “floating-point number” is
changed to “hexadecimal-floating-point
number.”

– An example of the use of the PERFORM
LOCKED OPERATION instruction is
added.
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The above changes may affect other chapters
besides the ones listed. All technical changes to
the text or to an illustration are indicated by a ver-
tical line to the left of the change, except that the
changes are not so indicated in Chapters 9, 18,
and 19 because the changes are so extensive
there.

Summary of Changes in Fifth
Edition
The fifth edition of this publication differs from the
previous edition principally by containing the defi-
nitions of the branch-and-set-authority facility and
the perform-locked-operation facility. The fifth
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

� In Chapter 3, “Storage,” in the section “Han-
dling of Addresses,” the dispatchable-unit and
primary-space access-list origins and the
authority-table origin used by access-register
translation are unpredictably real or absolute
addresses instead of real addresses.

� In Chapter 4, “Control”:

– Leap second 21 is added.

– The effects of clear reset and power-on
reset on the locks used by PERFORM
LOCKED OPERATION are described.

� In Chapter 5, “Program Execution”:

– The section “Subroutine Linkage without
the Linkage Stack” is enhanced to
describe a calling linkage made by the
PROGRAM TRANSFER instruction when
the purpose is to reduce authority. The
BRANCH AND SET AUTHORITY instruc-
tion then is introduced.

– The change described for Chapter 3
appears throughout the section “Access-
Register Translation.”

� In Chapter 6, “Interruptions,” the definitions of
the privileged-operation, protection, special-
operation, and specification exceptions are
added to or corrected.

� In Chapter 7, “General Instructions,” the
PERFORM LOCKED OPERATION instruction
is added.

� In Chapter 10, “Control Instructions,” the
BRANCH AND SET AUTHORITY instruction
is added.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Fourth
Edition
The fourth edition of this publication differs from
the previous edition principally by containing the
definitions of the following facilities: called-space
identification, checksum, compare and move
extended, and immediate and relative instruction.
The fourth edition also contains additional informa-
tion about the PER-2 facility, and it describes the
ancillary-report bit in certain fields. The fourth
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

� In Chapter 4, “Control”:

– Descriptions of an additional bit in the
PER code, the addressing-and-translation-
mode identification, and the PER STD
identification are added.

– Leap second 20 is added.

� In Chapter 5, “Program Execution”:

– Instruction formats RI and RSI are added.

– Relative branching is added.

– The section “Condition-Code Alternative to
Interruptibility” is added.

– The called-space identification in the
linkage-stack state entry formed by the
stacking PROGRAM CALL instruction is
added.

– It is clarified that a storage-operand fetch
reference for an instruction can precede
the execution of the instruction by an
unlimited amount of time.

– A programming note showing effects when
CPU serialization is or is not performed is
added.

� In Chapter 7, “General Instructions”:

– The CHECKSUM instruction is added.

– The COMPARE LOGICAL LONG
EXTENDED and MOVE LONG
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EXTENDED instructions of the compare-
and-move-extended facility are added.

– The instructions of the immediate-and-
relative-instruction facility are added.
These are:

- ADD HALFWORD IMMEDIATE
- BRANCH RELATIVE AND SAVE
- BRANCH RELATIVE ON CONDITION
- BRANCH RELATIVE ON COUNT
- BRANCH RELATIVE ON INDEX

HIGH
- BRANCH RELATIVE ON INDEX LOW

OR EQUAL
- COMPARE HALFWORD IMMEDIATE
- LOAD HALFWORD IMMEDIATE
- MULTIPLY SINGLE (two instructions)
- MULTIPLY HALFWORD IMMEDIATE
- TEST UNDER MASK HIGH
- TEST UNDER MASK LOW

� In Chapter 10, “Control Instructions,” in the
STORE CPU ID definition, the term “model
number” is changed to “machine-type
number,” and programming notes about the
version code and CPU identification number
are added.

� In Chapter 11, “Machine-Check Handling,” the
ancillary-report bit in the machine-check-
interruption code is described.

� In Chapter 16, “I/O Interruptions,” the
ancillary-report bit in the subchannel logout is
described.

� In Chapter 17, “I/O Support Functions,” the
ancillary-report bit in the channel-report word
is described.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Third
Edition
The third edition of this publication differs from the
previous edition principally by containing the defi-
nition of the subspace-group facility. The third
edition contains minor clarifications and cor-
rections and also the following significant changes
relative to the previous edition:

� In Chapter 3, “Storage”:

| – The virtual-address enhancement of sup-
| pression on protection is added.

– Fields of the subspace-group facility are
added to the ASN-second-table entry and
the segment-table designation.

– For CPU table entries that are addressed
by real or absolute addresses, it is unpre-
dictable whether the address wraps or an
addressing exception is recognized.

– All zeros may be stored at real location
160 during a subspace-replacement oper-
ation.

� In Chapter 4, “Control”:

– A trace entry for BRANCH IN SUBSPACE
GROUP is added.

– An instruction-fetching PER event for an
interruptible instruction may be discarded
under certain conditions when a unit of
operation of the instruction remains to be
executed.

– Leap seconds 18 and 19 are added.

� In Chapter 5, “Program Execution”:

– The BRANCH IN SUBSPACE GROUP
instruction is introduced in “Subroutine
Linkage without the Linkage Stack” on
page 5-9.

– Fields for the subspace-group facility are
added to the dispatchable-unit control
table and the ASN-second-table entry.

– Effects of the subspace-group facility on
the instructions PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM
RETURN, SET SECONDARY ASN, and
LOAD ADDRESS SPACE PARAMETERS
are introduced in “Subspace-Replacement
Operations” on page 5-56.

� In Chapter 6, “Interruptions”:

– It is clarified that an instruction is consid-
ered to be executed even if it has an odd
instruction address or cannot be fetched
because of an access exception.

– Subspace-replacement exceptions (a col-
lective name) are added.

� In Chapter 8, “Decimal Instructions,” for ZERO
AND ADD when the operands overlap and the
rightmost byte of the first operand is to the left
of the rightmost byte of the second operand, a
data exception may or may not be recognized.
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� In Chapter 10, “Control Instructions”:

– The BRANCH IN SUBSPACE GROUP
instruction is added, and subspace-
replacement operations are added to the
definitions of PROGRAM CALL,
PROGRAM RETURN, PROGRAM
TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAME-
TERS.

– The address placed in general register R±

when LOAD REAL ADDRESS sets a
nonzero condition code is real or absolute
in accordance with the type of address
used during the attempted translation.

– For MOVE PAGE (facility 2), when the
first operand is valid in main storage and
the second operand is valid in an unavail-
able expanded-storage block, a storage-
alteration PER event may be recognized,
and the change bit may be set, for the first
operand even though the first-operand
location remains unchanged.

� In Chapter 12, “Operator Facilities,” a model
may have, as an alternative to a wait indi-
cator, a means of indicating a time-averaged
value of the PSW wait-state bit.

� In Chapter 16, “I/O Interruptions”:

– The initial status that causes a sequence
code of 010 binary to be placed in the
subchannel logout is described in
“Sequence Code (SC)” on page 16-35.

– An authorization-check bit is added to the
extended-report word in a format-0
extended-status word. The bit indicates,
when one, that the start or resume func-
tion was terminated because the channel
subsystem is in the isolated state.

� In Chapter 17, “I/O Support Functions”:

– Additional conditions under which the
device-connect-time field in the measure-
ment block is not updated are described in
“Device-Connect Time” on page 17-4.

– It is clarified that an IPL program should
not be placed in the low 512 bytes of
storage because that area is reserved.

� In Appendix I, “EBCDIC and Other Codes,” a
chart showing control codes and a
94-character EBCDIC character set is
replaced by a table showing control codes,
various EBCDIC character sets and code
pages, ASCII, ISO-8, and IBM-PC code
pages, and BookMaster* symbols.

The above changes may affect other chapters
besides the ones listed.

Summary of Changes in Second
Edition
The second edition of this publication contains
minor clarifications and corrections and also the
following significant changes relative to the pre-
vious edition with TNL SN22-5400:

� In Chapter 3, “Storage”:

– The suppression-on-protection facility is
defined.

– The checking of bits 28-31 or 26-31 in the
ASN-first-table entry and bits 30, 31, and
60-63 in the ASN-second-table entry is
made optional.

� In Chapter 4, “Control”:

– It is made unpredictable whether an
instruction-fetching PER event is indicated
for the first halfword of an instruction when
an access exception is recognized for the
first halfword.

– The standard epoch for the time-of-day
(TOD) clock is described in terms of Coor-
dinated Universal Time instead of
Greenwich Mean Time.

� In Chapter 7, “General Instructions”:

– The instructions of the string-instruction
facility, COMPARE LOGICAL STRING,
MOVE STRING, and SEARCH STRING,
are added.

– The COMPARE UNTIL SUBSTRING
EQUAL instruction is added. This instruc-
tion was introduced in ESA/370 but has
not previously been described.

BookMaster is a trademark of the International Business Machines Corporation.
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� In Chapter 10, “Control Instructions,” the SET
ADDRESS SPACE CONTROL FAST instruc-
tion is added.

� In Chapter 12, “Operator Facilities,” a defi-
nition of the effect of initial machine loading
(IML) on expanded storage is added.

� In Chapter 17, “I/O Support Functions,” the
control-unit-queuing-measurement facility is
added.

� In Appendix A, “Number Representation and
Instruction-Use Examples”:

– Examples of the use of the instructions of
the string-instruction facility are added.

– A description of the tree used by the
sorting instructions, COMPARE AND
FORM CODEWORD and UPDATE TREE,
and an example of the use of the sorting
instructions are added.

The above changes may affect other chapters
besides the ones listed.
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This publication provides, for reference purposes,
a detailed Enterprise Systems Architecture/390
(ESA/390) description.

The architecture of a system defines its attributes
as seen by the programmer, that is, the concep-
tual structure and functional behavior of the
machine, as distinct from the organization of the
data flow, the logical design, the physical design,
and the performance of any particular implementa-
tion. Several dissimilar machine implementations
may conform to a single architecture. When the
execution of a set of programs on different
machine implementations produces the results
that are defined by a single architecture, the
implementations are considered to be compatible
for those programs.

Highlights of ESA/390
ESA/390 is the next step in the evolution from the
System/360 to the System/370, System/370
extended architecture (370-XA), and Enterprise
Systems Architecture/370 (ESA/370). ESA/390
includes all of the facilities of ESA/370 and pro-
vides a broad range of extensions. Some of these
extensions either apply directly to application-
program development or are basic machine inter-
faces, and they are described in detail in either
this publication or another generally available pub-
lication. The remaining extensions are suitable for
use only by means of specialized control or
support programs, and detailed descriptions of
these extensions are not provided.

All extensions to ESA/370 that form ESA/390 are
summarized below. For those extensions
described in detail in this publication, a compar-
ison of the differences among ESA/390, ESA/370,
370-XA, and System/370 appears in Appendixes
D, E, and F.

ESA/390 was announced in September, 1990.
Any extension added subsequently has the date of
its announcement in parentheses at the end of its
summary.

The following extensions are described in detail in
this publication:

� Access-list-controlled protection allows store-
type storage references to an address space
to be prohibited by means of a bit in the
access-list entry used to access the space.
Thus, different users having different access
lists can have different capabilities to store in
the same address space.

� The program-event-recording facility 2 (PER
2) is an alternative to the original PER facility,
which is now named PER 1. PER 2 provides
the option of having a successful-branching
event occur only when the branch target is
within the designated storage area, and it pro-
vides the option of having a storage-alteration
event occur only when the storage area is
within designated address spaces. The use of
these options improves performance by
allowing only PER events of interest to occur.
PER 2 deletes the ability to monitor for
general-register-alteration events.

PER 2 includes extensions that provide addi-
tional information about PER events. The

| extensions were described in detail beginning
| in the fourth edition of this publication.

� Concurrent sense improves performance by
allowing sense information to be presented at
the time of an interruption due to a unit-check
condition, thus avoiding the need for a sepa-
rate I/O operation to obtain the sense informa-
tion.

� Storage-protection override provides a new
form of subsystem storage protection that
improves the reliability of a subsystem exe-
cuted in an address space along with possibly
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erroneous application programs. When
storage-protection override is made active by
a control-register bit, fetches and stores by the
CPU are permitted to storage locations having
a storage key of 9 regardless of the access
key used by the CPU. If the subsystem is in
key-8 storage and is executed with a PSW
key of 8, for example, and the application pro-
grams are in key-9 storage and are executed
with a PSW key of 9, accesses by the sub-
system to the application-program areas are
permitted while accesses by the application
programs to the subsystem area are denied.
(September, 1991)

� Move-page facility 2 extends the MOVE PAGE
instruction introduced in ESA/370 by allowing
use of a specified access key for either the
source or the destination operand, by allowing
improved performance when the destination
operand will soon be referenced, and by
allowing improved performance when an
operand is invalid in both main and expanded
storage. The ESA/370 version of MOVE
PAGE is now called move-page facility 1 and
is in Chapter 7, “General Instructions.” MOVE
PAGE of move-page facility 2 is in Chapter
10, “Control Instructions.” Some details about
the means for control-program support of
MOVE PAGE are not provided. (September,
1991)

� The square-root facility consists of the
SQUARE ROOT instruction and the square-
root exception. The instruction extracts the
square root of a floating-point operand in
either the long or short format. The instruction
is the same as that provided on some models
of the IBM 4341, 4361, and 4381 Processors.
(September, 1991)

� The string-instruction facility (or logical string
assist) provides instructions for (1) moving a
string of bytes until a specified ending byte is
found, (2) logically comparing two strings until
an inequality or a specified ending byte is
found, and (3) searching a string of a speci-
fied length for a specified byte. The first two
instructions are particularly useful in a C
program in which strings are normally delim-
ited by an ending byte of all zeros. (June,
1992)

� The suppression-on-protection facility causes
a protection exception due to page protection
to result in suppression of instruction exe-
cution instead of termination of instruction
execution, and it causes the address and an
address-space identifier of the protected page
to be stored in low storage. This is useful in
performing the AIX/ESA* copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store
in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.
(February, 1993)

� The set-address-space-control-fast facility con-
sists of the SET ADDRESS SPACE
CONTROL FAST (SACF) instruction, which
possibly can be used instead of the previously
existing SET ADDRESS SPACE CONTROL
(SAC) instruction, depending on whether all of
the SAC functions are required. SACF, unlike
SAC, does not perform the serialization and
checkpoint-synchronization functions, nor does
it cause copies of prefetched instructions to be
discarded. SACF provides improved perform-
ance on some models. (February, 1993)

� The subspace-group facility includes the
BRANCH IN SUBSPACE GROUP instruction,
which can be used to give or return control
from one address space to another in a group
of address spaces called a subspace group,
with this giving and returning of control being
done with better performance than can be
obtained by means of the PROGRAM CALL
and PROGRAM RETURN or PROGRAM
TRANSFER instructions. One address space
in the subspace group is called the base
space, and the other address spaces in the
group are called subspaces. It is intended
that each subspace contain a different subset
of the storage in the base space, that the
base space and each subspace contain a
subsystem control program, such as CICS*,
and application programs, and that each sub-
space contain the data for a single transaction
being processed under the subsystem control

AIX/ESA and CICS are trademarks of the International Business Machines Corporation.
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program. The placement of the data for each
transaction in a different subspace prevents
the processing of a transaction from erro-
neously damaging the data of other trans-
actions. The data of the control program can
be protected from the transaction processing
by means of the storage-protection-override
facility. (April, 1994)

� The virtual-address enhancement of sup-
pression on protection provides that if dynamic
address translation (DAT) was on when a pro-
tection exception was recognized, the
suppression-on-protection result is indicated,
and the address of the protected location is
stored, only if the address is one that was to
be translated by DAT; the suppression-on-
protection result is not indicated if the address
that would be stored is a real address. This
enhancement allows the stored address to be
translated reliably by the control program to
determine if the exception was due to page
protection as opposed to key-controlled pro-
tection. The enhancement extends the useful-
ness of suppression on protection to operating
systems like MVS/ESA* that use key-
controlled protection. (September, 1994)

� The immediate-and-relative-instruction facility
includes 13 new instructions, most of which
use a halfword-immediate value for either
signed-binary arithmetic operations or relative
branching. The facility reduces the need for
general registers, and, in particular, it elimi-
nates the need to use general registers to
address branch targets. As a result, the
general registers and access registers can be
allocated more efficiently in programs that
require many registers. (September, 1996)

� The compare-and-move-extended facility pro-
vides new versions of the COMPARE
LOGICAL LONG and MOVE LONG
instructions. The new versions increase the
size of the operand-length specifications from
24 bits to 32 bits, which can be useful when
objects larger than 16M bytes are processed
through the use of 31-bit addressing. The
new versions also periodically complete to
allow software polling in a multiprocessing
system. (September, 1996)

� The checksum facility consists of the
CHECKSUM instruction, which can be used to
compute a 16-bit or 32-bit checksum in order
to improve TCP/IP (transmission-control

protocol/internet protocol) performance. (Sep-
tember, 1996)

� The called-space-identification facility
improves serviceability by further identifying
the called address space in a linkage-stack
state entry formed by the PROGRAM CALL
instruction. (September, 1996)

� The branch-and-set-authority facility consists
of the BRANCH AND SET AUTHORITY
instruction, which can be used to improve the
performance of linkages within an address
space by replacing PROGRAM CALL,
PROGRAM TRANSFER, and SET PSW KEY
FROM ADDRESS instructions. (June, 1997)

� The perform-locked-operation facility consists
of the unprivileged PERFORM LOCKED
OPERATION instruction, which appears to
provide concurrent interlocked-update refer-
ences to multiple storage operands. A func-
tion code of the instruction can specify any of
six operations: compare and load, compare
and swap, double compare and swap,
compare and swap and store, compare and
swap and double store, and compare and
swap and triple store. The function code
further specifies either word or doubleword
operands. The instruction can be used to
avoid the use of programmed locks in a multi-
processing system. (June, 1997)

� Four additional floating-point facilities improve
the hexadecimal-floating-point (HFP) capability
of the machine and add a binary-floating-point
(BFP) capability. The facilities are:

– Basic floating-point extensions, which pro-
vides 12 additional floating-point registers
to make a total of 16 floating-point regis-
ters. This facility also includes a floating-
point-control register and means for
saving the contents of the new registers
during a store-status operation or a
machine-check interruption.

– Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

– Hexadecimal-floating-point (HFP) exten-
sions, which provides 26 new instructions
to operate on data in the HFP format. All
of these are counterparts to new
instructions provided by the BFP facility,
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including conversion between floating-
point and fixed-point formats, and a more
complete set of operations on the
extended format.

– Binary floating-point (BFP), which defines
short, long, and extended binary-floating-
point (BFP) data formats and provides 87
new instructions to operate on data in
these formats. The BFP formats and
operations provide everything necessary
to conform to the IEEE standard
(ANSI/IEEE Std 754-1985, IEEE Standard
for Binary Floating-Point Arithmetic, dated
August 12, 1985) except for conversion
between binary-floating-point numbers and
decimal strings, which must be provided in
software.

(May, 1998)

� The program-call-fast facility provides the
PROGRAM CALL FAST instruction, which is a
variation of the stacking PROGRAM CALL
instruction. PROGRAM CALL FAST omits
certain authorization checking and state
changes and also tracing, with the result that
its performance is improved relative to that of
stacking PROGRAM CALL. (May, 1998)

� The resume-program facility consists of the
RESUME PROGRAM instruction, which
restores, from a specified save area, the
instruction address and certain other fields in
the current PSW and also the contents of an
access-and-general-register pair. RESUME
PROGRAM allows a problem-state
interruption-handling program to restore the
state of an interrupted program and return to
that program despite that a register is required
for addressing the save area from which the
state is restored. (May, 1998)

� The trap facility provides the TRAP
instructions (a two-byte TRAP2 instruction and
a four-byte TRAP4 instruction) that can
overlay instructions in an application program
to give control to a program that can perform
fix-up operations on data being processed,
such as dates that may be a “Year-2000”
problem. RESUME PROGRAM can be used
to return from the fix-up program. TRAP and
RESUME PROGRAM can improve perform-
ance by avoiding program interruptions that
would otherwise be needed to give control to
and from the fix-up program. (May, 1998)

| � The extended-TOD-clock facility includes
| (1) an extension of the TOD clock from 64
| bits to 104 bits, allowing greater resolution;
| (2) a TOD programmable register, which con-
| tains a TOD programmable field that can be
| used to identify the configuration providing a
| TOD-clock value in a sysplex; (3) the SET
| CLOCK PROGRAMMABLE FIELD instruction,
| for setting the TOD programmable field in the
| TOD programmable register; and (4) the
| STORE CLOCK EXTENDED instruction,
| which stores both the longer TOD-clock value
| and the TOD programmable field. STORE
| CLOCK EXTENDED can be used in the future
| when the TOD clock is further extended to
| contain time values that exceed the current
| year-2042 limit (when there is a carry out of
| the current bit 0 of the TOD clock). (August,
| 1998)

| � The TOD-clock-control-override facility pro-
| vides a control-register bit that allows setting
| the TOD clock under program control, without
| use of the manual TOD-clock control of any
| CPU. (August, 1998)

| � The store-system-information facility provides
| the privileged STORE SYSTEM INFORMA-
| TION instruction, which can be used to obtain
| information about a component or components
| of a virtual machine, a logical partition, or the
| basic machine. (January, 1999)

| � The extended-translation facility includes the
| CONVERT UNICODE TO UTF-8, CONVERT
| UTF-8 TO UNICODE, and TRANSLATE
| EXTENDED instructions, all of which can
| improve performance. TRANSLATE
| EXTENDED can be used in place of a
| TRANSLATE AND TEST instruction that
| locates an escape character, followed by a
| TRANSLATE instruction that translates the
| bytes preceding the escape character. (April,
| 1999)

The following extensions are described in detail in
other publications:

� The Enterprise Systems Connection Architec-
ture (ESCON) introduces a new type of
channel that uses an optical-fiber communi-
cation link between channels and control
units. Information is transferred serially by bit,
at 200 million bits per second, up to a
maximum distance of 60 kilometers. The
optical-fiber technology and serial trans-
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mission simplify cabling and improve reliability.
See the publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

� The ESCON channel-to-channel adapter
(ESCON CTCA) provides the same type of
function for serial channel paths as is avail-
able for the parallel-I/O-interface channel
paths. See the publication IBM Enterprise
Systems Architecture/390 ESCON Channel-to-
Channel Adapter, SA22-7203.

� I/O-device self-description allows a device to
describe itself and its position in the I/O con-
figuration. See the publication IBM Enterprise
Systems Architecture/390 Common I/O-Device
Commands, SA22-7204.

� Vector extensions include an instruction for
loading the vector interruption index inde-
pendent of the rest of the vector-status reg-
ister, four instructions for multiplying and then
adding or subtracting, and four instructions for
extracting the square root. See the publica-
tion IBM Enterprise Systems Architecture/390
Vector Operations, SA22-7207. (September,
1991)

� The compression facility performs a Ziv-
Lempel type of compression and expansion by
means of static (nonadaptive) dictionaries that
are to be prepared by a program before the
compression and expansion operations.
Because the dictionaries are static, the com-
pression facility can provide good com-
pression not only for long sequential data
streams (for example, archival or network
data) but also for randomly accessed short
records (for example, 80 bytes). See the pub-
lication IBM Enterprise Systems
Architecture/390 Data Compression,
SA22-7208. (February, 1993)

The remaining extensions of ESA/390, for which
detailed descriptions are not provided, are as
follows:

� The integrated cryptographic facility provides a
number of instructions to protect data privacy,
to support message authentication and per-
sonal identification, and to facilitate key man-
agement. The high-performance cipher
capability of the facility is designed for

financial-transaction and bulk-encryption envi-
ronments, and it complies with the Data
Encryption Standard (DES).

– Usability of the cryptographic facility is
extended to virtual-machine environments,
which allows the facility to be used by
MVS/ESA being executed under
VM/ESA*,  which in turn may be executed
either under another VM/ESA or in a
logical partition. (September, 1991)

� The external-time-reference facility provides a
means to initiate and maintain the synchroni-
zation of TOD clocks to an external time refer-
ence (ETR). Synchronization tolerance of a
few microseconds can be achieved, and the
effect of leap seconds is taken into account.
The facility consists of an ETR sending unit
(Sysplex Timer*), which may be duplexed, two
or more ETR receiving units, and optical-fiber
cables. The cables are used to connect the
ETR sending unit, which is an external device,
to ETR receiving units of the configuration.
CPU instructions are provided for setting the
TOD clock to the value supplied by the ETR
sending unit.

– The ETR automatic-propagation-delay-
adjustment function adjusts the time
signals from the ETR to the attached
processors to compensate for the propa-
gation delay on the cables to the
processors, thus allowing the cables to be
of different lengths. (September, 1991)

– The ETR external-time-source function
synchronizes the ETR to a time signal
received from a remote location by means
of a telephone or radio. (September,
1991)

� Extended sorting provides instructions that
improve the performance of the DB2* sorting
function.

� Broadcasted purging provides for conditionally
updating tables associated with address trans-
lation and clearing address-translation
lookaside buffers in multiple CPUs.

� Other PER extensions, besides those
described beginning in the fourth edition of
this publication, are an augmentation of PER

MVS/ESA, VM/ESA, Sysplex Timer, and DB2 are trademarks of the International Business Machines Corporation.
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2 that provides additional PER function in the
interpretive-execution mode.

� Channel-subsystem call provides various func-
tions for use in the management of the I/O
configuration. Some of the functions acquire
information about the configuration from the
accessible elements of the configuration, while
others dynamically change the configuration.

� The cancel-I/O facility allows the program to
withdraw a pending start function from a des-
ignated subchannel without signaling the
device, which is useful in certain error-
recovery situations. (September, 1991)

� The operational extensions are a number of
other improvements that result in increased
availability and ease of use of the system, as
follows:

– Automatic-reconfiguration permits an oper-
ating system in an LPAR partition to
declare itself willing to be terminated sud-
denly, usually to permit its storage and
CPU resources to be acquired by an adja-
cent partition that is dynamically absorbing
the work load of another system that has
failed. Other functions deactivate and
reset designated participating partitions.

– A new storage-reconfiguration command
decreases the time needed to reconfigure
storage by allowing multiple requests for
reconfiguration to be made by means of a
single communication with the service
processor.

– SCP-initiated reset allows a system
control program (SCP) to reset its I/O con-
figuration prior to entering the disabled
wait state following certain check condi-
tions.

– Console integration simplifies configuration
requirements by reducing by one the
number of consoles required by MVS.

– The processor-availability facility enables
a CPU experiencing an unrecoverable
error that will cause a check stop to save
its state and alert the other CPUs in the
configuration. This allows, in many cases,
another CPU to continue execution of the
program that was in execution on the
failing CPU. The facility is applicable in
both the ESA/390 mode and the LPAR
mode. (April, 1991)

� Extensions for virtual machines are a number
of improvements to the interpretive-execution
facility, as follows:

– The VM-data-space facility provides for
making the ESA/390 access-register archi-
tecture more useful in virtual-machine
applications. The facility improves the
ability to address a larger amount of data
and to share data. For information on
how VM/ESA uses the VM-data-space
facility, see the publication VM/ESA CP
Programming Services, SC24-5520.

– A new storage-key function improves per-
formance by removing the need for the
previously used RCP area.

– Interpreted SIE (available with region relo-
cation) is improved to permit preferred
guests under VM when VM itself is oper-
ating as a high-performance guest.

– Other improvements include an optional
special-purpose lookaside for some of the
guest-state information and greater
freedom in certain implementation
choices.

� The ESCON-multiple-image facility (EMIF)
allows multiple logical partitions to share
ESCON channels and optionally to share any
of the control units and associated I/O devices
configured to these shared ESCON channels.
This can reduce ESCON-channel require-
ments, improve channel utilization, and
improve I/O connectivity. (June, 1992)

� PR/SM LPAR mode is enhanced to allow up
to 10 logical partitions in a single-image con-
figuration and 20 in a physically-partitioned
configuration. The previous limits were seven
and 14, respectively. (June, 1992)

� The asynchronous-pageout facility consists of
instructions for initiating and testing for com-
pletion of the asynchronous, to the CPU,
transfer of a 4K-byte block of data from main
storage to expanded storage. These
instructions can be used to improve perform-
ance when a large amount of paging activity
to expanded storage is required. (June, 1992)

� The asynchronous data mover provides for
transferring one or more groups of multiple
contiguous pages from main storage to
expanded storage or from expanded storage
to main storage in a single operation. Similar
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to I/O operations, these transfers are per-
formed largely asynchronous to instruction
execution. This facility can improve processor
performance when large groups of pages are
moved between main storage and expanded
storage. (February, 1993)

� The coupling facility enables high-performance
data sharing among MVS/ESA systems that
are connected by means of the facility. The
coupling facility provides storage that can be
dynamically partitioned for caching data in
shared buffers, maintaining work queues and
status information in shared lists, and locking
data by means of shared lock controls.
MVS/ESA services provide access to and
manipulation of the coupling-facility contents.
(April, 1994)

The ESA/370 and 370-XA Base
ESA/390 includes the complete set of facilities of
ESA/370 as its base. This section briefly outlines
most of the facilities that were additions in 370-XA
as compared to System/370 and that were addi-
tions in ESA/370 as compared to 370-XA.

The CPU-related facilities that were new in
370-XA are as follows:

� Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

� 31-bit logical addressing extends the virtual
address space from the 16M bytes address-
able with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

� 31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

� The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

� The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

� The COMPARE AND FORM CODEWORD
and UPDATE TREE instructions facilitate
sorting applications. (An example of use is in

Appendix A, “Number Representation and
Instruction-Use Examples.” The example pre-
viously was not published.)

� The vector facility is a high-performance
means of performing numerically intensive
computations. This facility is described in the
publication IBM Enterprise Systems
Architecture/390 Vector Operations,

| SA22-7207. The vector facility is no longer
| provided on current models.

� The interpretive-execution facility allows cre-
ation of virtual machines that may operate
according to several architectures and whose
performance is enhanced because many
virtual-machine functions are directly inter-
preted by the machine rather than simulated
by the program. This facility is described in
the publication IBM 370-XA Interpretive Exe-
cution, SA22-7095.

� The service-call-logical-processor (SCLP)
facility provides a means of communicating
between the control program and the service
processor for the purpose of describing and
changing the configuration. This facility is not
described.

The I/O-related differences between 370-XA and
System/370 result from the 370-XA channel sub-
system, which includes:

� Path-independent addressing of I/O devices,
which permits the initiation of I/O operations
without regard to which CPU is executing the
I/O instruction or how the I/O device is
attached to the channel subsystem. Any I/O
interruption can be handled by any CPU
enabled for it.

� Path management, whereby the channel sub-
system determines which paths are available
for selection, chooses a path, and manages
any busy conditions encountered while
attempting to initiate I/O processing with the
associated devices.

� Dynamic reconnection, which permits any I/O
device using this capability to reconnect to
any available channel path to which it has
access in order to continue execution of a
chain of commands.

� Programmable interruption subclasses, which
permit the programmed assignment of
I/O-interruption requests from individual I/O
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devices to any one of eight maskable inter-
ruption queues.

� An additional CCW format for the direct use of
31-bit addresses in channel programs. The
new CCW format, called format 1, is provided
in addition to the System/370 CCW format,
now called format 0.

� Address-limit checking, which provides an
additional storage-protection facility to prevent
data access to storage locations above or
below a specified absolute address.

� Monitoring facilities, which can be invoked by
the program to cause the channel subsystem
to measure and accumulate key I/O-resource
usage parameters.

� Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device.

� A set of 13 I/O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities appearing in System/370 but not pro-
vided in 370-XA are described in Appendix F.

The facilities that were new in ESA/370 are as
follows:

� Sixteen access registers permit the program
to have immediate access to storage oper-
ands in up to 16 2G-byte address spaces,
including the address space in which the
program resides. In a dynamic-address-
translation mode named access-register
mode, the instruction B field, or for certain
instructions the R field, designates both a
general register and an access register, and
the contents of the access register, along with
the contents of protected tables, specify the
operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authori-
zation mechanism, can have fast access to
hundreds of different operand address spaces.

� A linkage stack is used in a functionally
expanded mechanism for passing control
between programs in either the same or dif-
ferent address spaces. This mechanism
makes use also of the previously existing
PROGRAM CALL instruction, an extended

entry-table entry, and a new PROGRAM
RETURN instruction. The mechanism saves
various elements of status, including access-
register and general-register contents, during
a calling linkage, provides for changing the
current status during the calling linkage, and
restores the original status during the
returning linkage. The linkage stack can also
be used to save and restore access-register
and general-register contents during a branch-
type linkage performed by the new instruction
BRANCH AND STACK.

� A translation mode named home-space mode
provides an efficient means for the control
program to obtain control in the address
space, called the home address space, in
which the principal control blocks for a
dispatchable unit (a task or process) are kept.

� The semiprivileged MOVE WITH SOURCE
KEY and MOVE WITH DESTINATION KEY
instructions allow bidirectional movement of
data between storage areas having different
storage keys, without the need to change the
PSW key.

� The privileged LOAD USING REAL
ADDRESS and STORE USING REAL
ADDRESS instructions allow the control
program to access data in real storage more
efficiently.

� The private-space facility allows an address
space not to contain any common segments
and causes low-address protection and fetch-
protection override not to apply to the address
space.

� The unprivileged MOVE PAGE instruction
allows the program to move a page of data
between main and expanded storage, pro-
vided that the source and destination pages
are both valid. Some details about the means
for control-program support of MOVE PAGE
are not provided. The ESA/370 version of
MOVE PAGE is now called move-page facility
1.

� The Processor Resource/Systems Manager*
(PR/SM*) feature provides support for multiple
preferred guests under VM/XA and provides
the logically partitioned (LPAR) mode, with the
latter providing flexible partitioning of
processor resources among multiple logical
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partitions.  Certain aspects of the LPAR use of
PR/SM are described in the publication IBM
ES/3090 Processor Complex Processor
Resource/Systems Manager Planning Guide,
GA22-7123.

� The COMPARE UNTIL SUBSTRING EQUAL
instruction provides improved performance of
the compression of IMS log data sets and can
be useful in other programs also. (The
instruction is in Chapter 7, “General
Instructions.” It previously was not described.)

 System Program
ESA/390 is designed to be used with a control
program that coordinates the use of system
resources and executes all I/O instructions,
handles exceptional conditions, and supervises
scheduling and execution of multiple programs.

 Compatibility

Compatibility among ESA/390
Systems
Although systems operating as defined by
ESA/390 may differ in implementation and phys-
ical capabilities, logically they are upward and
downward compatible. Compatibility provides for
simplicity in education, availability of system
backup, and ease in system growth. Specifically,
any program written for ESA/390 gives identical
results on any ESA/390 implementation, provided
that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional
facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command codes that
are not installed in some models. Also, it
must not use or depend on fields associated
with uninstalled facilities. For example, data

should not be placed in an area used by
another model for fixed-logout information.
Similarly, the program must not use or depend
on unassigned fields in machine formats
(control registers, instruction formats, etc.) that
are not explicitly made available for program
use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined.
This includes the requirement that the
program should not depend on the assign-
ment of device numbers and CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting
compatibility.

Compatibility among ESA/390,
ESA/370, 370-XA, and System/370

 Control-Program Compatibility
Control programs written for 370-XA or ESA/370
can be directly transferred to systems operating as
defined by ESA/390. Almost all of the new func-
tions that were introduced in ESA/370 are enabled
only when a control-register bit assigned in
ESA/370 and ESA/390 is set to one. When this
bit is zero, the machine operates essentially as
specified for 370-XA; the most significant
exceptions are (1) instructions that load and store
the contents of the access registers can be exe-
cuted successfully, and (2) certain previously
unassigned real and absolute storage locations
below address 512 are stored in during the store-
status operation, certain program interruptions,
and the machine-check interruption. When the
new control-register bit is zero, no unprivileged or
semiprivileged instruction can place the CPU in
the access-register mode, and so the access reg-
isters cannot be used to specify address spaces.

Control programs written for System/370 cannot
be directly transferred to systems operating as
defined by ESA/390. This is because in the

Processor Resource/Systems Manager and PR/SM are trademarks of the International Business Machines Corporation.
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370-XA base of ESA/390 the basic-control mode
is not present and the facilities for I/O and
dynamic address translation are changed. (See
Appendixes D, E, and F for a detailed comparison
among ESA/390, ESA/370, 370-XA, and
System/370.)

 Problem-State Compatibility
A high degree of compatibility exists at the
problem-state level in going forward from
ESA/370, 370-XA, or System/370 to ESA/390.
Because the majority of a user's applications are
written for the problem state, this problem-state
compatibility is useful in many installations.

A problem-state program written for ESA/370,
370-XA, or System/370 operates with ESA/390,
provided that the program:

1. Complies with the limitations described in
“Compatibility among ESA/390 Systems” on
page 1-9.

2. Is not dependent on control-program facilities
which are unavailable on the system.

3. Takes into account other changes made to the
System/370 architectural definition that affect
compatibility between System/370 and the
370-XA base of ESA/390. These changes are
described in Appendix F, “Comparison
between System/370 and 370-XA.”

Programming Notes:

1. This publication assigns meanings to various
operation codes, to bit positions in
instructions, channel-command words, regis-
ters, and table entries, and to fixed locations
in the low 512 bytes of storage. Unless spe-
cifically noted, the remaining operation codes,
bit positions, and low-storage locations are
reserved for future assignment to new facilities
and other extensions of the architecture.

To ensure that existing programs operate if
and when such new facilities are installed,
programs should not depend on an indication
of an exception as a result of invalid values
that are currently defined as being checked. If
a value must be placed in unassigned posi-
tions that are not checked, the program
should enter zeros. When the machine pro-
vides a code or field, the program should take
into account that new codes and bits may be
assigned in the future. The program should

not use unassigned low-storage locations for
keeping information since these locations may
be assigned in the future in such a way that
the machine causes the contents of the
locations to be changed.

2. If a control program is used that does not
support the use of access registers, a
problem-state program under this control
program still is able to load and store the con-
tents of the access registers, and it might do
so simply to use the access registers for data
storage instead of for addressing. However,
the use of access registers in such circum-
stances may be unsuccessful because the
unsupporting control program does not save
and restore the contents of the access regis-
ters when switching between dispatchable
units. Furthermore, the use of access regis-
ters in such circumstances may constitute a
loss of security because the contents of
access registers loaded by one dispatchable
unit will be visible to other dispatchable units.
To avoid the problems referred to here, a
program using access registers must be exe-
cuted only in a system with a control program
that properly supports the use of access regis-
ters.

 Availability
Availability is the capability of a system to accept
and successfully process an individual job.
Systems operating in accordance with ESA/390
permit substantial availability by (1) allowing a
large number and broad range of jobs to be proc-
essed concurrently, thus making the system
readily accessible to any particular job, and
(2) limiting the effect of an error and identifying
more precisely its cause, with the result that the
number of jobs affected by errors is minimized
and the correction of the errors facilitated.

Several design aspects make this possible.

� A program is checked for the correctness of
instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking
and reporting assists in locating failures and
isolating effects.

� The protection facilities, in conjunction with
dynamic address translation and the sepa-
ration of programs and data in different

1-10 ESA/390 Principles of Operation  



  
 

address spaces, permit the protection of the
contents of storage from destruction or misuse
caused by erroneous or unauthorized storing
or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security require-
ments to be processed concurrently with other
applications.

� Dynamic address translation allows isolation
of one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design
and testing of new versions of operating
systems along with the concurrent processing
of application programs. Additionally, it pro-
vides for the concurrent operation of incom-
patible operating systems.

� The use of access registers allows programs,
data, and different collections of data to reside
in different address spaces, and this further
reduces the likelihood that a store using an
incorrect address will produce either erro-
neous results or a system-wide failure.

� Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

� MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual inter-

vention and with little effect on the concurrent
processing of other programs.

� On most models, error checking and cor-
rection (ECC) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

� An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability
for loading and operating a program on a dif-
ferent model when a system failure occurs.

� A small number of manual controls are
required for basic system operation, permitting
most operator-system interaction to take place
via a unit operating as an I/O device and thus
reducing the possibility of operator errors.

� The logical partitions made available by the
PR/SM feature allow continued reliable pro-
duction operations in one or more partitions
while new programming systems are tested in
other partitions. This is an advancement in
particular for non-VM installations.

� The operational extensions and channel-
subsystem-call facility of ESA/390 improve the
ability to continue execution of application pro-
grams in the presence of system incidents
and the ability to make configuration changes
with less disruption to operations.
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Logically, a system consists of main storage, one
or more central processing units (CPUs), operator
facilities, a channel subsystem, and I/O devices.
I/O devices are attached to the channel sub-
system through control units. The connection
between the channel subsystem and a control unit
is called a channel path.

A channel path employs either a parallel-
transmission protocol or a serial-transmission pro-
tocol and, accordingly, is called either a parallel or
a serial channel path. A serial channel path may
connect to a control unit through a dynamic switch
that is capable of providing different internal con-
nections between the ports of the switch.

Expanded storage may also be available in the
system, a vector or cryptographic unit may be
included in a CPU, and an external time reference
(ETR) may be connected to the system.

The physical identity of the above functions may
vary among implementations, called “models.”
Figure 2-1 depicts the logical structure of a
two-CPU multiprocessing system that includes
expanded storage, a vector unit, and a
cryptographic unit and that is connected to an
ETR.

Specific processors may differ in their internal
characteristics, the installed facilities, the number
of subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main and expanded storage, and the
representation of the operator facilities.
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Figure 2-1. Logical Structure of an ESA/390 System
with Two CPUs

A system viewed without regard to its I/O devices
is referred to as a configuration. All of the phys-
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ical equipment, whether in the configuration or not,
is referred to as the installation.

Model-dependent reconfiguration controls may be
provided to change the amount of main and
expanded storage and the number of CPUs and
channel paths in the configuration. In some
instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
and expanded storage, one or more CPUs, and
one or more subchannels and channel paths in
the channel subsystem.

Each configuration is isolated in that the main and
expanded storage in one configuration is not
directly addressable by the CPUs and the channel
subsystem of another configuration. It is,
however, possible for one configuration to commu-
nicate with another by means of shared I/O
devices or a channel-to-channel adapter. At any
one time, the storage, CPUs, subchannels, and
channel paths connected together in a system are
referred to as being in the configuration. Each
CPU, subchannel, channel path, main-storage
location, and expanded-storage location can be in
only one configuration at a time.

 Main Storage
Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the
CPUs and the channel subsystem. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available on the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in multiples of
4K-byte blocks. At any instant, the channel sub-
system and all CPUs in the configuration have
access to the same blocks of storage and refer to
a particular block of main-storage locations by
using the same absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU
may have an associated cache. The effects,
except on performance, of the physical con-
struction and the use of distinct storage media are
not observable by the program.

 Expanded Storage
Expanded storage may be available on some
models. Expanded storage, when available, can
be accessed by all CPUs in the configuration by
means of instructions that transfer 4K-byte blocks
of data from expanded storage to main storage or
from main storage to expanded storage. These
instructions are not described. Another capability
for accessing expanded storage is described in
the definition of the MOVE PAGE instruction in
Chapter 7, “General Instructions,” and
Chapter 10, “Control Instructions.”

Each 4K-byte block in expanded storage is
addressed by means of a 32-bit unsigned binary
integer called an expanded-storage block number.

Expanded storage is not further described.

 CPU
The central processing unit (CPU) is the control-
ling center of the system. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical implementation of the CPU may
differ among models, but the logical function
remains the same. The result of executing an
instruction is the same for each model, providing
that the program complies with the compatibility
rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers (binary
and hexadecimal) of fixed length, decimal integers
of variable length, and logical information of either
fixed or variable length. Processing may be in
parallel or in series; the width of the processing
elements, the multiplicity of the shifting paths, and
the degree of simultaneity in performing the dif-
ferent types of arithmetic differ from one CPU to
another without affecting the logical results.

Instructions which the CPU executes fall into
seven classes: general, decimal, floating-point-
support (FPS), binary-floating-point (BFP),
hexadecimal-floating-point (HFP), control, and I/O
instructions. The general instructions are used in
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performing binary-integer-arithmetic operations
and logical, branching, and other nonarithmetic
operations. The decimal instructions operate on
data in the decimal format. The BFP and HFP
instructions operate on data in the BFP and HFP
formats, respectively, while the FPS instructions
operate on floating-point data independent of the
format or convert it from one format to the other.
The privileged control instructions and the I/O
instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged
control instructions can be executed in the
problem state, subject to the appropriate authori-
zation mechanisms.

The CPU provides registers which are available to
programs but do not have addressable represen-
tations in main storage. They include the current
program-status word (PSW), the general registers,
the floating-point registers and floating-point-
control register, the control registers, the access
registers, the prefix register, and the registers for
the clock comparator and the CPU timer. Each
CPU in an installation provides access to a time-
of-day (TOD) clock, which may be local to that
CPU or shared with other CPUs in the installation.
The instruction operation code determines which
type of register is to be used in an operation. See
Figure 2-2 on page  2-5 for the format of the
control, access, general, and floating-point regis-
ters.

 PSW
The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned
storage location, called the old-PSW location, for
the particular class of interruption. The CPU
fetches a new PSW from a second assigned
storage location. This new PSW determines the
next program to be executed. When it has fin-
ished processing the interruption, the interrupting
program may reload the old PSW, making it again

the current PSW, so that the interrupted program
can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and super-
visor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in real storage.

 General Registers
Instructions may designate information in one or
more of 16 general registers. The general regis-
ters may be used as base-address registers and
index registers in address arithmetic and as accu-
mulators in general arithmetic and logical opera-
tions. Each register contains 32 bits. The general
registers are identified by the numbers 0-15 and
are designated by a four-bit R field in an instruc-
tion. Some instructions provide for addressing
multiple general registers by having several R
fields. For some instructions, the use of a specific
general register is implied rather than explicitly
designated by an R field of the instruction.

For some operations, two adjacent general regis-
ters are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the left-
most (high-order) 32 bits. The next higher-
numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address
and index registers in address generation. In
these cases, the registers are designated by a
four-bit B field or X field in an instruction. A value
of zero in the B or X field specifies that no base or
index is to be applied, and, thus, general register
0 cannot be designated as containing a base
address or index.

 Floating-Point Registers
All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. When the
basic-floating-point-extensions facility is installed,
the CPU has 16 floating-point registers. The
floating-point registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in floating-point instructions. Each floating-
point register is 64 bits long and can contain either
a short (32-bit) or a long (64-bit) floating-point
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operand. As shown in Figure 2-2 on page 2-5,
pairs of floating-point registers can be used for
extended (128-bit) operands. Each of the eight
pairs is referred to by the number of the lower-
numbered register of the pair. When the basic-
floating-point-extensions facility is not installed, the
CPU has four floating-point registers numbered 0,
2, 4, and 6.

 Floating-Point-Control (FPC)
Register
The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. The
FPC register is installed when the binary-floating-
point facility is installed and is described in the
section “Floating-Point-Control (FPC) Register” on
page 19-2.

 Control Registers
The CPU has 16 control registers, each having 32
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either
to specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE
CONTROL. Multiple control registers can be
addressed by these instructions.

 Access Registers
The CPU has 16 access registers numbered 0-15.
An access register consists of 32 bit positions
containing an indirect specification (not described
here in detail) of a segment-table designation. A
segment-table designation is a parameter used by
the dynamic-address-translation (DAT) mechanism
to translate references to a corresponding address
space. When the CPU is in a mode called the
access-register mode (controlled by bits in the
PSW), an instruction B field, used to specify a
logical address for a storage-operand reference,
designates an access register, and the segment-
table designation specified by the access register
is used by DAT for the reference being made. For
some instructions, an R field is used instead of a
B field. Instructions are provided for loading and
storing the contents of the access registers and
for moving the contents of one access register to
another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access reg-
ister 0 always designates the current instruction
space. When one of access registers 1-15 is
used to designate an address space, the CPU
determines which address space is designated by
translating the contents of the access register.
When access register 0 is used to designate an
address space, the CPU treats the access register
as designating the current instruction space, and it
does not examine the actual contents of the
access register. Therefore, the 16 access regis-
ters can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.
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R Field Control Access General Floating-Point

 and Registers Registers Registers Registers

Register

 Number │%─32 bits─5│ │%─32 bits─5│ │%─32 bits─5│ │%──────64 bits──────5│

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌─────────────────────┐

ðððð ð │ │ │ │ ┌5│ │ ┌5│ │

└───────────┘ └───────────┘ │ └───────────┘ │ └─────────────────────┘

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ │ ┌─────────────────────┐

ððð1 1 │ │ │ │ └5│ │ │ │ │%┐

└───────────┘ └───────────┘ └───────────┘ │ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ │ ┌─────────────────────┐ │

ðð1ð 2 │ │ │ │ ┌5│ │ └5│ │ │

└───────────┘ └───────────┘ │ └───────────┘ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ ┌─────────────────────┐ │

ðð11 3 │ │ │ │ └5│ │ │ │%┘

└───────────┘ └───────────┘ └───────────┘ └─────────────────────┘

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌─────────────────────┐

ð1ðð 4 │ │ │ │ ┌5│ │ ┌5│ │

└───────────┘ └───────────┘ │ └───────────┘ │ └─────────────────────┘

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ │ ┌─────────────────────┐

ð1ð1 5 │ │ │ │ └5│ │ │ │ │%┐

└───────────┘ └───────────┘ └───────────┘ │ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ │ ┌─────────────────────┐ │

ð11ð 6 │ │ │ │ ┌5│ │ └5│ │ │

└───────────┘ └───────────┘ │ └───────────┘ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ ┌─────────────────────┐ │

ð111 7 │ │ │ │ └5│ │ │ │%┘

└───────────┘ └───────────┘ └───────────┘ └─────────────────────┘

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌─────────────────────┐

1ððð 8 │ │ │ │ ┌5│ │ ┌5│ │

└───────────┘ └───────────┘ │ └───────────┘ │ └─────────────────────┘

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ │ ┌─────────────────────┐

1ðð1 9 │ │ │ │ └5│ │ │ │ │%┐

└───────────┘ └───────────┘ └───────────┘ │ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ │ ┌─────────────────────┐ │

1ð1ð 1ð │ │ │ │ ┌5│ │ └5│ │ │

└───────────┘ └───────────┘ │ └───────────┘ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ ┌─────────────────────┐ │

1ð11 11 │ │ │ │ └5│ │ │ │%┘

└───────────┘ └───────────┘ └───────────┘ └─────────────────────┘

┌───────────┐ ┌───────────┐ ┌───────────┐ ┌─────────────────────┐

11ðð 12 │ │ │ │ ┌5│ │ ┌5│ │

└───────────┘ └───────────┘ │ └───────────┘ │ └─────────────────────┘

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ │ ┌─────────────────────┐

11ð1 13 │ │ │ │ └5│ │ │ │ │%┐

└───────────┘ └───────────┘ └───────────┘ │ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ ┌───────────┐ │ ┌─────────────────────┐ │

111ð 14 │ │ │ │ ┌5│ │ └5│ │ │

└───────────┘ └───────────┘ │ └───────────┘ └─────────────────────┘ │

 │ │

┌───────────┐ ┌───────────┐ │ ┌───────────┐ ┌─────────────────────┐ │

1111 15 │ │ │ │ └5│ │ │ │%┘

└───────────┘ └───────────┘ └───────────┘ └─────────────────────┘

Note: The arrows indicate that the two registers may be coupled as a double-register pair,
designated by specifying the lower-numbered register in the R field. For example, the floating-point
register pair 13 and 15 is designated by 1101 binary in the R field.

Figure 2-2. Control, Access, General, and Floating-Point Registers
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 Vector Facility
Depending on the model, a vector facility may be
provided as an extension of the CPU. When the
vector facility is provided on a CPU, it functions as
an integral part of that CPU. The functions of the
vector facility and its registers are described in the
publication IBM Enterprise Systems
Architecture/390 Vector Operations, SA22-7207.

 Cryptographic Facility
Depending on the model, an integrated
cryptographic facility may be provided as an
extension of the CPU. When the cryptographic
facility is provided on a CPU, it functions as an
integral part of that CPU. A summary of the bene-
fits of the cryptographic facility is given in “High-
lights of ESA/390” on page 1-1; the facility is
otherwise not described.

External Time Reference
Depending on the model, an external time refer-
ence (ETR) may be connected to the configura-
tion. A summary of the benefits of the ETR is
given in “Highlights of ESA/390” on page 1-1; the
facility is otherwise not described.

 I/O
Input/output (I/O) operations involve the transfer of
information between main storage and an I/O
device. I/O devices and their control units attach
to the channel subsystem, which controls this data
transfer.

 Channel Subsystem

The channel subsystem directs the flow of infor-
mation between I/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with I/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also performs the path-management
function of testing for channel-path availability,
selecting an available channel path, and initiating
execution of the operation with the I/O device.
Within the channel subsystem are subchannels.

One subchannel is provided for and dedicated to
each I/O device accessible to the channel sub-
system. Each subchannel contains storage for
information concerning the associated I/O device
and its attachment to the channel subsystem. The
subchannel also provides storage for information
concerning I/O operations and other functions
involving the associated I/O device. Information
contained in the subchannel can be accessed by
CPUs using I/O instructions as well as by the
channel subsystem and serves as the means of
communication between any CPU and the channel
subsystem concerning the associated I/O device.
The actual number of subchannels provided
depends on the model and the configuration; the
maximum number of subchannels is 65,536.

 Channel Paths
I/O devices are attached through control units to
the channel subsystem via channel paths. Control
units may be attached to the channel subsystem
via more than one channel path, and an I/O
device may be attached to more than one control
unit. In all, an individual I/O device may be acces-
sible to a channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum number of channel paths is 256.

A channel path can use one of two types of com-
munication links:

� System/360 and System/370 I/O interface,
called the parallel-I/O interface; the channel
path is called a parallel channel path

� ESCON I/O interface, called the serial-I/O
interface; the channel path is called a serial
channel path

Each parallel-I/O interface consists of a number of
electrical signal lines between the channel sub-
system and one or more control units. Eight
control units can share a single parallel-I/O inter-
face. Up to 256 I/O devices can be addressed on
a single parallel-I/O interface. The parallel-I/O
interface is described in the publication IBM
System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers' Information, GA22-6974.

Each serial-I/O interface consists of two optical-
fiber conductors between any two of a channel
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subsystem, a dynamic switch, and a control unit.
A dynamic switch can be connected by means of
multiple serial-I/O interfaces to either the same or
different channel subsystems and to multiple
control units. The number of control units which
can be connected on one channel path depends
on the channel-subsystem and dynamic-switch
capabilities. Up to 256 devices can be attached to
each control unit that uses the serial-I/O interface,
depending on the control unit. The serial-I/O inter-
face is described in the publication ESA/390
ESCON I/O Interface, SA22-7202.

I/O Devices and Control Units
I/O devices include such equipment as printers,
magnetic-tape units, direct-access-storage
devices, displays, keyboards, communications
controllers, teleprocessing devices, and sensor-
based equipment. Many I/O devices function with
an external medium, such as paper or magnetic
tape. Other I/O devices handle only electrical
signals, such as those found in displays and com-

munications networks. In all cases, I/O-device
operation is regulated by a control unit that pro-
vides the logical and buffering capabilities neces-
sary to operate the associated I/O device. From
the programming point of view, most control-unit
functions merge with I/O-device functions. The
control-unit function may be housed with the I/O
device or in the CPU, or a separate control unit
may be used.

 Operator Facilities
The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilities may be an
operator-console device, which may also be used
as an I/O device for communicating with the
program.

The main functions provided by the operator facili-
ties include resetting, clearing, initial program
loading, start, stop, alter, and display.
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This chapter discusses the representation of infor-
mation in main storage, as well as addressing,
protection, and reference and change recording.
The aspects of addressing which are covered
include the format of addresses, the concept of
address spaces, the various types of addresses,
and the manner in which one type of address is

translated to another type of address. A list of
permanently assigned storage locations appears
at the end of the chapter.

Main storage provides the system with directly
addressable fast-access storage of data. Both
data and programs must be loaded into main
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storage (from input devices) before they can be
processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated
with a CPU or an I/O processor. The effects,
except on performance, of the physical con-
struction and use of distinct storage media are not
observable by the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concur-
rent requests to a main-storage location occur,
access normally is granted in a sequence deter-
mined by the system. If a reference changes the
contents of the location, any subsequent storage
fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references
are made to main storage when power is being
turned off. In both types of main storage, the con-
tents of the storage key are not necessarily pre-
served when the power for main storage is turned
off.

Note:  Because most references in this publica-
tion apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“main storage,” “absolute storage,” or “real
storage” when the meaning is clear. The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means
of an absolute address. The terms describe fast-
access storage, as opposed to auxiliary storage,
such as provided by direct-access storage
devices. “Real storage” is synonymous with
“absolute storage” except for the effects of pre-
fixing.

 Storage Addressing
Storage is viewed as a long horizontal string of
bits. For most operations, accesses to storage
proceed in a left-to-right sequence. The string of
bits is subdivided into units of eight bits. An
eight-bit unit is called a byte, which is the basic
building block of all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address
of that byte location or, simply, the byte address.
Adjacent byte locations have consecutive
addresses, starting with 0 on the left and pro-
ceeding in a left-to-right sequence. Addresses are
either 24-bit or 31-bit unsigned binary integers and
are described in “Address Size and Wraparound”
on page 3-5.

 Information Formats
Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a
group of bytes, at a time. Unless otherwise speci-
fied, a group of bytes in storage is addressed by
the leftmost byte of the group. The number of
bytes in the group is either implied or explicitly
specified by the operation to be performed. When
used in a CPU operation, a group of bytes is
called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the “high-order” bits and
the rightmost bits as the “low-order” bits. Bit
numbers are not storage addresses, however.
Only bytes can be addressed. To operate on indi-
vidual bits of a byte in storage, it is necessary to
access the entire byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address are numbered 8 through 31
for 24-bit addresses and 1 through 31 for 31-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from 0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automat-
ically by the machine and cannot be directly con-
trolled by the program. References in this
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publication to the length of data fields and regis-
ters exclude mention of the associated check bits.
All storage capacities are expressed in number of
bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may
be implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

 Integral Boundaries
Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address
is a multiple of the length of the unit in bytes.
Special names are given to fields of two, four, and
eight bytes on an integral boundary. A halfword is
a group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consec-
utive bytes on a four-byte boundary. A
doubleword is a group of eight consecutive bytes
on an eight-byte boundary. (See Figure 3-1.)

When storage addresses designate halfwords,
words, and doublewords, the binary representation
of the address contains one, two, or three right-
most zero bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and CCWs, IDAWs, and the storage oper-
ands of certain instructions must be on other
integral boundaries. The storage operands of
most instructions do not have boundary-alignment
requirements.

 ¸

¸ ──────5 Storage Addresses

 ¸

 ¸

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬─

Bytes │ ð │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴─

¸ ¸ ¸ ¸ ¸

¸ ¸ ¸ ¸ ¸

¸ ¸ ¸ ¸ ¸

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬─

Halfwords │ ð │ 2 │ 4 │ 6 │ 8

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴─

¸ ¸ ¸

¸ ¸ ¸

¸ ¸ ¸

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬─

Words │ ð │ 4 │ 8

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴─

 ¸ ¸

 ¸ ¸

 ¸ ¸

 ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬─

Doublewords │ ð │ 8

 └───┴───┴───┴───┴───┴───┴───┴───┴───┴─

Figure 3-1. Integral Boundaries with Storage
Addresses

Programming Note:  For fixed-field-length opera-
tions with field lengths that are a power of 2, sig-
nificant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral bounda-
ries.

Address Types and Formats

 Address Types
For purposes of addressing main storage, three
basic types of addresses are recognized: abso-
lute, real, and virtual. The addresses are distin-
guished on the basis of the transformations that
are applied to the address during a storage
access. Address translation converts virtual to
real, and prefixing converts real to absolute. In
addition to the three basic address types, addi-
tional types are defined which are treated as one
or another of the three basic types, depending on
the instruction and the current mode.

  Chapter 3. Storage 3-3



  
 

 Absolute Address
An absolute address is the address assigned to a
main-storage location. An absolute address is
used for a storage access without any transforma-
tions performed on it.

The channel subsystem and all CPUs in the con-
figuration refer to a shared main-storage location
by using the same absolute address. Available
main storage is usually assigned contiguous abso-
lute addresses starting at 0, and the addresses
are always assigned in complete 4K-byte blocks
on integral boundaries. An exception is recog-
nized when an attempt is made to use an absolute
address in a block which has not been assigned
to physical locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical
locations. However, at any one time, a physical
location is not associated with more than one
absolute address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred
to as absolute storage.

 Real Address
A real address identifies a location in real storage.
When a real address is used for an access to
main storage, it is converted, by means of pre-
fixing, to an absolute address.

At any instant there is one real-address to
absolute-address mapping for each CPU in the
configuration. When a real address is used by a
CPU to access main storage, it is converted to an
absolute address by prefixing. The particular
transformation is defined by the value in the prefix
register for the CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

 Virtual Address
A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means
of dynamic address translation to a real address,
which is then further converted by prefixing to an
absolute address.

Primary Virtual Address
A primary virtual address is a virtual address
which is to be translated by means of the primary
segment-table designation. Logical addresses are
treated as primary virtual addresses when in the
primary-space mode. Instruction addresses are
treated as primary virtual addresses when in the
primary-space mode, secondary-space mode, or
access-register mode. The first-operand address
of MOVE TO PRIMARY and the second-operand
address of MOVE TO SECONDARY are always
treated as primary virtual addresses.

Secondary Virtual Address
A secondary virtual address is a virtual address
which is to be translated by means of the sec-
ondary segment-table designation. Logical
addresses are treated as secondary virtual
addresses when in the secondary-space mode.
The second-operand address of MOVE TO
PRIMARY and the first-operand address of MOVE
TO SECONDARY are always treated as sec-
ondary virtual addresses.

AR-Specified Virtual Address
An AR-specified virtual address is a virtual
address which is to be translated by means of an
access-register-specified segment-table desig-
nation. Logical addresses are treated as
AR-specified addresses when in the access-
register mode.

Home Virtual Address
A home virtual address is a virtual address which
is to be translated by means of the home
segment-table designation. Logical addresses
and instruction addresses are treated as home
virtual addresses when in the home-space mode.

 Logical Address
Except where otherwise specified, the storage-
operand addresses for most instructions are
logical addresses. Logical addresses are treated
as real addresses in the real mode, as primary
virtual addresses in the primary-space mode, as
secondary virtual addresses in the secondary-
space mode, as AR-specified virtual addresses in
the access-register mode, and as home virtual
addresses in the home-space mode. Some
instructions have storage-operand addresses or
storage accesses associated with the instruction
which do not follow the rules for logical addresses.
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In all such cases, the instruction definition con-
tains a definition of the type of address.

 Instruction Address
Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the
real mode, as primary virtual addresses in the
primary-space mode, secondary-space mode, or
access-register mode, and as home virtual
addresses in the home-space mode. The instruc-

| tion address in the current PSW and the target
address of EXECUTE are instruction addresses.

 Effective Address
In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing is per-
formed. An effective address may be specified
directly in a register or may result from address
arithmetic. Address arithmetic is the addition of
the base and displacement or of the base, index,
and displacement.

Address Size and Wraparound
Two sizes of addresses are provided: 24-bit and
31-bit. A 24-bit address can accommodate a
maximum of 16,777,216 (16M) bytes; with a 31-bit
address, 2,147,483,648 (2G) bytes of storage can
be addressed.

The bits of the address are numbered 8-31 and
1-31, respectively, corresponding to the numbering
of base-address and index bits in a general reg-
ister:

┌────────┬───────────────────────┐

│ │ 24-Bit Address │

└────────┴───────────────────────┘

ð 8 31

┌─┬──────────────────────────────┐

│ │ 31-Bit Address │

└─┴──────────────────────────────┘

ð 1 31

A 24-bit virtual address is expanded to 31 bits by
appending seven zeros on the left before it is
translated by means of the DAT process, and a
24-bit real address is similarly expanded to 31 bits
before it is transformed by prefixing. A 24-bit
absolute address is expanded to 31 bits before
main storage is accessed. Thus, the 24-bit
address always designates the first 16M-byte

block of the 2G-byte storage addressable by a
31-bit address.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program an address, a 31-bit value imbedded in a
32-bit field is made available (placed in storage or
loaded into a register). For 24-bit addresses, bits
0-7 are set to zeros, and the address appears in
bit positions 8-31; for 31-bit addresses, bit 0 is set
to zero, and the address appears in bit positions
1-31.

The size of effective addresses is controlled by bit
32 of the PSW, the addressing-mode bit. When
the bit is zero, the CPU is in the 24-bit addressing
mode, and 24-bit operand and instruction effective
addresses are specified. When the bit is one, the
CPU is in the 31-bit addressing mode, and 31-bit
operand and instruction effective addresses are
specified (see “Address Generation” on page 5-7).

The size of the real addresses yielded by the
ASN-translation, PC-number-translation, ASN-
authorization, access-register translation, and
tracing processes, and the real (or absolute)
addresses yielded by the DAT process, is always
31 bits.

The size of the data address in a CCW is under
control of the format-control bit in the operation-
request block designated by a START SUB-
CHANNEL instruction. The CCWs with 24-bit and
31-bit addresses are called format-0 and format-1
CCWs, respectively. Format-0 and format-1
CCWs are described in Chapter 15, “Basic I/O
Functions.”

 Address Wraparound
The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also per-
forms address generation when it increments an
address to access successive bytes of a field.
Similarly, the channel subsystem performs
address generation when it increments an address
(1) to fetch a CCW, (2) to fetch an IDAW, (3) to
transfer data, or (4) to compute the address of an
I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value
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allowed for the address size (2òô - 1 or 2óñ - 1),
one of the following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called
wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears
to follow the maximum allowable address.
Address arithmetic and wraparound occur before
transformation, if any, of the address by DAT or
prefixing.

Addresses generated by the CPU that may be
virtual addresses always wrap. Wraparound also

occurs when the linkage-stack-entry address in
control register 15 is decremented below 0 by
PROGRAM RETURN. For CPU table entries that
are addressed by real or absolute addresses, it is
unpredictable whether the address wraps or an
addressing exception is recognized.

For channel-program execution, when the gener-
ated address exceeds the value for the address
size (or, for the read-backward command is decre-
mented below 0), an I/O program-check condition
is recognized.

Figure 3-2 on page 3-7 identifies what limit values
apply to the generation of different addresses and
how addresses are handled when they exceed the
allowed value.
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┌───────────────────────────────────────────────┬───────┬───────────────┐

│ │ │ Handling when │

│ │Address│ Address Would │

│ Address Generation for │ Type │ Wrap │

├───────────────────────────────────────────────┼───────┼───────────────┤

│Instructions and operands when AM is zero │L,I,R,V│ W24 │

│ │ │ │

│Successive bytes of instructions and operands │I,L,Vñ │ W24 │

│ when AM is zero │ │ │

│ │ │ │

│Instructions and operands when AM is one │L,I,R,V│ W31 │

│ │ │ │

│Successive bytes of instructions and operands │I,L,Vñ │ W31 │

│ when AM is one │ │ │

│ │ │ │

│DAT-table entries when used for implicit │A or Rò│ X31 │

│ translation or LRA │ │ │

│ │ │ │

│ASN-second-table, authority-table (during ASN │ R │ X31 │

│ authorization), linkage-table, entry-table, │ │ │

│ and PCF-entry-table entries │ │ │

│ │ │ │

│Authority-table (during access-register │A or Rò│ X31 │

│ translation) and access-list entries │ │ │

│ │ │ │

│Linkage-stack entry │ V │ W31 │

│ │ │ │

│I/O measurement block │ A │ P31 │

│ │ │ │

│For a channel program with format-ð CCWs: │ │ │

│ │ │ │

│ Successive CCWs │ A │ P24 │

│ │ │ │

│ Successive IDAWs │ A │ P24 │

│ │ │ │

│ Successive bytes of I/O data (without IDAWs) │ A │ P24 │

│ │ │ │

│ Successive bytes of I/O data (with IDAWs) │ A │ P31 │

│ │ │ │

│For a channel program with format-1 CCWs: │ │ │

│ │ │ │

│ Successive CCWs │ A │ P31 │

│ │ │ │

│ Successive IDAWs │ A │ P31 │

│ │ │ │

│ Successive bytes of I/O data (without IDAWs) │ A │ P31 │

│ │ │ │

│ Successive bytes of I/O data (with IDAWs) │ A │ P31 │

└───────────────────────────────────────────────┴───────┴───────────────┘

Figure 3-2 (Part 1 of 2). Address Wraparound
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┌───────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ ñ Real addresses do not apply in this case since the instructions │

│ which designate operands by means of real addresses cannot des- │

│ ignate operands that cross boundaries 2òô and 2óñ. │

│ ò It is unpredictable whether the address is absolute or real. │

│ A Absolute address. │

│ AM Addressing-mode bit in the PSW. │

│ I Instruction address. │

│ L Logical address. │

│ P24 An I/O program-check condition is recognized when the address │

│ exceeds 2òô - 1 or is decremented below zero. │

│ P31 An I/O program-check condition is recognized when the address │

│ exceeds 2óñ - 1 or is decremented below zero. │

│ R Real address. │

│ V Virtual address. │

│ W24 Wrap to location ð after location 2òô - 1 and vice versa. │

│ W31 Wrap to location ð after location 2óñ - 1 and vice versa. │

│ X31 When the address exceeds 2óñ - 1, it is unpredictable whether │

│ the address wraps to location ð after location 2óñ - 1 or │

│ whether an addressing exception is recognized. │

└───────────────────────────────────────────────────────────────────────┘

Figure 3-2 (Part 2 of 2). Address Wraparound

 Storage Key
A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

┌────┬─┬─┬─┐

│ACC │F│R│C│

└────┴─┴─┴─┘

ð 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC):  If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored, or
when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F):  If a reference is
subject to key-controlled protection, the fetch-
protection bit, bit 4, controls whether key-
controlled protection applies to fetch-type
references: a zero indicates that only store-type
references are monitored and that fetching with
any access key is permitted; a one indicates that
key-controlled protection applies to both fetching
and storing. No distinction is made between the
fetching of instructions and of operands.

Reference Bit (R):  The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either
for storing or for fetching of information.

Change Bit (C):  The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY EXTENDED and inspected by INSERT
STORAGE KEY EXTENDED. Additionally, the
instruction RESET REFERENCE BIT EXTENDED
provides a means of inspecting the reference and
change bits and of setting the reference bit to
zero. Bits 0-4 of the storage key are inspected by
the INSERT VIRTUAL STORAGE KEY instruction.
The contents of the storage key are unpredictable
during and after the execution of the usability test
of the TEST BLOCK instruction.

 Protection
Four protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, access-
list-controlled protection, page protection, and low-
address protection. The protection facilities are
applied independently; access to main storage is
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only permitted when none of the facilities prohibit
the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

 Key-Controlled Protection
When key-controlled protection applies to a
storage access, a store is permitted only when the
storage key matches the access key associated
with the request for storage access; a fetch is per-
mitted when the keys match or when the fetch-
protection bit of the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

┌─────────────────────────────┬──────────────────┐

│ Conditions │ Is Access to │

├────────────────┬────────────┤Storage Permitted?│

│Fetch-Protection│ ├─────────┬────────┤

│ Bit of │ │ │ │

│ Storage Key │Key Relation│ Fetch │ Store │

├────────────────┼────────────┼─────────┼────────┤

│ ð │ Match │ Yes │ Yes │

│ ð │ Mismatch │ Yes │ No │

│ 1 │ Match │ Yes │ Yes │

│ 1 │ Mismatch │ No │ No │

├────────────────┴────────────┴─────────┴────────┤

│Explanation: │

│ │

│ Match The four access-control bits of the │

│ storage key are equal to the access │

│ key, or the access key is zero. │

│ │

│ Yes Access is permitted. │

│ │

│ No Access is not permitted. On fetching, │

│ the information is not made available │

│ to the program; on storing, the con- │

│ tents of the storage location are not │

│ changed. │

└────────────────────────────────────────────────┘

Figure 3-3. Summary of Protection Action

When the access to storage is initiated by the
CPU and key-controlled protection applies, the
PSW key is the access key, except that the
access key is specified in a general register for
the first operand of MOVE TO SECONDARY and
MOVE WITH DESTINATION KEY and for the
second operand of MOVE TO PRIMARY, MOVE
WITH KEY, and MOVE WITH SOURCE KEY.
The PSW key occupies bit positions 8-11 of the
current PSW.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the
access key. The subchannel key for a channel
program is specified in the operation-request block
(ORB). When, for purposes of channel-subsystem
monitoring, an access to the measurement block
is made, the measurement-block key is the access
key. The measurement-block key is specified by
the SET CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key-
controlled protection, the execution of the instruc-
tion is terminated, and a program interruption for a
protection exception takes place. However, if the
suppression-on-protection facility is installed, the
execution of the instruction may be suppressed.
When a channel-program access is prohibited, the
start function is ended, and the protection-check
condition is indicated in the associated
interruption-response block (IRB). When a
measurement-block access is prohibited, the I/O
measurement-block protection-check condition is
indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access
is prohibited, the protected information is not
loaded into a register, moved to another storage
location, or provided to an I/O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed, and an arbitrary instruction-length code is
indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super-
visor state and, except as described below, does
not depend on the type of CPU instruction or
channel-command word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to
store or fetch information are subject to key-
controlled protection.

Key-controlled protection does not apply when the
storage-protection-override control is one and the
value of the four access-control bits of the storage
key is 9. Key-controlled protection for fetches
may or may not apply when the fetch-protection-
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override control is one, depending on the effective
address and the private-space control.

Accesses to the second operand of TEST BLOCK
are not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a
channel program to fetch a CCW or IDAW or to
access a data area designated during the exe-
cution of a CCW, are subject to key-controlled
protection. However, if a CCW, an IDAW, or
output data is prefetched, a protection check is not
indicated until the CCW or IDAW is due to take
control or until the data is due to be written.

Key-controlled protection is not applied to
accesses that are implicitly made for any of such
sequences as:

 � An interruption
 � CPU logout
� Fetching of table entries for access-register

translation, dynamic-address translation,
PC-number translation, ASN translation, or
ASN authorization

 � Tracing
� A store-status function
� Storing in real locations 184-191 when TEST

PENDING INTERRUPTION has an operand
address of zero

� Initial program loading

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the
program explicitly designates these locations, they
are subject to protection.

 Storage-Protection-Override Control
Bit 7 of control register 0 is the storage-protection-
override control. When the storage-protection-
override facility is installed and this bit is one,
storage-protection override is active. When the
storage-protection-override facility is not installed
or this bit is zero, storage-protection override is
inactive. When storage-protection override is
active, key-controlled storage protection is ignored
for storage locations having an associated
storage-key value of 9. When storage-protection
override is inactive, no special action is taken for a
storage-key value of 9.

Storage-protection override applies to instruction
fetch and to the fetch and store accesses of
instructions whose operand addresses are logical,
virtual, or real. It does not apply to accesses
made for the purpose of channel-program exe-
cution or for the purpose of channel-subsystem
monitoring.

Storage-protection override applies to the oper-
ands of MOVE PAGE even when the operand is
in expanded storage.

Storage-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Notes:

1. The storage-protection-override facility can be
used to improve reliability in the case when a
possibly erroneous application program is exe-
cuted in conjunction with a reliable subsystem,
provided that the application program needs to
access only a portion of the storage accessed
by the subsystem. The technique for doing
this is as follows. The storage accessed by
the application program is given storage key
9. The storage accessed by only the sub-
system is given some other nonzero storage
key, for example, key 8. The application is
executed with PSW key 9. The subsystem is
executed with PSW key 8 (in this example).
As a result, the subsystem can access both
the key-8 and the key-9 storage, while the
application program can access only the key-9
storage.

2. Storage-protection override affects the
accesses to storage made by the CPU and
also affects the result set by TEST PRO-
TECTION. However, those instructions which,
in the problem state, test the PSW-key mask
to determine if a particular key value may be
used are not affected by whether storage-
protection override is active. These
instructions include, among others, MOVE
WITH KEY and SET PSW KEY FROM
ADDRESS. To permit these instructions to
use an access key of 9 in the problem state,
bit 9 of the PSW-key mask must be one.
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 Fetch-Protection-Override Control
Bit 6 of control register 0 is the fetch-protection-
override control. When the bit is one, fetch pro-
tection is ignored for locations at effective
addresses 0-2047. An effective address is the
address which exists before any transformation by
dynamic address translation or prefixing.
However, fetch protection is not ignored if the
effective address is subject to dynamic address
translation and the private-space control, bit 23, is
one in the segment-table designation used in the
translation.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions
whose operand addresses are logical, virtual, or
real. It does not apply to fetch accesses made for
the purpose of channel-program execution or for
the purpose of channel-subsystem monitoring.
When this bit is set to zero, fetch protection of
locations at effective addresses 0-2047 is deter-
mined by the state of the fetch-protection bit of the
storage key associated with those locations.

Fetch-protection override has no effect on
accesses which are not subject to key-controlled
protection.

Programming Note:  The fetch-protection-
override control allows fetch protection of locations
at addresses 2048-4095 along with no fetch pro-
tection of locations at addresses 0-2047.

 Access-List-Controlled Protection
In the access-register mode, bit 6 of the access-
list entry, the fetch-only bit, controls which types of
operand references are permitted to the address
space specified by the access-list entry. When
the entry is used in the access-register-translation
part of a reference and bit 6 is zero, both fetch-
type and store-type references are permitted;
when bit 6 is one, only fetch-type references are
permitted, and an attempt to store causes a pro-
tection exception to be recognized and the exe-
cution of the instruction to be suppressed.

The fetch-only bit is included in the ALB access-
list entry. A change to the fetch-only bit in an
access-list entry in main storage does not neces-
sarily have an immediate, if any, effect on whether
a protection exception is recognized. However,
this change to the bit will have an effect imme-
diately after PURGE ALB is executed.

TEST PROTECTION takes into consideration
access-list-controlled protection when the CPU is
in the access-register mode. A violation of
access-list-controlled protection causes condition
code 1 to be set, except that it does not prevent
condition code 2 or 3 from being set when the
conditions for those codes are satisfied.

Access-list-controlled protection does not affect
LOAD REAL ADDRESS.

Programming Note:  A violation of access-list-
controlled protection always causes suppression.
A violation of any of the other protection types
may cause termination.

 Page Protection
The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry. It provides protection
against improper storing.

The page-protection bit, bit 22 of the page-table
entry, controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is
zero, both fetching and storing are permitted;
when the bit is one, only fetching is permitted.
When an attempt is made to store into a protected
page, the contents of the page remain unchanged,
the execution of the instruction is terminated, and
a program interruption for protection takes place.
However, if the suppression-on-protection facility
is installed, the execution of the instruction is sup-
pressed.

Page protection applies to all store-type refer-
ences that use a virtual address.

 Low-Address Protection
The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses
in the range 0 through 511. The range criterion is
applied before address transformation, if any, of
the address by dynamic address translation or
prefixing. However, the range criterion is not
applied, with the result that low-address protection
does not apply, if the effective address is subject
to dynamic address translation and the private-
space control, bit 23, is one in the segment-table
designation used in the translation. Low-address
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protection does not apply if the segment-table
designation to be used is not available due to
another type of exception.

Low-address protection is under control of bit 3 of
control register 0, the low-address-protection-
control bit. When the bit is zero, low-address pro-
tection is off; when the bit is one, low-address
protection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, the execution of the instruction
is terminated, and a program interruption for a
protection exception takes place. However, if the
suppression-on-protection facility is installed, the
execution of the instruction may be suppressed.

Any attempt by the program to store by using
effective addresses in the range 0 through 511 is
subject to low-address protection. Low-address
protection is applied to the store accesses of
instructions whose operand addresses are logical,
virtual, or real. Low-address protection is also
applied to the trace table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the
storing of the I/O-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION,
and the initial-program-loading and store-status
functions, nor is it applied to data stores during I/O
data transfer. However, explicit stores by a
program at any of these locations are subject to
low-address protection.

Programming Notes:

1. Low-address protection and key-controlled
protection apply to the same store accesses,
except that:

a. Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

b. Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate spe-

cifically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is
one in the segment-table designation,
locations 0-2047 in the address space are
usable the same as the other locations in the
space.

Suppression on Protection
If the suppression-on-protection facility is installed,
then, during a program interruption due to a pro-
tection exception, either a one or a zero is stored
in bit position 29 of real locations 144-147. The
storing of a one in bit position 29 indicates that:

� The unit of operation or instruction execution
during which the exception was recognized
was suppressed, except that, if the instruction
execution would set the condition code if com-
pleted normally, the condition code is unpre-
dictable.

� Bit positions 1-19 of real locations 144-147
contain bits 1-19 of the effective address that
caused the exception. The effective address
is the address which exists before any trans-
formation by dynamic address translation
(DAT) or prefixing. If the effective address
was to be translated by DAT, bit positions 30
and 31 of real locations 144-147, and real
location 160, contain the same information as
is stored during a program interruption due to
a page-translation exception—this information
identifies the address space containing the
protected address. If the effective address
was not to be translated by DAT, the contents
of bit positions 30 and 31 of real locations
144-147, and the contents of real location
160, are unpredictable. The contents of bit
positions 0 and 20-28 of real locations
144-147 are always unpredictable.

� If an additional facility named the virtual-
address enhancement of suppression on pro-
tection is installed1, and if DAT was on, as
indicated by the DAT-mode bit in the program
old PSW, the effective address in real
locations 144-147 is always one that was to

1 The virtual-address enhancement is always installed along with the suppression-on-protection facility except that, on 9121 models,
the virtual-address enhancement is installed only if SEC C35954 is installed.
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be translated by DAT. (Bit 29 is set to zero if
DAT was on but the effective address was not
to be translated by DAT because it is a real
address.)

Bit 29 being zero indicates that the operation was
either suppressed or terminated and that the con-
tents of the remainder of real locations 144-147,
and of real location 160, are unpredictable.

Bit 29 is set to one if the protection exception was
due to access-list-controlled protection or page
protection. Bit 29 may be set to one if the pro-
tection exception was due to low-address pro-
tection or key-controlled protection.

If a protection-exception condition exists due to
either access-list-controlled protection or page pro-
tection but also exists due to either low-address
protection or key-controlled protection, it is unpre-
dictable for which reason the protection exception
is recognized, and it is unpredictable whether bit
29 is set to zero or one.

Programming Notes:

1. The suppression-on-protection facility is useful
in performing the AIX/ESA copy-on-write func-
tion, in which AIX/ESA causes the same page
of different address spaces to map to a single
page frame of real storage so long as a store
in the page is not attempted and then, when a
store is attempted in a particular address
space, assigns a unique page frame to the
page in that address space and copies the
contents of the page to the new page frame.

2. In the problem state, the effective address that
caused a protection exception is known to
have required translation by DAT if DAT was
on, as indicated by the DAT-mode bit in the
program old PSW. In the supervisor state
when the virtual-address enhancement of sup-
pression on protection is not installed, the
DAT-mode bit is not a reliable indicator of
whether DAT was required since the effective
address may be a real address used by, for
example, STORE USING REAL ADDRESS.
When the virtual-address enhancement is
installed, the effective address stored at real
locations 144-147 is known to be a virtual

address if DAT was on. The knowledge that
the address is virtual allows programmed
forms of access-register translation and
dynamic address translation to be performed
to determine whether the exception was due
to either access-list-controlled or page pro-
tection as opposed to low-address or key-
controlled protection.

3. AIX/ESA does not use key-controlled pro-
tection. The virtual-address enhancement
extends the usefulness of suppression on pro-
tection to other operating systems that do use
key-controlled protection.

4. The results of suppression on protection are
summarized in Figure 3-4.

┌─────┬────┬─────┬─────┬──────┬────┬──────────┐

│LA or│ │ALC │ │Virt. │ │Bits 3ð,31│

│Key- │ │or │ │Addr. │ │and Loc. │

│Cont.│ │Page │Eff. │Enhmt.│Bit │16ð if │

│Prot.│DAT │Prot.│Addr.│Instl.│29 │Bit 29 One│

├─────┼────┼─────┼─────┼──────┼────┼──────────┤

│ No │On │ Yes │Log. │ - │ 1 │ P │

│ Yes │On │ Yes │Log. │ - │ U1 │ P │

│ │ │ │ │ │ │ │

│ Yes │Off │ No │Log. │ - │ U2 │ U3 │

│ Yes │Off │ No │Real │ - │ U2 │ U3 │

│ Yes │On │ No │Log. │ - │ U2 │ P │

│ Yes │On │ No │Real │ No │ U2 │ U3 │

│ Yes │On │ No │Real │ Yes │ ðA │ - │

├─────┴────┴─────┴─────┴──────┴────┴──────────┤

│Explanation: │

│ │

│ - Immaterial or not applicable. │

│ ALC Access-list-controlled. │

│ LA Low-address. │

│ Log. Logical. │

│ P Predictable. │

│ U1 Unpredictable because low-address or │

│ key-controlled protection may be │

│ recognized instead of access-list- │

│ controlled or page protection. │

│ U2 Unpredictable because bit 29 is only │

│ required to be set to one for access-│

│ list-controlled or page protection. │

│ U3 Unpredictable because effective │

│ address is not to be translated by │

│ DAT. │

│ ðA Zero because DAT is on and a virtual │

│ effective address would not be │

│ stored. │

└─────────────────────────────────────────────┘

Figure 3-4. Suppression-on-Protection Results
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 Reference Recording
Reference recording provides information for use
in selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the
storage key. The reference bit is set to one each
time a location in the corresponding storage block
is referred to either for fetching or storing informa-
tion, regardless of whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit
accesses made by the machine, such as those
which are part of interruptions and I/O-instruction
execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

� INSERT STORAGE KEY EXTENDED
� RESET REFERENCE BIT EXTENDED (refer-

ence bit is set to zero)
� SET STORAGE KEY EXTENDED (reference

bit is set to a specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set
to one by fetching data or instructions that are
neither designated nor used by the program, and,
under certain conditions, a reference may be
made without the reference bit being set to one.
Under certain unusual circumstances, a reference
bit may be set to zero by other than explicit
program action.

 Change Recording
Change recording provides information as to
which pages have to be saved in auxiliary storage
when they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited
whenever an access exception exists for that
access, or whenever an exception exists
which is of higher priority than the priority of
an access exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-
protection violation exists for that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, any operator facility, or
the channel subsystem. It takes place for implicit
references made by the machine, such as those
which are part of interruptions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

� RESET REFERENCE BIT EXTENDED
� SET STORAGE KEY EXTENDED (change bit

is set to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on
CPU retry (see “CPU Retry” on page 11-2). See
“Exceptions to Nullification and Suppression” on
page  5-18 for a description of the handling of the
change bit in certain unusual situations.

 Prefixing
Prefixing provides the ability to assign the range of
real addresses 0-4095 to a different block in abso-
lute storage for each CPU, thus permitting more
than one CPU sharing main storage to operate
concurrently with a minimum of interference, espe-
cially in the processing of interruptions.

Prefixing causes real addresses in the range
0-4095 to correspond to the block of 4K-byte
absolute addresses (the prefix area) identified by
the value in the prefix register for the CPU, and
the block of real addresses identified by the value
in the prefix register to correspond to absolute
addresses 0-4095. The remaining real addresses
are the same as the corresponding absolute
addresses. This transformation allows each CPU
to access all of main storage, including the first 4K
bytes and the locations designated by the prefix
registers of other CPUs.
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The relationship between real and absolute
addresses is graphically depicted in Figure 3-5 on
page 3-16.

The prefix is a 19-bit quantity contained in bit posi-
tions 1-19 of the prefix register. The register has
the following format:

┌─┬───────────────────┬────────────┐

│/│ Prefix │////////////│

└─┴───────────────────┴────────────┘

ð 1 2ð 31

The contents of the register can be set and
inspected by the privileged instructions SET
PREFIX and STORE PREFIX, respectively. On
setting, bits corresponding to bit positions 0 and
20-31 of the prefix register are ignored. On
storing, zeros are provided for these bit positions.
When the contents of the prefix register are
changed, the change is effective for the next
sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address by using

one of the following rules, depending on bits 1-19
of the real address:

1. Bits 1-19 of the address, if all zeros, are
replaced with bits 1-19 of the prefix.

2. Bits 1-19 of the address, if equal to bits 1-19
of the prefix, are replaced with zeros.

3. Bits 1-19 of the address, if not all zeros and
not equal to bits 1-19 of the prefix, remain
unchanged.

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is trans-
lated by prefixing. The contents of the source of
the address remain unchanged.

The distinction between real and absolute
addresses is made even when the prefix register
contains all zeros, in which case a real address
and its corresponding absolute address are iden-
tical.
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 Prefixing Prefixing

┬ ─┐ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ ┌─ ┬ ─┐ ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐ ┌─ ┬

│ │ │ │ │ │ │

┼ │──────┼─No Change───────────┼─────5│ ┼ │ │ │ │ ┼

/ │ │ / │ │ /

 ┼ ─┤ │ Apply │ ├─ ┼ │%─────┼───────────No Change─┼──────│ ┼

 │ 1│────────Zeros─┐ ┌──────────────5│2 │ │ │ │

 ┼ ─┤ │ │ │ │ ├─ ┼ │ │ │ │ ┼

/ │ │ │ │ / │ │ /

 ┼ │ │ │ │ │ │ ┼ ─┤ │ Apply │ ├─ ┼

 │ │ │ │ │ │ 2│%──────────────┐ ┌─Zeros────────│1 │

 ┼ │ │ │ │ │ │ ┼ ─┤ │ │ │ │ ├─ ┼

│ │ └────┼────┐ │ │ │ │ │ │ │

┼ │ │ │ │ │ │ ┼ │ │ │ │ │ │ ┼

/ │ │ │ │ / │ ┌────┼────┘ │ /

┼ │──────┼─No Change──┼────┼───┼─────5│ ┼ │ │ │ │ │ │ ┼

│ │ │ │ │ │ │ │ │ │ │

┼ │ │ │ │ │ │ ┼ │%─────┼───┼────┼──No Change─┼──────│ ┼

│ │ │ │ │ │ │ │ │ │ │

┼ │ │ │ │ │ │ ┼ │ │ │ │ │ │ ┼

│ │ │ │ │ │ │ │ │ │ │

4ð96 ┼ ─┤ │ Apply │ │ │ 4ð96 ├─ ┼ ─┤ │ │ │ Apply │ ├─ ┼ 4ð96

│ │────────Prefix─────┘ └─────────5│ │ │%─────────┘ └─────Prefix────────│ │

ð ┴ ─┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ ð └─ ┴ ─┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └─ ┴ ð

Real Addresses Absolute Real Addresses

for CPU A Addresses for CPU B

(1) Real addresses in which bits 1-19 are equal to the prefix for this CPU (A or B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real locations 0-4095.

Figure 3-5. Relationship between Real and Absolute Addresses

 Address Spaces
An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to
access main storage, it is first converted, by
means of dynamic address translation (DAT), to a
real address, and then, by means of prefixing, to
an absolute address. DAT uses two levels of
tables (segment tables and page tables) as trans-
formation parameters. The designation (origin and
length) of a segment table is found for use by
DAT in a control register or as specified by an
access register.

DAT uses, at different times, the segment-table
designations in different control registers or speci-
fied by the access registers. The choice is deter-
mined by the translation mode specified in the
current PSW. Four translation modes are avail-

able: primary-space mode, secondary-space
mode, access-register mode, and home-space
mode. Different address spaces are addressable
depending on the translation mode.

At any instant when the CPU is in the primary-
space mode or secondary-space mode, the CPU
can translate virtual addresses belonging to two
address spaces—the primary address space and
the secondary address space. At any instant
when the CPU is in the access-register mode, it
can translate virtual addresses of up to 16
address spaces—the primary address space and
up to 15 AR-specified address spaces. At any
instant when the CPU is in the home-space mode,
it can translate virtual addresses of the home
address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
segment-table designation. Similarly, the sec-
ondary address space consists of secondary
virtual addresses translated by means of the sec-
ondary segment-table designation, the
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AR-specified address spaces consist of
AR-specified virtual addresses translated by
means of AR-specified segment-table desig-
nations, and the home address space consists of
home virtual addresses translated by means of the
home segment-table designation. The primary
and secondary segment-table designations are in
control registers 1 and 7, respectively. The
AR-specified segment-table designations are in
control registers 1 and 7 and in table entries
called ASN-second-table entries. The home
segment-table designation is in control register 13.

Changing to Different Address Spaces
A program can cause different address spaces to
be addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST can set the home-space mode
only in the supervisor state. The program can
cause still other address spaces to be address-
able by using other semiprivileged instructions to
change the segment-table designations in control
registers 1 and 7 and by using unprivileged
instructions to change the contents of the access
registers. Only the privileged LOAD CONTROL
instruction is available for changing the home
segment-table designation in control register 13.

 Address-Space Number
An address space may be assigned an address-
space number (ASN) by the control program. The
ASN designates, within a two-level table structure
in main storage, an ASN-second-table entry con-
taining information about the address space. If
the ASN-second-table entry is marked as valid, it
contains the segment-table designation that
defines the address space.

Under certain circumstances, the semiprivileged
instructions which place a new segment-table des-
ignation in control register 1 or 7 fetch this
segment-table designation from an
ASN-second-table entry. Some of these
instructions use an ASN-translation mechanism
which, given an ASN, can locate the designated
ASN-second-table entry.

The 16-bit unsigned binary format of the ASN
permits 64K unique ASNs.

The ASNs for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called
the primary ASN, is assigned bits 16-31 of control
register 4, and that for the secondary address
space, called the secondary ASN, is assigned bits
16-31 of control register 3. The registers have the
following formats:

Control Register 4
──┬────────────────┐

│ PASN │

──┴────────────────┘

 16 31

Control Register 3
──┬────────────────┐

│ SASN │

──┴────────────────┘

 16 31

An instruction that uses ASN translation and loads
the primary or secondary segment-table desig-
nation into the appropriate control register also
loads the corresponding ASN into the appropriate
control register.

The ASN for the home address space is not
assigned a position in a control register.

An access register containing the value 0 or 1
specifies the primary or secondary address space,
respectively; and the segment-table designation
specified by the access register is in control reg-
ister 1 or 7, respectively. An access register con-
taining any other value designates an entry in a
table called an access list. The designated
access-list entry contains the real address of an
ASN-second-table entry for the address space
specified by the access register. The segment-
table designation specified by the access register
is in the ASN-second-table entry. Translating the
contents of an access register to obtain a
segment-table designation for use by DAT does
not involve the use of an ASN.

Note:  Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note:  Because an
ASN-second-table entry is located from an
access-list entry by means of its address instead
of by means of its ASN, the ASN-second-table
entries designated by access-list entries can be
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“pseudo” ASN-second-table entries, that is, entries
which are not in the two-level structure able to be
indexed by means of the ASN-translation process.
The number of unique pseudo ASN-second-table
entries can be greater than the number of unique
ASNs and is limited only by the amount of storage
available to be occupied by the ASN-second-table
entries. Thus, in a sense, there is no limit on the
number of possible address spaces.

 ASN Translation
ASN translation is the process of translating a
16-bit ASN to locate the address-space-control
parameters. ASN translation may be performed
as part of PROGRAM CALL with space switching
(PC-ss), it is performed as part of PROGRAM
TRANSFER with space switching (PT-ss) and
SET SECONDARY ASN with space switching
(SSAR-ss), and it may be performed as part of
LOAD ADDRESS SPACE PARAMETERS. For
PC-ss and PT-ss, the ASN which is translated
replaces the primary ASN in control register 4.
For SSAR-ss, the ASN which is translated
replaces the secondary ASN in control register 3.
These two translation processes are called
primary ASN translation and secondary ASN
translation, respectively, and both can occur for
LOAD ADDRESS SPACE PARAMETERS. The
ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with
space switching (PR-ss). Secondary ASN trans-
lation is performed if the secondary ASN restored
by PROGRAM RETURN (PR-ss or PROGRAM
RETURN to current primary) does not equal the
primary ASN restored by PROGRAM RETURN.

The ASN-translation process uses two tables, the
ASN first table and the ASN second table. They
are used to locate the address-space-control
parameters and a third table, the authority table,
which is used when ASN authorization is per-
formed.

For the purposes of this translation, the 16-bit
ASN is considered to consist of two parts: the
ASN-first-table index (AFX) is the leftmost 10 bits
of the ASN, and the ASN-second-table index

(ASX) is the six rightmost bits. The ASN has the
following format:

ASN
┌──────────┬──────┐

│ AFX │ ASX │

└──────────┴──────┘

ð 1ð 15

The AFX is used to select an entry from the ASN
first table. The origin of the ASN first table is des-
ignated by the ASN-first-table origin in control reg-
ister 14. The ASN-first-table entry contains the
origin of the ASN second table. The ASX is used
to select an entry from the ASN second table.
This entry contains the address-space-control
parameters.

 ASN-Translation Controls
ASN translation is controlled by the
ASN-translation-control bit and the ASN-first-table
origin, both of which reside in control register 14.
It is also controlled by the address-space-function-
control bit in control register 0.

Control Register 14
──┬─┬────────────────────┐

│T│ AFTO │

──┴─┴────────────────────┘

 12 31

ASN-Translation Control (T):  Bit 12 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being exe-
cuted. Bit 12 must be one to allow completion of
these instructions:

� LOAD ADDRESS SPACE PARAMETERS
� PROGRAM CALL with space switching
� PROGRAM RETURN with space switching or

when the restored SASN does not equal the
restored PASN

� PROGRAM TRANSFER with space switching
� SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The ASN-translation-control bit is exam-
ined in both the problem and the supervisor
states.

When the address-space-function-control bit in
control register 0 is one, PROGRAM CALL with
space switching (PC-ss) may omit performing ASN
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translation and instead obtain the address of an
ASN-second-table entry directly from an entry-
table entry. The ASN-translation control must be
one whether or not PC-ss performs ASN trans-
lation; otherwise, a special-operation exception is
recognized.

ASN-First-Table Origin (AFTO):  Bits 13-31 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates
the beginning of the ASN first table.

Control Register 0
Bit 15 of control register 0 is the address-space-
function (ASF) control. When the ASF control is
zero, the ASN-second table begins on a 16-byte
boundary, an ASN-second-table entry has a length
of 16 bytes, and PROGRAM CALL with space
switching (PC-ss) always performs ASN trans-
lation. When the ASF control is one, the
ASN-second table begins on a 64-byte boundary,
an ASN-second-table entry has a length of 64
bytes, and PC-ss may obtain an
ASN-second-table-entry address from an entry-
table entry instead of by performing ASN trans-
lation.

The ASF control has other effects also. A com-
plete description of the effects of the ASF control
is in “Address-Space-Function Control” on
page 5-40.

 ASN-Translation Tables
The ASN-translation process consists in a two-
level lookup using two tables: an ASN first table
and an ASN second table. These tables reside in
real storage.

 ASN-First-Table Entries
When the ASF control, bit 15 of control register 0,
is zero, an entry in the ASN first table has the fol-
lowing format:

┌─┬───────────────────────────┬────┐

│I│ ASTO │ðððð│

└─┴───────────────────────────┴────┘

ð 1 28 31

When the ASF control is one, an entry has the fol-
lowing format:

┌─┬─────────────────────────┬──────┐

│I│ ASTO │ðððððð│

└─┴─────────────────────────┴──────┘

ð 1 26 31

The fields in the entry are allocated as follows:

AFX-Invalid Bit (I):  Bit 0 controls whether the
ASN second table associated with the
ASN-first-table entry is available. When bit 0 is
zero, ASN translation proceeds by using the des-
ignated ASN second table. When the bit is one,
the ASN translation cannot continue.

ASN-Second-Table Origin (ASTO):  Bits 1-27,
with four zeros appended on the right, or bits
1-25, with six zeros appended on the right, are
used to form a 31-bit real address that designates
the beginning of the ASN second table.

Bits 28-31 of the AFT entry, or bits 26-31, must be
zeros; otherwise, an ASN-translation-specification
exception may be recognized as part of the exe-
cution of the instruction using that entry for ASN
translation.

 ASN-Second-Table Entries
When the ASF control in control register 0 is zero,
the ASN-second-table entry has a length of 16
bytes. When the ASF control is one, the entry
has a length of 64 bytes. The format of the
16-byte ASN-second-table entry is identical to that
of the first 16 bytes of the 64-byte entry. Only the
first 16 bytes of the ASN-second-table entry
(16-byte entry or 64-byte entry) are used in or as
a result of ASN translation. The 16-byte
ASN-second-table entry is described below. The
64-byte entry as used by access-register trans-
lation for other than the BRANCH IN SUBSPACE
GROUP instruction is described in “Extended
ASN-Second-Table Entries” on page 5-45. The
64-byte entry as used by BRANCH IN SUB-
SPACE GROUP is described in “Subspace-Group
ASN-Second-Table Entries” on page 5-54.

The 16-byte ASN-second-table entry has the fol-
lowing format:

┌─┬───────────────────────────┬─┬─┐

│I│ ATO │ð│B│

└─┴───────────────────────────┴─┴─┘

ð 1 3ð 31

┌───────────────┬────────────┬────┐

│ AX │ ATL │ðððð│

└───────────────┴────────────┴────┘

32 48 6ð 63
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┌───────────────STD───────────────┐

┌─┬──────────────┬──┬─┬─┬─┬───────┐

│X│ STO │ │G│P│S│ STL │

└─┴──────────────┴──┴─┴─┴─┴───────┘

64 84 86 89 95

┌───────────────LTD───────────────┐

┌─┬───────────────────────┬───────┐

│V│ LTO │ LTL │

└─┴───────────────────────┴───────┘

96 121 127

The fields in the entry are allocated as follows:

ASX-Invalid Bit (I):  Bit 0 controls whether the
address space associated with the
ASN-second-table entry is available. When bit 0
is zero, ASN translation proceeds. When the bit is
one, the ASN translation cannot continue.

Authority-Table Origin (ATO):  Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Base-Space Bit (B):  Bit 31 is ignored during
ASN translation if the subspace-group facility is
installed and the ASF control is one. If the
subspace-group facility is not installed or the ASF
control is zero, bit 31 must be zero; otherwise, an
ASN-translation-specification exception may be
recognized. Bit 31 is further described in
“Subspace-Group ASN-Second-Table Entries” on
page 5-54.

Authorization Index (AX):  Bits 32-47 are used
as a result of primary ASN translation by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER and, possibly, LOAD
ADDRESS SPACE PARAMETERS. The AX field
is ignored for secondary ASN translation.

Authority-Table Length (ATL):  Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular AX falls within the authority table.

Segment-Table Designation (STD):  Bits 64-95
are used as a result of ASN translation to replace
the primary-segment-table designation (PSTD) or
the secondary-segment-table designation (SSTD).

For SET SECONDARY ASN, the STD field
replaces the SSTD, bits 0-31 of control register 7.
For PROGRAM CALL, the STD field replaces the
PSTD, bits 0-31 of control register 1. Each of
these actions may occur independently for LOAD
ADDRESS SPACE PARAMETERS. For
PROGRAM TRANSFER, the STD field replaces
both the PSTD and the SSTD. For PROGRAM
RETURN, as a result of primary ASN translation,
the STD field replaces the PSTD, and, as a result
of secondary ASN translation, the STD field
replaces the SSTD. The contents of the entire
STD field are placed in the appropriate control
registers without being inspected for validity.

The subspace-group-control bit (G) (bit 86, or bit
22 of the STD field) is an extension provided by
the subspace-group facility. The bit indicates,
when one, that the STD specifies an address
space that is the base space or a subspace of a
subspace group. If (1) G is one in the STD
placed in a control register as described above,
(2) the current dispatchable unit last had control in
a subspace of its subspace group instead of in the
base space, as indicated by the subspace-active
bit being one in the dispatchable-unit control table,
and (3) the STD specifies the base space of the
group, as indicated by the origin of this AST entry
being equal to the base-AST-entry origin in the
dispatchable-unit control table, then bits 1-23 and
25-31 of the STD in the control register are
replaced by bits 1-23 and 25-31 of the STD for
that last entered subspace. The STD for the sub-
space is obtained from the AST entry designated
by the subspace-AST-entry origin in the
dispatchable-unit control table.

The storage-alteration-event bit (S) (bit 88, or bit
24 of the STD field) is an extension provided by
the program-event-recording-2 (PER-2) facility.

Space-Switch-Event Control (X):  Bit 0 of the
segment-table designation is the space-switch-
event-control bit. When, in PC-ss, PCF-ss, PR-ss,
or PT-ss, this bit is one in control register 1 either
before or after the execution of the instruction, a
program interruption for a space-switch event
occurs after the execution of the instruction is
completed. A space-switch-event program inter-
ruption also occurs after the completion of a SET
ADDRESS SPACE CONTROL, SET ADDRESS
SPACE CONTROL FAST, or RESUME
PROGRAM instruction that changes the trans-
lation mode either to or from the home-space

3-20 ESA/390 Principles of Operation  



  
 

mode when this bit is one in either control register
1 or control register 13. When, in LOAD
ADDRESS SPACE PARAMETERS, this bit is one
during primary ASN translation, this fact is indi-
cated by the condition code.

Linkage-Table Designation (LTD):  Bits 96-127
may be used as a result of primary ASN trans-
lation and they are used in PC-number translation.
The linkage-table-designation field contains the
subsystem-linkage-control bit (V) (bit 96), the
linkage-table origin (LTO) (bits 97-120), and the
linkage-table length (LTL) (bits 121-127). When
the ASF control is zero, the contents of the LTD
field are placed in control register 5 as a result of
primary ASN translation, and the
PC-number-translation process obtains the LTD
from control register 5. When the ASF control is
one, control register 5 contains the origin of an
ASN-second-table entry called the primary AST
entry. The primary-AST-entry origin is replaced in
control register 5 as a result of primary ASN trans-
lation, and PC-number translation obtains the LTD
from the LTD field in the primary AST entry.
PC-number translation is described in Chapter 5,
“Program Execution.”

Bits 30, 31, and 60-63 of the AST entry must be
zeros; otherwise, an ASN-translation-specification
exception may be recognized as part of the exe-
cution of the instruction using that entry for ASN
translation. However, ASN translation does not
require bit 31 to be zero if the subspace-group
facility is installed and the ASF control is one.

Programming Note:  The unused portion of the
STD field, bits 84 and 85 of the AST entry, which
corresponds to bits 20 and 21 of the STD, should
be set to zeros. These bits are reserved for future
expansion, and programs which place nonzero
values in these bit positions may not operate
compatibly on future machines.

 ASN-Translation Process
This section describes the ASN-translation
process as it is performed during the execution of
the space-switching forms of PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
and SET SECONDARY ASN, and also in
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN translation for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
AFX-translation and ASX-translation exceptions do
not occur; such situations are instead indicated by
the condition code. Translation of an ASN is per-
formed by means of two tables, an ASN first table
and an ASN second table, both of which reside in
main storage.

The ASN first index is used to select an entry from
the ASN first table. This entry designates the
ASN second table to be used.

The ASN second index is used to select an entry
from the ASN second table. This entry contains
the address-space-control parameters. When the
ASF control is one, the ASN second table begins
on a 64-byte boundary, and its entries are each
64 bytes in length; otherwise, the table begins on
a 16-byte boundary, and the entries are 16 bytes
in length.

If the I bit is one in either the ASN-first-table entry
or ASN-second-table entry, the entry is invalid,
and the ASN-translation process cannot be com-
pleted. An AFX-translation exception or
ASX-translation exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN first table or ASN
second table, key-controlled protection does not
apply.

The ASN-translation process is shown in
Figure 3-6 on page 3-22.
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 ASN

 ┌────┬─┬─────────┐ ┌─────┬───┐

CR14 │ │T│ AFTO │ │ AFX │ASX│

 └────┴─┴─────┬───┘ └──┬──┴─┬─┘

 (x4ð96)│ (x4)│ │(xN)

 │ │ │

┌─────────────────┘ │ │

│ │ │

│ ┌───────────────────────┘ │

│ │ │

│ 6 │

│ ┌─┐ ASN First Table │

└────5│+│ ┌─────────────────┐ │

 └┬┘ │ │ │

 │ │ │ │

 │ │ │ │

 └─5├─┬─────────────┬─┤ │

 R │I│ ASTO │ð│ │

 ├─┴──────┬──────┴─┤ │

 │ │(xN) │ │

│ │ │ │

 └────────┼────────┘ │

 │ │

┌──────────────────┘ │

│ │

│ ┌────────────────────────────┘

│ │

│ 6

│ ┌─┐ ASN Second Table

└────5│+│ ┌─────────────────────────────────────────────────────────────────────┐

 └┬┘ │ │

 │ │ │

 │ │ │

 └─5├─┬────────────┬──┬────────┬──────┬─┬────────────────┬────────────────┤

R │I│ ATO │ðB│ AX │ ATL │ð│ STD │ LTD │\

 ├─┴────────────┴──┴────────┴──────┴─┴────────────────┴────────────────┤

 │ │

 │ │

 └─────────────────────────────────────────────────────────────────────┘

N: 16 if ASF control, bit 15 of control register ð, is zero; 64 if ASF

control is one

R: Address is real

\: ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-6. ASN Translation

 ASN-First-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-first-table origin, is used to select an
entry from the ASN first table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 13-31 of
control register 14 and adding the AFX portion
with two rightmost and 19 leftmost zeros
appended. This addition cannot cause a carry
into bit position 0. All 31 bits of the address are
used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

All four bytes of the ASN-first-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the ASN-first-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
When the AST-entry size is 16 bytes and bit posi-
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tions 28-31 of the AFT entry do not contain zeros,
or when the AST-entry size is 64 bytes and bit
positions 26-31 of the AFT entry do not contain
zeros, an ASN-translation-specification exception
may be recognized. When no exceptions are
recognized, the entry fetched from the AFT is
used to access the AST.

 ASN-Second-Table Lookup
The ASX portion of the ASN, in conjunction with
the ASN-second-table origin contained in the
ASN-first-table entry, is used to select an entry
from the ASN second table.

When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, the ASN
second table begins on a 16-byte boundary, and
its entries are each 16 bytes in length. When the
ASF control is one, the ASN second table begins
on a 64-byte boundary, and its entries are 64
bytes in length.

The 31-bit real address of the ASN-second-table
entry is obtained as follows. When the AST-entry
size is 16 bytes, the address is obtained by
appending four zeros on the right to bits 1-27 of
the ASN-first-table entry and adding the ASX with
four rightmost and 21 leftmost zeros appended.
When the AST-entry size is 64 bytes, the address
is obtained by appending six zeros on the right to
bits 1-25 of the ASN-first-table entry and adding
the ASX with six rightmost and 19 leftmost zeros
appended. In both of these cases, when a carry
into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 2óñ - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

The fetch of the 16 or 64 bytes of the
ASN-second-table entry appears to be word-
concurrent as observed by other CPUs, with the
leftmost word fetched first. The order in which the
remaining 3 or 15 words are fetched is unpredict-
able. The fetch access is not subject to pro-
tection. When the storage address which is
generated for fetching the ASN-second-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the 16-byte or 64-byte ASN-second-table
entry specifies whether the address space is

accessible. If this bit is one, an ASX-translation
exception is recognized. If bit positions 30, 31,
and 60-63 of the ASN-second-table entry do not
contain zeros, an ASN-translation-specification
exception may be recognized. A one in bit posi-
tion 31 does not cause an
ASN-translation-specification exception to be
recognized if the subspace-group facility is
installed and the ASF control is one.

Recognition of Exceptions during ASN
Translation
The exceptions which can be encountered during
the ASN-translation process are collectively
referred to as ASN-translation exceptions. A list
of these exceptions and their priorities is given in
Chapter 6, “Interruptions.”

 ASN Authorization
ASN authorization is the process of testing
whether the program associated with the current
authorization index is permitted to establish a par-
ticular address space. The ASN authorization is
performed as part of PROGRAM TRANSFER with
space switching (PT-ss) and SET SECONDARY
ASN with space switching (SSAR-ss) and may be
performed as part of LOAD ADDRESS SPACE
PARAMETERS. ASN authorization is performed
after the ASN-translation process for these
instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored sec-
ondary ASN does not equal the restored primary
ASN. ASN authorization of the restored sec-
ondary ASN is performed after ASN translation of
the restored secondary ASN.

When performed as part of PT-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the primary ASN and is called
primary-ASN authorization. When performed as
part of LOAD ADDRESS SPACE PARAMETERS,
PROGRAM RETURN, or SSAR-ss, the ASN
authorization tests whether the ASN can be estab-
lished as the secondary ASN and is called
secondary-ASN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the ASN-second-table entry.
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 ASN-Authorization Controls
ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Control Register 4
For PT-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will
become the new contents of control register 4 is
used. The register has the following format:

┌────────────────┬──

│ AX │

└────────────────┴──

ð 15

Authorization Index (AX):  Bits 0-15 of control
register 4 are used as an index to locate the
authority bits in the authority table.

 ASN-Second-Table Entry
The ASN-second-table entry which is fetched as
part of the ASN translation process contains infor-
mation which is used to designate the authority
table. An entry in the ASN second table has the
following format:

┌─┬──────────────────────────────┬──┐

│ │ ATO │ðB│

└─┴──────────────────────────────┴──┘

ð 1 31

┌─────────────────┬────────────┬────┬──

│ │ ATL │ðððð│

└─────────────────┴────────────┴────┴──

32 48 6ð 64

Authority-Table Origin (ATO):  Bits 1-29, with
two zeros appended on the right, are used to form
a 31-bit real address that designates the begin-
ning of the authority table.

Authority-Table Length (ATL):  Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is equal to
one more than the ATL value. The contents of
the length field are used to establish whether the
entry designated by the authorization index falls
within the authority table.

 Authority-Table Entries
The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

┌──┬──┬──┬──┐

│PS│PS│PS│PS│

└──┴──┴──┴──┘

ð 7

The fields are allocated as follows:

Primary Authority (P):  The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space
as a primary address space. If the P bit is one,
the establishment is permitted. If the P bit is zero,
the establishment is not permitted.

Secondary Authority (S):  The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a sec-
ondary address space. If the S bit is one, the
establishment is permitted. If the S bit is zero, the
establishment is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
“Authorizing the Use of the Access-List Entry” on
page 5-50.

 ASN-Authorization Process
This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and
SET SECONDARY ASN with space switching.
For these two instructions, the ASN-authorization
process is performed by using the authorization
index currently in control register 4. Secondary
authorization for PROGRAM RETURN, when the
restored secondary ASN does not equal the
restored primary ASN, and for LOAD ADDRESS
SPACE PARAMETERS is the same, except that
the value which will become the new contents of
control register 4 is used for the authorization
index. Also, for LOAD ADDRESS SPACE
PARAMETERS, a secondary-authority exception
does not occur. Instead, such a condition is indi-
cated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with
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the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or secondary-
authority bit is examined, depending on whether

the primary- or secondary-ASN-authorization
process is being performed. The
ASN-authorization process is shown in Figure 3-7.

 ┌───────┬───────┐

 CR4 │ AX │ │

 └───┬───┴───────┘

 │(x1/4)

 │

 ┌─────────────┘

 │

 │

│ ASN Second Table

 │ ┌─────────────────────────────────────────────────────────────────────┐

 │ │ │

 │ │ │

 │ │ASN-Second-Table Entry │

 │ ├─┬────────────┬──┬────────┬──────┬─┬────────────────┬────────────────┤

│ │I│ ATO │ðB│ AX │ ATL │ð│ STD │ LTD │\

 │ ├─┴──────┬─────┴──┴────────┴──────┴─┴────────────────┴────────────────┤

 │ │ │(x4) │

 │ │ │ │

 │ └────────┼────────────────────────────────────────────────────────────┘

┌─────┼────────────┘

│ │

│ │

│ │

│ 6

│ ┌─┐ Authority Table

└───5│+│ ┌───┐

└┬┘ │ │ For primary ASN authorization (PT-ss only):

│ │ │ Primary-authority exception if P bit

│ │ │ zero or table length exceeded.

 └─5├─┬─┤

R │P│S│ For secondary ASN authorization (PR and SSAR-ss only):

├─┴─┤ Secondary-authority exception if S bit

│ │ zero or table length exceeded.

 │ │

└───┘ For secondary ASN authorization (LASP only):

Set condition code 2 if S bit zero or

table length exceeded.

R: Address is real

\: ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-7. ASN Authorization

 Authority-Table Lookup
The authorization index, in conjunction with the
authority-table origin contained in the
ASN-second-table entry, is used to select an entry
from the authority table.

The authorization index is contained in bit posi-
tions 0-15 of control register 4.

Bit positions 1-29 of the AST entry contain the left-
most 29 bits of the 31-bit real address of the
authority table (ATO), and bit positions 48-59
contain the length of the authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17
zeros appended on the left. when a carry into bit
position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 2óñ - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.
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As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-ss,
respectively. For LOAD ADDRESS SPACE
PARAMETERS, when the authority-table length is
exceeded, condition code 2 is set.

The fetch access to the byte in the authority table
is not subject to protection. When the storage
address which is generated for fetching the byte
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 14 and 15 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for
a primary ASN or a secondary ASN. The fol-
lowing table shows the bit which is selected from
the byte as a function of bits 14 and 15 of the
authorization index and the instruction PT-ss,
SSAR-ss, PROGRAM RETURN, or LOAD
ADDRESS SPACE PARAMETERS.

┌────────────────┬───────────────────────────┐

│ │ Bit Selected from │

│ │ Authority-Table Byte │

│ │ for Test │

│ Authorization- ├────────────┬──────────────┤

│ Index Bits │ │ S Bit │

│ │ P Bit │ (SSAR-ss, │

│ 14 15 │ (PT-ss) │ PR, or LASP) │

├────────────────┼────────────┼──────────────┤

│ ð ð │ ð │ 1 │

│ │ │ │

│ ð 1 │ 2 │ 3 │

│ │ │ │

│ 1 ð │ 4 │ 5 │

│ │ │ │

│ 1 1 │ 6 │ 7 │

└────────────────┴────────────┴──────────────┘

If the selected bit is one, the ASN is authorized,
and the appropriate address-space-control param-
eters from the AST entry are loaded into the
appropriate control registers. If the selected bit is
zero, the ASN is not authorized, and a primary-
authority exception is recognized for PT-ss or a
secondary-authority exception is recognized for
SSAR-ss or PROGRAM RETURN. For LOAD
ADDRESS SPACE PARAMETERS, when the
ASN is not authorized, condition code 2 is set.

Recognition of Exceptions during ASN
Authorization
The exceptions which can be encountered during
the primary- and secondary-ASN-authorization
processes and their priorities are described in the
definitions of the instructions in which ASN author-
ization is performed.

Programming Note:  The primary- and
secondary-authority exceptions cause nullification
in order to permit dynamic modification of the
authority table. Thus, when an address space is
created or “swapped in,” the authority table can
first be set to all zeros and the appropriate
authority bits set to one only when required.

Dynamic Address Translation
Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device,
and at a later time return the program and the
data to different main-storage locations for
resumption of execution. The transfer of the
program and its data between main and auxiliary
storage may be performed piecemeal, and the
return of the information to main storage may take
place in response to an attempt by the CPU to
access it at the time it is needed for execution.
These functions may be performed without change
or inspection of the program and its data, do not
require any explicit programming convention for
the relocated program, and do not disturb the exe-
cution of the program except for the time delay
involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein
storage appears to be larger than the main
storage which is available in the configuration.
This apparent main storage is referred to as virtual
storage, and the addresses used to designate
locations in the virtual storage are referred to as
virtual addresses. The virtual storage of a user
may far exceed the size of the main storage which
is available in the configuration and normally is
maintained in auxiliary storage. The virtual
storage is considered to be composed of blocks of
addresses, called pages. Only the most recently
referred-to pages of the virtual storage are
assigned to occupy blocks of physical main
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storage. As the user refers to pages of virtual
storage that do not appear in main storage, they
are brought in to replace pages in main storage
that are less likely to be needed. The swapping of
pages of storage may be performed by the oper-
ating system without the user's knowledge.

The sequence of virtual addresses associated with
a virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used
to provide a number of address spaces. These
address spaces may be used to provide degrees
of isolation between users. Such support can
consist of a completely different address space for
each user, thus providing complete isolation, or a
shared area may be provided by mapping a
portion of each address space to a single common
storage area. Also, instructions are provided
which permit a semiprivileged program to access
more than one such address space. Dynamic
address translation provides for the translation of
virtual addresses from multiple different address
spaces without requiring that the translation
parameters in the control registers be changed.
These address spaces are called the primary
address space, secondary address space, and
AR-specified address spaces. A privileged
program can access also the home address
space.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be
recorded and preserved in auxiliary storage. To
aid in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of CCWs and IDAWs in I/O operations. The
CCW-indirect-data-addressing facility is provided
to aid I/O operations in a virtual-storage environ-
ment.

Address computation can be carried out in either
the 24-bit or 31-bit addressing mode. When
address computation is performed in the 24-bit
addressing mode, seven zeros are appended on
the left to form a 31-bit address. Therefore, the
resultant logical address is always 31 bits in

length. All real and absolute addresses are 31
bits in length.

Dynamic address translation is the process of
translating a virtual address during a storage refer-
ence into the corresponding real address. The
virtual address may be a primary virtual address,
secondary virtual address, AR-specified virtual
address, or home virtual address. These
addresses are translated by means of the primary,
the secondary, an AR-specified, or the home
segment-table designation, respectively. After
selection of the appropriate segment-table desig-
nation, the translation process is the same for all
of the four types of virtual address.

In the process of translation, two types of units of
information are recognized—segments and pages.
A segment is a block of sequential virtual
addresses spanning 1M bytes and beginning at a
1M-byte boundary. A page is a block of sequen-
tial virtual addresses spanning 4K bytes and
beginning at a 4K-byte boundary.

The virtual address, accordingly, is divided into
three fields. Bits 1-11 are called the segment
index (SX), bits 12-19 are called the page index
(PX), and bits 20-31 are called the byte index
(BX). The virtual address has the following
format:

┌─┬───────────┬────────┬────────────┐

│/│ SX │ PX │ BX │

└─┴───────────┴────────┴────────────┘

ð 1 12 2ð 31

Virtual addresses are translated into real
addresses by means of two translation tables: a
segment table and a page table. These reflect the
current assignment of real storage. The assign-
ment of real storage occurs in units of pages, the
real locations being assigned contiguously within a
page. The pages need not be adjacent in real
storage even though assigned to a set of sequen-
tial virtual addresses.

 Translation Control
Address translation is controlled by three bits in
the PSW and by a set of bits referred to as the
translation parameters. The translation parame-
ters are in control registers 0, 1, 7, and 13. Addi-
tional controls are located in the translation tables.

Additional controls are provided as described in
Chapter 5, “Program Execution.” These controls
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determine whether the contents of each access
register can be used to obtain a segment-table
designation for use by DAT.

 Translation Modes
The three bits in the PSW that control dynamic
address translation are bit 5, the DAT-mode bit,
and bits 16 and 17, the address-space-control
bits. When the DAT-mode bit is zero, then DAT is
off, and the CPU is in the real mode. When the
DAT-mode bit is one, then DAT is on, and the
CPU is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-8,
along with the handling of addresses in each
mode.

┌────────┬───┬─────────────────────┬─────────────────────┐

│ │ │ │Handling of Addresses│

│PSW Bit │ │ ├───────────┬─────────┤

├──┬──┬──┤ │ │Instruction│ Logical │

│ 5│16│17│DAT│ Mode │ Addresses │Addresses│

├──┼──┼──┼───┼─────────────────────┼───────────┼─────────┤

│ ð│ ð│ ð│Off│Real mode │ Real │Real │

│ ð│ ð│ 1│Off│Real mode │ Real │Real │

│ ð│ 1│ ð│Off│Real mode │ Real │Real │

│ ð│ 1│ 1│Off│Real mode │ Real │Real │

│ 1│ ð│ ð│On │Primary-space mode │ Primary │Primary │

│ │ │ │ │ │ virtual │ virtual│

│ 1│ ð│ 1│On │Access-register mode │ Primary │AR-speci-│

│ │ │ │ │ │ virtual │ fied │

│ │ │ │ │ │ │ virtual│

│ 1│ 1│ ð│On │Secondary-space mode │ Primary │Secondary│

│ │ │ │ │ │ virtual │ virtual│

│ 1│ 1│ 1│On │Home-space mode │ Home │Home │

│ │ │ │ │ │ virtual │ virtual│

└──┴──┴──┴───┴─────────────────────┴───────────┴─────────┘

Figure 3-8. Translation Modes

Control Register 0
Six bits are provided in control register 0 for use in
controlling dynamic address translation. The bits
are assigned as follows:

──┬─┬──┬─────┬──┬──

 │D│ │ TF │ │

──┴─┴──┴─────┴──┴──

5 8 13

Secondary-Space Control (D):  Bit 5 of control
register 0 is the secondary-space-control bit.
When this bit is zero and execution of MOVE TO
PRIMARY, MOVE TO SECONDARY, or SET
ADDRESS SPACE CONTROL is attempted, a
special-operation exception is recognized. When
this bit is one, it indicates that the secondary
segment table is attached when the CPU is in the
primary-space mode.

Translation Format (TF):  Bits 8-12 of control
register 0 specify the translation format, with only
one combination of the five control bits valid; all
other combinations are invalid.

The control bits are encoded as follows:
┌─────────────────────────────┬───────┐

│ Bits of Control Register ð │ │

├─────┬─────┬─────┬─────┬─────┤ │

│ 8 │ 9 │ 1ð │ 11 │ 12 │ Valid │

├─────┴─────┴─────┴─────┴─────┼───────┤

│ 1 ð 1 1 ð │ Yes │

│ │ │

│ All others │ No │

└─────────────────────────────┴───────┘

When an invalid bit combination is detected in bit
positions 8-12, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using address translation.

Control Register 1
Control register 1 contains the primary segment-
table designation (PSTD). The register has the
following format:

┌─┬──────────────────┬──┬─┬─┬─┬───────┐

│ │ Primary Segment- │ │ │ │ │ │

│X│ Table Origin │ │G│P│S│ PSTL │

└─┴──────────────────┴──┴─┴─┴─┴───────┘

ð 1 2ð 22 25 31

Primary Space-Switch-Event Control (X):
When bit 0 of control register 1 is one:

� A space-switch-event program interruption
occurs when execution of the space-switching
form of PROGRAM CALL (PC-ss),
PROGRAM CALL FAST (PCF-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) is completed. The inter-
ruption occurs if bit 0 is one either before or
after the operation.

� A space-switch-event program interruption
occurs upon completion of a RESUME
PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.
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� Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Segment-Table Origin (PSTO):  Bits
1-19 of control register 1, with 12 zeros appended
on the right, form an address that designates the
beginning of the primary segment table. It is
unpredictable whether the address is real or abso-
lute. This table is called the primary segment
table since it is used to translate virtual addresses
in the primary address space.

Primary Subspace-Group Control (G):  Bit 22,
when one, indicates that the address space speci-
fied by the STD is the base space or a subspace
of a subspace group. When bit 22 is zero, the
address space is not in a subspace group.

Primary Private-Space Control (P):  If bit 23 of
control register 1 is one, then (1) a one value of
the common-segment bit in a translation-
lookaside-buffer (TLB) segment-table entry pre-
vents the entry and the TLB page-table copy it
designates from being used when translating ref-
erences to the primary address space, even with a
match of segment-table origins; (2) low-address
protection and fetch-protection override do not
apply to the primary address space; and (3) a
translation-specification exception is recognized if
a reference to the primary address space is trans-
lated by means of a segment-table entry in
storage and the common-segment bit is one in the
entry.

Primary Storage-Alteration-Event Control (S):
With PER 2 when the storage-alteration-space
control in control register 9 is one, bit 24 of control
register 1 specifies, when one, that the primary
address space is one for which storage-alteration
events can occur. Bit 24 is examined when the
segment-table designation is used to perform
dynamic-address translation for a storage-operand
store reference. Bit 24 is ignored when the
storage-alteration-space control is zero, and it is
always ignored by PER 1.

Primary Segment-Table Length (PSTL):  Bits
25-31 of control register 1 specify the length of the
primary segment table in units of 64 bytes, thus
making the length of the segment table variable in
multiples of 16 entries. The length of the primary
segment table, in units of 64 bytes, is one more
than the PSTL value. The contents of the length

field are used to establish whether the entry desig-
nated by the segment-index portion of a primary
virtual address falls within the primary segment
table.

Bits 20 and 21 of control register 1 are not
assigned and are ignored. Bit 22 is ignored if the
subspace-group facility is not installed. Bit 24 is
ignored if the PER-2 facility is not installed.

Control Register 7
Control register 7 contains the secondary
segment-table designation (SSTD). The register
has the following format:

┌─┬──────────────────┬──┬─┬─┬─┬───────┐

│ │Secondary Segment-│ │ │ │ │ │

│ │ Table Origin │ │G│P│S│ SSTL │

└─┴──────────────────┴──┴─┴─┴─┴───────┘

ð 1 2ð 22 25 31

The secondary segment-table origin, secondary
subspace-group control (G), secondary private-
space control (P), secondary storage-alteration-
event control (S), and secondary segment-table
length (SSTL) in control register 7 are defined the
same as the fields in the same bit positions in
control register 1, except that control register 7
applies to the secondary address space.

Bits 0, 20, and 21 of control register 7 are not
assigned and are ignored. Bit 22 is ignored if the
subspace-group facility is not installed. Bit 24 is
ignored if the PER-2 facility is not installed.

Control Register 13
Control register 13 contains the home segment-
table designation (HSTD). The register has the
following format:

┌─┬──────────────────┬──┬─┬─┬─┬───────┐

│ │ Home Segment- │ │ │ │ │ │

│X│ Table Origin │ │G│P│S│ HSTL │

└─┴──────────────────┴──┴─┴─┴─┴───────┘

ð 1 2ð 22 25 31

Home Space-Switch-Event Control (X):  When
bit 0 of control register 13 is one, a space-switch-
event program interruption occurs upon com-
pletion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the address space from which instructions are
fetched either to or from the home address space;
that is, when instructions are fetched from the
home address space either before or after the
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operation but not both before and after the opera-
tion.

The home segment-table origin, home private-
space control (P), home storage-alteration-event
control (S), and home segment-table length
(HSTL) in control register 13 are defined the same
as the fields in the same bit positions in control
register 1, except that control register 13 applies
to the home address space.

Bits 20 and 21 of control register 13 are not
assigned and are ignored. Bit 22 (G) is ignored.
Bit 24 is ignored if the PER-2 facility is not
installed.

Programming Notes:

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD
REAL ADDRESS is executed. The informa-
tion is not considered to be used when the
PSW specifies translation but an I/O, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state.

 Translation Tables
The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in real or abso-
lute storage.

 Segment-Table Entries
The entry fetched from the segment table has the
following format:

┌─┬─────────────────────────┬─┬─┬────┐

│ð│ Page-Table Origin │I│C│PTL │

└─┴─────────────────────────┴─┴─┴────┘

ð 1 26 28 31

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin (PTO):  Bits 1-25, with six
zeros appended on the right, form the address
that designates the beginning of a page table. It
is unpredictable whether the address is real or
absolute.

Segment-Invalid Bit (I):  Bit 26 controls whether
the segment associated with the segment-table
entry is available. When the bit is zero, address
translation proceeds by using the segment-table
entry. When the bit is one, the segment-table
entry cannot be used for translation.

Common-Segment Bit (C):  Bit 27 controls the
use of the translation-lookaside-buffer (TLB)
copies of the segment-table entry and of the page
table which it designates. A zero identifies a
private segment; in this case, the segment-table
entry and the page table it designates may be
used only in association with the segment-table
origin that designates the segment table in which
the segment-table entry resides. A one identifies
a common segment; in this case, the segment-
table entry and the page table it designates may
continue to be used for translating addresses cor-
responding to the segment index, even though a
different segment table is specified. However,
TLB copies of the segment-table entry and page
table for a common segment are not usable if the
private-space control, bit 23, is one in the
segment-table designation used in the translation.
The common-segment bit must be zero if the
segment-table entry is fetched from storage during
a translation when the private-space control is one
in the segment-table designation being used; oth-
erwise, a translation-specification exception is
recognized.

Page-Table Length (PTL):  Bits 28-31 specify the
length of the page table in units of 64 bytes (16
entries). The length of the page table, in units of
64 bytes, is one more than the PTL value. The
contents of the length field are used to establish
whether the entry designated by the page-index
portion of the virtual address falls within the page
table.

Bit 0 of the segment-table entry must be zero; if it
is not zero, a translation-specification exception is
recognized as part of the execution of an instruc-
tion using that entry for address translation.
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 Page-Table Entries
The entry fetched from the page table has the fol-
lowing format:

┌─┬───────────────────┬─┬─┬─┬─┬────────┐

│ð│ PFRA │ð│I│P│ð│ │

└─┴───────────────────┴─┴─┴─┴─┴────────┘

ð 1 2ð 24 31

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA):  Bits 1-19
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right,
a 31-bit real address is obtained.

Page-Invalid Bit (I):  Bit 21 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation
proceeds by using the page-table entry. When
the bit is one, the page-table entry cannot be used
for translation.

Page-Protection Bit (P):  Bit 22 controls whether
store accesses can be made in the page. This
protection mechanism is in addition to the key-
controlled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted
to the page, subject to the other protection mech-
anisms. If the bit is one, stores are disallowed.
An attempt to store when the page-protection bit is
one causes a protection exception to be recog-
nized.

Bit positions 0, 20, and 23 of the entry must
contain zeros; otherwise, a translation-
specification exception is recognized as part of the
execution of an instruction using that entry for
address translation. Bit positions 24-31 are not
assigned and are ignored.

Summary of Segment-Table and
Page-Table Sizes
The sizes of segment tables and page tables are
summarized in Figure 3-9.

┌────────────────────────────────────────────────────────┐

│ Segment-Table Parameters │

├───────┬────────────┬────────────────────────┬──────────┤

│ │ │ Corresponding │ │

│Virtual│ │ Segment Table │ Segment- │

│Address│ Number of ├────────────┬───────────┤ Table │

│ Size │ Addressable│ Maximum │ Usable │Increment │

│(Bits) │ Segments │Size (Bytes)│Length Code│ (Bytes) │

├───────┼────────────┼────────────┼───────────┼──────────┤

│ 24ñ │ 16 │ 64 │ ð │ -- │

│ 31 │ 2,ð48 │ 8,192 │ 127 │ 64 │

└───────┴────────────┴────────────┴───────────┴──────────┘

┌────────────────────────────────────────────────┐

│ Page-Table Parametersò │

├────────────┬────────────────────────┬──────────┤

│ │ Corresponding │ │

│ │ Page Table │ Page- │

│ Number of ├────────────┬───────────┤ Table │

│ Pages │ Maximum │ Usable │Increment │

│ in Segment │Size (Bytes)│Length Code│ (Bytes) │

├────────────┼────────────┼───────────┼──────────┤

│ 256 │ 1,ð24 │ 15 │ 64 │

└────────────┴────────────┴───────────┴──────────┘

Explanation :

ñ A virtual address specified by the program in the 24-bit
addressing mode consists of a 24-bit value embedded in a
31-bit address.

ò The page-table size is independent of the virtual address
size.

Figure 3-9. Sizes of Segment Tables and Page
Tables

 Translation Process
This section describes the translation process as it
is performed implicitly before a virtual address is
used to access main storage. Explicit translation,
which is the process of translating the operand
address of LOAD REAL ADDRESS and TEST
PROTECTION, is the same, except that segment-
translation and page-translation exceptions do not
occur; such conditions are instead indicated by the
condition code. Translation of the operand
address of LOAD REAL ADDRESS also differs in
that the CPU may be in the real mode and the
translation-lookaside buffer is not used.

Translation of a virtual address is performed by
means of a segment table and a page table, both
of which reside in real or absolute storage. It is
controlled by the DAT-mode bit and the address-
space-control bits, all in the PSW. The translation
tables are designated by fields in control registers
1, 7, and 13 and as specified by the access regis-
ters.
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Effective Segment-Table Designation
The segment-table designation used for a partic-
ular address translation is called the effective
segment-table designation. Accordingly, when a
primary virtual address is translated, the contents
of control register 1 are used as the effective
segment-table designation. Similarly, for a sec-
ondary virtual address, the contents of control reg-
ister 7 are used; for an AR-specified virtual
address, the segment-table designation specified
by the access register is used; and for a home
virtual address, the contents of control register 13
are used.

The segment-index portion of the virtual address
is used to select an entry from the segment table,
the starting address and length of which are speci-
fied by the effective segment-table designation.
This entry designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the leftmost bits of the real address
that represents the translation of the virtual
address and provides the page-protection bit.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the
real address.

If the I bit is one in either the segment-table entry
or the page-table entry, the entry is invalid, and
the translation process cannot be completed for
this virtual address. A segment-translation or
page-translation exception is recognized.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may
be performed by using the information recorded in
the TLB. The operation of the TLB is described in
“Translation-Lookaside Buffer” on page 3-35.

Whenever access to real or absolute storage is
made during the address-translation process for
the purpose of fetching an entry from a segment
table or page table, key-controlled protection does
not apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-10 on
page 3-33.
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 Control Register ASN-Second Table

1, 7, or 13 Entry Virtual Address

┌───────────────────┐ ┌──────────────────┐ ┌──────┬────┬──────┐

│PSTD, SSTD, or HSTD│ │ AR-Specified STD │ │ SX │ PX │ BX │

└─────────┬─────────┘ └────────┬─────────┘ └───┬──┴─┬──┴───┬──┘

 │ ┌─┐ │ (x4)│ │(x4) │

 └──────────5│1│%────────┘ │ │ └──────┐

 └┬┘ │ │ │

 │ │ │ │

 6 │ │ │

 ┌─────────%──�──5────────────────┐ │ │ │

 │ │ │ │ │

 6 │ │ │ │

┌──────────────────┐ ┌───────────────┼───%──�%───────┘ │ │

Effective STD │ │ 6 │ │

┌──────────┬───┬───┐ │ │ │ │ │

│ STO │ │STL│ │ │ │ │ │

└─────┬────┴───┴───┘ │ │ │ │ │

│(x4ð96) │ │ │ │ │

┌─────┘ │ │ │ │ │

│ │ │ │ │ │

│ ┌───────────────────┘ ┌─────┼──────┼─────────────┘ │

│ │ │ │ │ │

│ 6 │ │ │ │

│ ┌─┐ Segment Table │ │ │ │

└────5│+│ ┌──────────────────┐ │ │ │ │

 └┬┘ │ │ │ │ │ │

┌─┐ │ │ │ │ │ │ │

│4│ └─5├────────────┬─┬───┤ │ │ │ │

└─┘ R/A │ PTO │ │PTL│ │ │ │ │

 ├──────┬─────┴─┴───┤ │ │ │ │

│ │(x64) │ │ │ │ │

 │ │ │ │ │ │ │

 └──────┼───────────┘ │ │ │ │

 │ │ │ │ │

┌────────────────┘ │ │ │ │

│ │ 6 │ │

│ 6 ┌─┐ │ │

│ ┌──────────────────────────%──�───5│2│%────┘ │

│ │ └┬┘ Translation │

│ │ │ Lookaside │

│ 6 │ Buffer (TLB) │

│ ┌─┐ Page Table │ ┌────────────────────┐ │

└────5│+│ ┌──────────────────┐ │ │ │ │

 └┬┘ │ │ ┌───────┼─────────┼─────────────┐ │ │

┌─┐ │ │ │ │ │ │ 6 │ │

│4│ └─5├──────────┬───────┤ │ └────────5├─────────┬──────────┤ │

└─┘ R/A │ PFRA │ │ │ │ │ PFRA │ │

 ├─────┬────┴───────┤ │ ├─────────┴───┬──────┤ │

│ │ │ │ ┌─┐ │ │ │ │

│ │ │ │ │4│ │ │ │ │

 └─────┼────────────┘ │ └─┘ └─────────────┼──────┘ │

 │ │ │ ┌─┐ │

 │ & 6 │3│ │

 └─────────────────5�──5───────────────────────────5� └─┘ │

┌─┐ 6 6

 │4│ ┌────────┐ ┌────────┐

 └─┘ ┌─────────┬─────────┐

│ │ │

 └─────────┴─────────┘

R/A: Address is either real or absolute Real Address

Figure 3-10 (Part 1 of 2). Translation Process
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 ┌─┐

 │1│ Control register 1 provides the primary segment-table designation for

 └─┘ translation of a primary virtual address, control register 7 provides

the secondary segment-table designation for translation of a secondary

virtual address, and control register 13 provides the home segment-table

designation for translation of a home virtual address. An ASN-second-

table entry provides an AR-specified (access-register-specified) segment-

table designation for translation of an AR-specified virtual address.

 ┌─┐

 │2│ Information, which may include portions of the virtual address and the

 └─┘ effective segment-table origin, is used to search the TLB.

 ┌─┐

 │3│ If a match exists, the page-frame real address from the TLB is used in

 └─┘ forming the real address.

 ┌─┐

 │4│ If no match exists, table entries in real or absolute storage are fetched.

 └─┘ The resulting fetched entries, in conjunction with the search information,

are used to translate the address and may be used to form an entry in the

 TLB.

Figure 3-10 (Part 2 of 2). Translation Process

Inspection of Control Register 0
The interpretation of the virtual address for trans-
lation purposes requires that there be a valid
translation format specified by bits 8-12 of control
register 0. If bits 8-12 contain an invalid code, a
translation-specification exception is recognized.

 Segment-Table Lookup
The segment-index portion of the virtual address,
in conjunction with the segment-table origin con-
tained in the effective segment-table designation,
is used to select an entry from the segment table.

The 31-bit address of the segment-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 1-19 of the effective
segment-table designation and adding the
segment index with two rightmost and 18 leftmost
zeros appended. When a carry into bit position 0
occurs during the addition, an addressing excep-
tion may be recognized, or the carry may be
ignored, causing the table to wrap from 2óñ - 1 to
zero. All 31 bits of the address are used, regard-
less of whether the current PSW specifies the
24-bit or 31-bit addressing mode.

As part of the segment-table-lookup process, bits
1-7 of the virtual address are compared against
the segment-table length in bit positions 25-31 of
the effective segment-table designation to estab-
lish whether the addressed entry is within the
segment table. If the value in the segment-table-
length field is less than the value in the corre-

sponding bit positions of the virtual address, a
segment-translation exception is recognized. The
comparison against the segment-table length may
be omitted if a segment-table entry in the
translation-lookaside buffer is used in the trans-
lation.

All four bytes of the segment-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address generated for
fetching the segment-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the
unit of operation is suppressed.

Bit 26 of the entry fetched from the segment table
specifies whether the corresponding segment is
available. This bit is inspected, and, if it is one, a
segment-translation exception is recognized. If bit
0 of the entry is one, a translation-specification
exception is recognized. A translation-
specification exception is also recognized if
(1) the private-space control, bit 23, in the effec-
tive segment-table designation is one and (2) the
common-segment bit, bit 27, in the entry fetched
from the segment table is one.

When no exceptions are recognized in the
process of segment-table lookup, the entry fetched
from the segment table designates the beginning
and specifies the length of the corresponding page
table.
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The common-segment bit in the entry fetched from
the segment table is further used only for the
purpose of forming a TLB entry (see “Use of TLB
Entries” on page 3-37).

 Page-Table Lookup
The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 31-bit address of the page-table entry in real
or absolute storage is obtained by appending six
zeros to the right of the page-table origin and
adding the page index, with two rightmost and 21
leftmost zeros appended. A carry into bit position
0 may cause an addressing exception to be
recognized, or the carry may be ignored, causing
the page table to wrap from 2óñ - 1 to zero. All
31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the page-table-lookup process, the four
leftmost bits of the page index are compared
against the page-table length, bits 28-31 of the
segment-table entry, to establish whether the
addressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized.

All four bytes of the page-table entry appear to be
fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection.
When the storage address generated for fetching
the page-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation
is suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit is inspected to establish whether
the corresponding page is available. If this bit is
one, a page-translation exception is recognized. If
bit position 0, 20, or 23 contains a one, a
translation-specification exception is recognized.

Formation of the Real Address
When no exceptions in the translation process are
encountered, the page-frame real address
obtained from the page-table entry and the byte-
index portion of the virtual address are concat-
enated, with the page-frame real address forming
the leftmost part. The result is the real storage
address which corresponds to the virtual address.
All 31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

Recognition of Exceptions during
Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when infor-
mation contained in control registers or table
entries is used for translation and is found to be
incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT
on or when INVALIDATE PAGE TABLE ENTRY or
LOAD REAL ADDRESS is executed. The infor-
mation is not considered to be used when the
PSW specifies DAT on but an I/O, external,
restart, or machine-check interruption occurs
before an instruction is executed, or when the
PSW specifies the wait state. Only that informa-
tion required in order to translate a virtual address
is considered to be in use during the translation of
that address, and, in particular, addressing
exceptions that would be caused by the use of a
segment-table designation are not recognized
when that segment-table designation is not the
one actually used in the translation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than
one is applicable, is provided in “Recognition of
Access Exceptions” on page 6-34.

 Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a
special buffer, referred to as the translation-
lookaside buffer (TLB). The CPU necessarily
refers to a DAT-table entry in real or absolute
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storage only for the initial access to that entry.
This information may be placed in the TLB, and
subsequent translations may be performed by
using the information in the TLB. The presence of
the TLB affects the translation process to the
extent that (1) a modification of the contents of a
table entry in real or absolute storage does not
necessarily have an immediate effect, if any, on
the translation, and (2) the comparison against
the segment-table length in the effective segment-
table designation may be omitted if a TLB
segment-table entry is used. In a multiple-CPU
configuration, each CPU has its own TLB.

Entries within the TLB are not explicitly address-
able by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is
permissible. Furthermore, information in the TLB
may be cleared under conditions additional to
those for which clearing is mandatory.

 TLB Structure
The description of the logical structure of the TLB
covers the implementation by all systems oper-
ating as defined by ESA/390. The TLB entries are
considered as being of two types: TLB segment-
table entries and TLB page-table entries. A TLB
entry is considered as containing within it both the
information obtained from the table entry in real or
absolute storage and the attributes used to fetch
the entry from storage.

Note:  The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect
the translation process.

Formation of TLB Entries
The formation of TLB entries and the effect of any
manipulation of the contents of a table entry in
real or absolute storage by the program depend
on whether the entry is attached to a particular
CPU and on whether the entry is valid.

The attached state of a table entry denotes that
the CPU to which it is attached can attempt to use
the table entry for implicit address translation.
The table entry may be attached to more than one
CPU at a time.

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment-
invalid bit or page-invalid bit in the entry is zero.

A segment-table entry or a page-table entry may
be placed in the TLB whenever the entry is
attached and valid and would not cause a
translation-specification exception if used for trans-
lation.

A segment-table entry is attached when all of the
following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The entry meets the requirements in a, b, c,
or d below.

a. The entry is within the segment table des-
ignated by the primary segment-table des-
ignation in control register 1, and the CPU
is not in the home-space mode.

b. The entry is within the segment table des-
ignated by the secondary segment-table
designation in control register 7 and either
of the following requirements is met:

� The CPU is in the secondary-space
mode or access-register mode.

� The CPU is in the primary-space
mode, and the secondary-space
control, bit 5 of control register 0, is
one.

c. The entry is within a segment table for
which the designation is in either an ALB
ASN-second-table entry or an
ASN-second-table entry which can be
placed in the ALB, and the CPU is in the
access-register mode. See
“ART-Lookaside Buffer” on page 5-51 for
the meaning of the terminology used here.

d. The entry is within the segment table
specified by the home segment-table des-
ignation in control register 13, and the
CPU is not in the secondary-space mode.
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A page-table entry is attached when it is within the
page table designated by either a usable TLB
segment-table entry or by an attached and valid
segment-table entry which would not cause a
translation-specification exception if used for trans-
lation. A usable TLB segment-table entry is
explained in the next section.

Use of TLB Entries
The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. Also, the usable state of a
TLB segment-table entry is a factor in determining
whether a page-table entry is attached.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The current PSW contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The TLB segment-table entry meets at least
one of the following requirements:

a. The common-segment bit is one in the
TLB entry.

b. The segment-table-origin field in the TLB
entry is the same as the current PSTO,
and the CPU is not in the home-space
mode.

c. The segment-table-origin field in the TLB
entry is the same as the current SSTO,
and either of the following requirements is
met:

� The CPU is in the secondary-space
mode or access-register mode.

� The CPU is in the primary-space
mode, and the secondary-space
control, bit 5 of control register 0, is
one.

d. The segment-table-origin field in the TLB
entry is the same as one that can be
obtained from an ASN-second-table entry
by applying the access-register-translation
process to the contents of an access reg-
ister, and the CPU is in the access-
register mode.

e. The segment-table-origin field in the TLB
entry is the same as the current HSTO,
and the CPU is not in the secondary-
space mode.

A TLB segment-table entry may be used for
implicit address translation only when the entry is
in the usable state, the segment index of the entry
matches the segment index of the virtual address
to be translated, and either the common-segment
bit is one in the TLB entry or the segment-table-
origin field in the TLB entry matches the segment-
table origin used to select it. However, a TLB
segment-table entry is not used if the common-
segment bit is one in the entry and the private-
space-control bit is one in the segment-table
designation used to select the entry, even if the
segment-table-origin fields in the entry and the
designation match.

A TLB page-table entry is in the usable state
when the page-table-origin field in the TLB page-
table entry matches the page-table-origin field in a
usable TLB segment-table entry or an attached
and valid segment-table entry which would not
cause a translation-specification exception if used
for translation, and the page-index field in the TLB
page-table entry is within the range permitted by
the page-table-length field in the segment-table
entry.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the segment-table
entry being used and only when the page index of
the TLB page-table entry matches the page index
of the virtual address being translated.

The operand address of LOAD REAL ADDRESS
is translated without the use of the TLB contents.
Translation in this case is performed by the use of
the designated tables in real or absolute storage.

Programming Notes:

1. Although a table entry may be copied into the
TLB only when the table entry is both valid
and attached, the copy may remain in the TLB
even when the table entry itself is no longer
valid or attached.

2. No entries can be copied into the TLB when
DAT is off because the table entries at this
time are not attached. In particular, trans-
lation of the operand address of LOAD REAL
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ADDRESS with DAT off does not cause
entries to be placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation
parameters, the setting of the address-space-
control bits, the setting of the secondary-
space-control bit, and the contents of the
access registers. The loading of the TLB
does not depend on whether the entry is used
for translation as part of the execution of the
current instruction, and such loading can
occur when the wait state is specified.

3. More than one copy of a table entry may exist
in the TLB. For example, some implementa-
tions may cause a copy of a valid table entry
to be placed in the TLB for each segment-
table origin by which the entry becomes
attached.

Modification of Translation Tables
When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLB, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table
entry is made attached and no usable entry for the
associated virtual address is in the TLB, the
change takes effect no later than the end of the
current unit of operation.

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries
which qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused
the change. Moreover, until the TLB is cleared of
entries which qualify for substitution for that entry,
the TLB may contain both the old and the new
values, and it is unpredictable whether the old or
new value is selected for a particular access. If
both old and new values of a segment-table entry
are present in the TLB, a page-table entry may be
fetched by using one value and placed in the TLB
associated with the other value. If the new value
of the entry is a value which would cause an
exception, the exception may or may not cause an
interruption to occur. If an interruption does occur,

the result fields of the instruction may be changed
even though the exception would normally cause
suppression or nullification.

Entries are cleared from the TLB in accordance
with the following rules:

1. All entries are cleared from the TLB by the
execution of PURGE TLB and SET PREFIX
and by CPU reset.

2. Selected entries are cleared from all TLBs in
the configuration by the execution of INVALI-
DATE PAGE TABLE ENTRY by any of the
CPUs in the configuration.

3. Some or all TLB entries may be cleared at
times other than those required by PURGE
TLB, SET PREFIX, CPU reset, and INVALI-
DATE PAGE TABLE ENTRY.

Programming Notes:

1. Entries in the TLB may continue to be used
for translation after the table entries from
which they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly
cleared from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to
a table entry that causes the entry to become
unattached or invalid is not necessarily
reflected in the translation process until the
TLB is cleared of entries which qualify for sub-
stitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a segment-translation or page-
translation exception may be indicated when a
table entry is invalid at the start of execution
even if the instruction would have validated
the table entry it uses and the table entry
would have appeared valid if the instruction
was considered to process the operands one
byte at a time.

3. A change made to an attached table entry,
except to set the I bit to zero or to alter the
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rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared
of all copies of that entry. The use of the new
value may begin between instructions or
during the execution of an instruction,
including the instruction that caused the
change. When an instruction, such as MOVE
(MVC), makes a change to an attached table
entry, including a change that makes the entry
invalid, and subsequently uses the entry for
translation, a changed entry is being used
without a prior clearing of the entry from the
TLB, and the associated unpredictability of
result values and of exception recognition
applies.

Manipulation of attached table entries may
cause spurious table-entry values to be
recorded in a TLB. For example, if changes
are made piecemeal, modification of a valid
attached entry may cause a partially updated
entry to be recorded, or, if an intermediate
value is introduced in the process of the
change, a supposedly invalid entry may tem-
porarily appear valid and may be recorded in
the TLB. Such an intermediate value may be
introduced if the change is made by an I/O
operation that is retried, or if an intermediate
value is introduced during the execution of a
single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without clearing the TLB, then the
new page-table entries may be fetched and
associated with the old page-table origin. In
such a case, execution of INVALIDATE PAGE
TABLE ENTRY designating the new page-
table origin will not necessarily clear the page-
table entries fetched from the new page table.

4. To facilitate the manipulation of translation
tables, INVALIDATE PAGE TABLE ENTRY is
provided, which sets the I bit in a page-table
entry to one and clears all TLBs in the config-
uration of entries formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful
for setting the I bit to one in a page-table entry
and causing TLB copies of the entry to be
cleared from the TLB of each CPU in the con-
figuration. The following aspects of the TLB
operation should be considered when using
INVALIDATE PAGE TABLE ENTRY. (See

also the programming notes following INVALI-
DATE PAGE TABLE ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY
should be executed before making any
change to a page-table entry other than
changing the rightmost byte; otherwise,
the selective clearing portion of INVALI-
DATE PAGE TABLE ENTRY may not
clear the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not
necessarily clear the TLB of the copies, if
any, of the segment-table entry desig-
nating the page table. When it is desired
to invalidate and clear the TLB of a
segment-table entry, the rules in note 5
below must be followed.

c. When a large number of page-table
entries are to be invalidated at a single
time, the overhead involved in using
PURGE TLB and in following the rules in
note 5 below may be less than in issuing
INVALIDATE PAGE TABLE ENTRY for
each page-table entry.

5. Manipulation of table entries should be in
accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real or
absolute storage were always used in the
translation process.

a. A valid table entry must not be changed
while it is attached to any CPU except
either to invalidate the entry, by using
INVALIDATE PAGE TABLE ENTRY, or to
alter bits 24-31 of a page-table entry.

b. When any change is made to a table entry
other than a change to bits 24-31 of a
page-table entry, each CPU which may
have a TLB entry formed from that entry
must execute PURGE TLB or SET
PREFIX or perform CPU reset, after the
change occurs and prior to the use of that
entry for implicit translation by that CPU,
except that the purge is unnecessary if the
change was made by using INVALIDATE
PAGE TABLE ENTRY.

c. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the
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entry, each CPU to which the entry is
attached must execute PURGE TLB or
SET PREFIX or perform CPU reset, after
the change occurs and prior to the use of
the entry for implicit address translation by
that CPU.

d. When any change is made to a segment-
table or page-table length, each CPU to
which that table has been attached must
execute PTLB after the length has been
changed but before that table becomes
attached again to the CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
CPU which does not have any usable TLB
copies for that entry. Similarly, when an
invalid segment-table entry is made valid
without introducing intermediate valid values,
the TLB need not be cleared in a CPU which
does not have any usable TLB copies for that
segment-table entry and which does not have
any usable TLB copies for the page-table
entries attached by it.

The execution of PURGE TLB and SET
PREFIX may have an adverse effect on the
performance of some models. Use of these
instructions should, therefore, be minimized in
conformity with the above rules.

 Address Summary

 Addresses Translated
Most addresses that are explicitly specified by the
program and are used by the CPU to refer to
storage are instruction or logical addresses and
are subject to implicit translation when DAT is on.
Analogously, the corresponding addresses indi-
cated to the program on an interruption or as the
result of executing an instruction are instruction or
logical addresses. The operand address of LOAD

REAL ADDRESS is explicitly translated, regard-
less of whether the PSW specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand
addresses in LOAD ADDRESS, LOAD ADDRESS
EXTENDED, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the
starting and ending locations for PER.

With the exception of INSERT VIRTUAL
STORAGE KEY and TEST PROTECTION, the
addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY
EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT
EXTENDED) are real addresses. Similarly, the
addresses implicitly used by the CPU for such
sequences as interruptions are real addresses.

The addresses used by channel programs to
transfer data and to refer to CCWs or IDAWs are
absolute addresses.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in
“Address Types” on page 3-3. Prefixing, when
provided, is applied after the address has been
translated by means of the dynamic-address-
translation facility. For a description of prefixing,
see “Prefixing” on page 3-14.

Handling of Addresses
The handling of addresses is summarized in
Figure 3-11 on page 3-41. This figure lists all
addresses that are encountered by the program
and specifies the address type.

3-40 ESA/390 Principles of Operation  



  
 

┌───────────────────────────────────────────────────────────────────────┐

│ Virtual Addresses │

│ │

│ ¸ Address of storage operand for INSERT VIRTUAL STORAGE KEY │

│ ¸ Operand address in LOAD REAL ADDRESS │

│ ¸ Addresses of storage operands for MOVE TO PRIMARY and MOVE TO │

│ SECONDARY │

│ ¸ Address stored in the word at real location 144 on a program inter- │

│ ruption for page-translation or segment-translation exception │

│ ¸ Linkage-stack-entry address in control register 15 │

│ ¸ Backward stack-entry address in linkage-stack header entry │

│ ¸ Forward-section-header address in linkage-stack trailer entry │

| │ ¸ Trap-control-block address in dispatchable-unit-control table │

| │ ¸ Trap-save-area address and trap-program address in trap control │

| │ block │

│ │

│ Instruction Addresses │

│ │

│ ¸ Instruction address in PSW │

│ ¸ Branch address │

│ ¸ Target of EXECUTE │

│ ¸ Address stored in the word at real location 152 on a program inter- │

│ ruption for PER │

│ ¸ Address placed in general register by BRANCH AND LINK, BRANCH AND │

│ SAVE, BRANCH AND SAVE AND SET MODE, BRANCH AND STACK, BRANCH IN │

│ SUBSPACE GROUP, BRANCH RELATIVE AND SAVE, and PROGRAM CALL │

│ ¸ Address used in general register by BRANCH AND STACK. │

│ ¸ Address placed in general register by BRANCH AND SET AUTHORITY │

│ executed in reduced-authority state │

│ │

│ Logical Addresses │

│ │

│ ¸ Addresses of storage operands for instructions not otherwise │

│ specified │

│ ¸ Address placed in general register 1 by EDIT AND MARK and TRANSLATE │

│ AND TEST │

│ ¸ Addresses in general registers updated by MOVE LONG, MOVE LONG │

│ EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL LONG EXTENDED │

│ ¸ Addresses in general registers updated by CHECKSUM, COMPARE AND FORM│

│ CODEWORD, and UPDATE TREE │

│ ¸ Address for TEST PENDING INTERRUPTION when the second-operand ad- │

│ dress is nonzero │

│ ¸ Address of parameter list of RESUME PROGRAM │

│ │

│ Real Addresses │

│ │

│ ¸ Address of storage key for INSERT STORAGE KEY EXTENDED, RESET │

│ REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED │

│ ¸ Address of storage operand for LOAD USING REAL ADDRESS, STORE USING │

│ REAL ADDRESS, and TEST BLOCK │

│ ¸ The translated address generated by LOAD REAL ADDRESS │

└───────────────────────────────────────────────────────────────────────┘

Figure 3-11 (Part 1 of 3). Handling of Addresses
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┌───────────────────────────────────────────────────────────────────────┐

│ Real Addresses (Continued) │

│ │

│ ¸ Page-table origin in INVALIDATE PAGE TABLE ENTRY │

│ ¸ Page-frame real address in page-table entry │

│ ¸ Trace-entry address in control register 12 │

│ ¸ ASN-first-table origin in control register 14 │

│ ¸ ASN-second-table origin in ASN-first-table entry │

│ ¸ Authority-table origin in ASN-second-table entry, except when used │

│ by access-register translation │

│ ¸ Linkage-table origin in control register 5 or primary ASN-second- │

│ table entryñ │

│ ¸ Entry-table origin in linkage-table entry │

│ ¸ Dispatchable-unit-control-table origin in control register 2 │

│ ¸ Primary-ASN-second-table-entry origin in control register 5ñ │

│ ¸ Base-ASN-second-table-entry origin and subspace-ASN-second-table- │

│ entry origin in dispatchable-unit control table │

│ ¸ ASN-second-table-entry address in entry-table entry and access-list │

│ entry │

│ ¸ PCF-entry-table origin at real locations 196-199 │

│ │

│ Permanently Assigned Real Addresses │

│ │

│ ¸ Address of the doubleword into which TEST PENDING INTERRUPTION │

│ stores when the second-operand address is zero │

│ ¸ Addresses of PSWs, interruption codes, and the associated informa- │

│ tion used during interruption │

│ ¸ Addresses used for machine-check logout and save areas │

│ ¸ Address of PCF-entry-table origin │

│ │

│ Addresses Which Are Unpredictably Real or Absolute │

│ │

│ ¸ Segment-table origin in control registers 1, 7, and 13 and in │

│ access-register-specified segment-table designation │

│ ¸ Page-table origin in segment-table entry │

│ ¸ Address of segment-table entry or page-table entry provided by LOAD │

│ REAL ADDRESS │

│ ¸ The dispatchable-unit or primary-space access-list origin and the │

│ authority-table origin (in the ASTE designated by the ALE used) used│

│ by access-register translation │

└───────────────────────────────────────────────────────────────────────┘

Figure 3-11 (Part 2 of 3). Handling of Addresses
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┌───────────────────────────────────────────────────────────────────────┐

│ Absolute Addresses │

│ │

│ ¸ Prefix value │

│ ¸ Channel-program address in ORB │

│ ¸ Data address in CCW │

│ ¸ IDAW address in a CCW specifying indirect data addressing │

│ ¸ CCW address in a CCW specifying transfer in channel │

│ ¸ Data address in IDAW │

│ ¸ Measurement-block origin specified in SET CHANNEL MONITOR │

│ ¸ Address limit specified in SET ADDRESS LIMIT │

│ ¸ Addresses used by the store-status-at-address SIGNAL PROCESSOR order│

│ ¸ Failing-storage address stored in the word at real location 248 │

│ ¸ CCW address in SCSW │

│ │

│ Permanently Assigned Absolute Addresses │

│ │

│ ¸ Addresses used for the store-status function │

│ ¸ Addresses of PSW and first two CCWs used for initial program loading│

│ │

│ Addresses Not Used to Reference Storage │

│ │

│ ¸ PER starting address in control register 1ð │

│ ¸ PER ending address in control register 11 │

│ ¸ Address stored in the word at real location 156 for a monitor event │

│ ¸ Address in shift instructions and other instructions specified not │

│ to use the address to reference storage │

├───────────────────────────────────────────────────────────────────────┤

│Explanation: │

│ │

│ ñ When the address-space-function (ASF) control, bit 15 of control │

│ register ð, is zero, control register 5 contains the linkage-table │

│ origin. When the ASF control is one, control register 5 contains │

│ the primary-ASN-second-table-entry origin, and the linkage-table │

│ origin is in the primary ASN-second-table entry. │

└───────────────────────────────────────────────────────────────────────┘

Figure 3-11 (Part 3 of 3). Handling of Addresses

Assigned Storage Locations
Figure 3-12 on page 3-49 shows the format and
extent of the assigned locations in storage. The
locations are used as follows.

0-7 (Absolute Address)

Initial-Program-Loading PSW: The first
eight bytes read during the initial-
program-loading (IPL) initial-read opera-
tion are stored at locations 0-7. The
contents of these locations are used as
the new PSW at the completion of the
IPL operation. These locations may also
be used for temporary storage at the ini-
tiation of the IPL operation.

0-7 (Real Address)

Restart New PSW: The new PSW is
fetched from locations 0-7 during a
restart interruption.

8-15 (Absolute Address)

Initial-Program-Loading CCW1: Bytes
8-15 read during the initial-program-
loading (IPL) initial-read operation are
stored at locations 8-15. The contents of
these locations are ordinarily used as the
next CCW in an IPL CCW chain after
completion of the IPL initial-read opera-
tion.

8-15 (Real Address)

Restart Old PSW: The current PSW is
stored as the old PSW at locations 8-15
during a restart interruption.

16-23 (Absolute Address)

Initial-Program-Loading CCW2: Bytes
16-23 read during the initial-program
loading (IPL) initial-read operation are
stored at locations 16-23. The contents
of these locations may be used as

  Chapter 3. Storage 3-43



  
 

another CCW in the IPL CCW chain to
follow IPL CCW1.

24-31 (Real Address)

External Old PSW: The current PSW is
stored as the old PSW at locations 24-31
during an external interruption.

32-39 (Real Address)

Supervisor-Call Old PSW: The current
PSW is stored as the old PSW at
locations 32-39 during a supervisor-call
interruption.

40-47 (Real Address)

Program Old PSW: The current PSW is
stored as the old PSW at locations 40-47
during a program interruption.

48-55 (Real Address)

Machine-Check Old PSW: The current
PSW is stored as the old PSW at
locations 48-55 during a machine-check
interruption.

56-63 (Real Address)

Input/Output Old PSW: The current
PSW is stored as the old PSW at
locations 56-63 during an I/O inter-
ruption.

88-95 (Real Address)

External New PSW: The new PSW is
fetched from locations 88-95 during an
external interruption.

96-103 (Real Address)

Supervisor-Call New PSW: The new
PSW is fetched from locations 96-103
during a supervisor-call interruption.

104-111 (Real Address)

Program New PSW: The new PSW is
fetched from locations 104-111 during a
program interruption.

112-119 (Real Address)

Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.

120-127 (Real Address)

Input/Output New PSW: The new PSW
is fetched from locations 120-127 during
an I/O interruption.

128-131 (Real Address)

External-Interruption Parameter: During
an external interruption due to service

| signal or the external time reference
| (ETR), the parameter associated with the

interruption is stored at locations
128-131.

132-133 (Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the CPU
address associated with the source of
the interruption is stored at locations

| 132-133. The CPU address is a 16-bit
| unsigned binary integer. For all other

external-interruption conditions, zeros
are stored at locations 132-133.

134-135 (Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

136-139 (Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at
locations 138-139. Zeros are stored at
location 136 and in the remaining bit
positions of location 137.

140-143 (Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and
the interruption code is stored at
locations 142-143. Zeros are stored at
location 140 and in the remaining bit
positions of location 141.

144-147 (Real Address)

Data-Exception Code (DXC): If the
basic-floating-point-extensions facility is
installed, then, during a program inter-
ruption due to a data exception, the

| data-exception code is stored at location
147, and zeros are stored at locations

| 144-146. The DXC is described in
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“Data-Exception Code (DXC)” on
page 6-15.

Translation-Exception Identification:
During a program interruption due to a
segment-translation exception or a page-
translation exception, the segment-index
and page-index portion of the virtual
address causing the exception is stored
at locations 144-147. This address is
sometimes referred to as the translation-
exception address. Bits 20-29 of the
address are unpredictable. Bits 30-31 of
the address are set to identify the
segment-table designation (STD) used in
the translation, as follows:

The CPU may avoid setting bits 30 and
31 to 01 by recognizing that the access
was an instruction fetch, that access-list-
entry token 00000000 or 00000001 hex
was used, or that the access-list-entry
token designated, through an access-list
entry, an ASN-second-table entry con-
taining an STD equal to the primary
STD, secondary STD, or home STD.

Bit 0 of location 144 is set to one if the
CPU was in either the primary-space
mode or the secondary-space mode and

the secondary STD was used; otherwise,
bit 0 is set to zero.

During a program interruption due to an
AFX-translation, ASX-translation,
primary-authority, or secondary-authority
exception, the ASN being translated is
stored at locations 146-147. Zeros are
stored at locations 144-145.

During a program interruption due to a
space-switch event, an identification of
the old instruction space is stored at
locations 146-147, and the old
instruction-space space-switch-event-
control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 of
locations 144-145. The identification and
bit stored are as follows:

� If the CPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 16-31 of control register
4 before the operation, is stored at
locations 146-147, and the old
primary space-switch-event-control
bit, bit 0 of control register 1 before
the operation, is placed in bit posi-
tion 0 of locations 144-145.

� If the CPU was in the home-space
mode before the operation, zeros are
stored at locations 146-147, and the
home space-switch-event-control bit,
bit 0 of control register 13, is placed
in bit position 0 of locations 144-145.

During a program interruption due to an
LX-translation or EX-translation excep-
tion recognized by PROGRAM CALL,
the PC number is stored in bit positions
12-31 of the word at locations 144-147.
Bits 0-11 are set to zeros.

During a program interruption due to an
EX-translation exception recognized by
PROGRAM CALL FAST, the PC number
is stored in bit positions 12-31 of the
word at locations 144-147. Bits 0-10 are
set to zeros, and bit 11 is set to one.

If the suppression-on-protection facility is
installed, then, during a program inter-
ruption due to a protection exception,
information is stored at locations

Bit Bit
Meaning30 31

0 0 Primary STD was used.
0 1 CPU was in the access-

register mode, and either the
access was an instruction fetch
or it was a storage-operand
reference that used an
AR-specified STD (the access
was not an implicit reference to
the linkage stack). The excep-
tion access id, real location
160, can be examined to
determine the STD used.
However, if the primary, sec-
ondary, or home STD was
used, bits 30 and 31 may be
set to 00, 10, or 11, respec-
tively, instead of to 01.

1 0 Secondary STD was used.
1 1 Home STD was used (includes

the case of an implicit refer-
ence to the linkage stack).
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144-147 as described in “Suppression on
Protection” on page 3-12.

148-149 (Real Address)

Monitor-Class Number: During a
program interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at location 148.

150-151 (Real Address)

PER Code: During a program inter-
ruption due to a PER event with PER 1,
the PER code is stored in bit positions
0-3 of locations 150-151, and zeros are
stored in bit positions 4-15. With PER 2,
the PER code is stored in bit positions
0-2 and 4 of locations 150-151, and
other information is or may be stored as
described in “Identification of Cause” on
page 4-17.

152-155 (Real Address)

PER Address: During a program inter-
ruption due to a PER event, the PER
address is stored at locations 152-155.
Bit 0 of location 152 is set to zero.

156-159 (Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the
monitor code is stored at locations
156-159.

160 (Real Address)

Exception Access Identification: During
a program interruption due to a segment-
translation exception or a page-
translation exception, an indication of the
address space to which the exception
applies may be stored at location 160. If
the CPU was in the access-register
mode and the access was an instruction
fetch, including a fetch of the target of an
EXECUTE instruction, zeros are stored
at location 160. If the CPU was in the
access-register mode and the access
was a storage-operand reference that
used an AR-specified segment-table
designation, the number of the access
register used is stored in bit positions
4-7 of location 160, and zeros are stored
in bit positions 0-3. (In either of the two
cases described so far, storing at

location 160 occurs regardless of the
value stored in bit positions 30 and 31 of
real locations 144-147.) If the CPU was
in the access-register mode but the
access was an implicit reference to the
linkage stack, or if the CPU was not in
the access-register mode, the contents
of location 160 are unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception recognized
during access-register translation, the
number of the access register used is
stored in bit positions 4-7 of location
160, and zeros are stored in bit positions
0-3. During a program interruption due
to an ASTE-validity or ASTE-sequence
exception recognized during a subspace-
replacement operation, all zeros are
stored at location 160.

If the suppression-on-protection facility is
installed, then, during a program inter-
ruption due to a protection exception,
information is stored at location 160 as
described in “Suppression on Protection”
on page 3-12.

161 (Real Address)

PER Access Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified
segment-table designation, the number
of the access register used is stored in
bit positions 4-7 of location 161, and
zeros are stored in bit positions 0-3.
However, with PER 1, the contents of
location 161 are unpredictable if the
instruction that caused the event turned
DAT off. Also, with PER 1 or PER 2, the
contents of location 161 are unpredict-
able if (1) the CPU was in the access-
register mode but the access was an
implicit reference to the linkage stack,
(2) the CPU was not in the access-
register mode, or (3) bit 2 of the PER
code is one but indicates a store-using-
real-address event instead of a storage-
alteration event.
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184-187 (Real Address)

Subsystem-Identification Word: During
an I/O interruption, the subsystem-
identification word is stored at locations
184-187.

188-191 (Real Address)

I/O-Interruption Parameter: During an
I/O interruption, the interruption param-
eter from the associated subchannel is
stored at locations 188-191.

196-199 (Real Address)

PCF-Entry-Table Origin: The real origin
of the PCF entry table is obtained by
PROGRAM CALL FAST from real
locations 196-199.

212-215 (Absolute Address)

Store-Status Extended-Save-Area
Address: During the execution of the
store-status operation when the basic-
floating-point-extensions facility is
installed and the extended-save-area
control, bit 2 of control register 14, is
one, bits 1-19 of locations 212-215, with
12 zeros appended on the right, are
used as the absolute address of a
4096-byte extended save area. Bits 0
and 20-31 of the locations are reserved
and should be zeros. They are ignored
when forming the address of the
extended save area. Bits 1-19 must not
be all zeros; otherwise, storing is not
performed in the extended save area.

212-215 (Real Address)

Machine-Check Extended-Save-Area
Address: During a machine-check inter-
ruption when the basic-floating-point-
extensions facility is installed and the
extended-save-area control, bit 2 of
control register 14, is one, bits 1-19 of
locations 212-215, with 12 zeros
appended on the right, are used as the
absolute address of a 4096-byte
extended save area. Bits 0 and 20-31 of
the locations are reserved and should be
zeros. They are ignored when forming
the address of the extended save area.
Bits 1-19 must not be all zeros; other-
wise, storing is not performed in the
extended save area.

216-223 (Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 216-223.

216-223 (Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 216-223.

224-231 (Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store-
status operation, the contents of the
clock comparator are stored at locations
224-231.

224-231 (Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter-
ruption, the contents of the clock
comparator are stored at locations
224-231.

232-239 (Real Address)

Machine-Check-Interruption Code:
During a machine-check interruption, the
machine-check-interruption code is
stored at locations 232-239.

244-247 (Real Address)

External-Damage Code: During a
machine-check interruption due to
certain external-damage conditions,
depending on the model, an external-
damage code may be stored at locations
244-247.

248-251 (Real Address)

Failing-Storage Address: During a
machine-check interruption, a failing-
storage address may be stored at
locations 248-251. Bit 0 of location 248
is set to zero.

256-263 (Absolute Address)

Store-Status PSW Save Area: During
the execution of the store-status opera-
tion, the contents of the current PSW are
stored at locations 256-263.
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256-271 (Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 256-271 during a machine-
check interruption.

264-267 (Absolute Address)

Store-Status Prefix Save Area: During
the execution of the store-status opera-
tion, the contents of the prefix register
are stored at locations 264-267.

288-351 (Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access
registers are stored at locations 288-351.

288-351 (Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 288-351.

352-383 (Absolute Address)

Store-Status Floating-Point-Register
Save Area: During the execution of the
store-status operation, the contents of
the floating-point registers are stored at
locations 352-383.

352-383 (Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating-
point registers are stored at locations
352-383.

384-447 (Absolute Address)

Store-Status General-Register Save
Area: During the execution of the store-

status operation, the contents of the
general registers are stored at locations
384-447.

384-447 (Real Address)

Machine-Check General-Register Save
Area: During a machine-check inter-
ruption, the contents of the general reg-
isters are stored at locations 384-447.

448-511 (Absolute Address)

Store-Status Control-Register Save Area:
During the execution of the store-status
operation, the contents of the control
registers are stored at locations 448-511.

448-511 (Real Address)

Machine-Check Control-Register Save
Area: During a machine-check inter-
ruption, the contents of the control regis-
ters are stored at locations 448-511.

Programming Notes:

1. When the CPU is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER
event in one address space concurrently with
a segment-translation exception or a page-
translation exception in another address
space. The access registers used to cause
these conditions in such a case are different.
In order to identify both access registers, two
access identifications, namely the exception
access identification and the PER access
identification, are provided.

2. STORE THEN AND SYSTEM MASK can
cause a PER storage-alteration event and turn
DAT off, in which case, with PER 1, the PER
access identification at real location 161 is
unpredictable.
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 Hex Dec

──────────┬───────────────────────────────────────────────────────────────┐

ð ð │ Initial-Program-Loading PSW; or Restart New PSW │

 │ │

 4 4 │ │

──────────┼───────────────────────────────────────────────────────────────┤

8 8 │ Initial-Program-Loading CCW1; or Restart Old PSW │

 │ │

 C 12 │ │

──────────┼───────────────────────────────────────────────────────────────┤

1ð 16 │ Initial-Program Loading CCW2 │

 │ │

 14 2ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

18 24 │ External Old PSW │

 │ │

 1C 28 │ │

──────────┼───────────────────────────────────────────────────────────────┤

2ð 32 │ Supervisor-Call Old PSW │

 │ │

 24 36 │ │

──────────┼───────────────────────────────────────────────────────────────┤

28 4ð │ Program Old PSW │

 │ │

 2C 44 │ │

──────────┼───────────────────────────────────────────────────────────────┤

3ð 48 │ Machine-Check Old PSW │

 │ │

 34 52 │ │

──────────┼───────────────────────────────────────────────────────────────┤

38 56 │ Input/Output Old PSW │

 │ │

 3C 6ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 4ð 64 │ │

 │ │

 44 68 │ │

 │ │

 48 72 │ │

 │ │

 4C 76 │ │

 │ │

 5ð 8ð │ │

 │ │

 54 84 │ │

──────────┼───────────────────────────────────────────────────────────────┤

58 88 │ External New PSW │

 │ │

 5C 92 │ │

──────────┼───────────────────────────────────────────────────────────────┤

6ð 96 │ Supervisor-Call New PSW │

 │ │

 64 1ðð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 68 1ð4 │ Program New PSW │

 │ │

 6C 1ð8 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 7ð 112 │ Machine-Check New PSW │

 │ │

 74 116 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 78 12ð │ Input/Output New PSW │

 │ │

 7C 124 │ │

──────────┴───────────────────────────────────────────────────────────────┘

Figure 3-12 (Part 1 of 4). Assigned Storage Locations
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 Hex Dec

──────────┬───────────────────────────────────────────────────────────────┐

 8ð 128 │ External-Interruption Parameter │

──────────┼───────────────────────────────┬───────────────────────────────┤

 84 132 │ CPU Address │ External-Interruption Code │

──────────┼─────────────────────────┬───┬─┼───────────────────────────────┤

 88 136 │ð ð ð ð ð ð ð ð ð ð ð ð ð│ILC│ð│ SVC-Interruption Code │

──────────┼─────────────────────────┼───┼─┼───────────────────────────────┤

 8C 14ð │ð ð ð ð ð ð ð ð ð ð ð ð ð│ILC│ð│ Program-Interruption Code │

──────────┼─────────────────────────┴───┴─┴───────────────────────────────┤

 9ð 144 │ Data-Exception Code or Translation-Exception Identification │

──────────┼───────────────────────────────┬───────┬─────┬──┬──────────────┤

 94 148 │ Monitor-Class Number │PER Cde│ATMID│SI│ │

──────────┼───────────────────────────────┴───────┴─────┴──┴──────────────┤

 98 152 │ PER Address │

──────────┼───────────────────────────────────────────────────────────────┤

 9C 156 │ Monitor Code │

──────────┼───────────────┬───────────────┬───────────────────────────────┤

 Að 16ð │Exc. Access ID │ PER Access ID │ │

──────────┼───────────────┴───────────────┴───────────────────────────────┤

 A4 164 │ │

 │ │

 A8 168 │ │

 │ │

 AC 172 │ │

 │ │

 Bð 176 │ │

 │ │

 B4 18ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 B8 184 │ Subsystem-Identification Word │

──────────┼───────────────────────────────────────────────────────────────┤

 BC 188 │ I/O-Interruption Parameter │

──────────┼───────────────────────────────────────────────────────────────┤

 Cð 192 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 C4 196 │ PCF-Entry-Table Origin │

──────────┼───────────────────────────────────────────────────────────────┤

 C8 2ðð │ │

 │ │

 CC 2ð4 │ │

 │ │

 Dð 2ð8 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 D4 212 │ Store-Status Extended-Save-Area Address; or Machine-Check │

 │ Extended-Save-Area Address │

──────────┼───────────────────────────────────────────────────────────────┤

 D8 216 │ Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer │

 │ Save Area │

 DC 22ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 Eð 224 │ Store-Status Clock-Comparator Save Area; or Machine-Check │

│ Clock-Comparator Save Area │

 E4 228 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 E8 232 │ Machine-Check Interruption Code │

 │ │

 EC 236 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 Fð 24ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 F4 244 │ External-Damage Code │

──────────┼───────────────────────────────────────────────────────────────┤

 F8 248 │ Failing-Storage Address │

──────────┼───────────────────────────────────────────────────────────────┤

 FC 252 │ │

──────────┴───────────────────────────────────────────────────────────────┘

Figure 3-12 (Part 2 of 4). Assigned Storage Locations
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 Hex Dec

──────────┬───────────────────────────────────────────────────────────────┐

 1ðð 256 │ Store-Status PSW Save Area; or Fixed-Logout Area (Part 1) │

 │ │

 1ð4 26ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 1ð8 264 │ Store-Status Prefix Save Area; or Fixed-Logout Area (Part 2) │

──────────┼───────────────────────────────────────────────────────────────┤

 1ðC 268 │ Fixed-Logout Area (Part 3) │

──────────┼───────────────────────────────────────────────────────────────┤

 11ð 272 │ │

 │ │

 / /

 │ │

 11C 284 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 12ð 288 │ Store-Status Access-Register Save Area; or Machine-Check │

│ Access-Register Save Area │

 124 292 │ │

 │ │

 128 296 │ │

 │ │

 12C 3ðð │ │

 │ │

 / /

 │ │

 154 34ð │ │

 │ │

 158 344 │ │

 │ │

 15C 348 │ │

──────────┼───────────────────────────────────────────────────────────────┤

 16ð 352 │ Store-Status Floating-Point-Register Save Area; or Machine- │

│ Check Floating-Point-Register Save Area │

 164 356 │ │

 │ │

 168 36ð │ │

 │ │

 16C 364 │ │

 │ │

 17ð 368 │ │

 │ │

 174 372 │ │

 │ │

 178 376 │ │

 │ │

 17C 38ð │ │

──────────┼───────────────────────────────────────────────────────────────┤

 18ð 384 │ Store-Status General-Register Save Area; or Machine-Check │

│ General-Register Save Area │

 184 388 │ │

 │ │

 188 392 │ │

 │ │

 18C 396 │ │

 │ │

 / /

 │ │

 1B4 436 │ │

 │ │

 1B8 44ð │ │

 │ │

 1BC 444 │ │

──────────┴───────────────────────────────────────────────────────────────┘

Figure 3-12 (Part 3 of 4). Assigned Storage Locations
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 Hex Dec

──────────┬───────────────────────────────────────────────────────────────┐

 1Cð 448 │ Store-Status Control-Register Save Area; or Machine-Check │

│ Control-Register Save Area │

 1C4 452 │ │

 │ │

 1C8 456 │ │

 │ │

 1CC 46ð │ │

 │ │

 / /

 │ │

 1F4 5ðð │ │

 │ │

 1F8 5ð4 │ │

 │ │

 1FC 5ð8 │ │

──────────┴───────────────────────────────────────────────────────────────┘

Figure 3-12 (Part 4 of 4). Assigned Storage Locations
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 Chapter 4. Control
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Time-of-Day Clock  . . . . . . . . . . . . . . 4-26
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States . . . . . . . . . . . . . . . . . . . . 4-27
Changes in Clock State . . . . . . . . . 4-28
Setting and Inspecting the Clock . . . . 4-28

| TOD Programmable Register . . . . . . 4-29
TOD-Clock Synchronization . . . . . . . . . 4-31
Clock Comparator  . . . . . . . . . . . . . . 4-32
CPU Timer  . . . . . . . . . . . . . . . . . . 4-33

Externally Initiated Functions . . . . . . . . . 4-34
Resets  . . . . . . . . . . . . . . . . . . . . . 4-34

CPU Reset  . . . . . . . . . . . . . . . . . 4-37
Initial CPU Reset . . . . . . . . . . . . . 4-38
Subsystem Reset  . . . . . . . . . . . . . 4-38
Clear Reset  . . . . . . . . . . . . . . . . 4-38
Power-On Reset  . . . . . . . . . . . . . 4-39

Initial Program Loading . . . . . . . . . . . 4-39
Store Status . . . . . . . . . . . . . . . . . . 4-40

Multiprocessing  . . . . . . . . . . . . . . . . . 4-41
Shared Main Storage . . . . . . . . . . . . 4-41
CPU-Address Identification  . . . . . . . . . 4-41

CPU Signaling and Response . . . . . . . . . 4-41
Signal-Processor Orders  . . . . . . . . . . 4-41
Conditions Determining Response . . . . . 4-45
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the Order Code . . . . . . . . . . . .  4-45
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This chapter describes in detail the facilities for
controlling, measuring, and recording the opera-
tion of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States
The stopped, operating, load, and check-stop
states are four mutually exclusive states of the
CPU. When the CPU is in the stopped state,
instructions and interruptions, other than the
restart interruption, are not executed. In the oper-
ating state, the CPU executes instructions and
takes interruptions, subject to the control of the
program-status word (PSW) and control registers,
and in the manner specified by the setting of the
operator-facility rate control. The CPU is in the

load state during the initial-program-loading opera-
tion. The CPU enters the check-stop state only as
the result of machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR
orders addressed to that CPU. The states are not
controlled or identified by bits in the PSW. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the
CPU is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOD clock
is not affected by the state of any CPU.
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 Stopped State
The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

� The stop key is activated while the CPU is in
the operating state.

� The CPU accepts a stop or stop-and-store-
status order specified by a SIGNAL
PROCESSOR instruction addressed to this
CPU while it is in the operating state.

� The CPU has finished the execution of a unit
of operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old PSW to be stored and the
new PSW to be fetched before the stopped state
is entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state
when:

� The CPU reset is completed. However, when
the reset operation is performed as part of
initial program loading for this CPU, then the
CPU is placed in the load state and does not
necessarily enter the stopped state.

� An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in “Resets”
on page 4-34, and address comparison is
described in “Address-Compare Controls” on
page 12-1.

If the CPU is in the stopped state when an INVAL-
IDATE PAGE TABLE ENTRY instruction is exe-

cuted on another CPU in the configuration, the
clearing of TLB entries is completed before the
CPU leaves the stopped state.

 Operating State
The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see Chapter 6,
“Interruptions”) occurs.

The start function is performed if the CPU is in the
stopped state and (1) the start key associated
with that CPU is activated or (2) that CPU accepts
the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.
The effect of performing the start function is
unpredictable when the stopped state has been
entered by means of a reset.

When the rate control is set to the process posi-
tion and the start function is performed, the CPU
starts operating at normal speed. When the rate
control is set to the instruction-step position and
the wait-state bit is zero, one instruction or, for
interruptible instructions, one unit of operation is
executed, and all pending allowed interruptions
occur before the CPU returns to the stopped state.
When the rate control is set to the instruction-step
position and the wait-state bit is one, the start
function does not cause an instruction to be exe-
cuted, but all pending allowed interruptions occur
before the CPU returns to the stopped state.

 Load State
The CPU enters the load state when the load-
normal or load-clear key is activated. (See “Initial
Program Loading” on page 4-39. See also “Initial
Program Loading” on page 17-13.) If the initial-
program-loading operation is completed success-
fully, the CPU changes from the load state to the
operating state, provided the rate control is set to
the process position; if the rate control is set to
the instruction-step position, the CPU changes
from the load state to the stopped state.

 Check-Stop State
The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, “Machine-Check Handling.” The
CPU leaves the check-stop state when CPU reset
is performed.
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Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending I/O operations may be initiated, and
active I/O operations continue to suspension
or completion, after the CPU enters the
stopped state. The interruption conditions due
to suspension or completion of I/O operations
remain pending when the CPU is in the
stopped state.

 Program-Status Word
The current program-status word (PSW) in the
CPU contains information required for the exe-
cution of the currently active program. The PSW
is 64 bits in length and includes the instruction
address, condition code, and other control fields.
In general, the PSW is used to control instruction
sequencing and to hold and indicate much of the
status of the CPU in relation to the program cur-

rently being executed. Additional control and
status information is contained in control registers
and permanently assigned storage locations.

The status of the CPU can be changed by loading
a new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to pre-
serve the status of the CPU, and then loading a
new PSW.

Execution of LOAD PSW, or the successful con-
clusion of the initial-program-loading sequence,
introduces a new PSW. The instruction address is
updated by sequential instruction execution and
replaced by successful branches. Other
instructions are provided which operate on a
portion of the PSW. Figure 4-1 on page  4-4
summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the PSW is completed. The interruption
for PER associated with an instruction that
changes the PSW occurs under control of the
PER mask that is effective at the beginning of the
operation.

Bits 0-7 of the PSW are collectively referred to as
the system mask.
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┌──────────────────────────┬───────────┬───────────┬───────────┬───────────┬───────────┬───────────┐

│ │ │ │ │ │ Condition │ │

│ │ │ │ │ Address- │ Code and │ │

│ │ │ │ Problem │ Space │ Program │Addressing │

│ │System Mask│ PSW Key │ State │ Control │ Mask │ Mode │

│ │ (PSW Bits │ (PSW Bits │ (PSW │ (PSW Bits │ (PSW Bits │ (PSW │

│ │ ð-7) │ 8-11) │ Bit 15) │ 16-17) │ 18-23) │ Bit 32) │

│ ├─────┬─────┼─────┬─────┼─────┬─────┼─────┬─────┼─────┬─────┼─────┬─────┤

│ Instruction │Saved│ Set │Saved│ Set │Saved│ Set │Saved│ Set │Saved│ Set │Saved│ Set │

├──────────────────────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤

│BRANCH AND LINK │ No │ No │ No │ No │ No │ No │ No │ No │ AM │ No │ AM │ No │

│BRANCH AND SAVE │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │ Yes │ No │

│BRANCH AND SAVE AND SET │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │ Yes │ Yesñ│

│ MODE │ │ │ │ │ │ │ │ │ │ │ │ │

│BRANCH AND SET AUTHORITY │ No │ No │ Yes │ Yes │ Yes │ Yes │ No │ No │ No │ No │ Yes │ Yes │

│BRANCH AND SET MODE │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │ Yesñ│ Yesñ│

├──────────────────────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤

│BRANCH AND STACK │ Yes │ No │ Yes │ No │ Yes │ No │ Yes │ No │ Yes │ No │ Yesò│ No │

│BRANCH IN SUBSPACE GROUP │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │ Yesñ│ Yes │

│INSERT PROGRAM MASK │ No │ No │ No │ No │ No │ No │ No │ No │ Yes │ No │ No │ No │

│INSERT PSW KEY │ No │ No │ Yes │ No │ No │ No │ No │ No │ No │ No │ No │ No │

│INSERT ADDRESS SPACE │ No │ No │ No │ No │ No │ No │ Yes │ No │ No │ No │ No │ No │

│ CONTROL │ │ │ │ │ │ │ │ │ │ │ │ │

├──────────────────────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤

│Basic PROGRAM CALL │ No │ No │ No │ No │ Yes │ Yes │ No │ No │ No │ No │ Yes │ Yes │

│Stacking PROGRAM CALL │ Yes │ No │ Yes │ PKC │ Yes │ Yes │ Yes │ Yes │ Yes │ No │ Yes │ Yes │

│PROGRAM CALL FAST │ Yes │ No │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │

│PROGRAM RETURN │ No │ Yesó│ No │ Yes │ No │ Yes │ No │ Yes │ No │ Yesô│ No │ Yes │

│PROGRAM TRANSFER │ No │ No │ No │ No │ No │ Yesõ│ No │ No │ No │ No │ No │ Yes │

│RESUME PROGRAM │ No │ No │ No │ No │ No │ No │ No │ Yes │ No │ Yes │ No │ Yes │

│SET ADDRESS SPACE CONTROL │ No │ No │ No │ No │ No │ No │ No │ Yes │ No │ No │ No │ No │

├──────────────────────────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┼─────┤

│SET PROGRAM MASK │ No │ No │ No │ No │ No │ No │ No │ No │ No │ Yes │ No │ No │

│SET PSW KEY FROM ADDRESS │ No │ No │ No │ Yes │ No │ No │ No │ No │ No │ No │ No │ No │

│SET SYSTEM MASK │ No │ Yes │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │

│STORE THEN AND SYSTEM MASK│ Yes │ ANDs│ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │

│STORE THEN OR SYSTEM MASK │ Yes │ ORs │ No │ No │ No │ No │ No │ No │ No │ No │ No │ No │

├──────────────────────────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┴─────┤

│Explanation: │

│ │

│ ñ The action takes place only if the associated R field in the instruction is nonzero. │

│ │

│ ò The action takes place only if the associated R field in the instruction is zero. │

│ │

│ ó PROGRAM RETURN does not change the PER mask. │

│ │

│ ô The condition code set by PROGRAM RETURN is unpredictable. │

│ │

│ õ PROGRAM TRANSFER does not change the problem-state bit from one to zero. │

│ │

│ AM The action depends on the addressing mode, bit 32 of the current PSW. In the 24-bit │

│ addressing mode, the condition code and program mask are saved in the leftmost byte of │

│ the general register. In the 31-bit addressing mode, the addressing mode and bits 1-7 of │

│ the 31-bit address replace the leftmost byte of the register. │

│ │

│ ANDs The logical AND of the immediate field in the instruction and the current system mask │

│ replaces the current system mask. │

│ │

│ ORs The logical OR of the immediate field in the instruction and the current system mask │

│ replaces the current system mask. │

│ │

│ PKC When the PSW-key-control bit, bit 131 of the 32-byte entry-table entry, is zero, the PSW │

│ key remains unchanged. When the PSW-key-control bit is one, the PSW key is set with the │

│ entry key, bits 136-139 of the entry-table entry. │

└──────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 4-1. Operations on PSW Fields

Programming Note:  A summary of the opera-
tions which save or set the problem state,

addressing mode, and instruction address is con-
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tained in “Subroutine Linkage without the Linkage
Stack” on page 5-9.

 Program-Status-Word Format
┌─┬─┬─────┬─┬─┬─┬─────┬─┬─┬─┬─┬───┬───┬──────┬───────────────┐

│ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │

│ð│R│ð ð ð│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │ð ð ð ð ð ð ð ð│

└─┴─┴─────┴─┴─┴─┴─────┴─┴─┴─┴─┴───┴───┴──────┴───────────────┘

ð 5 8 12 16 18 2ð 24 31

┌─┬──────────────────────────────────────────────────────────┐

│ │ │

│A│ Instruction Address │

└─┴──────────────────────────────────────────────────────────┘

32 63

Figure 4-2. PSW Format

The following is a summary of the functions of the
PSW fields. (See Figure 4-2.)

PER Mask (R):  Bit 1 controls whether the CPU is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the
bit is one, interruptions are permitted, subject to
the PER-event-mask bits in control register 9.

DAT Mode (T):  Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes
place. When the bit is zero, DAT is off, and
logical and instruction addresses are treated as
real addresses. When the bit is one, DAT is on,
and the dynamic-address-translation mechanism is
invoked.

I/O Mask (IO):  Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is
zero, an I/O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
I/O-interruption subclass-mask bits in control reg-
ister 6. When an I/O-interruption subclass-mask
bit is zero, an I/O interruption for that
I/O-interruption subclass cannot occur; when the
I/O-interruption subclass-mask bit is one, an I/O
interruption for that I/O-interruption subclass can
occur.

External Mask (EX):  Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is
zero, an external interruption cannot occur. When
the bit is one, an external interruption is subject to
the corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass

cannot cause an interruption; when the subclass-
mask bit is one, an interruption in that subclass
can occur.

PSW Key:  Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the PSW key
is matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for one of the operands of each of
MOVE TO PRIMARY, MOVE TO SECONDARY,
MOVE WITH KEY, MOVE WITH SOURCE KEY,
and MOVE WITH DESTINATION KEY, an access
key specified as an operand is used instead of the
PSW key.

Machine-Check Mask (M):  Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing
damage are permitted, but interruptions due to
other machine-check-subclass conditions are
subject to the subclass-mask bits in control reg-
ister 14.

Wait State (W):  When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P):  When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that provide
meaningful information to the problem program
and that cannot affect system integrity; such
instructions are called unprivileged instructions.
The instructions that are never valid in the
problem state are called privileged instructions.
When a CPU in the problem state attempts to
execute a privileged instruction, a privileged-
operation exception is recognized. Another group
of instructions, called semiprivileged instructions,
are executed by a CPU in the problem state only
if specific authority tests are met; otherwise, a
privileged-operation exception or a special-
operation exception is recognized.
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Address-Space Control (AS):  Bits 16 and 17, in
conjunction with PSW bit 5, control the translation
mode. See “Translation Modes” on page 3-28.

Condition Code (CC):  Bits 18 and 19 are the
two bits of the condition code. The condition code
is set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify
any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may
be set for all instructions which set the condition
code of the PSW.

Program Mask:  Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

┌────────────┬──────────────────────────┐

│ Program- │ │

│ Mask Bit │ Program Exception │

├────────────┼──────────────────────────┤

│ 2ð │ Fixed-point overflow │

│ 21 │ Decimal overflow │

│ 22 │ HFP exponent underflow │

│ 23 │ HFP significance │

└────────────┴──────────────────────────┘

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the HFP-
exponent-underflow-mask bit or the
HFP-significance-mask bit also determines the
manner in which the operation is completed when
the corresponding exception occurs.

Addressing Mode (A):  Bit 32 controls the size of
effective addresses and effective-address gener-
ation. When the bit is zero, 24-bit addressing is
specified. When the bit is one, 31-bit addressing
is specified. The addressing mode does not
control the size of PER addresses or of addresses
used to access DAT, ASN, dispatchable-unit-
control, linkage, entry, and trace tables or access
lists or the linkage stack. See “Address
Generation” on page 5-7 and “Address Size and
Wraparound” on page 3-5.

Instruction Address:  Bits 33-63 form the
instruction address. This address designates the
location of the leftmost byte of the next instruction
to be executed, unless the CPU is in the wait
state (bit 14 of the PSW is one).

Bit positions 0, 2-4, and 24-31 are unassigned and
must contain zeros. A specification exception is
recognized when these bit positions do not contain
zeros. When bit 32 of the PSW specifies the
24-bit addressing mode, bits 33-39 of the instruc-
tion address must be zeros; otherwise, a specifi-
cation exception is recognized. A specification
exception is also recognized when bit position 12
does not contain a one.

 Control Registers
The control registers provide for maintaining and
manipulating control information outside the PSW.
There are sixteen 32-bit control registers.

All control-register bit positions in all 16 control
registers are installed, regardless of whether the
bit position is assigned to a facility. One or more
specific bit positions in control registers are
assigned to each facility requiring such register
space.

The LOAD CONTROL instruction causes all
control-register bit positions within those registers
designated by the instruction to be loaded from
storage. The instructions BRANCH AND SET
AUTHORITY, BRANCH IN SUBSPACE GROUP,
LOAD ADDRESS SPACE PARAMETERS, SET
SECONDARY ASN, BRANCH AND STACK,
PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, and PROGRAM
TRANSFER provide specialized functions to place
information into certain control-register bit posi-
tions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction that
causes the information to be loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as invalid
translation-format code or an address designating
an unavailable or protected location. The validity
of the information is checked and the exceptions,
if any, are indicated at the time the information is
used.

The STORE CONTROL instruction causes the
contents of all control-register bit positions, within
those registers designated by the instruction, to be
placed in storage. The instructions EXTRACT
PRIMARY ASN, EXTRACT SECONDARY ASN,
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and PROGRAM CALL provide specialized func-
tions to obtain information from certain control-
register bit positions.

Only the general structure of the control registers
is described here; the definition of a particular
control-register bit position appears in the
description of the facility with which the position is
associated. Figure 4-3 on page  4-8 shows the
control-register bit positions which are assigned
and the initial values of the positions upon exe-
cution of initial CPU reset. All control-register bit

positions not listed in the figure are initialized to
zero.

Programming Notes:

1. The detailed definition of a particular control-
register bit position can be located by referring
to the entry “control-register assignment” in
the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register positions are installed,
the program should load zeros in unassigned
control-register positions.
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┌────┬─────┬───────────────────────────────────┬───────────────────────────┬───────┐

│Ctrl│ │ │ │Initial│

│Reg │Bits │ Name of Field │ Associated with │ Value │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ ð │ 1 │SSM-suppression control │SET SYSTEM MASK │ ð │

│ ð │ 2 │TOD-clock-sync control │TOD clock │ ð │

│ ð │ 3 │Low-address-protection control │Low-address protection │ ð │

│ ð │ 4 │Extraction-authority control │Instruction authorization │ ð │

│ ð │ 5 │Secondary-space control │Instruction authorization │ ð │

│ ð │ 6 │Fetch-protection-override control │Key-controlled protection │ ð │

│ ð │ 7 │Storage-protection-override control│Key-controlled protection │ ð │

│ ð │ 8-12│Translation format │Dynamic address translation│ ð │

│ ð │ 13 │AFP-register control │Floating point │ ð │

│ ð │ 14 │Vector controlñ │Vector operations │ ð │

│ ð │ 15 │Address-space-function control │Instruction authorization │ ð │

│ ð │ 16 │Malfunction-alert subclass mask │External interruptions │ ð │

│ ð │ 17 │Emergency-signal subclass mask │External interruptions │ ð │

│ ð │ 18 │External-call subclass mask │External interruptions │ ð │

│ ð │ 19 │TOD-clock sync-check subclass mask │External interruptions │ ð │

│ ð │ 2ð │Clock-comparator subclass mask │External interruptions │ ð │

│ ð │ 21 │CPU-timer subclass mask │External interruptions │ ð │

│ ð │ 22 │Service-signal subclass mask │External interruptions │ ð │

│ ð │ 24 │Unusedò │ │ 1 │

│ ð │ 25 │Interrupt-key subclass mask │External interruptions │ 1 │

│ ð │ 26 │Unusedò │ │ 1 │

| │ ð │ 27 │ETR subclass mask │External interruptions │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 1 │ ð │Primary space-switch-event control │Program interruptions │ ð │

│ 1 │ 1-19│Primary segment-table origin │Dynamic address translation│ ð │

│ 1 │ 22 │Primary subspace-group control │Subspace groups │ ð │

│ 1 │ 23 │Primary private-space control │Dynamic address translation│ ð │

│ 1 │ 24 │Primary storage-alteration-event │Program-event rec. 2 only │ ð │

│ │ │ control │ │ │

│ 1 │25-31│Primary segment-table length │Dynamic address translation│ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 2 │ 1-25│Dispatchable-unit-control-table │Access-register translation│ ð │

│ │ │ origin │ │ │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 3 │ ð-15│PSW-key mask │Instruction authorization │ ð │

│ 3 │16-31│Secondary ASN │Address spaces │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 4 │ ð-15│Authorization index │Instruction authorization │ ð │

│ 4 │16-31│Primary ASN │Address spaces │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 5 │ ð │Subsystem-linkage controló │Instruction authorization │ ð │

│ 5 │ 1-24│Linkage-table originó │PC-number translation │ ð │

│ 5 │25-31│Linkage-table lengthó │PC-number translation │ ð │

│ 5 │ 1-25│Primary-ASN-second-table-entry │Access-register translation│ ð │

│ │ │ originô │ │ │

└────┴─────┴───────────────────────────────────┴───────────────────────────┴───────┘

Figure 4-3 (Part 1 of 3). Assignment of Control-Register Fields

4-8 ESA/390 Principles of Operation  



  
 

┌────┬─────┬───────────────────────────────────┬───────────────────────────┬───────┐

│Ctrl│ │ │ │Initial│

│Reg │Bits │ Name of Field │ Associated with │ Value │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 6 │ ð-7 │I/O-interruption subclass mask │I/O interruptions │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 7 │ 1-19│Secondary segment-table origin │Dynamic address translation│ ð │

│ 7 │ 22 │Secondary subspace-group control │Subspace groups │ ð │

│ 7 │ 23 │Secondary private-space control │Dynamic address translation│ ð │

│ 7 │ 24 │Secondary storage-alteration-event │Program-event rec. 2 only │ ð │

│ │ │ control │ │ │

│ 7 │25-31│Secondary segment-table length │Dynamic address translation│ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 8 │ ð-15│Extended authorization index │Access-register translation│ ð │

│ 8 │16-31│Monitor masks │MONITOR CALL │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 9 │ ð │Successful-branching-event mask │Program-event recording │ ð │

│ 9 │ 1 │Instruction-fetching-event mask │Program-event recording │ ð │

│ 9 │ 2 │Storage-alteration-event mask │Program-event recording │ ð │

│ 9 │ 3 │GR-alteration-event mask │Program-event rec. 1 only │ ð │

│ 9 │ 4 │Store-using-real-address-event mask│Program-event recording │ ð │

│ 9 │ 8 │Branch-address control │Program-event rec. 2 only │ ð │

│ 9 │ 1ð │Storage-alteration-space control │Program-event rec. 2 only │ ð │

│ 9 │16-31│PER general-register masks │Program-event rec. 1 only │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 1ð │ 1-31│PER starting address │Program-event recording │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 11 │ 1-31│PER ending address │Program-event recording │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 12 │ ð │Branch-trace control │Tracing │ ð │

│ 12 │ 1-29│Trace-entry address │Tracing │ ð │

│ 12 │ 3ð │ASN-trace control │Tracing │ ð │

│ 12 │ 31 │Explicit-trace control │Tracing │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 13 │ ð │Home space-switch-event control │Program interruptions │ ð │

│ 13 │ 1-19│Home segment-table origin │Dynamic address translation│ ð │

│ 13 │ 22 │Ignored │ │ ð │

│ 13 │ 23 │Home private-space control │Dynamic address translation│ ð │

│ 13 │ 24 │Home storage-alteration-event │Program-event rec. 2 only │ ð │

│ │ │ control │ │ │

│ 13 │25-31│Home segment-table length │Dynamic address translation│ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 14 │ ð │Unusedò │ │ 1 │

│ 14 │ 1 │Unusedò │ │ 1 │

│ 14 │ 2 │Extended-save-area control │Floating point │ ð │

│ 14 │ 3 │Channel-report-pending subclass │I/O machine-check handling │ ð │

│ │ │ mask │ │ │

│ 14 │ 4 │Recovery subclass mask │Machine-check handling │ ð │

│ 14 │ 5 │Degradation subclass mask │Machine-check handling │ ð │

│ 14 │ 6 │External-damage subclass mask │Machine-check handling │ 1 │

│ 14 │ 7 │Warning subclass mask │Machine-check handling │ ð │

| │ 14 │ 1ð │TOD-clock-control-override control │TOD clock │ ð │

│ 14 │ 12 │ASN-translation control │Instruction authorization │ ð │

│ 14 │13-31│ASN-first-table origin │ASN translation │ ð │

├────┼─────┼───────────────────────────────────┼───────────────────────────┼───────┤

│ 15 │ 1-28│Linkage-stack-entry address │Linkage-stack operations │ ð │

└────┴─────┴───────────────────────────────────┴───────────────────────────┴───────┘

Figure 4-3 (Part 2 of 3). Assignment of Control-Register Fields
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┌──────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ The fields not listed are unassigned. The initial value for all unlisted │

│ control-register positions is zero. │

│ │

│ ñ Bit 14 of control register ð, the vector-control bit, is described in the │

│ publication IBM Enterprise Systems Architecture/39ð Vector Operations, │

│ SA22-72ð7. │

│ │

│ ò This bit is not used but is initialized to one for consistency with the │

│ System/37ð definition. │

│ │

│ ó When the address-space-function control in control register ð is zero, │

│ LOAD ADDRESS SPACE PARAMETERS, PROGRAM CALL, and PROGRAM TRANSFER treat │

│ control register 5 as containing the linkage-table designation (LTD) │

│ (subsystem-linkage control, linkage-table origin, and linkage-table length). │

│ │

│ ô When the address-space-function control is one, control register 5 is │

│ treated as containing the primary-ASN-second-table-entry (PASTE) origin, │

│ and PROGRAM CALL and PROGRAM TRANSFER obtain the LTD from the PASTE. │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 4-3 (Part 3 of 3). Assignment of Control-Register Fields

 Tracing
Tracing assists in the determination of system
problems by providing an ongoing record in
storage of significant events. Tracing consists of
three separately controllable functions which
cause entries to be made in a trace table: branch
tracing, ASN tracing, and explicit tracing. Branch
tracing and ASN tracing together are referred to
as implicit tracing.

When branch tracing is on, an entry is made in
the trace table for each execution of certain
branch instructions when they cause branching.
The branch address is placed in the trace entry.
The trace entry also indicates the addressing
mode in effect after branching. The branch
instructions that are traced are:

� BRANCH AND LINK (BALR only) when the
R² field is not zero

� BRANCH AND SAVE (BASR only) when the
R² field is not zero

� BRANCH AND SAVE AND SET MODE when
the R² field is not zero

� BRANCH AND SET AUTHORITY
� BRANCH AND STACK when the R² field is

not zero
� BRANCH IN SUBSPACE GROUP

 � RESUME PROGRAM
 � TRAP

However, a branch trace entry is made for
BRANCH IN SUBSPACE GROUP only if ASN
tracing is not on.

When ASN tracing is on, an entry is made in the
trace table for each execution of the following
instructions:

� BRANCH IN SUBSPACE GROUP
 � PROGRAM CALL
 � PROGRAM RETURN
 � PROGRAM TRANSFER
� SET SECONDARY ASN

However, the entry for PROGRAM RETURN is
made only when PROGRAM RETURN unstacks a
linkage-stack state entry that was formed by

| PROGRAM CALL or PROGRAM CALL FAST, not
when PROGRAM RETURN unstacks an entry
formed by BRANCH AND STACK.

When explicit tracing is on, execution of TRACE
causes an entry to be made in the trace table.
This entry includes bits 16-63 from the TOD clock,
the second operand of the TRACE instruction, and
the contents of a range of general registers.

 Control-Register Allocation
The information to control tracing is contained in
control register 12 and has the following format:

┌─┬─────────────────────────────┬─┬─┐

│B│ Trace-Entry Address │A│E│

└─┴─────────────────────────────┴─┴─┘

ð 1 3ð 31
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Branch-Trace-Control Bit (B):  Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Trace-Entry Address:  Bits 1-29 of control reg-
ister 12, with two zero bits appended on the right,
form the real address of the next trace entry to be
made.

ASN-Trace-Control Bit (A):  Bit 30 of control reg-
ister 12 controls whether ASN tracing is turned on
or off. If the bit is zero, ASN tracing is off; if the
bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E):  Bit 31 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the
execution of the TRACE instruction creates an
entry in the trace table, except that no entry is
made when bit 0 of the second operand of the
TRACE instruction is one.

 Trace Entries
Trace entries are of eight types, as shown in
Figure 4-4 on page 4-12.
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31-Bit Branch

┌─┬────────────────────────────────┐

│1│ Branch Address │

└─┴────────────────────────────────┘

ð 1 31

24-Bit Branch

┌────────┬─────────────────────────┐

│ðððððððð│ Branch Address │

└────────┴─────────────────────────┘

ð 8 31

BRANCH IN SUBSPACE GROUP (if ASN Tracing On)

┌────────┬─┬───────────────────────┬─┬──────────────────────────────┐

│ð1ððððð1│P│ Bits 9-31 of ALET │A│ Branch Address │

└────────┴─┴───────────────────────┴─┴──────────────────────────────┘

ð 8 32 63

SET SECONDARY ASN

┌────────┬────────┬────────────────┐

│ððð1ðððð│ðððððððð│ New SASN │

└────────┴────────┴────────────────┘

ð 8 16 31

PROGRAM CALL

┌────────┬────┬────────────────────┬─┬────────────────────────────┬─┐

│ │PSW │ │ │ │ │

│ðð1ðððð1│Key │ PC Number │A│ Return Address │P│

└────────┴────┴────────────────────┴─┴────────────────────────────┴─┘

ð 8 12 32 63

PROGRAM RETURN

┌────────┬────┬────┬───────────────┬─┬────────────────────────────┬─┐

│ │PSW │ │ │ │ │ │

│ðð11ðð1ð│Key │ðððð│ New PASN │A│ Return Address │P│

└────────┴────┴────┴───────────────┴─┴────────────────────────────┴─┘

ð 8 12 16 32 63

┌─┬────────────────────────────────┐

│ │ │

│A│ Updated Instruction Address │

└─┴────────────────────────────────┘

64 95

PROGRAM TRANSFER

┌────────┬────┬────┬───────────────┬────────────────────────────────┐

│ │PSW │ │ │ │

│ðð11ððð1│Key │ðððð│ New PASN │ R² Before │

└────────┴────┴────┴───────────────┴────────────────────────────────┘

ð 8 12 16 32 63

Figure 4-4 (Part 1 of 2). Trace-Entry Formats

TRACE

┌────┬────┬────────┬────────────────────────────────────────────────┐

│ð111│ N │ðððððððð│ TOD-Clock Bits 16-63 │

└────┴────┴────────┴────────────────────────────────────────────────┘

ð 4 8 16 63

┌──────────────────────────────────┬────────────────/───────────────┐

│ TRACE Operand │ (R±) - (R³) │

└──────────────────────────────────┴────────────────/───────────────┘

64 96 95 + 32(N+1)

Figure 4-4 (Part 2 of 2). Trace-Entry Formats
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Branch Address:  The branch address is the
address of the next instruction to be executed
when the branch is taken. In a branch trace entry
when the 31-bit addressing mode is in effect after
branching, bit positions 1-31 of the trace entry
contain the branch address. When the 24-bit
addressing mode is in effect after branching, bit
positions 8-31 contain the branch address. In a
trace entry made on execution of BRANCH IN
SUBSPACE GROUP when ASN tracing is on, bit
positions 33-63 of the trace entry contain the
branch address.

Primary-List Bit (P) and Bits 9-31 of ALET:  Bit
position 8 of the trace entry made on execution of
BRANCH IN SUBSPACE GROUP when ASN
tracing is on contains bit 7 of the access-list-entry
token (ALET) in the access register designated by
the R² field of the instruction. Bit positions 9-31 of
the trace entry contain bits 9-31 of the ALET.

New SASN:  Bit positions 16-31 of the trace entry
for SET SECONDARY ASN contain the ASN
value loaded into control register 3 by the instruc-
tion.

PSW Key:  Bit positions 8-11 of the trace entries
made on execution of PROGRAM CALL,
PROGRAM RETURN, and PROGRAM
TRANSFER contain the PSW key from the current
PSW.

PC Number:  Bit positions 12-31 of the trace
entry made on execution of PROGRAM CALL
contain the value of the rightmost 20 bits of the
second-operand address.

Addressing-Mode Bit (A):  Bit position 32 of the
trace entry made on execution of PROGRAM
CALL contains the addressing-mode bit from the
current PSW. Bit position 32 of the trace entry
made on execution of PROGRAM RETURN con-
tains the addressing-mode bit that replaces bit 32
of the PSW, and bit position 64 of the trace entry
contains bit 32 from the PSW before bit 32 is
replaced. Bit position 32 of the trace entry made
on execution of BRANCH IN SUBSPACE GROUP
when ASN tracing is on contains the addressing-
mode bit that replaces bit 32 of the PSW.

Return Address:  Bit positions 33-62 of the trace
entry made on execution of PROGRAM CALL
contain bits 1-30 of the updated instruction
address in the PSW before that address is

replaced from the entry-table entry. Bit positions
33-62 of the trace entry made on execution of
PROGRAM RETURN contain bits 1-30 of the
instruction address that replaces bits 33-63 of the
PSW.

Problem-State Bit (P):  Bit position 63 of the
trace entry made on execution of PROGRAM
CALL contains the problem-state bit from the
current PSW. Bit position 63 of the trace entry
made on execution of PROGRAM RETURN con-
tains the problem-state bit that replaces bit 15 of
the PSW.

New PASN:  Bit positions 16-31 of the trace entry
made on execution of PROGRAM RETURN
contain the new PASN that is restored from the
linkage-stack state entry. Bit positions 16-31 of
the trace entry made on execution of PROGRAM
TRANSFER contain the new PASN (which may be
zero) specified in bit positions 16-31 of general
register R±.

Updated Instruction Address:  Bit positions
65-95 of the trace entry made on execution of
PROGRAM RETURN contain bits 1-31 of the
updated instruction address in the PSW before
that address is replaced from the linkage-stack
state entry.

R² Before:  Bit positions 32-63 of the trace entry
made on execution of PROGRAM TRANSFER
contain the contents of the general register desig-
nated by the R² field of the instruction. Bits 0-30
of the general register designated by the R² field
replace bits 32-62 of the PSW. Bit 31 of the same
general register replaces the problem-state bit of
the PSW.

Number of Registers (N):  Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have
been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general regis-
ters are provided.

TOD-Clock Bits 16-63:  Bits 16-63 of the trace
entry for TRACE are obtained from bit positions
16-63 of the TOD clock, as would be provided by
a STORE CLOCK instruction executed at the time
the TRACE instruction was executed.
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TRACE Operand:  Bits 64-95 of the trace entry
for TRACE contain a copy of the 32 bits of the
second operand of the TRACE instruction for
which the entry is made.

 (R±) - (R³): The four-byte fields starting with bit
96 of the trace entry for TRACE contain the con-
tents of the general registers whose range is
specified by the R± and R³ fields of the TRACE
instruction. The general registers are stored in
ascending order of register numbers, starting with
general register R± and continuing up to and
including general register R³, with general register
0 following general register 15.

Programming Note:  The size of the trace entry
for TRACE in units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or 76
bytes.

 Operation
When an instruction which is subject to tracing is
executed and the corresponding tracing function is
turned on, a trace entry of the appropriate format
is made. The real address of the trace entry is
formed by appending two zero bits on the right to
the value in bit positions 1-29 of control register
12. The address in control register 12 is subse-
quently increased by the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry
to be propagated into bit position 19 (that is, the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to
be made, a trace-table exception is recognized.
For the purpose of recognizing the trace-table
exception in the case of a TRACE instruction, the
maximum length of 76 bytes is used instead of the
actual length.

The storing of a trace entry is not subject to key-
controlled protection (nor, since the trace-entry
address is real, is it subject to access-list-
controlled protection or page protection), but it is
subject to low-address protection; that is, if the
address of the trace entry due to be created is in
the range 0-511 and bit 3 of control register 0 is
one, a protection exception is recognized, and
instruction execution is suppressed. If the
address of a trace entry is invalid, an addressing
exception is recognized, and instruction execution
is suppressed.

The three exceptions associated with storing a
trace entry (addressing, protection, and trace
table) are collectively referred to as trace
exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of
any trace entry due to be made for such an inter-
rupted instruction is stored in the trace table.
Thus, for a condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control
register 12 and extending up to the length of the
entry that would have been created.

When PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by BRANCH
AND STACK and ASN tracing is on, trace
exceptions may be recognized, even though a
trace entry is not made and no part of a trace
entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other CPUs and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

 Program-Event Recording
There are two versions of the program-event-
recording (PER) facility. The version which is the
same as PER in ESA/370 is named PER 1, and
the other version is named PER 2. A model pro-
vides either PER 1 or PER 2.

Unless otherwise noted, the descriptions in this
section apply to both PER 1 and PER 2. The dif-
ferences between PER 1 and PER 2 are pointed
out in the section.
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The purpose of PER (PER 1 or PER 2) is to
assist in debugging programs. It permits the
program to be alerted to the following types of
events:

� Execution of a successful branch instruction.
PER 2 provides the option of having an event
occur only when the branch-target location is
within the designated storage area.

� Fetching of an instruction from the designated
storage area.

� Alteration of the contents of the designated
storage area. PER 2 provides the option of
having an event occur only when the storage
area is within designated address spaces.

� Alteration of the contents of designated
general registers. This type of event can
occur only with PER 1, not with PER 2.

� Execution of the STORE USING REAL
ADDRESS instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program
by means of a program interruption, with the
cause of the interruption being identified in the
interruption code.

If a model implements ESA/390 with PER 2 and
also System/370, general-register-alteration events
may be omitted in System/370, depending on the
model.

Control-Register Allocation and
Segment-Table Designation
The information for controlling PER resides in
control registers 9, 10, and 11 and the segment-
table designation. The information in the control
registers has the following format:

PER-1 Control Register 9
┌─────┬───────────┬────────────────┐

│ EM │ │Gen.-Reg. Masks │

└─────┴───────────┴────────────────┘

ð 5 16 31

PER-2 Control Register 9
┌─────┬────┬─┬─┬─┬────────────────┐

│ EM │ │B│ │S│ │

└─────┴────┴─┴─┴─┴────────────────┘

ð 5 8 1ð 31

Control Register 10
┌─┬───────────────────────────────┐

│ │ Starting Address │

└─┴───────────────────────────────┘

ð 1 31

Control Register 11
┌─┬───────────────────────────────┐

│ │ Ending Address │

└─┴───────────────────────────────┘

ð 1 31

PER-Event Masks (EM):  With PER 1, bits 0-4 of
control register 9 specify which types of events
are recognized. With PER 2, bits 0-2 and 4
provide this specification. The bits are assigned
as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration event
Bit 3: General-register-alteration event (PER 1

only)
Bit 4: Store-using-real-address event (bit 2 must

be one also)

Bits 0-4, when ones, specify that the corre-
sponding types of events be recognized.
However, bit 4 is effective for this purpose only
when bit 2 is also one. When bit 2 is one, the
storage-alteration event is recognized. When bits
2 and 4 are ones, both the storage-alteration
event and the store-using-real-address event are
recognized. When a bit is zero, the corresponding
type of event is not recognized. When bit 2 is
zero, both the storage-alteration event and the
store-using-real-address event are not recognized.
With PER 2, no type of event corresponds to bit
3, and bit 3 is ignored.

Branch-Address Control (B):  With PER 2, bit 8
of control register 9 specifies, when one, that
successful-branching events occur only for
branches that are to a location within the desig-
nated storage area. With PER 1, or with PER 2
when bit 8 is zero, successful-branching events
occur regardless of the branch-target address. Bit
8 is ignored by PER 1.

 Storage-Alteration-Space Control (S): With
PER 2, bit 10 of control register 9 specifies, when
one, that storage-alteration events occur as a
result of references to the designated storage area
only within designated address spaces. An
address space is designated as one for which
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storage-alteration events occur by means of the
storage-alteration-event bit in the segment-table
designation that is used to translate references to
the address space. Bit 10 is ignored when DAT is
off. With PER 1, or with PER 2 when DAT is off
or bit 10 is zero, storage-alteration events are not
restricted to occurring for only particular address
spaces. Bit 10 is ignored by PER 1.

PER General-Register Masks:  With PER 1, bits
16-31 of control register 9 specify which general
registers are designated for recognition of the
alteration of their contents. The 16 bits, in the
sequence of ascending bit numbers, correspond
one for one with the 16 registers, in the sequence
of ascending register numbers. When a bit is one,
the alteration of the associated register is recog-
nized; when it is zero, the alteration of the register
is not recognized. With PER 2, general-register-
alteration events do not occur, and bits 16-31 are
ignored.

PER Starting Address:  Bits 1-31 of control reg-
ister 10 are the address of the beginning of the
designated storage area.

PER Ending Address:  Bits 1-31 of control reg-
ister 11 are the address of the end of the desig-
nated storage area.

The segment-table designation has the following
format:

Segment-Table Designation
┌─┬────────────────────┬───┬─┬─┬───────┐

│ │Segment-Table Origin│ │P│S│ STL │

└─┴────────────────────┴───┴─┴─┴───────┘

ð 1 2ð 23 25 31

Storage-Alteration-Event Bit (S):  With PER 2,
when the storage-alteration-space control in
control register 9 is one, bit 24 of the segment-
table designation specifies, when one, that the
address space defined by the segment-table des-
ignation is one for which storage-alteration events
can occur. Bit 24 is examined when the segment-
table designation is used to perform dynamic-
address translation for a storage-operand store
reference. The segment-table designation may be
the PSTD, SSTD, or HSTD in control register 1, 7,
or 13, respectively, or it may be obtained from an
ASN-second-table entry during access-register
translation. Instead of being obtained from an

ASN-second-table entry in main storage, bit 24
may be obtained from an ASN-second-table entry
in the ART-lookaside buffer (ALB). Bit 24 is
ignored when the storage-alteration-space control
is zero, and it is always ignored by PER 1.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the
PER facility, programs that do not use it
should disable the CPU for PER events by
setting either the PER mask in the PSW to
zero or the PER-event masks in control reg-
ister 9 to zero, or both. No degradation due
to PER occurs when either of these fields is
zero.

2. Some degradation may be experienced on
some models every time control registers 9,
10, and 11 are loaded, even when the CPU is
disabled for PER events (see the program-
ming note under “Storage-Area Designation”).

 Operation
PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask, a particular
PER-event mask bit, and, for general-register-
alteration events (PER 1 only), a particular
general-register mask bit are all ones, the CPU is
enabled for the corresponding type of event; oth-
erwise, it is disabled. However, the CPU is
enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both ones.

An interruption due to a PER event normally
occurs after the execution of the instruction
responsible for the event. The occurrence of the
event does not affect the execution of the instruc-
tion, which may be either completed, partially
completed, terminated, suppressed, or nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the PER
mask in the PSW or by the masks in control reg-
ister 9, the event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and
11 affects PER starting with the execution of the
immediately following instruction.
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A change to the storage-alteration-event bit in a
segment-table designation in control register 1, 7,
or 13 also affects PER starting with the execution
of the immediately following instruction. A change
to the storage-alteration-event bit in a segment-
table designation that may be obtained, during
access-register translation, from an
ASN-second-table entry in either main storage or
the ALB does not necessarily have an immediate,
if any, effect on PER. However, PER is affected
immediately after PURGE ALB is executed.

If a PER event occurs during the execution of an
instruction which changes the CPU from being
enabled to being disabled for that type of event,
that PER event is recognized.

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
DAT-table entries, and operands may be refetched
for the actual execution. If any refetched field was
modified by another CPU or by a channel program
between the trial execution and the actual exe-
cution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause
A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-155, and
in location 161 if the PER event is a storage-
alteration event. Additional information is provided
by means of the instruction address in the
program old PSW and the ILC. The information
stored in real locations 150-155 and 161 has the
following format:

PER-1 Locations 150-151:
┌────┬────────────┐

│PERC│ðððððððððððð│

└────┴────────────┘

ð 4 15

PER-2 Locations 150-151:
┌─────┬────┬─────┬──┐

│PERC │ðððð│ATMID│SI│

└─────┴────┴─────┴──┘

ð 5 9 13 15

Locations 152-155:
┌─┬───────────────────────────────┐

│ð│ PER Address │

└─┴───────────────────────────────┘

ð 1 31

Location 161:
┌────┬────┐

│ðððð│PAID│

└────┴────┘

ð 4 7

PER Code (PERC):   With PER 1, the occur-
rence of PER events is indicated by ones in bit
positions 0-3 of real location 150, the PER code.
With PER 2, the PER code is bits 0-2 and 4. The
bit position in the PER code for a particular type of
event is the same as the bit position for that event
in the PER-event-mask field in control register 9,
except as follows:

� With PER 1, when bits 2 and 4 in control reg-
ister 9 are both ones, a one in bit position 2 of
location 150 indicates the occurrence of either
a storage-alteration event or a store-using-
real-address event.

� With PER 2, a one in bit position 2 and a zero
in bit position 4 of location 150 indicate a
storage-alteration event, while ones in bit posi-
tions 2 and 4 indicate a store-using-real-
address event.

When a program interruption occurs, more than
one type of PER event can be concurrently indi-
cated. Additionally, if another program-interruption
condition exists, the interruption code for the
program interruption may indicate both the PER
events and the other condition.

 Addressing-and-Translation-Mode Identifica-
tion (ATMID):  With PER 2, during a program
interruption when a PER event is indicated, bits
32, 5, 16, and 17 of the PSW at the beginning of
the execution of the instruction that caused the
event may be stored in bit positions 10-13,
respectively, of real locations 150-151. If bits 32,
5, 16, and 17 are stored, then a one bit is stored
in bit position 9 of locations 150-151. If bits 32, 5,
16, and 17 are not stored, then zero bits are
stored in bit positions 9-13 of locations 150-151.

Bits 9-13 of real locations 150-151 are named the
addressing-and-translation-mode identification
(ATMID). Bit 9 is named the ATMID-validity bit.
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When bit 9 is zero, it indicates that an invalid
ATMID (all zeros) was stored.

The meanings of the bits of a valid ATMID are as
follows:

Bit Meaning
9 ATMID-validity bit
10 PSW bit 32
11 PSW bit 5
12 PSW bit 16
13 PSW bit 17

A valid ATMID is necessarily stored only if the
PER event was caused by one of the following
instructions:

� BRANCH AND SAVE AND SET MODE
(BASSM)

� BRANCH AND SET AUTHORITY (BSA)
� BRANCH AND SET MODE (BSM)
� BRANCH IN SUBSPACE GROUP (BSG)
� LOAD PSW (LPSW)
� PROGRAM CALL (PC)
� PROGRAM CALL FAST (PCF)
� PROGRAM RETURN (PR)
� PROGRAM TRANSFER (PT)
� RESUME PROGRAM (RP)
� SET ADDRESS SPACE CONTROL (SAC)
� SET ADDRESS SPACE CONTROL FAST

(SACF)
� SET SYSTEM MASK (SSM)
� STORE THEN AND SYSTEM MASK

(STNSM)
� STORE THEN OR SYSTEM MASK (STOSM)
� SUPERVISOR CALL (SVC)
� TRAP (TRAP2, TRAP4)

It is unpredictable whether a valid ATMID is stored
if the PER event was caused by any other instruc-
tion.

In the case of an instruction-fetching PER event
caused by SET ADDRESS SPACE CONTROL or
SET ADDRESS SPACE CONTROL FAST, bits 12
and 13 of the ATMID, which correspond to bits 16
and 17 of the PSW, may indicate that the CPU
was in the primary-space mode when it actually
was in the primary-space, secondary-space, or
access-register mode. In any of those modes, the
instruction fetch is from the primary address
space.

PER STD Identification (SI):  With PER 2, if a
storage-alteration event is indicated in the PER
code (bit 2 is one and bit 4 is zero) and this event

occurred when DAT was on, bits 14 and 15 of
locations 150-151 are set to identify the segment-
table designation (STD) that was used to translate
the reference that caused the event, as follows:

Bits 
14-15 Meaning
00 Primary STD was used.
01 An AR-specified STD was used. The PER

access id, real location 161, can be exam-
ined to determine the STD used.
However, if the primary, secondary, or
home STD was used, bits 14 and 15 may
be set to 00, 10, or 11, respectively,
instead of to 01.

10 Secondary STD was used.
11 Home STD was used.

The CPU may avoid setting bits 14 and 15 to 01
by recognizing that access-list-entry token (ALET)
00000000 or 00000001 hex was used or that the
ALET designated, through an access-list entry, an
ASN-second-table entry containing an STD equal
to the primary STD, secondary STD, or home
STD.

If a storage-alteration event is not indicated in the
PER code (bit 2 is zero or bit 4 is one) or DAT
was off, zeros are stored in bit positions 14 and
15.

With PER 1, zeros are stored in bit positions 4-15
of locations 150-151. With PER 2, zeros are
stored in bit positions 3 and 5-8 of locations
150-151.

PER Address:   The PER-address field at
locations 152-155 contains the instruction address
used to fetch the instruction in execution when
one or more PER events were recognized. When
the instruction is the target of EXECUTE, the
instruction address used to fetch the EXECUTE
instruction is placed in the PER-address field. A
zero is stored in bit position 0 of real location 152.

PER Access Identification (PAID):  If a storage-
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the
access used an AR-specified segment-table desig-
nation, the number of the access register used is
stored in bit positions 4-7 of location 161, and
zeros are stored in bit positions 0-3. However,
with PER 1 only, the contents of location 161 are
unpredictable if the instruction that caused the
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event turned DAT off. With PER 1 or PER 2, the
contents of location 161 are also unpredictable if
(1) the CPU was in the access-register mode but
the access was an implicit reference to the linkage
stack, (2) the CPU was not in the access-register
mode, or (3) a store-using-real-address event
instead of a storage-alteration event occurred. If
bit 2 of the PER code is zero, location 161
remains unchanged.

Instruction Address:  The instruction address in
the program old PSW is the address of the
instruction which would have been executed next,
unless another program condition is also indi-
cated, in which case the instruction address is that
determined by the instruction ending due to that
condition.

ILC:  The ILC indicates the length of the instruc-
tion designated by the PER address, except when
a concurrent specification exception for the PSW
introduced by LOAD PSW, PROGRAM RETURN,
or a supervisor-call interruption sets an ILC of 0.

Programming Notes:

1. PSW bit 32 is the addressing-mode bit (24-bit
mode if the bit is zero, or 31-bit mode if the bit
is one), PSW bit 5 is the DAT-mode bit, and
PSW bits 16 and 17 are the address-space-
control bits. For the handling of instruction
and logical addresses in the different trans-
lation modes, see “Translation Modes” on
page 3-28. The following notes apply to
PER 2.

2. A valid ATMID allows the program handling
the PER event to determine the address
space from which the instruction that caused
the event was fetched and also to determine
which translation mode applied to the storage-
operand references of the instruction, if any.
Each of the instructions for which a valid
ATMID is necessarily stored can change one
or more of PSW bits 5, 16, and 17, with the
result that the values of those bits in the
program old PSW that is stored because of
the PER event are not necessarily the values
that existed at the beginning of the execution
of the instruction that caused the event. The
instructions for which a valid ATMID is neces-
sarily stored are the only instructions that can
change any of PSW bits 5, 16, and 17.

3. If a storage-alteration PER event is indicated
and DAT was on when the event occurred, an

indication of the segment-table designation
that was used to translate the reference that
caused the event is given by the PER STD
identification, bits 14 and 15 of real locations
150-151. If bits 14 and 15 indicate that an
AR-specified segment-table designation was
used, the PER access identification in real
location 161 can be used to determine the
address space that was referenced. To deter-
mine if DAT was on, the program handling the
PER event should first examine the
ATMID-validity bit to determine whether a
valid ATMID was stored and, if it was stored,
then examine the DAT-mode bit in the ATMID.
If a valid ATMID was not stored, the program
should examine the DAT-mode bit in the
program old PSW.

4. If a valid ATMID is stored, it also allows the
program handling the PER event to determine
the addressing mode (24-bit or 31-bit) that
existed for the instruction that caused the PER
event. This knowledge of the addressing
mode allows the program to determine,
without any chance of error, the meaning of
one bits in bit positions 1-7 of the addresses
of the instruction and of the storage operands,
if any, of the instruction and, thus, to deter-
mine accurately the locations of the instruction
and operands. Note that the address of the
instruction is not necessarily provided without
error by the PER address in real locations
152-155 because that address may be the
address of an EXECUTE instruction, with the
address of the target instruction still to be
determined from the fields that specify the
second-operand address of the EXECUTE
instruction. Also note that another possible
source of error is that, in the 24-bit addressing
mode, an instruction or operand may wrap
around in storage by beginning just below the
16M-byte boundary.

5. A valid ATMID is necessarily stored for all
instructions that can change the addressing-
mode bit. However, the ATMID mechanism
does not provide complete assurance that the
instruction causing a PER event and the
instruction's operands can be located accu-
rately because LOAD CONTROL and LOAD
ADDRESS SPACE PARAMETERS can
change the segment-table designation that
was used to fetch the instruction.
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Priority of Indication
When a program interruption occurs and more
than one PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program-
interruption condition concurrently exists, the inter-
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the program interruption
occurs immediately after the supervisor-call inter-
ruption.

If a PER event is recognized during the execution
of an instruction which also introduces a new
PSW with the type of PSW-format error which is
recognized early (see “Exceptions Associated with
the PSW” on page 6-9), both the specification
exception and PER are indicated concurrently in
the interruption code of the program interruption.
However, for a PSW-format error of the type
which is recognized late, only PER is indicated in
the interruption code. In both cases, the invalid
PSW is stored as the program old PSW.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (I/O, external,
restart, or repressible machine-check condi-
tion), a program interruption for the PER event
occurs first, and the other interruptions occur
subsequently (subject to the mask bits in the
new PSW) in the normal priority order.

2. When the stop function is performed, a
program interruption indicating the PER event
occurs before the CPU enters the stopped
state.

3. When any program exception is recognized,
PER events recognized for that instruction
execution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to
cause the instruction to be interrupted prema-
turely without concurrent indication of a
program exception, without an interruption for
any asynchronous condition, or without the
CPU entering the stopped state.

In cases 1 and 2 above, if the only PER event that
has been recognized is an instruction-fetching
event and another unit of operation of the instruc-
tion remains to be executed, the event may be
discarded, with the result that a program inter-
ruption does not occur. Whether the event is dis-
carded is unpredictable.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of fields controlling an
interruption for PER events. The original field
values determine whether a program inter-
ruption takes place for the PER event.

a. The instructions LOAD PSW, SET
SYSTEM MASK, STORE THEN AND
SYSTEM MASK, and SUPERVISOR
CALL can cause an instruction-fetching
event and disable the CPU for PER inter-
ruptions. Additionally, STORE THEN AND
SYSTEM MASK can cause a storage-
alteration event to be indicated. In all
these cases, the program old PSW asso-
ciated with the program interruption for the
PER event may indicate that the CPU was
disabled for PER events.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction that changes the
value of the PER-event masks in control
register 9 or the addresses in control reg-
isters 10 and 11 controlling indication of
instruction-fetching events.

c. In the access-register mode, a storage-
alteration event that is permitted by a one
value of the storage-alteration-event bit in
a segment-table designation in an
ASN-second-table entry (designated by an
access-list entry) may be caused by any
store-type instruction that changes the
value of the bit from one to zero.

2. No instruction can both change the values of
general-register-alteration masks (PER 1 only)
and cause a general-register-alteration event
to be recognized.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER
interruption occurs as a result of LOAD PSW,
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PROGRAM RETURN, or SUPERVISOR
CALL, the ILC indicates the length of these
instructions or EXECUTE, as appropriate,
unless a concurrent specification exception on
LOAD PSW or PROGRAM RETURN calls for
an ILC of 0.

4. When a PER interruption is caused by
branching, the PER address identifies the
branch instruction (or EXECUTE, as appro-
priate), whereas the old PSW points to the
next instruction to be executed. When the
interruption occurs during the execution of an
interruptible instruction, the PER address and
the instruction address in the old PSW are the
same.

 Storage-Area Designation
Two types of PER events.—instruction fetching
and storage alteration.—always involve the desig-
nation of an area in storage. With PER 2,
successful-branching events may involve this des-
ignation. The storage area starts at the location
designated by the starting address in control reg-
ister 10 and extends up to and including the
location designated by the ending address in
control register 11. The area extends to the right
of the starting address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig-
nated area by using an operand address that is
defined to be a logical or a virtual address.
However, with PER 2, when DAT is on and the
storage-alteration-space control in control register
9 is one, a storage-alteration event occurs only
when the storage area is within an address space
for which the storage-alteration-event bit in the
segment-table designation is one. A storage-
alteration event does not occur for a store access
made with an operand address defined to be a
real address. With PER 2, when the branch-
address control in control register 9 is one, a
successful-branching event occurs when the first
byte of the branch-target instruction is within the
designated area.

The set of addresses designated for successful-
branching, instruction-fetching, and storage-
alteration events wraps around at address
2,147,483,647; that is, address 0 is considered to

follow address 2,147,483,647. When the starting
address is less than the ending address, the area
is contiguous. When the starting address is
greater than the ending address, the set of
locations designated includes the area from the
starting address to address 2,147,483,647 and the
area from address 0 to, and including, the ending
address. When the starting address is equal to
the ending address, only that one location is des-
ignated.

Address comparison for successful-branching,
instruction-fetching, and storage-alteration events
is always performed using 31-bit addresses. This
is accomplished in the 24-bit addressing mode by
extending the virtual, logical, or instruction address
on the left with seven zero bits before comparing it
with the starting and ending addresses.

Programming Note:  In some models, perform-
ance of address-range checking is assisted by
means of an extension to each page-table entry in
the TLB. In such an implementation, changing the
contents of control registers 10 and 11 when the
successful-branching, instruction-fetching, or
storage-alteration-event mask is one, or setting
any of these PER-event masks to one, may cause
the TLB to be cleared of entries. This degradation
may be experienced even when the CPU is disa-
bled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or 11.

 PER Events

 Successful Branching
With PER 1, or with PER 2 when the branch-
address control in control register 9 is zero, a
successful-branching event occurs independent of
the branch-target address. With PER 2 when the
branch-address control is one, a successful-
branching event occurs only when the first byte of
the branch-target instruction is fetched from the
storage area designated by control registers 10
and 11.

Subject to the effect of the branch-address control,
a successful-branching event occurs whenever
one of the following instructions causes branching:

� BRANCH AND LINK (BAL, BALR)
� BRANCH AND SAVE (BAS, BASR)
� BRANCH AND SAVE AND SET MODE

(BASSM)
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� BRANCH AND SET AUTHORITY (BSA)
� BRANCH AND SET MODE (BSM)
� BRANCH AND STACK (BAKR)
� BRANCH IN SUBSPACE GROUP (BSG)
� BRANCH ON CONDITION (BC, BCR)
� BRANCH ON COUNT (BCT, BCTR)
� BRANCH ON INDEX HIGH (BXH)
� BRANCH ON INDEX LOW OR EQUAL

(BXLE)
� BRANCH RELATIVE AND SAVE (BRAS)
� BRANCH RELATIVE ON CONDITION (BRC)
� BRANCH RELATIVE ON COUNT (BRCT)
� BRANCH RELATIVE ON INDEX HIGH

(BRXH)
� BRANCH RELATIVE ON INDEX LOW OR

EQUAL (BRXLE)
� RESUME PROGRAM (RP)

| � TRAP (TRAP2, TRAP4)

Subject to the effect of the branch-address control,
a successful-branching event also occurs when-
ever one of the following instructions causes
branching:

� PROGRAM CALL (PC)
� PROGRAM CALL FAST (PCF)
� PROGRAM RETURN (PR)
� PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, and PROGRAM
TRANSFER, the branch-target address is consid-
ered to be the new instruction address that is
placed in the PSW by the instruction.

A successful-branching event causes a PER
successful-branching event to be recognized if bit
0 of the PER-event masks is one and the PER
mask in the PSW is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

 Instruction Fetching
An instruction-fetching event occurs if the first byte
of the instruction is within the storage area desig-
nated by control registers 10 and 11. An
instruction-fetching event also occurs if the first
byte of the target of EXECUTE is within the desig-
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 1
of the PER-event masks is one and the PER
mask in the PSW is one.

If an instruction-fetching event is the only PER
event recognized for an interruptible instruction
that is to be interrupted because of an asynchro-
nous condition (I/O, external, restart, or
repressible machine-check condition) or the per-
formance of the stop function, and if a unit of
operation of the instruction remains to be exe-
cuted, the instruction-fetching event may be dis-
carded, and whether it is discarded is
unpredictable.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

 Storage Alteration
A storage-alteration event occurs whenever a
CPU, by using a logical or virtual address, makes
a store access without an access exception to the
storage area designated by control registers 10
and 11. However, with PER 2 when DAT is on
and the storage-alteration-space control in control
register 9 is one, the event occurs only if the
storage-alteration-event bit is one in the segment-
table designation that is used by DAT to translate
the reference to the storage location.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the designated storage area.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions, except that recog-
nition does not occur for the storing of data by a
channel program. (See “Recognition of Access
Exceptions” on page 6-34.) Storing constitutes
alteration for PER purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the CPU
in the process of performing an interruption are
not monitored. Such locations include PSW and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni-
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The I/O instructions are considered to alter the
second-operand location only when storing actu-
ally occurs.
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When an interruptible vector instruction which per-
forms storing is interrupted, and PER storage
alteration applies to storage locations corre-
sponding to elements due to be changed beyond
the point of interruption, PER storage alteration is
indicated if any such store actually occurred and
may be indicated even if such a store did not
occur. PER storage alteration is reported for such
locations only if no access exception exists at the
time that the instruction is executed.

Storage alteration does not apply to instructions
whose operands are specified to be real
addresses. Thus, storage alteration does not
apply to INVALIDATE PAGE TABLE ENTRY,
RESET REFERENCE BIT EXTENDED, SET
STORAGE KEY EXTENDED, STORE USING
REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 2 of the
PER-event masks is one and the PER mask in the
PSW is one. Bit 4 of the PER-event masks is
ignored when determining whether a PER storage-
alteration event is to be recognized.

With PER 1, a PER storage-alteration event is
indicated by setting bit 2 of the PER code to one.
However, when bit 2 of the PER code and bit 4 of
the PER-event masks are both ones, a store-
using-real-address event, instead of a storage-
alteration event, may have occurred. With PER 2,
a PER storage-alteration event is indicated by
setting bit 2 of the PER code to one and bit 4 of
the PER code to zero.

 General-Register Alteration
With PER 1, a general-register-alteration event
occurs whenever the contents of a general reg-
ister are replaced. With PER 2, general-register-
alteration events do not occur. The remainder of
this description applies only to PER 1.

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic, logical, or movement
instruction is considered to fetch the contents of
the register, perform the indicated operation, if

any, and then replace the value in the register. A
register can be designated by an RR, RRE, RS, or
RX instruction or implicitly, such as in TRANS-
LATE AND TEST and EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the
two operands, including the cases where the
padding byte is used, when both operands have
zero length. However, when condition code 3 is
set for MOVE LONG, the general registers con-
taining the operand lengths may or may not be
considered as having been altered.

The instruction COMPARE UNTIL SUBSTRING
EQUAL is always considered to alter the contents
of the even-numbered registers specifying the two
operands. When the operand length or the sub-
string length is zero, the odd-numbered register
specifying an operand may or may not be consid-
ered as having been altered.

The instruction INSERT CHARACTERS UNDER
MASK is not considered to alter the general reg-
ister when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register
pair, designated by R±, only when the contents
are actually replaced, that is, when the first and
second operands are not equal.

It is unpredictable whether general-register-
alteration events are indicated for instructions of
the vector facility.

A general-register-alteration event causes a PER
general-register-alteration event to be recognized
if bit 3 of the PER-event masks is one, the PER
mask in the PSW is one, and the corresponding
bit in the PER general-register mask is one.

The PER general-register-alteration event is indi-
cated by setting bit 3 of the PER code to one.

Programming Note:  The following are some
examples of general-register alteration:

1. Register-to-register load instructions are con-
sidered to alter the register contents even
when both operand addresses designate the
same register.
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2. Addition or subtraction of zero and multipli-
cation or division by one are considered to
constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BRANCH ON
INDEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even when zero is added to its value.

Store Using Real Address
A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is
executed.

There is no relationship between the store-using-
real-address event and the designated storage
area.

A store-using-real-address event causes a PER
store-using-real-address event to be recognized if
bits 2 and 4 of the PER-event mask are ones and
the PER mask in the PSW is one.

With PER 1, a PER store-using-real-address
event is indicated by setting bit 2 of the PER code
to one. However, when bit 2 of the PER code is
one, a storage-alteration event, instead of a store-
using-real-address event, may have occurred.
With PER 2, a PER store-using-real-address
event is indicated by setting bits 2 and 4 of the
PER code to one.

Indication of PER Events
Concurrently with Other
Interruption Conditions
The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-
switch event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated,
suppressed, or nullified. However, when an
access exception applies to the first, second,
or third halfword of the instruction, it is unpre-
dictable whether the instruction-fetching event

is indicated. Similarly, when an access
exception prohibits access to all or a portion
of the target of EXECUTE, it is unpredictable
whether the instruction-fetching events for
EXECUTE and the target are indicated.

2. When the operation is completed or partially
completed, the event is indicated, regardless
of whether any program exception, space-
switch event, or monitor event is also recog-
nized.

3. Successful branching, storage alteration,
general-register alteration, and store using
real address are not indicated for an operation
or, in case the instruction is interruptible, for a
unit of operation that is suppressed or nulli-
fied.

4. When the execution of the instruction is termi-
nated, general-register or storage alteration is
indicated whenever the event has occurred,
and a model may indicate the event if the
event would have occurred had the execution
of the instruction been completed, even if
altering the contents of the result field is con-
tingent on operand values. For purposes of
this definition, the occurrence of those
exceptions which permit termination
(addressing, protection, and data) is consid-
ered to cause termination, even if no result
area is changed.

5. When LOAD PSW, PROGRAM RETURN,
SET SYSTEM MASK, STORE THEN OR
SYSTEM MASK, or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of
PSW-format error that is recognized imme-
diately after the PSW becomes active, the
interruption code identifies both the PER con-
dition and the specification exception. When
LOAD PSW, PROGRAM RETURN, or
SUPERVISOR CALL introduces a
PSW-format error of the type that is recog-
nized as part of the execution of the following
instruction, the PSW is stored as the old PSW
without the specification exception being
recognized.

The indication of PER events concurrently with
other program-interruption conditions is summa-
rized in Figure 4-5 on page 4-25.
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┌─────────────────────────────┬──────┬────────────────────────────────────┐

│ │ │ PER Event │

│ │ Type ├──────┬──────┬───────┬───────┬──────┤

│ │ of │ │Instr │Storage│ GR │ │

│ Concurrent Condition │Ending│Branch│Fetch │Alter. │Alter.ñ│STURA │

├─────────────────────────────┼──────┼──────┼──────┼───────┼───────┼──────┤

│Specification │ │ │ │ │ │ │

│ Odd instruction address │ S │ No │ No │ No │ No │ No │

│ in the PSW │ │ │ │ │ │ │

│Instruction access │N or S│ No │ U │ No │ No │ No │

│Specification │ │ │ │ │ │ │

│ EXECUTE target address odd│ S │ No │ U │ No │ No │ - │

│EXECUTE target access │N or S│ No │ U │ No │ No │ - │

│Other nullifying │ N │ No │ Yes │ Noò │ Noò │ - │

│Other suppressing │ S │ No │ Yes │ Noò │ Noò │ No │

│All terminating │ T │ No │ Yes │ Yesó │ Yesó │ - │

│All completing │ C │ Yes │ Yes │ Yes │ Yes │ - │

├─────────────────────────────┴──────┴──────┴──────┴───────┴───────┴──────┤

│Explanation: │

│ │

│ - The condition does not apply. │

│ │

│ ñ With PER 2, PER general-register-alteration events do not occur │

│ and are not indicated. │

│ │

│ ò Although PER events of this type are not indicated for the cur- │

│ rent unit of operation of an interruptible instruction, PER │

│ events of this type that were recognized on completed units of │

│ operation of the interruptible instruction are indicated. │

│ │

│ ó This event may be indicated, depending on the model, if the │

│ event has not occurred but would have been indicated if execu- │

│ tion had been completed. │

│ │

│ C The operation or, in the case of the interruptible instructions, │

│ the unit of operation is completed. │

│ │

│ N The operation or, in the case of the interruptible instructions, │

│ the unit of operation is nullified. │

│ │

│ S The operation or, in the case of the interruptible instructions, │

│ the unit of operation is suppressed. │

│ │

│ T The execution of the instruction is terminated. │

│ │

│ Yes The PER event is indicated with the other program-interruption │

│ condition if the event has occurred; that is, the contents of │

│ the designated storage location or general register were al- │

│ tered, or an attempt was made to execute an instruction whose │

│ first byte is located in the designated storage area. │

│ │

│ No The PER event is not indicated. │

│ │

│ U It is unpredictable whether the PER event is indicated. │

└─────────────────────────────────────────────────────────────────────────┘

Figure 4-5. Indication of PER Events with Other Concurrent Conditions
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Programming Notes:

1. The execution of the interruptible instructions
MOVE LONG, TEST BLOCK, and COMPARE
LOGICAL LONG can cause events for
general-register alteration and instruction
fetching. Additionally, MOVE LONG can
cause the storage-alteration event.

Interruption of such an instruction may cause
a PER event to be indicated more than once.
It may be necessary, therefore, for a program
to remove the redundant event indications
from the PER data. The following rules
govern the indication of the applicable events
during execution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption, except
that the event may be discarded (not indi-
cated) if it is the only PER event to be
indicated, the interruption is due to an
asynchronous interruption condition or the
performance of the stop function, and a
unit of operation of the instruction remains
to be executed.

b. The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the
designated storage area by the portion of
the operation starting with the last initi-
ation and ending with the last byte trans-
ferred before the interruption. No special
indication is provided on premature inter-
ruptions as to whether the event will occur
again upon the resumption of the opera-
tion. When the designated storage area is
a single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general
action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each
complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal
to the instruction address in the old PSW
and if the last instruction executed was
interruptible.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if
some part of the remaining destination
operand is within the designated storage
area.

 Timing
The timing facilities include three facilities for
measuring time: the TOD clock, the clock
comparator, and the CPU timer.

In a multiprocessing configuration, a single TOD
clock may be shared by more than one CPU, or

| each CPU may have a separate TOD clock. Each
| CPU has its own clock comparator and CPU
| timer.

| The extended-TOD-clock facility and the TOD-
| clock-control-override facility may be installed.

| The extended-TOD-clock facility includes an
| extension in length of the TOD clock, a TOD pro-
| grammable register for each CPU, and the
| instructions SET CLOCK PROGRAMMABLE
| FIELD and STORE CLOCK EXTENDED.

| The TOD-clock-control-override facility includes
| the TOD-clock-control-override control, bit 10 of
| control register 14.

 Time-of-Day Clock
The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

| In a configuration with more than one CPU, each
CPU may have a separate TOD clock, or more
than one CPU may share a clock, depending on
the model. In all cases, each CPU has access to
a single clock.
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 Format
| The basic TOD clock is a 64-bit register. It is
| extended with an additional 40 rightmost bits if the
| extended-TOD-clock facility is installed. For ease
| of description, the TOD clock is treated as a
| 104-bit register of which the rightmost 40 bits are
| visible only if the extended-TOD-clock facility is
| installed.

The TOD clock is a binary counter with the format
shown in the following illustration.

|  1 microsecond───┐

|  6

| ┌────────────────────┬─┬────┬─────────────────┐

| │ │ │ │ │

| │ │ │ │ │

| └────────────────────┴─┴────┴─────────────────┘

| ð 51 64 1ð3

|  └───Visible if────┘

|  Extended-TOD-Clock

| Facility Is Installed

| The TOD clock nominally is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
quency that the rate of advancing the clock is the
same as if a one were added in bit position 51
every microsecond. The resolution of the TOD
clock is such that the incrementing rate is compa-
rable to the instruction-execution rate of the
model.

A TOD clock is said to be in a particular multiproc-
essing configuration if at least one of the CPUs
which shares that clock is in the configuration.

| Conversely, if all CPUs having access to a partic-
ular TOD clock have been removed from a partic-
ular configuration, then the TOD clock is no longer
considered to be in that configuration.

When more than one TOD clock exists in the con-
| figuration, incrementing is synchronized such that
| all of the TOD clocks that are being incremented

are incremented at exactly the same rate.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is
ignored, and counting continues from zero. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the PSW is one or whether the

CPU is in the operating, load, stopped, or check-
stop state. Its operation is not affected by CPU,
initial-CPU, or clear resets or by initial program
loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-machine-loading operation. Depending on
the model and the configuration, a TOD clock may
or may not be powered independent of a CPU that
accesses it.

 States
The following states are distinguished for the TOD
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code

| set by execution of STORE CLOCK and STORE
| CLOCK EXTENDED. The clock is incremented,

and is said to be running, when it is in either the
set state or the not-set state.

Not-Set State:  When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state, execution of
| STORE CLOCK or STORE CLOCK EXTENDED

causes condition code 1 to be set and the current
value of the running clock to be stored.

Stopped State:  The clock enters the stopped
state when SET CLOCK is executed on a CPU

| accessing that clock and the execution results in
| the clock being set. This occurs when SET

CLOCK is executed without encountering any
| exceptions and either any manual TOD-clock

control in the configuration is set to the enable-set
| position or the TOD-clock-control-override control,
| bit 10 of control register 14, is one. The
| TOD-clock-control-override control is available if
| the TOD-clock-control-override facility is installed.

The clock can be placed in the stopped state from
the set, not-set, and error states. The clock is not
incremented while in the stopped state.

When the clock is in the stopped state, execution
| of STORE CLOCK or STORE CLOCK
| EXTENDED by a CPU accessing that clock

causes condition code 3 to be set and the value of
the stopped clock to be stored.

Set State:  The clock enters the set state only
from the stopped state. The change of state is
under control of the TOD-clock-sync-control bit, bit

| 2 of control register 0, of the CPU which most
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recently caused that clock to enter the stopped
state. If the bit is zero, the clock enters the set
state at the completion of execution of SET
CLOCK. If the bit is one, the clock remains in the
stopped state until the bit is set to zero on that
CPU, until another CPU executes a SET CLOCK
instruction affecting the clock, or until any other
clock in the configuration is incremented to a

| value of all zeros in bit positions 32 through the
| rightmost bit position that is incremented when the
| clock is running. If an external time reference
| (ETR) is installed, a signal from the ETR may be
| used to set the set state from the stopped state.
| If any clock is set to a value of all zeros in bit
| positions 32 through the rightmost incremented bit
| position and enters the set state as the result of a
| signal from another clock, the updating of bits 32
| through the rightmost incremented bit position of
| the two clocks is in synchronism. Bits 0-31 of the
| clocks may be different.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
| STORE CLOCK or STORE CLOCK EXTENDED

causes condition code 0 to be set and the current
value of the running clock to be stored.

Error State:  The clock enters the error state
when a malfunction is detected that is likely to

| have affected the validity of the clock value. It
| depends on the model whether the clock can be
| placed in this state. A timing-facility-damage

machine-check-interruption condition is generated
on each CPU which has access to that clock
whenever it enters the error state.

| When STORE CLOCK or STORE CLOCK
| EXTENDED is executed and the clock accessed

is in the error state, condition code 2 is set, and
the value stored is zero.

Not-Operational State:  The clock is in the not-
operational state when its power is off or when it
is disabled for maintenance. It depends on the
model whether the clock can be placed in this
state. Whenever the clock enters the not-
operational state, a timing-facility-damage
machine-check-interruption condition is generated
on each CPU that has access to that clock.

When the clock is in the not-operational state,
| execution of STORE CLOCK or STORE CLOCK

| EXTENDED causes condition code 3 to be set,
and zero is stored.

Changes in Clock State
When the TOD clock accessed by a CPU changes
value because of the execution of SET CLOCK or
changes state, interruption conditions pending for
the clock comparator, CPU timer, and
TOD-clock-sync check may or may not be recog-
nized for up to 1.048576 seconds (2òð microsec-
onds) after the change.

The results of channel-subsystem-monitoring-
facility operations may be unpredictable as a
result of changes to the TOD clock.

Setting and Inspecting the Clock
| The clock can be set to a specified value by exe-

cution of SET CLOCK if the manual TOD-clock
control of any CPU in the configuration is in the

| enable-set position or the TOD-clock-control-
| override control, bit 10 of control register 14, is
| one. The TOD-clock-control-override control is
| available if the TOD-clock-control-override facility
| is installed. SET CLOCK sets bits of the clock
| with the contents of corresponding bit positions of
| a doubleword operand in storage.

Setting the clock replaces the values in all bit
positions from bit position 0 through the rightmost
position that is incremented when the clock is
running. However, on some models, the rightmost
bits starting at or to the right of bit 52 of the speci-
fied value are ignored, and zeros are placed in the

| corresponding positions of the clock. Zeros are
| also placed in positions to the right of bit position
| 63 of the clock.

The TOD clock can be inspected by executing
| STORE CLOCK, which causes bits 0-63 of the
| clock to be stored in an eight-byte operand in
| storage, or by executing STORE CLOCK
| EXTENDED, which causes bits 0-103 of the clock
| to be stored in bytes 1-13 of a 16-byte operand in
| storage. STORE CLOCK EXTENDED is available
| when the extended-TOD-clock facility is installed.
| STORE CLOCK EXTENDED stores zeros in the
| leftmost byte, byte 0, of its storage operand, and it
| obtains the TOD programmable field from bit posi-
| tions 16-31 of the TOD programmable register and
| stores it in byte positions 14 and 15 of the storage
| operand. The operand stored by STORE CLOCK
| EXTENDED has the following format:
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| ┌─────┬─────────────────────────────┬──────────┐

| │ │ │Programm- │

| │Zeros│ TOD Clock │able Field│

| └─────┴─────────────────────────────┴──────────┘

| ð 8 112 127

| At some time in the future, STORE CLOCK
| EXTENDED on new models will store a leftmost
| extension of the TOD clock in byte position 0 of its
| storage operand; see programming note 13 on
| page 4-31.

| Two executions of STORE CLOCK or STORE
| CLOCK EXTENDED, possibly on different CPUs

in the same configuration, always store different
values of the clock if the clock is running or, if
separate clocks are accessed, both clocks are

| running and are synchronized. If the clock is
| stopped, zeros are stored in the clock value, bits
| 8-111 of the storage operand, in positions to the
| right of the rightmost bit position that is incre-
| mented when the clock is running. The program-
| mable field continues to be stored even when the
| clock is stopped.

| The values stored for a running clock by STORE
| CLOCK or STORE CLOCK EXTENDED always
| correctly imply the sequence of execution of these
| instructions by one or more CPUs for all cases
| where the sequence can be discovered by the
| program. To ensure that unique values are
| obtained when the value of a running clock is
| stored, nonzero values may be stored in positions
| to the right of the rightmost incremented bit posi-
| tion. When the value of a running clock is stored
| by STORE CLOCK EXTENDED, the value in bit
| positions 64-103 of the clock (bit positions 72-111
| of the storage operand) is always nonzero; this
| ensures that values stored by STORE CLOCK
| EXTENDED are always unique when compared
| with values stored by STORE CLOCK and
| extended on the right with zeros.

| For the purpose of establishing uniqueness and
| sequence of occurrence of the results of STORE
| CLOCK and STORE CLOCK EXTENDED, the
| 64-bit value provided by STORE CLOCK may be
| considered to be extended to 104 bits by
| appending 40 zeros on the right, with the STORE
| CLOCK value and STORE CLOCK EXTENDED
| bits 8-111 then both being treated as 104-bit
| unsigned binary integers.

In a configuration where more than one CPU
accesses the same clock, SET CLOCK is inter-

locked such that the entire contents appear to be
updated concurrently; that is, if SET CLOCK
instructions are executed simultaneously by two
CPUs, the final result is either one or the other

| value. If SET CLOCK is executed by one CPU
| and STORE CLOCK or STORE CLOCK
| EXTENDED by the other, the result obtained by
| STORE CLOCK or STORE CLOCK EXTENDED

is either the entire old value or the entire new
value. When SET CLOCK is executed by one

| CPU, a STORE CLOCK or STORE CLOCK
| EXTENDED instruction executed by another CPU

may find the clock in the stopped state even when
| the TOD-clock-sync-control bit, bit 2 of control reg-
| ister 0, of each CPU is zero. Since the clock

enters the set state before incrementing, the first
| STORE CLOCK or STORE CLOCK EXTENDED
| instruction executed after the clock enters the set

state may still find the original value introduced by
SET CLOCK.

| TOD Programmable Register
| When the extended-TOD-clock facility is installed,
| each CPU has a TOD programmable register, and
| the instruction SET CLOCK PROGRAMMABLE
| FIELD is provided. Bits 16-31 of the register
| contain the programmable field that is appended
| on the right to the TOD-clock value by STORE
| CLOCK EXTENDED. The register has the fol-
| lowing format:

| ┌────────────────┬────────────────┐

| │ │ Programmable │

| │ðððððððððððððððð│ Field │

| └────────────────┴────────────────┘

| ð 16 31

| The register is loaded by SET CLOCK PRO-
| GRAMMABLE FIELD. Bits 16-31 of the register
| are stored in bit positions 112-127 of its storage
| operand by STORE CLOCK EXTENDED. The
| contents of the register are reset to a value of all
| zeros by initial CPU reset.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applica-
tions, reference to the leftmost 32 bits of the
clock may provide sufficient resolution.

2. Communication between systems is facilitated
| by establishing a standard time origin that is

the calendar date and time to which a clock
value of zero corresponds. January 1, 1900,
0 a.m. Coordinated Universal Time (UTC) is
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| recommended as this origin, and it is said to
| begin the standard epoch for the clock. This

is also the epoch used when the TOD clock is
synchronized to the external time reference
(ETR). Note that the former term, Greenwich
Mean Time (GMT), is now obsolete and has
been replaced with the more precise UTC.

3. A program using the clock value as a
time-of-day and calendar indication must be
consistent with the programming support
under which the program is to be executed. If
the programming support uses the standard
epoch, bit 0 of the clock remains one through
the years 1972-2041. (Bit 0 turned on at
11:56:53.685248 (UTC) May 11, 1971.) Ordi-
narily, testing bit 0 for a one is sufficient to
determine if the clock value is in the standard
epoch.

4. In converting to or from the current date or
time, the programming support must take into
account that “leap seconds” have been
inserted or deleted because of time-correction

| standards. When the TOD clock has been set
| correctly to a time within the standard epoch,
| the sum of the accumulated leap seconds
| must be subtracted from the clock time to
| determine UTC time.

5. Because of the limited accuracy of manually
setting the clock value, the rightmost bit posi-
tions of the clock, expressing fractions of a
second, are normally not valid as indications
of the time of day. However, they permit
elapsed-time measurements of high resol-
ution.

6. The following chart shows the time interval
between instants at which various bit positions
of the TOD clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

┌──────┬──────────────────────────┐

│ TOD- │ Stepping Interval │

│Clock ├────┬─────┬────┬──────────┤

│ Bit │Days│Hours│Min.│ Seconds │

├──────┼────┴─────┴────┴──────────┤

│ 51 │ ð.ððð ðð1│

│ 47 │ ð.ððð ð16│

│ 43 │ ð.ððð 256│

│ │ │

│ 39 │ ð.ðð4 ð96│

│ 35 │ ð.ð65 536│

│ 31 │ 1.ð48 576│

│ │ │

│ 27 │ 16.777 216│

│ 23 │ 4 28.435 456│

│ 19 │ 1 11 34.967 296│

│ │ │

│ 15 │ 19 5 19.476 736│

│ 11 │ 12 17 25 11.627 776│

│ 7 │ 2ð3 14 43 6.ð44 416│

│ 3 │3257 19 29 36.71ð 656│

└──────┴──────────────────────────┘

7. The following chart shows the TOD clock
setting for 00:00:00 (0 am), UTC time, for
several dates: January 1, 1900, January 1,
1972, and for that instant in time just after

| each of the 22 leap seconds that have
| occurred through January, 1999. Each of

these leap seconds was inserted in the UTC
time scale beginning at 23:59:60 UTC of the
day previous to the one listed and ending at
00:00:00 UTC of the day listed.

┌──────┬───┬───┬────┬─────────────────────┐

│ │ │ │Leap│ │

│ Year │Mth│Day│Sec │ Clock Setting (Hex) │

├──────┼───┼───┼────┼─────────────────────┤

│ 19ðð │ 1 │ 1 │ │ ðððð ðððð ðððð ðððð │

│ 1972 │ 1 │ 1 │ │ 8126 D6ðE 46ðð ðððð │

│ 1972 │ 7 │ 1 │ 1 │ 82ðB A981 1E24 ðððð │

│ 1973 │ 1 │ 1 │ 2 │ 82F3 ððAE E248 ðððð │

│ 1974 │ 1 │ 1 │ 3 │ 84BD E971 146C ðððð │

│ 1975 │ 1 │ 1 │ 4 │ 8688 D233 469ð ðððð │

│ 1976 │ 1 │ 1 │ 5 │ 8853 BAF5 78B4 ðððð │

│ 1977 │ 1 │ 1 │ 6 │ 8A1F E595 2ðD8 ðððð │

│ 1978 │ 1 │ 1 │ 7 │ 8BEA CE57 52FC ðððð │

│ 1979 │ 1 │ 1 │ 8 │ 8DB5 B719 852ð ðððð │

│ 198ð │ 1 │ 1 │ 9 │ 8F8ð 9FDB B744 ðððð │

│ 1981 │ 7 │ 1 │ 1ð │ 923ð 5CðF CD68 ðððð │

│ 1982 │ 7 │ 1 │ 11 │ 93FB 44D1 FF8C ðððð │

│ 1983 │ 7 │ 1 │ 12 │ 95C6 2D94 31Bð ðððð │

│ 1985 │ 7 │ 1 │ 13 │ 995D 4ðF5 17D4 ðððð │

│ 1988 │ 1 │ 1 │ 14 │ 9DDA 69A5 57F8 ðððð │

│ 199ð │ 1 │ 1 │ 15 │ A171 7Dð6 3E1C ðððð │

│ 1991 │ 1 │ 1 │ 16 │ A33C 65C8 7ð4ð ðððð │

│ 1992 │ 7 │ 1 │ 17 │ A5EC 21FC 8664 ðððð │

│ 1993 │ 7 │ 1 │ 18 │ A7B7 ðABE B888 ðððð │

│ 1994 │ 7 │ 1 │ 19 │ A981 F38ð EAAC ðððð │

│ 1996 │ 1 │ 1 │ 2ð │ AC34 336F ECDð ðððð │

│ 1997 │ 7 │ 1 │ 21 │ AEE3 EFA4 ð2F4 ðððð │

| │ 1999 │ 1 │ 1 │ 22 │ B196 2F93 ð518 ðððð │

└──────┴───┴───┴────┴─────────────────────┘
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8. The stepping value of TOD-clock bit position
63, if implemented, is 2-ñò microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation.

┌─────────────┬──────────────────┐

│ Interval │Clock Units (Hex) │

├─────────────┼──────────────────┤

│1 microsecond│ 1ððð│

│1 millisecond│ 3E 8ððð│

│1 second │ F424 ðððð│

│1 minute │ 39 387ð ðððð│

│1 hour │ D69 3A4ð ðððð│

│1 day │ 1 41DD 76ðð ðððð│

│365 days │1CA E8C1 3Eðð ðððð│

│366 days │1CC 2A9E B4ðð ðððð│

│1,461 days\ │72C E4E2 6Eðð ðððð│

├─────────────┴──────────────────┤

│\ Number of days in four years, │

│ including a leap year. Note │

│ that the year 19ðð was not a │

│ leap year. Thus, the four- │

│ year span starting in 19ðð │

│ has only 1,46ð days. │

└────────────────────────────────┘

| 9. The charts in notes 6-8 are useful when
| examining the value stored by STORE
| CLOCK. Similar charts for use when exam-
| ining the value stored by STORE CLOCK
| EXTENDED are in programming notes at the
| end of the definition of that instruction.

10. In a multiprocessing configuration, after the
TOD clock is set and begins running, the
program should delay activity for 2òð micro-
seconds (1.048576 seconds) to ensure that
the CPU-timer, clock-comparator, and
TOD-clock-sync-check interruption conditions
are recognized by the CPU.

| 11. Due to the sequencing rules for the results of
| STORE CLOCK and STORE CLOCK
| EXTENDED, the execution of STORE CLOCK
| may be considerably slower than that of
| STORE CLOCK EXTENDED on models that
| increment a bit position of the TOD clock to
| the right of position 63.

| 12. Uniqueness of TOD-clock values can be
| extended to apply to processors in separate
| configurations by including a configuration
| identification in the TOD programmable field.

| 13. At some time in the future, new models will
| use a carry from bit position 0 of the TOD
| clock to increment an additional eight-bit

| binary counter. STORE CLOCK EXTENDED
| will store the contents of this counter in byte
| position 0 of its storage operand. A variation
| of SET CLOCK will set the counter, as well as
| the TOD clock. Variations of SET CLOCK
| COMPARATOR and STORE CLOCK
| COMPARATOR will manipulate a comparable
| byte at the left of the clock comparator.
| These actions will allow the TOD clock to con-
| tinue to measure time within the standard
| epoch after the current 143-year limit caused
| by a carry from bit position 0 has been
| exceeded, and they will allow continued use of
| the clock comparator. It may be desired to
| have programs that process 16-byte STORE
| CLOCK EXTENDED operands take these
| future developments into account.

 TOD-Clock Synchronization
| In a configuration with more than one CPU, each

CPU may have a separate TOD clock, or more
than one CPU may share a TOD clock, depending
on the model. In all cases, each CPU has access
to a single clock.

The TOD-clock-synchronization facility, in conjunc-
tion with a clock-synchronization program, makes
it possible to provide the effect of all CPUs in a
multiprocessing configuration sharing a single
TOD clock. The result is such that, to all pro-
grams storing the TOD-clock value, it appears that
all CPUs in the configuration read the same TOD
clock. The TOD-clock-synchronization facility pro-
vides these functions in such a way that even
though the number of CPUs sharing a TOD clock
is model-dependent, a single model-independent
clock-synchronization routine can be written. The
following functions are provided:

� Synchronizing the stepping rates for all TOD
clocks in the configuration.

| � Comparing bits 32 through the rightmost incre-
| mented bit of each clock in the configuration.

An unequal condition is signaled by an
external interruption with the interruption code
1003 hex, indicating the

| TOD-clock-sync-check condition. When there
| is only one clock in the configuration, this
| comparison may alternatively be done by
| comparing to bits of the ETR, in which case
| an unequal condition is indicated by an
| external-damage machine-check-interruption
| condition. The machine-check-interruption
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| condition may not be recognized for up to
| 1.048576 seconds (2òð microseconds) after
| the unequal condition occurs.

� Setting a TOD clock to the stopped state.

� Causing a stopped clock, with the
TOD-clock-sync-control bit set to one, to start

| incrementing when bits 32 through the right-
| most incremented bit of any running clock in
| the configuration are incremented to zero or,
| when the clock is the only clock in the config-
| uration, when an ETR signal occurs. This

permits the program to synchronize all clocks
| to any particular clock or to the ETR without

requiring special operator action to select a
“master clock” as the source of the clock-
synchronization pulses.

Programming Notes:

1. TOD-clock synchronization provides for syn-
| chronizing and checking only bits 32 through
| the rightmost incremented bit of the TOD
| clock. When more than one clock exists in
| the configuration, the program must check for

synchronization of the leftmost bits and must
communicate the leftmost bit values from one
CPU to another in order to correctly set the

| TOD-clock contents. When a single clock
| exists in the configuration and it is synchro-
| nized with the ETR, bits 0-31 of the clock may
| be set different from those of the ETR.

2. The TOD-clock-sync-check external inter-
ruption can be used to determine the number
of TOD clocks in the configuration.

 Clock Comparator
The clock comparator provides a means of
causing an interruption when the TOD-clock value
exceeds a value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the same format as the
| basic TOD clock. The clock comparator nominally

consists of bits 0-47, which are compared with the
corresponding bits of the TOD clock. In some
models, higher resolution is obtained by providing
more than 48 bits. The bits in positions provided
in the clock comparator are compared with the
corresponding bits of the clock. When the resol-
ution of the clock is less than that of the clock
comparator, the contents of the clock comparator

are compared with the clock value as this value
would be stored by executing STORE CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 hex. A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The TOD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The TOD clock is in the error state or the not-
operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that
of the TOD clock or when the value of the TOD
clock is made less than the clock-comparator
value. The latter may occur as a result of the
TOD clock either being set or wrapping to zero.

The clock comparator can be inspected by exe-
cuting the instruction STORE CLOCK

| COMPARATOR and can be set to a specified
value by executing the SET CLOCK
COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock-
comparator value is less than that of the TOD
clock or as long as the TOD clock is in the
error state or the not-operational state. There-
fore, one of the following actions must be
taken after an external interruption for the
clock comparator has occurred and before the
CPU is again enabled for external inter-
ruptions: the value of the clock comparator
must be replaced, the TOD clock must be set,
the TOD clock must wrap to zero, or the
clock-comparator-subclass mask must be set
to zero. Otherwise, loops of external inter-
ruptions are formed.

| 2. The instruction STORE CLOCK or STORE
| CLOCK EXTENDED may store a value which

is greater than that in the clock comparator,
even though the CPU is enabled for the clock-
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comparator interruption. This is because the
TOD clock may be incremented one or more
times between when instruction execution is
begun and when the clock value is accessed.
In this situation, the interruption occurs when

| the execution of STORE CLOCK or STORE
| CLOCK EXTENDED is completed.

 CPU Timer
The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
| which is the same as that of the basic TOD clock,

except that bit 0 is considered a sign. The CPU
| timer nominally is decremented by subtracting a

one in bit position 51 every microsecond. In
models having a higher or lower resolution, a dif-
ferent bit position is decremented at such a fre-
quency that the rate of decrementing the CPU
timer is the same as if a one were subtracted in
bit position 51 every microsecond. The resolution
of the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 hex whenever the
CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain
pending when the CPU-timer value is changed to
a nonnegative value.

When both the CPU timer and the TOD clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the CPU timer is not affected by
concurrent I/O activity. However, in some models
the CPU timer may stop during extreme I/O
activity and other similar interference situations.
In these cases, the time recorded by the CPU
timer provides a more accurate measure of the
CPU time used by the program than would have
been recorded had the CPU timer continued to
step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in

which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the TOD clock is in the error, stopped, or not-
operational state.

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to

| a specified value by executing the SET CPU
TIMER instruction.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval
on the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, the
availability of pages, and instruction retry.
Therefore, repeated measurements of the
same sequence on the same installation may
differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set
to a positive value eliminates the problem of
an undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled
for CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are
requested whenever the CPU timer is nega-
tive (rather than just when the CPU timer goes
from positive to negative) eliminates the
requirement for testing a value to ensure that
it is positive before setting the CPU timer to
that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a
cause other than the CPU timer, external
interruptions are disallowed by the new PSW,
and the CPU-timer value is then saved by
STORE CPU TIMER. This value could be
negative if the CPU timer went from positive
to negative since the interruption. Subse-
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quently, when the program being timed is to
continue, the CPU timer may be set to the
saved value by SET CPU TIMER. A
CPU-timer interruption occurs immediately
after external interruptions are again enabled
if the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an
external interruption for the CPU timer has
occurred, the value of the CPU timer must be
replaced, the value in the CPU timer must
wrap to a positive value, or the
CPU-timer-subclass mask must be set to zero
before the CPU is again enabled for external
interruptions. Otherwise, loops of external
interruptions are formed.

5. The instruction STORE CPU TIMER may
store a negative value even though the CPU
is enabled for the interruption. This is
because the CPU-timer value may be decre-
mented one or more times between when
instruction execution is begun and when the
CPU timer is accessed. In this situation, the
interruption occurs when the execution of
STORE CPU TIMER is completed.

Externally Initiated Functions

 Resets
Five reset functions are provided:

 � CPU reset
� Initial CPU reset

 � Subsystem reset
 � Clear reset
 � Power-on reset

CPU reset provides a means of clearing
equipment-check indications and any resultant
unpredictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU

state is to be preserved for analysis or resumption
of the operation.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current

| PSW, CPU timer, clock comparator, TOD pro-
| grammable register, prefix, and control registers.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking I/O-system reset.

Clear reset causes initial CPU reset and sub-
system reset to be performed and, additionally,
clears or initializes all storage locations and regis-
ters in all CPUs in the configuration, with the
exception of the TOD clock. Such clearing is
useful in debugging programs and in ensuring
user privacy. Clear reset also releases all locks
used by the PERFORM LOCKED OPERATION
instruction. Clearing does not affect external
storage, such as direct-access storage devices
used by the control program to hold the contents
of unaddressable pages.

The power-on-reset sequences for the TOD clock,
main storage, and the channel subsystem may be
included as part of the CPU power-on sequence,
or the power-on sequence for these units may be
initiated separately.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator facilities (see Chapter 12, “Operator
Facilities”). Initial CPU reset is part of the initial-
program-loading function. Figure 4-6 on
page 4-35 summarizes how these four resets are
manually initiated. Power-on reset is performed
as part of turning power on. The reset actions are
tabulated in Figure 4-7 on page 4-36. For infor-
mation concerning what resets can be performed
by the SIGNAL PROCESSOR instruction, see “Set
Prefix” on page 4-43.
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┌───────────────────┬───────────────────────────────────────────────┐

│ │ Function Performed onñ │

│ ├──────────────────┬────────────┬───────────────┤

│ │ CPU on Which Key │ Other CPUs │ Remainder of │

│ Key Activated │ Was Activated │ in Config │ Configuration │

├───────────────────┼──────────────────┼────────────┼───────────────┤

│System-reset-normal│CPU reset │CPU reset │Subsystem reset│

│key │ │ │ │

│ │ │ │ │

│System-reset-clear │Clear resetò │Clear resetò│Clear resetó │

│key │ │ │ │

│ │ │ │ │

│Load-normal key │Initial CPU reset,│CPU reset │Subsystem reset│

│ │followed by IPL │ │ │

│ │ │ │ │

│Load-clear key │Clear resetò, │Clear resetò│Clear resetó │

│ │followed by IPL │ │ │

├───────────────────┴──────────────────┴────────────┴───────────────┤

│Explanation: │

│ │

│ ñ Activation of a system-reset or load key may change the config- │

│ uration, including the connection with I/O, storage units, and │

│ other CPUs. │

│ │

│ ò Only the CPU elements of this reset apply. │

│ │

│ ó Only the non-CPU elements of this reset apply. │

└───────────────────────────────────────────────────────────────────┘

Figure 4-6. Manual Initiation of Resets
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┌─────────────────────────────┬─────────────────────────────────┐

│ │ Reset Function │

│ ├──────┬─────┬───────┬──────┬─────┤

│ │ Sub- │ │Initial│ │Power│

│ │system│ CPU │ CPU │Clear │ -On │

│ Area Affected │Reset │Reset│ Reset │Reset │Reset│

├─────────────────────────────┼──────┼─────┼───────┼──────┼─────┤

│CPU │ U │ S │ Sñ │ Sñ │ S │

│PSW │ U │ U/V │ C\ñ │ C\ñ │ C\ │

│Prefix │ U │ U/V │ C │ C │ C │

│CPU timer │ U │ U/V │ C │ C │ C │

│Clock comparator │ U │ U/V │ C │ C │ C │

| │TOD programmable register │ U │ U/V │ C │ C │ C │

│Control registers │ U │ U/V │ I │ I │ I │

│Access registers │ U │ U/V │ U/V │ C │ C │

│General registers │ U │ U/V │ U/V │ C │ C │

│Floating-point registers │ U │ U/V │ U/V │ C │ C │

│Vector-facility registers │ U │ U/V │ U/V │ C │ C │

│Storage keys │ U │ U │ U │ C │ Cò │

│Volatile main storage │ U │ U │ U │ C │ Cò │

│Nonvolatile main storage │ U │ U │ U │ C │ U │

│Expanded storage │ Uó │ Uó │ Uó │ Uó │ Cò │

│TOD clock │ Uô │ Uô │ Uô │ Uô │ Tò │

│Floating interruption │ C │ U │ U │ C │ Cò │

│ conditions │ │ │ │ │ │

│I/O system │ R │ U │ U │ R │ Rõ │

│PERFORM LOCKED OPERATION │ U │ U │ U │ RC │ RP │

│ locks │ │ │ │ │ │

├─────────────────────────────┴──────┴─────┴───────┴──────┴─────┤

│Explanation: │

│ │

│ \ Clearing the contents of the PSW to zero causes the PSW │

│ to be invalid. │

│ │

│ ñ When the IPL sequence follows the reset function on that │

│ CPU, the CPU does not necessarily enter the stopped │

│ state, and the PSW is not necessarily cleared to zeros. │

│ │

│ ò When these units are separately powered, the action is │

│ performed only when the power for the unit is turned on. │

│ │

│ ó Access to change expanded storage at the time a reset │

│ function is performed may cause the contents of the 4K- │

│ byte block in expanded storage to be unpredictable. │

│ Access to examine expanded storage does not affect the │

│ contents of the expanded storage. │

│ │

│ ô Access to the TOD clock by means of STORE CLOCK at the │

│ time a reset function is performed does not cause the │

│ value of the TOD clock to be affected. │

│ │

│ õ When the channel subsystem is separately powered or con- │

│ sists of multiple elements which are separately powered, │

│ the reset action is applied only to those subchannels, │

│ channel paths, and I/O control units and devices on those│

│ paths associated with the element which is being powered │

│ on. │

└───────────────────────────────────────────────────────────────┘

Figure 4-7 (Part 1 of 2). Summary of Reset Actions
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┌───────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ │

│ C The condition or contents are cleared. If the area │

│ affected is a field, the contents are set to zero with │

│ valid checking-block code. │

│ │

│ I The state or contents are initialized. If the area af- │

│ fected is a field, the contents are set to the initial │

│ value with valid checking-block code. │

│ │

│ R I/O-system reset is performed in the channel subsystem. │

│ As part of this reset, system reset is signaled to all │

│ I/O control units and devices attached to the channel │

│ subsystem. │

│ │

│ RC All locks in the configuration are released. │

│ │

│ RP All locks in the configuration are released except for │

│ ones held by CPUs already powered on. │

│ │

│ S The CPU is reset; current operations, if any, are term- │

│ inated; the ALB and TLB are cleared of entries; inter- │

│ ruption conditions in the CPU are cleared; and the CPU │

│ is placed in the stopped state. The effect of perform- │

│ ing the start function is unpredictable when the stopped │

│ state has been entered by means of a reset. │

│ │

│ T The TOD clock is initialized to zero and validated; it │

│ enters the not-set state. │

│ │

│ U The state, condition, or contents of the field remain │

│ unchanged. However, the result is unpredictable if an │

│ operation is in progress that changes the state, con- │

│ dition, or contents of the field at the time of reset. │

│ │

│ U/V The contents remain unchanged, provided the field is not │

│ being changed at the time the reset function is per- │

│ formed. However, on some models the checking-block code │

│ of the contents may be made valid. The result is un- │

│ predictable if an operation is in progress that changes │

│ the contents of the field at the time of reset. │

└───────────────────────────────────────────────────────────────┘

Figure 4-7 (Part 2 of 2). Summary of Reset Actions

 CPU Reset
CPU reset causes the following actions:

1. The execution of the current instruction or
other processing sequence, such as an inter-
ruption, is terminated, and all program-
interruption and supervisor-call-interruption
conditions are cleared.

2. Any pending external-interruption conditions
which are local to the CPU are cleared.
Floating external-interruption conditions are
not cleared.

3. Any pending machine-check-interruption con-
ditions and error indications which are local to

the CPU and any check-stop states are
cleared. Floating machine-check-interruption
conditions are not cleared. Any machine-
check condition which is reported to all CPUs
in the configuration and which has been made
pending to a CPU is said to be local to the
CPU.

4. All copies of prefetched instructions or oper-
ands are cleared. Additionally, any results to
be stored because of the execution of
instructions in the current checkpoint interval
are cleared.

5. The ART-lookaside buffer and translation-
lookaside buffer are cleared of entries.
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6. The CPU is placed in the stopped state after
actions 1-5 have been completed. When the
IPL sequence follows the reset function on
that CPU, the CPU enters the load state at
the completion of the reset function and does
not necessarily enter the stopped state during
the execution of the reset operation.

Registers, storage contents, and the state of con-
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con-
tents at the time of the reset. A lock held by the
CPU when executing PERFORM LOCKED OPER-
ATION is not released by CPU reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an I/O instruction or
is performing an I/O interruption, the current oper-
ation between the CPU and the channel sub-
system may or may not be completed, and the
resultant state of the associated channel-
subsystem facility may be unpredictable.

Programming Note:  Most operations which
would change a state, a condition, or the contents
of a field cannot occur when the CPU is in the
stopped state. However, some signal-processor
functions and some operator functions may
change these fields. To eliminate the possibility of
losing a field when CPU reset is issued, the CPU
should be stopped, and no operator functions
should be in progress.

Initial CPU Reset
Initial CPU reset combines the CPU reset func-
tions with the following clearing and initializing
functions:

1. The contents of the current PSW, prefix, CPU
| timer, clock comparator, and TOD program-
| mable register are set to zero. When the IPL

sequence follows the reset function on that
CPU, the contents of the PSW are not neces-
sarily set to zero.

2. The contents of control registers are set to
their initial value.

These clearing and initializing functions include
validation.

Setting the current PSW to zero causes the PSW
to be invalid, since PSW bit 12 must be one.

Thus, if the CPU is placed in the operating state
after a reset without first introducing a new PSW,
a specification exception is recognized.

 Subsystem Reset
Subsystem reset operates only on those elements
in the configuration which are not CPUs. It per-
forms the following actions:

1. I/O-system reset is performed by the channel
subsystem (see “I/O-System Reset” on
page 17-9).

2. All floating interruption conditions in the con-
figuration are cleared.

As part of I/O-system reset, pending
I/O-interruption conditions are cleared, and system
reset is signaled to all control units and devices
attached to the channel subsystem (see
“I/O-System Reset” on page 17-9). The effect of
system reset on I/O control units and devices and
the resultant control-unit and device state are
described in the appropriate System Library publi-
cation for the control unit or device. A system
reset, in general, resets only those functions in a
shared control unit or device that are associated
with the particular channel path signaling the
reset.

 Clear Reset
Clear reset combines the initial-CPU-reset function
with an initializing function which causes the fol-
lowing actions:

1. The access, general, and floating-point regis-
ters of those CPUs which are in the configura-
tion are set to zero.

2. The registers (vector-status register, vector-
mask register, vector-activity count, and all
vector registers) of those vector facilities, if
any, which are in the configuration are cleared
to zero with valid checking-block code.

3. The contents of the main storage in the con-
figuration and the associated storage keys are
set to zero with valid checking-block code.

4. The locks used by any CPU in the configura-
tion when executing the PERFORM LOCKED
OPERATION instruction are released.

5. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.
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Programming Notes:

1. For the CPU-reset operation not to affect the
contents of fields that are to be left
unchanged, the CPU must not be executing
instructions and must be disabled for all inter-
ruptions at the time of the reset. Except for
the operation of the CPU timer and for the
possibility of a machine-check interruption
occurring, all CPU activity can be stopped by
placing the CPU in the wait state and by disa-
bling it for I/O and external interruptions. To
avoid the possibility of causing a reset at the
time that the CPU timer is being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and
state of the TOD clock.

3. The conditions under which the CPU enters
the check-stop state are model-dependent and
include malfunctions that preclude the com-
pletion of the current operation. Hence, if
CPU reset or initial CPU reset is executed
while the CPU is in the check-stop state, the
contents of the PSW, registers, and storage
locations, including the storage keys and the
storage location accessed at the time of the
error, may have unpredictable values, and, in
some cases, the contents may still be in error
after the check-stop state is cleared by these
resets. In this situation, a clear reset is
required to clear the error.

 Power-On Reset
The power-on-reset function for a component of
the machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the TOD clock,
vector facility, main storage, expanded storage,
and channel subsystem may be included as part
of the CPU power-on sequence, or the power-on
sequence for these units may be initiated sepa-
rately. The following sections describe the
power-on resets for the CPU, TOD clock, vector
facility, main storage, expanded storage, and
channel subsystem. See also Chapter 17, “I/O
Support Functions,” and the appropriate System
Library publication for the channel subsystem,
control units, and I/O devices.

CPU Power-On Reset:  The power-on reset
causes initial CPU reset to be performed and may
or may not cause I/O-system reset to be per-
formed in the channel subsystem. The contents
of general registers, access registers, and floating-
point registers are cleared to zeros with valid
checking-block code. Locks used by PERFORM
LOCKED OPERATION and associated with the
CPU are released unless they are held by a CPU
already powered on.

TOD-Clock Power-On Reset:  The power-on
reset causes the value of the TOD clock to be set
to zero with valid checking-block code and causes
the clock to enter the not-set state.

Vector-Facility Power-On Reset:  The power-on
reset causes the registers of the vector facility
(vector-status register, vector-mask register,
vector-activity count, and all vector registers) to be
cleared to zeros with valid checking-block code.

Main-Storage Power-On Reset:  For volatile
main storage (one that does not preserve its con-
tents when power is off) and for storage keys,
power-on reset causes zeros with valid checking-
block code to be placed in these fields. The con-
tents of nonvolatile main storage, including the
checking-block code, remain unchanged.

Expanded-Storage Power-On Reset:  The con-
tents of the expanded storage are cleared to zeros
with valid checking-block code.

 Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/O-system reset to be performed in the channel
subsystem. (See “I/O-System Reset” on
page 17-9.)

Initial Program Loading
Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to desig-
nate an input device and by subsequently
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activating the load-clear or load-normal key for a
particular CPU. In the description which follows,
the term “this CPU” refers to the CPU in the con-
figuration for which the load-clear or load-normal
key was activated.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

In the loading part of the operation, after the
resets have been performed, this CPU then enters
the load state. This CPU does not necessarily
enter the stopped state during the execution of the
reset operations. The load indicator is on while
the CPU is in the load state.

Subsequently, a channel-program read operation
is initiated from the I/O device designated by the
load-unit-address controls. The effect of executing
the channel program is as if a format-0 CCW in
absolute storage location 0 specified a read
command with the modifier bits zeros, a data
address of zero, a byte count of 24, the chain-
command and SLI flags ones, and all other flags
zeros.

The details of the channel-subsystem portion of
the IPL operation are defined in “Initial Program
Loading” on page 17-13.

When the IPL I/O operation is completed success-
fully, the subsystem-identification word of the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage
locations 188-191, and a new PSW is loaded from
absolute storage locations 0-7. If the PSW
loading is successful and if no machine malfunc-
tions are detected, this CPU leaves the load state,
and the load indicator is turned off. If the rate
control is set to the process position, the CPU
enters the operating state, and the CPU operation
proceeds under control of the new PSW. If the
rate control is set to the instruction-step position,
the CPU enters the stopped state, with the manual
indicator on, after the new PSW is loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the

load state, and the load indicator remains on. The
contents of absolute storage locations 0-7 are
unpredictable.

 Store Status
The store-status operation places the contents of
the CPU registers, except for the TOD clock, in
assigned storage locations and in a store-status
extended save area.

The store-status operation can be initiated manu-
ally by use of the store-status key (see
Chapter 12, “Operator Facilities”). The operation
can also be initiated at the addressed CPU by
executing SIGNAL PROCESSOR, specifying the
stop-and-store-status order.

Figure 4-8 lists the fields that are stored in
assigned storage locations, their lengths, and their
locations in main storage.

┌────────────────────────────┬────────┬────────┐

│ │ Length │Absolute│

│ Field │in Bytes│Address │

├────────────────────────────┼────────┼────────┤

│ CPU timer │ 8 │ 216 │

│ Clock comparator │ 8 │ 224 │

│ Current PSW │ 8 │ 256 │

│ Prefix │ 4 │ 264 │

│ Access registers ð-15 │ 64 │ 288 │

│ Fl-pt registers ð, 2, 4, 6 │ 32 │ 352 │

│ General registers ð-15 │ 64 │ 384 │

│ Control registers ð-15 │ 64 │ 448 │

└────────────────────────────┴────────┴────────┘

Figure 4-8. Assigned Storage Locations for Store
Status

When the basic-floating-point-extensions facility is
installed, the extended-save-area control, bit 2 of
control register 14, is one, and bits 1-19 of the
word at absolute locations 212-215 are not all
zeros, then other fields are stored in a store-status
extended save area. Figure 4-9 lists the fields
that are stored, their lengths, and their offsets
within the area. Bytes 144-4095 of the extended
save area remain unchanged.

┌────────────────────────────┬────────┬────────┐

│ │ Length │ Byte │

│ Field │in Bytes│ Offset │

├────────────────────────────┼────────┼────────┤

│ Fl-pt registers ð-15 │ 128 │ ð │

│ Fl-pt-control register │ 4 │ 128 │

│ Reserved (zeros stored) │ 12 │ 132 │

└────────────────────────────┴────────┴────────┘

Figure 4-9. Store-Status Extended Save Area
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The address of the store-status extended save
area is formed by appending 12 zeros to the right
of bits 1-19 of the word at absolute locations
212-215. This address is treated as a 31-bit
absolute address. If the 4096-byte block of
storage at the address is not available in the con-
figuration, or if bits 1-19 of locations 212-215 are
all zeros, storing into the extended-save area is
not performed.

During the storing into the assigned storage
locations and the extended save area, the con-
tents of the registers are not changed. If a
machine error is encountered during the operation,
the CPU enters the check-stop state.

Execution of SIGNAL PROCESSOR specifying the
store-status-at-address order or the store-
extended-status-at-address order causes some or
all of the same status information to be stored by
the addressed CPU at designated locations. See
“Signal-Processor Orders.”

 Multiprocessing
The multiprocessing facility provides for the inter-
connection of CPUs, via a common main storage,
in order to enhance system availability and to
share data and resources. The multiprocessing
facility includes the following facilities:

� Shared main storage
 � CPU-to-CPU interconnection
 � TOD-clock synchronization

Associated with these facilities are two external-
interruption conditions (TOD-clock-sync check and
malfunction alert), which are described in
Chapter 6, “Interruptions”; and control-register
positions for the TOD-clock-sync-control bit and
for the masks for the external-interruption condi-
tions, which are listed in “Control Registers” on
page 4-6.

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be
accessed by all CPUs in the configuration.

I/O-interruption conditions are floating and can be
accepted by any CPU in the configuration.

Shared Main Storage
The shared-main-storage facility permits more
than one CPU to have access to common main-
storage locations. All CPUs having access to a
common main-storage location have access to the
entire 4K-byte block containing that location and to
the associated storage key. The channel sub-
system and all CPUs in the configuration refer to a
shared main-storage location using the same
absolute address.

 CPU-Address Identification
| Each CPU has a 16-bit unsigned binary integer

assigned, called its CPU address. A CPU
address uniquely identifies one CPU within a con-
figuration. The CPU is designated by specifying
this address in the CPU-address field of SIGNAL
PROCESSOR. The CPU signaling a malfunction
alert, emergency signal, or external call is identi-
fied by storing this address in the CPU-address
field with the interruption. The CPU address is
assigned during system installation and is not
changed as a result of reconfiguration changes.
The program can determine the address of the
CPU by using STORE CPU ADDRESS.

CPU Signaling and Response
The CPU-signaling-and-response facility consists
of SIGNAL PROCESSOR and a mechanism to
interpret and act on several order codes. The
facility provides for communications among CPUs,
including transmitting, receiving, and decoding a
set of assigned order codes; initiating the specified
operation; and responding to the signaling CPU.
A CPU can address SIGNAL PROCESSOR to
itself. SIGNAL PROCESSOR is described in
Chapter 10, “Control Instructions.”

 Signal-Processor Orders
The signal-processor orders are specified in bit
positions 24-31 of the second-operand address of
SIGNAL PROCESSOR and are encoded as
shown in Figure 4-10 on page 4-42.
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┌───────┬───────────────────────────────────┐

│ Code │ │

│ (Hex) │ Order │

├───────┼───────────────────────────────────┤

│ ðð │ Unassigned │

│ ð1 │ Sense │

│ ð2 │ External call │

│ ð3 │ Emergency signal │

│ ð4 │ Start │

│ ð5 │ Stop │

│ ð6 │ Restart │

│ ð7 │ Unassigned │

│ ð8 │ Unassigned │

│ ð9 │ Stop and store status │

│ ðA │ Unassigned │

│ ðB │ Initial CPU reset │

│ ðC │ CPU reset │

│ ðD │ Set prefix │

│ ðE │ Store status at address │

│ 11 │ Store extended status at address │

│ 12-FF │ Unassigned │

└───────┴───────────────────────────────────┘

Figure 4-10. Encoding of Orders

The orders are defined as follows:

Sense:  The addressed CPU presents its status
to the issuing CPU (see “Status Bits” on
page 4-46 for a definition of the bits). No other
action is caused at the addressed CPU. The
status, if not all zeros, is stored in the general reg-
ister designated by the R± field of the SIGNAL
PROCESSOR instruction, and condition code 1 is
set; if all status bits are zeros, condition code 0 is
set.

External Call:  An external-call external-
interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. Only one
external-call condition can be kept pending in a
CPU at a time. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Emergency Signal:  An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition
becomes pending during the execution of SIGNAL
PROCESSOR. The associated interruption occurs

when the CPU is enabled for that condition and
does not necessarily occur during the execution of
SIGNAL PROCESSOR. The address of the CPU
sending the signal is provided with the interruption
code when the interruption occurs. At any one
time the receiving CPU can keep pending one
emergency-signal condition for each CPU in the
configuration, including the receiving CPU itself.
The order is effective only when the addressed
CPU is in the stopped or the operating state.

Start:  The addressed CPU performs the start
function (see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1). The CPU does
not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed CPU is
in the stopped state. The effect of performing the
start function is unpredictable when the stopped
state has been entered by reset.

Stop:  The addressed CPU performs the stop
function (see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1). The CPU does
not necessarily enter the stopped state during the
execution of SIGNAL PROCESSOR. The order is
effective only when the CPU is in the operating
state.

Restart:  The addressed CPU performs the
restart operation (see “Restart Interruption” on
page 6-45). The CPU does not necessarily
perform the operation during the execution of
SIGNAL PROCESSOR. The order is effective
only when the addressed CPU is in the stopped or
the operating state.

Stop and Store Status:  The addressed CPU
performs the stop function, followed by the store-

| status operation (see “Store Status” on
page 4-40). The CPU does not necessarily com-
plete the operation, or even enter the stopped
state, during the execution of SIGNAL
PROCESSOR. The order is effective only when
the addressed CPU is in the stopped or the oper-
ating state.

Initial CPU Reset:  The addressed CPU performs
initial CPU reset (see “Resets” on page 4-34).
The execution of the reset does not affect other
CPUs and does not cause I/O to be reset. The
reset operation is not necessarily completed
during the execution of SIGNAL PROCESSOR.
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CPU Reset:  The addressed CPU performs CPU
reset (see “Resets” on page 4-34). The execution
of the reset does not affect other CPUs and does
not cause I/O to be reset. The reset operation is
not necessarily completed during the execution of
SIGNAL PROCESSOR.

Set Prefix:  The contents of bit positions 1-19 of
the parameter register of the SIGNAL
PROCESSOR instruction are treated as a prefix
value, which replaces the contents of the prefix
register of the addressed CPU. Bit 0 and bits
20-31 of the parameter register are ignored. The
order is accepted only if the addressed CPU is in
the stopped state, the value to be placed in the
prefix register designates a location which is avail-
able in the configuration, and no other condition
precludes accepting the order. Verification of the
stopped state of the addressed CPU and of the
availability of the designated storage is performed
during execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:
┌─┬──────────────────┬─────────────┐

│/│ Prefix Value │/////////////│

└─┴──────────────────┴─────────────┘

ð 1 2ð 31

The set-prefix order is completed as follows:

� If the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the R± field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The value to be placed in the prefix register of
the addressed CPU is tested for the avail-
ability of the designated storage. The abso-
lute address of a 4K-byte area of storage is
formed by appending 12 zeros to the right of
bits 1-19 of the parameter value. This
address is treated as a 31-bit absolute
address regardless of whether the sending
and receiving CPUs are in the 24-bit or 31-bit
addressing mode. The 4K-byte block of

storage at this address is accessed. The
access is not subject to protection, and the
associated reference bit may or may not be
set to one. If the block is not available in the
configuration, the order is not accepted by the
addressed CPU, bit 23 (invalid parameter) of
the general register designated by the R± field
of the SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is set.

� The value is placed in the prefix register of the
addressed CPU.

� The ALB and TLB of the addressed CPU are
cleared of their contents.

� A serializing and checkpoint-synchronizing
function is performed on the addressed CPU
following insertion of the new prefix value.

Store Status at Address:  The contents of bit
positions 1-22 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte save area. Bits 0 and 23-31 of
the parameter register are ignored.

Status of the addressed CPU is stored in the des-
ignated save area.

The order is accepted only if the addressed CPU
is in the stopped state, the save-area origin desig-
nates a location that is available in the configura-
tion, and no other condition precludes accepting
the order. Verification of the stopped state of the
addressed CPU and the availability of the desig-
nated storage is performed during the execution of
SIGNAL PROCESSOR. If accepted, the order is
not necessarily completed during the execution of
SIGNAL PROCESSOR.

The parameter register has the following format:

┌─┬────────────────────────┬─────────┐

│/│ Save-Area Origin │/////////│

└─┴────────────────────────┴─────────┘

ð 1 23 31

Figure 4-11 on page 4-44 lists the fields that are
stored in the save area, their lengths, and their
offsets from the beginning of the area.
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┌────────────────────────────┬────────┬────────┐

│ │ Length │ Byte │

│ Field │in Bytes│ Offset │

├────────────────────────────┼────────┼────────┤

│ CPU timer │ 8 │ 216 │

│ Clock comparator │ 8 │ 224 │

│ Current PSW │ 8 │ 256 │

│ Prefix │ 4 │ 264 │

│ Access registers ð-15 │ 64 │ 288 │

│ Fl-pt registers ð, 2, 4, 6 │ 32 │ 352 │

│ General registers ð-15 │ 64 │ 384 │

│ Control registers ð-15 │ 64 │ 448 │

└────────────────────────────┴────────┴────────┘

Figure 4-11. Save-Area Locations for Store-Status-at-
Address Order

The store-status-at-address order is completed as
follows.

� If the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the R± field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The save area is tested for the availability of
the designated storage. The absolute address
of the save area is formed by appending nine
zeros to the right of bits 1-22 of the parameter
value. This address is treated as a 31-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit
or 31-bit addressing mode. The 512-byte
block of storage at this address is accessed.
The access is not subject to protection, and
the associated reference bit may or may not
be set to one. If the block is not available in
the configuration, the order is not accepted by
the addressed CPU, bit 23 (invalid parameter)
of the general register designated by the R±

field of the SIGNAL PROCESSOR instruction
is set to one, and condition code 1 is set.

� Status of the addressed CPU is stored in the
save area, as indicated in Figure 4-11. Bytes
0-215, 232-255, and 268-287 of the save area
remain unchanged.

� A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

Store Extended Status at Address:  The con-
tents of bit positions 1-22 of the parameter register
of the SIGNAL PROCESSOR instruction are used

as the origin of a 512-byte save area. Bits 0 and
23-31 of the parameter register are ignored. The
contents of bit positions 1-19 of bytes 212-215 of
the save area are used as the origin of a
4096-byte extended save area. Bits 0 and 20-31
of bytes 212-215 are ignored.

Status of the addressed CPU is stored in the des-
ignated save area and extended save area.

The order is accepted only if the basic-floating-
point-extensions facility is installed, the addressed
CPU is in the stopped state, the save-area and
extended-save-area origins designate locations
that are available in the configuration, and no
other condition precludes accepting the order.
Verification of the presence of the facility, the
stopped state of the addressed CPU, and the
availability of the designated storage is performed
during the execution of SIGNAL PROCESSOR. If
accepted, the order is not necessarily completed
during the execution of SIGNAL PROCESSOR.

The parameter register has the following format:

┌─┬────────────────────────┬─────────┐

│/│ Save-Area Origin │/////////│

└─┴────────────────────────┴─────────┘

ð 1 23 31

Figure 4-12 lists the fields in the save area, their
lengths, and their offsets from the beginning of the
area. The field in byte positions 212-215 is pro-
vided by the program. The other fields are stored
during the execution of the operation specified by
the order.

┌────────────────────────────┬────────┬────────┐

│ │ Length │ Byte │

│ Field │in Bytes│ Offset │

├────────────────────────────┼────────┼────────┤

│ Extended-save-area address │ 4 │ 212 │

│ CPU timer │ 8 │ 216 │

│ Clock comparator │ 8 │ 224 │

│ Current PSW │ 8 │ 256 │

│ Prefix │ 4 │ 264 │

│ Access registers ð-15 │ 64 │ 288 │

│ Fl-pt registers ð, 2, 4, 6 │ 32 │ 352 │

│ General registers ð-15 │ 64 │ 384 │

│ Control registers ð-15 │ 64 │ 448 │

└────────────────────────────┴────────┴────────┘

Figure 4-12. Save-Area Locations for Store-Extended-
Status-at-Address Order

The extended-save-area address in bytes 212-215
of the save area has the following format:
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┌─┬────────────────────┬─────────────┐

│ │ Extended-Save-Area │ │

│/│ Origin │/////////////│

└─┴────────────────────┴─────────────┘

ð 1 2ð 31

Figure 4-13 lists the fields that are stored in the
extended-save area, their lengths, and their
offsets from the origin of the area.

┌────────────────────────────┬────────┬────────┐

│ │ Length │ Byte │

│ Field │in Bytes│ Offset │

├────────────────────────────┼────────┼────────┤

│ Fl-pt registers ð-15 │ 128 │ ð │

│ Fl-pt-control register │ 4 │ 128 │

│ Reserved (zeros stored) │ 12 │ 132 │

└────────────────────────────┴────────┴────────┘

Figure 4-13. Extended-Save Area Locations for Store-
Extended-Status-at-Address Order.

The store-extended-status-at-address order is
completed as follows.

� If the basic-floating-point-extensions facility is
not installed, the order is not accepted.
Instead, bit 30 (invalid order) of the general
register designated by the R± field of the
SIGNAL PROCESSOR instruction is set to
one, and condition code 1 is set.

� If the addressed CPU is not in the stopped
state, the order is not accepted. Instead, bit
22 (incorrect state) of the general register des-
ignated by the R± field of the SIGNAL
PROCESSOR instruction is set to one, and
condition code 1 is set.

� The save area is tested for the availability of
the designated storage. The absolute address
of the save area is formed by appending nine
zeros to the right of bits 1-22 of the parameter
value. This address is treated as a 31-bit
absolute address regardless of whether the
sending and receiving CPUs are in the 24-bit
or 31-bit addressing mode. The 512-byte
block of storage at this address is accessed.
The access is not subject to protection, and
the associated reference bit may or may not
be set to one. If the block is not available in
the configuration, the order is not accepted by
the addressed CPU, bit 23 (invalid parameter)
of the general register designated by the R±

field of the SIGNAL PROCESSOR instruction
is set to one, and condition code 1 is set.

� The extended save area is tested for the
availability of the designated storage. The

absolute address of the extended save area is
formed by appending 12 zeros to the right of
bits 1-19 of bytes 212-215 of the save area.
This address is treated as a 31-bit absolute
address regardless of whether the sending
and receiving CPUs are in the 24-bit or 31-bit
addressing mode. The 4096-byte block of
storage at this address is accessed. The
access is not subject to protection, and the
associated reference bit may or may not be
set to one. If the block is not available in the
configuration, the order is not accepted by the
addressed CPU, bit 23 (invalid parameter) of
the general register designated by the R± field
of the SIGNAL PROCESSOR instruction is set
to one, and condition code 1 is set.

� Status of the addressed CPU is stored in the
save area, as indicated in Figure 4-12 on
page 4-44, and in the extended save area as
indicated in Figure 4-13. Bytes 0-211,
232-255, and 268-287 of the save area and
bytes 144-4095 of the extended save area
remain unchanged.

� A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

 Conditions Determining
Response

Conditions Precluding Interpretation of
the Order Code
The following situations preclude the initiation of
the order. The sequence in which the situations
are listed is the order of priority for indicating con-
currently existing situations:

1. The access path to the addressed CPU is
busy because a concurrently executed
SIGNAL PROCESSOR is using the
CPU-signaling-and-response facility. The
CPU which is concurrently executing the
instruction can be any CPU in the configura-
tion other than this CPU, and the CPU
address can be any address, including that of
this CPU or an invalid address. The order is
rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is,
it is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3
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is set. This condition cannot arise as a result
of a SIGNAL PROCESSOR by a CPU
addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart,
stop-and-store-status, set-prefix, or store-
status-at-address order has been
accepted by the addressed CPU, and exe-
cution of the function requested by the
order has not yet been completed.

b. A manual start, stop, restart, or store-
status function has been initiated at the
addressed CPU, and the function has not
yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, or
store status at address, then the order is
rejected, and condition code 2 is set. If the
currently specified order is one of the reset
orders, or an unassigned or not-implemented
order, the order code is interpreted as
described in “Status Bits.”

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-CPU-reset or
CPU-reset order has been accepted by
the addressed CPU, and execution of the
function requested by the order has not
yet been completed.

b. A manual-reset function has been initiated
at the addressed CPU, and the function
has not yet been completed. This condi-
tion cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense,
external call, emergency signal, start, stop,
restart, stop and store status, set prefix, or
store status at address, then the order is
rejected, and condition code 2 is set. If the
currently specified order is one of the reset
orders, or an unassigned or not-implemented
order, either the order is rejected and condi-
tion code 2 is set or the order code is inter-
preted as described in “Status Bits.”

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as

“busy.” Busy is not indicated if the addressed CPU
is in the check-stop state or when the operator-
intervening condition exists. A CPU-busy condi-
tion is normally of short duration; however, the
conditions described in item 3 may last indefinitely
because of a string of interruptions. In this situ-
ation, however, the CPU does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed CPU has
completed a previously accepted order. This may
cause the previous order to be lost when it is only
partially completed, making unpredictable whether
the results defined for the lost order are obtained.

 Status Bits
Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status con-
ditions and their bit positions in the general reg-
ister designated by the R± field of the SIGNAL
PROCESSOR instruction are shown in
Figure 4-14.

┌──────────┬──────────────────────────┐

│ Bit │ │

│ Position │ Status Condition │

├──────────┼──────────────────────────┤

│ ð │ Equipment check │

│ 1-21 │ Unassigned; zeros stored │

│ 22 │ Incorrect state │

│ 23 │ Invalid parameter │

│ 24 │ External-call pending │

│ 25 │ Stopped │

│ 26 │ Operator intervening │

│ 27 │ Check stop │

│ 28 │ Unassigned; zero stored │

│ 29 │ Inoperative │

│ 3ð │ Invalid order │

│ 31 │ Receiver check │

└──────────┴──────────────────────────┘

Figure 4-14. Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing SIGNAL
PROCESSOR. The remaining status conditions
are generated by the addressed CPU.

When the equipment-check condition exists, bit 0
of the general register designated by the R± field
of the SIGNAL PROCESSOR instruction is set to
one, unassigned bits of the status register are set
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to zeros, and the other status bits are unpredict-
able. In this case, condition code 1 is set inde-
pendent of whether the access path to the
addressed CPU is busy and independent of
whether the addressed CPU is not operational, is
busy, or has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational
and does not indicate busy to the currently speci-
fied order, the addressed CPU presents its status
to the issuing CPU. These status bits are of two
types:

1. Status bits 22-27 and 29 indicate the pres-
ence of the corresponding conditions in the
addressed CPU at the time the order code is
received. Except in response to the sense
order, each condition is indicated only when
the condition precludes the successful exe-
cution of the specified order, although invalid
parameter is not necessarily indicated when
any other precluding condition exists. In the
case of sense, all existing status conditions
are indicated; the operator-intervening condi-
tion is indicated if it precludes the execution of
any installed order.

2. Status bits 30 and 31 indicate that the corre-
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code
0 is set at the issuing CPU; if the presented status
is not all zeros, the order has been rejected, the
status is stored at the issuing CPU in the general
register designated by the R± field of the SIGNAL
PROCESSOR instruction, zeros are stored in the
unassigned bit positions of the register, and condi-
tion code 1 is set.

The status conditions are defined as follows:

Equipment Check:  This condition exists when
the CPU executing the instruction detects equip-
ment malfunctioning that has affected only the
execution of this instruction and the associated
order. The order code may or may not have been
transmitted and may or may not have been
accepted, and the status bits provided by the
addressed CPU may be in error.

Incorrect State:  A set-prefix or store-status-at-
address order has been rejected because the
addressed CPU is not stopped. When applicable,

this status is generated during execution of
SIGNAL PROCESSOR and is indicated concur-
rently with other indications of conditions which
preclude execution of the order.

Invalid Parameter:  The parameter value sup-
plied with a set-prefix or store-status-at-address
order designates a storage location which is not
available in the configuration. When applicable,
this status is generated during execution of
SIGNAL PROCESSOR, except that it is not nec-
essarily generated when another condition pre-
cluding execution of the order also exists.

External Call Pending:  This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a pre-
viously issued SIGNAL PROCESSOR order. The
condition exists from the time an external-call
order is accepted until the resultant external inter-
ruption has been completed or a CPU reset
occurs. The condition may be due to the issuing
CPU or another CPU. The condition, when
present, is indicated only in response to sense
and to external call.

Stopped:  This condition exists when the
addressed CPU is in the stopped state. The con-
dition, when present, is indicated only in response
to sense. This condition cannot be reported as a

| result of a SIGNAL PROCESSOR instruction exe-
| cuted by a CPU addressing itself.

Operator Intervening:  This condition exists
when the addressed CPU is executing certain
operations initiated from local or remote operator
facilities. The particular manually initiated opera-
tions that cause this condition to be present
depend on the model and on the order specified.
The operator-intervening condition may exist when
the addressed CPU uses reloadable control
storage to perform an order and the required
licensed internal code has not been loaded by the
IML function. The operator-intervening condition,
when present, can be indicated in response to all
orders. Operator intervening is indicated in
response to sense if the condition is present and
precludes the acceptance of any of the installed
orders. The condition may also be indicated in
response to unassigned or uninstalled orders.
This condition cannot arise as a result of a

| SIGNAL PROCESSOR instruction executed by a
CPU addressing itself.

  Chapter 4. Control 4-47



  
 

Check Stop:  This condition exists when the
addressed CPU is in the check-stop state. The
condition, when present, is indicated only in
response to sense, external call, emergency
signal, start, stop, restart, set prefix, store status
at address, and stop and store status. The condi-
tion may also be indicated in response to unas-
signed or uninstalled orders. This condition
cannot be reported as a result of a SIGNAL

| PROCESSOR instruction executed by a CPU
addressing itself.

Inoperative:  This condition indicates that the
execution of the operation specified by the order
code requires the use of a service processor
which is inoperative. The failure of the service
processor may have been previously reported by
a service-processor-damage machine-check con-
dition. The inoperative condition cannot occur for
the sense, external-call, or emergency-signal order
code.

Invalid Order:  This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check:  This condition exists when the
addressed CPU detects malfunctioning of equip-
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When
this condition is indicated, the order has not been
initiated, and, since the malfunction may have
affected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition may or may not have
been generated at the addressed CPU.

The following chart summarizes which status con-
ditions are presented to the issuing CPU in
response to each order code.

Status Condition

31 Receiver check� ────────────────────┐

3ð Invalid order ────────────────────┐ │

29 Inoperative ────────────────────┐ │ │

27 Check stop ───────────────────┐ │ │ │

26 Operator intervening# ──────┐ │ │ │ │

25 Stopped ──────────────────┐ │ │ │ │ │

24 External call pending ──┐ │ │ │ │ │ │

23 Invalid parameter ────┐ │ │ │ │ │ │ │

22 Incorrect state ────┐ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

Order │ │ │ │ │ │ │ │ │

6 6 6 6 6 6 6 6 6

Sense ð ð X X X X ð ð X

External call ð ð X ð X X ð ð X

Emergency signal ð ð ð ð X X ð ð X

Start ð ð ð ð X X X ð X

Stop ð ð ð ð X X X ð X

Restart ð ð ð ð X X X ð X

Stop and store status ð ð ð ð X X X ð X

Initial CPU reset ð ð ð ð X ð X ð X

CPU reset ð ð ð ð X ð X ð X

Set prefix X X ð ð X X X ð X

Store status at addr. X X ð ð X X X ð X

Unassigned order ð ð ð ð X E X 1 X

 Explanation: 

# The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

≠ If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

0 A zero is presented in this bit position regard-
less of the current state of this condition.

1 A one is presented in this bit position.

X A zero or a one is presented in this bit posi-
tion, reflecting the current state of the corre-
sponding condition.

E Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets
condition code 0. If one or more ones are pre-
sented, the order has been rejected, and the
issuing CPU stores the status in the general reg-
ister designated by the R± field of the SIGNAL
PROCESSOR instruction and sets condition code
1.
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Programming Notes:

1. All SIGNAL PROCESSOR orders can be
addressed to this same CPU. The following
are examples of functions obtained by a CPU
addressing SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions
to be generated. External call can be
rejected because of a previously gener-
ated external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition
code 0, take pending interruptions for
which it is enabled, and enter the stopped
state.

e. Restart provides a means to store the
current PSW.

f. Stop and store status causes the machine
to stop and store all current status.

2. Two CPUs can simultaneously execute
SIGNAL PROCESSOR, with each CPU
addressing the other. When this occurs, one
CPU, but not both, can find the access path
busy because of the transmission of the order
code or status bits associated with SIGNAL
PROCESSOR that is being executed by the
other CPU. Alternatively, both CPUs can find
the access path available and transmit the
order codes to each other. In particular, two
CPUs can simultaneously stop, restart, or
reset each other.

3. To obtain status from another CPU which is in
the check-stop state by means of the store-
status-at-address order, a CPU reset opera-
tion should first be used to bring the CPU to
the stopped state. This reset order does not
alter the status, and, depending on the nature
of the malfunction, provides the best chance
of establishing conditions in the addressed
CPU which allow status to be obtained.
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Normally, operation of the CPU is controlled by
instructions in storage that are executed sequen-
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, SIGNAL PROCESSOR
orders, or manual intervention.

 Instructions
Each instruction consists of two major parts:

� An operation code (op code), which specifies
the operation to be performed

� The designation of the operands that partic-
ipate
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 Operands
Operands can be grouped in three classes: oper-
ands located in registers, immediate operands,
and operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,
floating-point, access, or control registers, with the
type of register identified by the op code. The
register containing the operand is specified by
identifying the register in a four-bit field, called the
R field, in the instruction. For some instructions,
an operand is located in an implicitly designated
register, the register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit or 16-bit field con-
taining the immediate operand is called the I field.

Operands in storage may have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length speci-
fied by the contents of a general register. The
addresses of operands in storage are specified by
means of a format that uses the contents of a
general register as part of the address. This
makes it possible to:

1. Specify a complete address by using an
abbreviated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received
from other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X,
and D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B
or R field may designate an access register in
addition to being used to specify an address.

To describe the execution of instructions, oper-
ands are designated as first and second operands
and, in some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first
operand. However, CONVERT TO DECIMAL,
TEST BLOCK, and instructions with “store” in the
instruction name (other than STORE THEN AND
SYSTEM MASK and STORE THEN OR SYSTEM
MASK) use the second-operand address to desig-
nate a location in which to store. TEST AND
SET, COMPARE AND SWAP, and COMPARE
DOUBLE AND SWAP may perform an update on
the second operand. Except when otherwise
stated, the contents of all registers and storage
locations participating in the addressing or exe-
cution part of an operation remain unchanged.

 Instruction Formats
An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
14 basic formats: E, RR, RRE, RRF, RX, RXE,
RXF, RS, RSI, RI, SI, S, SSE, and SS, with three

| variations of RRF and four of SS. (See
Figure 5-1 on page 5-4.)
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E Format

┌──────────────────┐

│ Op Code │

└──────────────────┘

ð 15

RR Format

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

RRE Format

┌─────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└─────────────────┴────────┴────┴────┘

ð 16 24 28 31

RRF Format

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ R± │////│ R³ │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ M³ │////│ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ R³ │ M´ │ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

RX Format

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

RXE Format

┌────────┬────┬────┬────┬──/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴──/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

RXF Format

┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐

│Op Code │ R³ │ X² │ B² │ D² │ R± │////│Op Code │

└────────┴────┴────┴────┴─/──┴────┴────┴────────┘

ð 8 12 16 2ð 32 36 4ð 47

RS Format

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Figure 5-1 (Part 1 of 2). Basic Instruction Formats

RSI Format

┌────────┬────┬────┬─────────────────┐

│Op Code │ R± │ R³ │ I² │

└────────┴────┴────┴─────────────────┘

ð 8 12 16 31

RI Format

┌────────┬────┬────┬─────────────────┐

│Op Code │ R± │OpCd│ I² │

└────────┴────┴────┴─────────────────┘

ð 8 12 16 31

SI Format

┌────────┬─────────┬────┬────────────┐

│Op Code │ I² │ B± │ D± │

└────────┴─────────┴────┴────────────┘

ð 8 16 2ð 31

S Format

┌──────────────────┬────┬────────────┐

│ Op Code │ B² │ D² │

└──────────────────┴────┴────────────┘

ð 16 2ð 31

SS Format

┌────────┬─────────┬────┬───/────┬────┬────/────┐

│Op Code │ L │ B± │ D± │ B² │ D² │

└────────┴─────────┴────┴───/────┴────┴────/────┘

ð 8 16 2ð 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐

│Op Code │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴───/────┴────┴────/────┘

ð 8 12 16 2ð 32 36 47

┌────────┬────┬────┬────┬───/────┬────┬────/────┐

│Op Code │ R± │ R³ │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴───/────┴────┴────/────┘

ð 8 12 16 2ð 32 36 47

| ┌────────┬────┬────┬────┬───/────┬────┬────/────┐

| │Op Code │ R± │ R³ │ B² │ D² │ B´ │ D´ │

| └────────┴────┴────┴────┴───/────┴────┴────/────┘

| ð 8 12 16 2ð 32 36 47

SSE Format

┌──────────────────┬────┬───/────┬────┬────/────┐

│ Op Code │ B± │ D± │ B² │ D² │

└──────────────────┴────┴───/────┴────┴────/────┘

ð 16 2ð 32 36 47

Figure 5-1 (Part 2 of 2). Basic Instruction Formats

Some instructions contain fields that vary slightly
from the basic format, and in some instructions
the operation performed does not follow the
general rules stated in this section. All of these
exceptions are explicitly identified in the individual
instruction descriptions.

Those instruction formats which are unique to
instructions associated with the vector facility are
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described in the publication IBM Enterprise
Systems Architecture/390 Vector Operations,
SA22-7207.

The format names indicate, in general terms, the
classes of operands which participate in the oper-
ation:

� E denotes an operation using implied oper-
ands and having an extended op-code field.

� RR denotes a register-and-register operation.
� RRE denotes a register-and-register operation

having an extended op-code field.
� RRF denotes a register-and-register operation

having an extended op-code field and an addi-
tional R field, M field, or both.

� RX denotes a register-and-indexed-storage
operation.

� RXE denotes a register-and-indexed-storage
operation having an extended op-code field.

� RXF denotes a register-and-indexed-storage
operation having an extended op-code field
and an additonal R field.

� RS denotes a register-and-storage operation.
� RSI denotes a register-and-immediate opera-

tion.
� RI denotes a register-and-immediate operation

having an extended op-code field.
� SI denotes a storage-and-immediate opera-

tion.
� S denotes an operation using an implied

operand and storage.
� SS denotes a storage-and-storage operation.
� SSE denotes a storage-and-storage operation

having an extended op-code field.

In the RR, RX, RS, RSI, SI, and SS formats, the
first byte of an instruction contains the op code.
In the E, RRE, RRF, S, and SSE formats, the first
two bytes of an instruction contain the op code,
except that for some instructions in the S format,
all or a portion of the second byte is ignored. In
the RI format, the op code is in the first byte and
bits 12-15 of an instruction. In the RXE and RXF
formats, the op code is in the first byte and bits
40-47 of an instruction.

The first two bits of the first or only byte of the op
code specify the length and format of the instruc-
tion, as follows:

┌─────────┬─────────────┬─────────────────────┐

│ Bit │ Instruction │ │

│Positions│ Length (in │ Instruction │

│ ð-1 │ Halfwords) │ Format │

├─────────┼─────────────┼─────────────────────┤

│ ðð │ One │ E/RR │

│ ð1 │ Two │ RX │

│ 1ð │ Two │RRE/RRF/RX/RS/RSI/RI/│

│ │ │ SI/S │

│ 11 │ Three │ RXE/RXF/SS/SSE │

└─────────┴─────────────┴─────────────────────┘

In the format illustration for each individual instruc-
tion description, the op-code field or fields show
the op code as hexadecimal digits within single
quotes. The hexadecimal representation uses 0-9
for the binary codes 0000-1001 and A-F for the
binary codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names,
consisting of a letter and possibly a subscript
number. The subscript number denotes the
operand to which the field applies.

 Register Operands
In the RR, RRE, RRF, RX, RXE, RXF, RS, RSI,
and RI formats, the contents of the register desig-
nated by the R± field are called the first operand.
The register containing the first operand is some-
times referred to as the “first-operand location,”
and sometimes as “register R±.” In the RR RRE,
and RRF formats, the R² field designates the reg-
ister containing the second operand, and the R²

field may designate the same register as R±. In
the RRF, RXF, RS, and RSI formats, the use of
the R³ field depends on the instruction.

The R field designates a general or access reg-
ister in the general instructions, a general register
in the control instructions, and a floating-point reg-
ister in the floating-point instructions. However, in
the instructions EXTRACT STACKED REGIS-
TERS and LOAD ADDRESS EXTENDED, the R
field designates both a general register and an
access register, and, in the instructions LOAD
CONTROL and STORE CONTROL, the R field
designates a control register. (This paragraph
refers only to register operands, not to the use of
access registers in addressing storage operands.)

Unless otherwise indicated in the individual
instruction description, the register operand is one
register in length (32 bits for a general, access, or
control register and 64 bits for a floating-point reg-
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ister), and the second operand is the same length
as the first.

 Immediate Operands
In the SI format, the contents of the eight-bit
immediate-data field, the I² field of the instruction,
are used directly as the second operand. The B±
and D± fields specify the first operand, which is
one byte in length.

In the RI format for the instructions ADD
HALFWORD IMMEDIATE, COMPARE
HALFWORD IMMEDIATE, LOAD HALFWORD
IMMEDIATE, and MULTIPLY HALFWORD IMME-
DIATE, the contents of the 16-bit I² field of the
instruction are used directly as a signed binary
integer; and for the instructions TEST UNDER
MASK HIGH and TEST UNDER MASK LOW, the
contents are used as a mask. The R± field speci-
fies the first operand, which is one word in length.

For the relative-branch instructions, which are in
the RI and RSI formats, the contents of the 16-bit
I² field are used as a signed binary integer desig-
nating a number of halfwords. This number, when
added to the address of the branch instruction,
specifies the branch address.

 Storage Operands
The use of B and R fields to designate access
registers to refer to storage operands is described
in “Access-Register-Specified Address Spaces” on
page 5-32.

In the SI, SS, and SSE formats, the contents of
the general register designated by the B± field are
added to the contents of the D± field to form the
first-operand address. In the S, RS, SS, and SSE
formats, the contents of the general register desig-
nated by the B² field are added to the contents of
the D² field to form the second-operand address.
In the RX format, the contents of the general reg-
isters designated by the X² and B² fields are
added to the contents of the D² field to form the
second-operand address.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored
outside the field specified by the address and
length. In this format, the second operand has the
same length as the first operand, except for the
following instructions: EDIT, EDIT AND MARK,
TRANSLATE, and TRANSLATE AND TEST.

In the SS format, with two length fields given, L±
specifies the number of additional operand bytes
to the right of the byte designated by the first-
operand address. Therefore, the length in bytes
of the first operand is 1-16, corresponding to a
length code in L± of 0-15. Similarly, L² specifies
the number of additional operand bytes to the right
of the location designated by the second-operand
address. Results replace the first operand and
are never stored outside the field specified by the
address and length. If the first operand is longer
than the second, the second operand is extended
on the left with zeros up to the length of the first
operand. This extension does not modify the
second operand in storage.

In the SS format with two R fields, the contents of
the general register specified by the R± field are a
32-bit unsigned value called the true length. The
operands are of the same length, called the effec-
tive length. The effective length is equal to the
true length or 256, whichever is less. The
instructions using this format, which are MOVE TO
PRIMARY, MOVE TO SECONDARY, and MOVE
WITH KEY, set the condition code to facilitate pro-
gramming a loop to move the total number of

| bytes specified by the true length. The SS format
| with two R fields is also used to specify one or
| two registers and one or two storage operands by
| the PERFORM LOCKED OPERATION instruction.
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 Address Generation

 Bimodal Addressing
Bit 32 of the current PSW is the addressing-mode
bit. This bit controls the size of the effective
address produced by address generation. When
bit 32 of the current PSW is zero, the CPU is in
the 24-bit addressing mode, and 24-bit instruction
and operand effective addresses are generated.
When bit 32 of the current PSW is one, the CPU
is in the 31-bit addressing mode, and 31-bit
instruction and operand effective addresses are
generated.

Execution of instructions by the CPU involves gen-
eration of the addresses of instructions and oper-
ands. This section describes address generation
as it applies to most instructions. In some
instructions, the operation performed does not
follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

 Sequential Instruction-Address
Generation
When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in
the instruction, and the instruction is executed.
The same steps are then repeated by using the
new value of the instruction address to fetch the
next instruction in the sequence.

In the 24-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 2òô - 2 being followed by the
halfword at instruction address 0. Thus, in the
24-bit addressing mode, any carry out of PSW bit
position 40, as a result of updating the instruction
address, is lost.

In the 31-bit addressing mode, instruction
addresses wrap around, with the halfword at
instruction address 2óñ - 2 being followed by the
halfword at instruction address 0. Thus, in the
31-bit addressing mode, any carry out of PSW bit
position 33, as a result of updating the instruction
address, is lost.

 Operand-Address Generation

Formation of the Intermediate Value
An operand address that refers to storage is
derived from an intermediate value, which either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 32-bit number con-
tained in a general register specified by the
program in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a
means of independently addressing each program
and data area. In array-type calculations, it can
designate the location of an array, and, in record-
type processing, it can identify the record. The
base address provides for addressing the entire
storage. The base address may also be used for
indexing.

The index (X) is a 32-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX-format instructions. The RX-format
instructions permit double indexing; that is, the
index can be used to provide the address of an
element within an array.

The displacement (D) is a 12-bit number con-
tained in a field, called the D field, in the instruc-
tion. The displacement provides for relative
addressing of up to 4,095 bytes beyond the
location designated by the base address. In
array-type calculations, the displacement can be
used to specify one of many items associated with
an element. In the processing of records, the dis-
placement can be used to identify items within a
record.

In forming the intermediate sum, the base address
and index are treated as 32-bit binary integers.
The displacement is similarly treated as a 12-bit
unsigned binary integer, and 20 zero bits are
appended on the left. The three are added as
32-bit binary numbers, ignoring overflow. The
sum is always 32 bits long and is used as an
intermediate value to form the generated address.
The bits of the intermediate value are numbered
0-31.
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A zero in any of the B±, B², or X² fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used
in forming the intermediate sum, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage,
the register contents are used as the 32-bit inter-
mediate value.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address
designates the leftmost byte of an operand in
storage.

Formation of the Operand Address
The generated operand address is always 31 bits
long, and the bits are numbered 1-31. In some
portions of this document, the generated address
may be referred to as being 32 bits long, with the
bits numbered 0-31. Bit 0 of the generated
address is always forced to be zero. The manner
in which the generated address is obtained from
the intermediate value depends on the current
addressing mode. In the 24-bit addressing mode,
bits 0-7 of the intermediate value are ignored, bits
0-7 of the generated address are forced to be
zeros, and bits 8-31 of the intermediate value
become bits 8-31 of the generated address. In
the 31-bit addressing mode, bit 0 of the interme-
diate value is ignored, bit 0 of the generated
address is forced to be zero, and bits 1-31 of the
intermediate value become bits 1-31 of the gener-
ated address.

Programming Note:  Negative values may be
used in index and base-address registers. Bit 0 of
these values is always ignored, and, in the 24-bit
addressing mode, bits 1-7 of these values are also
ignored.

 Branch-Address Generation

Formation of the Intermediate Value
For branch instructions, the address of the next
instruction to be executed when the branch is
taken is called the branch address. Depending on
the branch instruction, the instruction format may
be RI, RR, RS, RSI, or RX.

In the RS and RX formats, the branch address is
specified by a base address, a displacement, and,
for RX, an index. In the RS and RX formats, the
generation of the intermediate value follows the
same rules as for the generation of the operand-
address intermediate value.

In the RR format, the contents of the general reg-
ister designated by the R² field are used as the
intermediate value from which the branch address
is formed. General register 0 cannot be desig-
nated as containing a branch address. A value of
zero in the R² field causes the instruction to be
executed without branching.

The relative-branch instructions are in the RI and
RSI formats. In the RI and RSI formats for the
relative-branch instructions, the contents of the I²
field are treated as a 16-bit signed binary integer
designating a number of halfwords. The branch
address is the number of halfwords designated by
the I² field added to the address of the relative-
branch instruction.

The 32-bit intermediate value for a relative branch
instruction in the RI or RSI format is the sum of
two addends, with overflow ignored. The first
addend is the contents of the I² field with one zero
bit appended on the right and 15 bits equal to the
sign bit of the contents appended on the left. The
second addend is the 31-bit address of the branch
instruction with one zero bit appended on the left.
The address of the branch instruction is the
instruction address in the PSW before that
address is updated to address the next sequential
instruction, or it is the address of the target of the
EXECUTE instruction if EXECUTE is used. If
EXECUTE is used in the 24-bit addressing mode,
the address of the branch instruction is the target
address with seven zeros appended on the left.
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Formation of the Branch Address
The branch address is always 31 bits long, with
the bits numbered 1-31. The branch address
replaces bits 33-63 of the current PSW. The
manner in which the branch address is obtained
from the intermediate value depends on the
addressing mode. For those branch instructions
which change the addressing mode, the new
addressing mode is used. In the 24-bit
addressing mode, bits 0-7 of the intermediate
value are ignored, bits 1-7 of the branch address
are made zeros, and bits 8-31 of the intermediate
value become bits 8-31 of the branch address. In
the 31-bit addressing mode, bit 0 of the interme-
diate value is ignored, and bits 1-31 of the inter-
mediate value become bits 1-31 of the branch
address.

For several branch instructions, branching
depends on satisfying a specified condition.
When the condition is not satisfied, the branch is
not taken, normal sequential instruction execution
continues, and the branch address is not used.
When a branch is taken, bits 1-31 of the branch
address replace bits 33-63 of the current PSW.
The branch address is not used to access storage
as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not
recognized as part of the branch operation but
instead are recognized as exceptions associated
with the execution of the instruction at the branch
location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for
branch-address computation and as the location of
an operand. Branch-address computation is com-
pleted before the remainder of the operation is
performed.

Instruction Execution and
Sequencing
The program-status word (PSW), described in
Chapter 4, “Control” contains information required
for proper program execution. The PSW is used
to control instruction sequencing and to hold and
indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling PSW is called the current PSW.

Branch instructions perform the functions of deci-
sion making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current PSW. The relative-branch instructions
allow branching to a location at an offset of up to
plus 64K - 2 bytes or minus 64K bytes relative to
the location of the branch instruction, without the
use of a base register.

 Decision Making
Facilities for decision making are provided by
BRANCH ON CONDITION and BRANCH RELA-
TIVE ON CONDITION. These instructions inspect
a condition code that reflects the result of a
majority of the arithmetic, logical, and I/O opera-
tions. The condition code, which consists of two
bits, provides for four possible condition-code set-
tings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the
condition code remains unchanged until modified
by an instruction that causes a different condition
code to be set. See Appendix C, “Condition-Code
Settings” on page C-1 for a summary of the
instructions which set the condition code.

 Loop Control
Loop control can be performed by the use of
BRANCH ON CONDITION and BRANCH RELA-
TIVE ON CONDITION. to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith-
metic and tests, BRANCH ON COUNT, BRANCH
ON INDEX HIGH, and BRANCH ON INDEX LOW
OR EQUAL are provided, and relative-branch
equivalents of these instructions are also provided.
These branches, being specialized, provide
increased performance for these tasks.

Subroutine Linkage without the
Linkage Stack
This section describes only the methods for sub-
routine linkage that do not use the linkage stack.
For the linkage extensions provided by the linkage
stack, see “Linkage-Stack Introduction” on
page 5-57. (Those extensions include a different
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method of operation of the PROGRAM CALL
instruction and also the BRANCH AND STACK,
PROGRAM CALL FAST, and PROGRAM
RETURN instructions.)

Subroutine linkage is provided by the BRANCH
AND LINK, BRANCH AND SAVE and BRANCH
RELATIVE AND SAVE instructions, which permit
not only the introduction of a new instruction
address but also the preservation of the return
address and associated information. Instructions
are also provided which set and save the
addressing-mode bit, PSW bit 32. These
instructions provide the facility for subroutine
linkage between programs using the 24-bit and
31-bit addressing modes. Linkage between a
problem-state program and the supervisor or mon-
itoring program is provided by means of the
SUPERVISOR CALL and MONITOR CALL
instructions.

The instructions PROGRAM CALL and
PROGRAM TRANSFER provide the facility for
linkage between programs of different authority
and in different address spaces. PROGRAM
CALL permits linkage to a number of preassigned
programs that may be in either the problem or the
supervisor state and may be in either the same
address space or an address space different from
that of the caller. It permits a change of the
addressing mode, and it permits an increase of
PSW-key-mask authority, which authorizes the
execution of the SET PSW KEY FROM
ADDRESS instruction and also other functions. In
general, PROGRAM CALL is used to transfer
control to a program of higher authority.
PROGRAM TRANSFER permits a change of the
instruction address, addressing mode, and
address space. PROGRAM TRANSFER also
permits a reduction of PSW-key-mask authority
and a change from the supervisor to the problem
state. In general, it is used to transfer control
from one program to another of equal or lower
authority.

When a calling linkage is to increase authority, the
calling linkage can be performed by PROGRAM
CALL and the return linkage by PROGRAM
TRANSFER. Alternatively, when the calling
linkage is to decrease authority, the calling linkage
can be performed by PROGRAM TRANSFER and
the return linkage by PROGRAM CALL.

The operation of PROGRAM CALL is controlled
by means of an entry-table entry, which is located
as part of a table-lookup process during the exe-
cution of the instruction. The entry-table entry
specifies either a basic (nonstacking) operation or
the stacking operation described in “Linkage-Stack
Introduction” on page 5-57. The instruction
causes the primary address space to be changed
only when the ASN in the entry-table entry is
nonzero. When the primary address space is
changed, the operation is called PROGRAM CALL
with space switching (PC-ss). When the primary
address space is not changed, the operation is
called PROGRAM CALL to current primary
(PC-cp).

PROGRAM TRANSFER specifies the new
addressing mode and the address space which is
to become the new primary address space. When
the primary address space is changed, the opera-
tion is called PROGRAM TRANSFER with space
switching (PT-ss). When the primary address
space is not changed, the operation is called
PROGRAM TRANSFER to current primary
(PT-cp).

The BRANCH AND SET AUTHORITY instruction
is available when the branch-and-set-authority
facility is installed. BRANCH AND SET
AUTHORITY can improve performance by
replacing a PT-cp instruction used to perform a
calling linkage in which PSW-key-mask authority is
reduced, and by replacing a PC-cp instruction
used to perform the associated return linkage in
which PSW-key-mask authority is restored.
BRANCH AND SET AUTHORITY also permits
changes between the supervisor and problem
states, and it can replace SET PSW KEY FROM
ADDRESS by changing the PSW key during the
linkage. The calling-linkage operation is called
BRANCH AND SET AUTHORITY in the base-
authority state (BSA-ba), and the return-linkage
operation is called BRANCH AND SET
AUTHORITY in the reduced-authority state
(BSA-ra).

The BRANCH IN SUBSPACE GROUP instruction
is available when the subspace-group facility is
installed. The instruction allows linkage within a
group of address spaces called a subspace group,
where one address space in the group is called
the base space and the others are called sub-
spaces. It is intended that each subspace contain
a different subset of the storage in the base
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space, that the base space and each subspace
contain a subsystem control program, such as
CICS, and application programs, and that each
subspace contain the data for a single transaction
being processed under the subsystem control
program. The placement of the data for each
transaction in a different subspace prevents a
program that is being executed to process one
particular transaction from erroneously damaging
the data of other transactions. It is intended that
the primary address space be the base space
when the control program is being executed, and
that it be the subspace for a transaction when an
application program is being executed to process
that transaction. BRANCH IN SUBSPACE
GROUP changes not only the instruction address
in the PSW but also the primary segment-table
designation in control register 1. BRANCH IN
SUBSPACE GROUP does not change the primary
ASN in control register 4 or the
primary-ASN-second-table-entry origin in control
register 5, and, therefore, the base space and the
subspaces all are associated with the same ASN,
and the programs in those address spaces all are
of equal authority.

Although a subspace is intended to be a subset of
the base space as described above, the
subspace-group facility does not require this, and
the facility may be useful in ways other than as
described above.

BRANCH IN SUBSPACE GROUP uses an
access-list-entry token (ALET) in an access reg-
ister as an identifier of the address space that is
to receive control. The instruction saves the
updated instruction address to permit a return
linkage, but it does not save an identifier of the

address space from which control was transferred.
However, an ALET equal to 00000000 hex, called
ALET 0, can be used to return from a subspace to
the base space, and an ALET equal to 00000001
hex, called ALET 1, can be used to return from
the base space to the subspace that last had
control.

The linkage instructions provided and the func-
tions performed by each are summarized in
Figure 5-2 on page 5-12.

| The RESUME PROGRAM instruction is available
when the resume-program facility is installed.
RESUME PROGRAM is intended for use by a
problem-state interruption-handling program to
return to the interrupted program. The
interruption-handling program can use LOAD
ACCESS MULTIPLE and LOAD MULTIPLE
instructions to restore the contents of the inter-
rupted program's access and general registers
from a save area, except for the contents of one
access-and-general register pair. The interruption-
handling program then can use RESUME
PROGRAM to restore the contents of certain PSW
fields, including the instruction address, and also
the contents of the remaining access-and-general
pair from the save area, with that pair first being
used by RESUME PROGRAM to address the
save area.

| The TRAP instruction is available when the trap
| facility is installed. TRAP (TRAP2, TRAP4) can
| overlay instructions in an application program and
| give control to a trap program for performing
| fix-ups of data used by the application program.
| The RESUME PROGRAM instruction can be used
| to return control from the trap program to the
| application program.
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┌───────────┬──────┬───────────────┬───────────────┬───────────────┬───────────────┬─────────┬───────┐

│ │ │ Instruction │ Addressing │ Problem │ PASN │ │ │

│ │ │ Address │ Mode │ State │ CR4 │ PSW-Key │ │

│ │ │PSW Bits 33-63 │ PSW Bit 32 │ PSW Bit 15 │ Bits 16-31 │ Mask │ │

│ │ ├───────┬───────┼───────┬───────┼───────┬───────┼───────┬───────┤ Changed │ │

│Instruction│Format│ Save │ Set │ Save │ Set │ Save │ Set │ Save │ Set │ in CR3 │ Trace │

├───────────┼──────┼───────┼───────┼───────┼───────┼───────┼───────┼───────┼───────┼─────────┼───────┤

│ BALR\ │ RR │ Yes │ R²ñ │ AM │ - │ - │ - │ - │ - │ - │ R²ñ │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BAL\ │ RX │ Yes │ Yes │ AM │ - │ - │ - │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BASR │ RR │ Yes │ R²ñ │ Yes │ - │ - │ - │ - │ - │ - │ R²ñ │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BAS │ RX │ Yes │ Yes │ Yes │ - │ - │ - │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BASSM │ RR │ Yes │ R²ñ │ Yes │ R²ñ │ - │ - │ - │ - │ - │ R²ñ │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BRAS │ RI │ Yes │ Yes │ Yes │ - │ - │ - │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BSA-ba │ RRE │ Yes │ Yes │ Yes │ Yes │ Yes │ Yesô │ - │ - │"AND" R±õ│ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BSA-ra │ RRE │ R±ñ │ Yes │ R±ñ │ Yes │ - │ Yes │ - │ - │ Yes │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BSG │ RRE │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ -ó │ - │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ BSM │ RR │ - │ R²ñ │ R±ñ │ R²ñ │ - │ - │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ MC#ò │ SI │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ PC-cp │ S │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │"OR" EKM │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ PC-ss │ S │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │"OR" EKM │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ PT-cp │ RRE │ - │ R² │ - │ R² │ - │ R²\\ │ - │ - │"AND" R± │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ PT-ss │ RRE │ - │ R² │ - │ R² │ - │ R²\\ │ - │ Yes │"AND" R± │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

| │ RP │ S │ - │ Yes │ - │ Yes │ - │ - │ - │ - │ - │ Yes │

│ │ │ │ │ │ │ │ │ │ │ │ │

│ SVCò │ RR │ Yes │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │

│ │ │ │ │ │ │ │ │ │ │ │ │

| │ TRAP2 │ E │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │ Yes │

| │ │ │ │ │ │ │ │ │ │ │ │ │

| │ TRAP4 │ S │ Yes │ Yes │ Yes │ Yes │ Yes │ - │ - │ - │ - │ Yes │

├───────────┴──────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┴─────────┴───────┤

│Explanation: │

│ │

│ - No │

│ │

│ \ In the 24-bit addressing mode, the instruction-length code, condition code, program mask, │

│ and 24-bit instruction address are saved, and the 24-bit instruction address is set; in │

│ the 31-bit addressing mode, the addressing mode and the 31-bit instruction address are │

│ saved, and the 31-bit instruction address is set. │

│ │

│ \\ A change from the supervisor to the problem state is allowed; a privileged-operation excep- │

│ tion is recognized when a change from the problem to the supervisor state is specified. │

│ │

│ # Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected │

│ classes of events. │

│ │

│ ñ The action takes place only if the associated R field in the instruction is nonzero. │

│ │

│ ò MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW. │

│ │

│ ó The primary segment-table designation is set even though the PASN is not set. │

└────────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 5-2 (Part 1 of 2). Summary of Linkage Instructions without the Linkage Stack
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┌────────────────────────────────────────────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ ô The problem state is set. │

│ │

│ õ The PSW key also is set from general register R±. │

│ │

│ AM Saved only if the 31-bit addressing mode is specified. │

└────────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 5-2 (Part 2 of 2). Summary of Linkage Instructions without the Linkage Stack

Programming Note:  This section describes the
linkage instructions that were included in 370-XA
and carried forward to ESA/370 and ESA/390. To
give the reader a better understanding of the utility
and intended usage of these linkage instructions,
the following paragraphs in this note describe
various program linkages and conventions and the
use of the linkage instructions in these situations.

BRANCH RELATIVE AND SAVE, which is not
mentioned in the remainder of this section, may
be used in place of BRANCH AND SAVE.

The linkage instructions are provided to permit
System/370 programs to operate with no modifica-
tion or only slight modification on ESA/390
systems and also to provide additional function for
those programs which are designed to take
advantage of the 31-bit addressing of ESA/390.
The instructions provide the capability for both old
and new programs to coexist in storage and to
communicate with each other. It is assumed that
old, unmodified programs operate in the 24-bit
addressing mode and call, or directly communi-
cate with, other programs operating in the 24-bit
addressing mode only. Modified programs
normally operate in the 24-bit addressing mode
but may call programs which operate in either the
24-bit or 31-bit addressing mode. New programs
may be written to operate in either the 24-bit or
31-bit addressing mode, and, in some cases, a
program may be written such that it can be
invoked in either mode.

SUPERVISOR CALL is provided for compatibility
purposes and also because it provides the sim-
plest mechanism to call a program which operates
in the supervisor state. It has the advantage over
PROGRAM CALL that no general registers are
disturbed, that only two bytes in storage are
required in line, and that a complete change of
PSW status is provided. The return from a routine
called by SUPERVISOR CALL normally is accom-
plished by means of LOAD PSW, which is a privi-
leged instruction.

PROGRAM CALL is provided for fast communi-
cation to a program operating in the supervisor
state or higher-authority problem state, or even to
a program with the same authority. PROGRAM
CALL permits a program to call a program oper-
ating in a different address space. This would
normally be used in the situation where the
authorization index associated with the called
address space had a higher level of authority than
that of the calling address space. The advantage
of PROGRAM CALL over SUPERVISOR CALL is
in speed, since first-and second-level interruption-
handler programs are avoided. It also provides a
possible 2òð different entry points. The authori-
zation key mask in the entry-table entry permits a
particular entry point to be available to a limited
subset of the programs in the system. Thus,
some or all of the authority checking which would
otherwise have to be placed in the called program
can be eliminated. Return from a routine called
by PROGRAM CALL is normally accomplished by
means of the PROGRAM TRANSFER instruction;
however, LOAD PSW may be used if the called
routine is in the supervisor state.

PROGRAM TRANSFER is provided as the return
instruction for PROGRAM CALL. It is also useful
for calling or transferring to programs with the
same authority in another address space.
Although PROGRAM TRANSFER does not save
the current PASN, the instruction EXTRACT
PRIMARY ASN may be used to provide the PASN
for return purposes.

BRANCH AND SAVE AND SET MODE (BASSM)
is intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro-
grams. BRANCH AND SET MODE (BSM) is
intended to be the return instruction used after a
BASSM. It is assumed that an extension to the
current V-type address constant (VCON) will be
established by the assembler and linkage editor
which consists of a 31-bit entry-point address and
a leftmost bit indicating whether the entry is in the
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24-bit or 31-bit addressing mode. This extended
VCON is shown here as “VCONE.” This calling
sequence would normally be:

 L 15,VCONE

 BASSM 14,15

The return from such a routine would normally be:

 BSM ð,14

The BRANCH AND LINK (BAL, BALR) instruction
is provided primarily for compatibility reasons. It is
defined to operate in the 31-bit addressing mode
to increase the probability that an old, straightfor-
ward program can be modified to operate in the
31-bit addressing mode with minimal or no
change. It is recommended, however, that
BRANCH AND SAVE (BAS and BASR) be used
instead and that BRANCH AND LINK be avoided
since it places nonzero information in the left part
of the general register in the 24-bit addressing
mode, which may lead to problems. Additionally,
BRANCH AND LINK is likely to be slower than
BRANCH AND SAVE because BRANCH AND
SAVE always saves the right half of the PSW,
whereas BRANCH AND LINK must take additional
time to check the addressing mode, and then
even more time, if in the 24-bit addressing mode,
to construct the ILC, condition code, and program
mask to be placed in the leftmost byte of the link
register.

It is assumed that the normal return from a sub-
routine called by BRANCH AND LINK (BAL or
BALR) will be:

 BCR 15,14

However, the standard “return instruction”:

 BSM ð,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In
the 24-bit addressing mode, BAL causes an ILC of
10 to be placed in the leftmost two bits of the link
register. Thus, a BSM would return in the 31-bit
addressing mode. Note that an EXECUTE of

BALR in the 24-bit addressing mode also causes
the same ILC effect.

The BRANCH AND SAVE (BAS, BASR) instruc-
tion is provided to be used for subroutine linkage
to any program either within the same CSECT or
known to be in the same addressing mode.
BASR with the R² field 0 is also useful for
obtaining addressability to the instruction stream
by getting a 31-bit address, uncluttered by leftmost
fields, in the 24-bit addressing mode. BRANCH
AND SAVE (BAS, BASR) is the fastest linkage
instruction since the linkage information is not
addressing-mode sensitive and since the instruc-
tion does not change the addressing mode.

The return instruction from a routine called by
BRANCH AND SAVE (BAS or BASR) may be
either

 BCR 15,14

or

 BSM ð,14

In some cases, it may be desirable to rewrite a
program that is called by an old program which
has not been rewritten. In such a case, the old
program, which operates in the 24-bit addressing
mode, will be given the address of an intermediate
program that will set up the correct entry and
return modes and then call the rewritten program.
Such a program is sometimes referred to as a
glue module. The instruction BRANCH AND SET
MODE (BSM) with a nonzero R± field provides the
function necessary to perform this operation effi-
ciently. This is shown in Figure 5-3 on
page 5-15.

Note that the “BSM 14,15” in the glue module
causes the addressing mode to be saved in bit
position 0 of general register 14 and that bits 1-31
of general register 14 are unchanged. Thus,
when “BSM 0,14” is executed in the new program,
control passes directly back to the old program
without passing through the glue module again.
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┌───────────────────────────────────────────────────────────────────┐

│ │

│ Old Program Glue Module New Program │

│ │

│ L 15,OLDVCON │

│ BALR 14,15 │

│ � │

│ � │

│ � │

│ OLDVCON DC V(GLUE) │

│ GLUE USING \,15 │

│ L 15,NEWVCON │

│ BSM 14,15 │

│ NEWVCON DC V(NEW) │

│ NEW USING \,15 │

│ � │
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Figure 5-3. Glue Module

 Interruptions
Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (I/O) devices, in other
CPUs, or in the CPU itself. Details are to be
found in Chapter 6, “Interruptions.”

Six classes of interruption conditions are provided:
external, I/O, machine check, program, restart,
and supervisor call. Each class has two related
PSWs, called old and new, in permanently
assigned real storage locations. In all classes, an
interruption involves storing information identifying
the cause of the interruption, storing the current
PSW at the old-PSW location, and fetching the
PSW at the new-PSW location, which becomes
the current PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted
program. At the conclusion of the program
invoked by the interruption, the instruction LOAD
PSW may be used to restore the current PSW to
the value of the old PSW.

Types of Instruction Ending
Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
“Interruptible Instructions” on page 5-16.

 Completion
Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution of an instruction, the
instruction address in the old PSW designates the
next sequential instruction.

 Suppression
Suppression of instruction execution causes the
instruction to be executed as if it specified “no
operation.” The contents of any result fields,
including the condition code, are not changed.
The instruction address in the old PSW on an
interruption after suppression designates the next
sequential instruction.

 Nullification
Nullification of instruction execution has the same
effect as suppression, except that when an inter-
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the
old PSW designates the instruction whose exe-
cution was nullified (or an EXECUTE instruction,
as appropriate) instead of the next sequential
instruction.
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 Termination
Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation
may replace all, part, or none of the contents of
the designated result fields and may change the
condition code if such change is called for by the
instruction. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine is not affected in
any other way. The instruction address in the old
PSW on an interruption after termination desig-
nates the next sequential instruction.

Programming Note:  Although the execution of
an instruction is treated as a no-operation when
suppression or nullification occurs, stores may be
performed as the result of the implicit tracing
action associated with some instructions. See
“Tracing” on page 4-10.

 Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is per-
mitted between operations; that is, an interruption
can occur after the performance of one operation
and before the start of a subsequent operation.

For the following instructions, referred to as inter-
ruptible instructions, an interruption is permitted
also after partial completion of the instruction:

� COMPARE AND FORM CODEWORD
� COMPARE LOGICAL LONG
� COMPARE UNTIL SUBSTRING EQUAL

 � MOVE LONG
 � TEST BLOCK
 � UPDATE TREE
� Interruptible instructions of the vector facility

(see the publication IBM Enterprise Systems
Architecture/390 Vector Operations,
SA22-7207)

Unit of Operation
Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of
operation” is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

The execution of an interruptible instruction is con-
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

When an instruction execution consists of a
number of units of operation and an interruption
occurs after some, but not all, units of operation
have been completed, the instruction is said to be
partially completed. In this case, the type of
ending (completion, inhibition, nullification, or sup-
pression) is associated with the unit of operation.
In the case of termination, the entire instruction is
terminated, not just the unit of operation.

An exception may exist that causes the first unit of
operation of an interruptible instruction not to be
completed. In this case when the ending is
nullification or suppression, all operand parame-
ters and result locations remain unchanged,
except that the condition code is unpredictable if
the instruction is defined to set the condition code.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, inhibition,
nullification, or suppression of a unit of operation,
all preceding units of operation have been com-
pleted, and subsequent units of operation and
instructions have not been started. The main dif-
ference between these types of ending is the han-
dling of the current unit of operation and whether
the instruction address stored in the old PSW
identifies the current instruction or the next
sequential instruction.

At the time of an interruption, changes to register
contents, which are due to be made by an inter-
ruptible vector instruction beyond the point of
interruption, have not yet been made. Changes to
storage locations, however, which are due to be
made by an interruptible vector instruction beyond
the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter-
ruption parameters, but not for any location
beyond the last element specified by the instruc-
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tion and not for any locations for which access
exceptions exist. Changes to storage locations or
register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of inter-
ruption.

Completion:  On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old PSW designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old PSW designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution
of the interrupted instruction is resumed from the
point of interruption when the old PSW stored
during the interruption is made the current PSW.

Inhibition:  When a unit of operation is inhibited,
the instruction address in the old PSW designates
the interrupted instruction or an EXECUTE instruc-
tion, as appropriate. The result location for the
current unit of operation is not changed. The
operand parameters are adjusted such that, if the
instruction is reexecuted, execution of the inter-
rupted instruction is resumed with the next unit of
operation. Inhibition occurs only during interrup-
tible vector instructions and is described in more
detail in the publication IBM Enterprise Systems
Architecture/390 Vector Operations, SA22-7207.

Nullification:  When a unit of operation is nulli-
fied, the instruction address in the old PSW desig-
nates the interrupted instruction or an EXECUTE
instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the
interrupted instruction is resumed with the current
unit of operation.

Suppression:  When a unit of operation is sup-
pressed, the instruction address in the old PSW
designates the next sequential instruction. The
operand parameters, however, are adjusted so as
to indicate the extent to which instruction exe-
cution has been completed. If the instruction is

reexecuted after the conditions causing the sup-
pression have been removed, the execution is
resumed with the current unit of operation.

Termination:  When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old PSW designates the
next sequential instruction.

The differences among the five types of ending for
a unit of operation are summarized in Figure 5-4.

┌──────────────┬─────────────┬─────────────┬──────────────┐

│ Unit of │ Instruction │ Operand │Current Result│

│ Operation Is │ Address │ Parameters │ Location │

├──────────────┼─────────────┼─────────────┼──────────────┤

│Completed │ │ │ │

│ Last unit │Next instruc-│Depends on │Changed │

│ of oper- │ tion │ the instruc-│ │

│ ation │ │ tion │ │

│ Any other │Current in- │Next unit of │Changed │

│ unit of │ struction │ operation │ │

│ operation │ │ │ │

│ │ │ │ │

│Inhibited │Current in- │Next unit of │Unchanged │

│ │ struction │ operation │ │

│ │ │ │ │

│Nullified │Current in- │Current unit │Unchanged │

│ │ struction │ of operation│ │

│ │ │ │ │

│Suppressed │Next instruc-│Current unit │Unchanged │

│ │ tion │ of operation│ │

│ │ │ │ │

│Terminated │Next instruc-│Unpredictable│Unpredictable │

│ │ tion │ │ │

└──────────────┴─────────────┴─────────────┴──────────────┘

Figure 5-4. Types of Ending for a Unit of Operation

If an instruction is defined to set the condition
code, the execution of the instruction makes the
condition code unpredictable except when the last
unit of operation has been completed.

Condition-Code Alternative to
Interruptibility
The following instructions are not interruptible
instructions but instead may be completed after
performing a CPU-determined subportion of the
processing specified by the parameters of the
instructions:

 � CHECKSUM
� COMPARE LOGICAL STRING
� COMPARE LOGICAL LONG EXTENDED
� MOVE LONG EXTENDED

 � MOVE STRING
 � SEARCH STRING
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When any of the above instructions is completed
after performing only a CPU-determined amount of
processing instead of all specified processing, the
instruction sets condition code 3. On such com-
pletion, the instruction address in the PSW desig-
nates the next sequential instruction, and the
operand parameters of the instruction have been
adjusted so that the processing of the instruction
can be resumed simply by branching back to the
instruction to execute it again. When the instruc-
tion has performed all specified processing, it sets
a condition code other than 3.

The points at which any of the above instructions
may set condition code 3 are comparable to the
points of interruption of an interruptible instruction,
and the amount of processing between adjacent
points is comparable to a unit of operation of an
interruptible instruction. However, since the
instruction is not interruptible, each execution is
considered the execution of one unit of operation.

Completion with the setting of condition code 3
permits interruptions to occur. Depending on the
model and the instruction, condition code 3 may or
may not be set when there is not a need for an
interruption.

The COMPARE UNTIL SUBSTRING EQUAL
instruction is both an interruptible instruction and
one that may set condition code 3 after performing
a CPU-determined amount of processing.

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, I/O, machine-check, restart, and
program interruptions for access exceptions
and PER events can occur between units of
operation.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on
the type of condition which causes the exe-
cution of the instruction to be interrupted or
stopped. Thus, when an interruption occurs at
the end of the current unit of operation, the
length of the unit of operation may be different
for different types of interruptions. Also, when
the stop function is requested during the exe-
cution of an interruptible instruction, the CPU

enters the stopped state at the completion of
the execution of the current unit of operation.
Similarly, in the instruction-step mode, only a
single unit of operation is performed, but the
unit of operation for the various cases of stop-
ping may be different.

Exceptions to Nullification and
Suppression
In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception
which would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situ-
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable. The extent
of these effects is described along with each of
the situations.

All of these situations are limited to the extent that
a store access does not occur and the change bit
is not set when the store access is prohibited. For
the CPU, a store access is prohibited whenever
an access exception exists for that access, or
whenever an exception exists which is of higher
priority than the priority of an access exception for
that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the
instruction address in the old PSW designates the
next sequential instruction. When an interruption
for an exception requiring nullification occurs, the
instruction address in the old PSW designates the
instruction causing the exception even though
partial results may have been stored.

Storage Change and Restoration for
DAT-Associated Access Exceptions
In this section, the term “DAT-associated access
exceptions” is used to refer to those exceptions
which may occur as part of the dynamic-address-
translation process. These exceptions are page
translation, segment translation, translation specifi-
cation, and addressing due to a DAT-table entry
being designated at a location that is not available
in the configuration. The first two of these
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exceptions normally cause nullification, and the
last two normally cause suppression. Protection
exceptions, including those due to page pro-
tection, are not considered to be DAT-associated
access exceptions.

For DAT-associated access exceptions, on some
models, channel programs may observe the
effects on storage as described in the following
case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions
are only observable by channel programs and are
not observable by other CPUs in a multiproc-
essing configuration. Except for instructions which
are defined to have multiple-access operands, the
intermediate value, if any, is always equal to what
would have been the final value if the
DAT-associated access exception had not
occurred.

Programming Notes:

1. Storage change and restoration for
DAT-associated access exceptions occur in
two main situations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
SS-format instruction or MOVE LONG),
and the other operand, which is a store-
type operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for DAT-associated
access exceptions (especially when a CCW
chain is modified), the CPU program should
do one of the following:

a. Operate on one storage page at a time

b. Perform preliminary testing to ensure that
no exceptions occur for any of the
required pages

c. Operate with DAT off

Modification of DAT-Table Entries
When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is cleared of
entries which qualify for substitution for that entry,
an attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by
the instruction are unpredictable. Results, if any,
associated with the virtual address whose
DAT-table entry was changed may be placed in
those real locations originally associated with the
address. Furthermore, it is unpredictable whether
or not an interruption occurs for an access excep-
tion that was not initially applicable. On some
machines, this situation may be reported by
means of an instruction-processing-damage
machine check with the delayed-access-exception
bit also indicated.

Trial Execution for Editing Instructions
and Translate Instruction
For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that
are actually used in the operation may be estab-
lished in a trial execution for operand accessibility
that is performed before the execution of the
instruction is started. This trial execution consists
in an execution of the instruction in which results
are not stored. If the first operand of TRANS-
LATE or either operand of EDIT or EDIT AND
MARK is changed by another CPU or by a
channel program, after the initial trial execution but
before completion of execution, the contents of
any fields due to be changed by the instruction
are unpredictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an
access exception that was not initially applicable.

 Authorization Mechanisms
The authorization mechanisms which are
described in this section permit the control
program to establish the degree of function which
is provided to a particular semiprivileged program.
(A summary of the authorization mechanisms is
given in Figure 5-5 on page 5-23.) The authori-
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zation mechanisms are intended for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which may be authorized to use additional
capabilities. With these authorization controls, a
hierarchy of programs may be established, with
programs at a higher level having a greater
degree of privilege or authority than programs at a
lower level. The range of functions available at
each level, and the ability to transfer control from
a lower to a higher level, are specified in tables
which are managed by the control program.
When the linkage stack is used, a nonhierarchical
transfer of control also can be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or more of the authorization
mechanisms described in this section. There are
26 semiprivileged instructions and also the privi-
leged LOAD ADDRESS SPACE PARAMETERS
instruction that are controlled by the authorization

| mechanisms. All of these semiprivileged and priv-
ileged instructions are described in Chapter 10,
“Control Instructions.”

The instructions controlled by the authorization
mechanisms are listed in Figure 5-5 on
page 5-23. The figure also shows additional
authorization mechanisms that do not control spe-
cifically semiprivileged instructions; they control
implicit access-register translation (access-register
translation as part of an instruction making a
storage reference) and also access-register trans-
lation in the LOAD REAL ADDRESS, TEST
ACCESS, and TEST PROTECTION instructions.
These additional mechanisms (the extended
authorization index, ALE sequence number, and
ASTE sequence number) are described in
“Access-Register-Specified Address Spaces” on
page 5-32.

 Mode Requirements
Most of the semiprivileged instructions can be
executed only with DAT on. Basic PROGRAM
CALL, and PROGRAM TRANSFER, are valid only
in the primary-space mode. (Basic PROGRAM
CALL is the PROGRAM CALL operation when the
linkage stack is not used. When the linkage stack
is used, the PROGRAM CALL operation is called
stacking PROGRAM CALL). MOVE TO
PRIMARY and MOVE TO SECONDARY are valid
only in the primary-space and secondary-space
modes. BRANCH AND STACK, stacking

PROGRAM CALL, PROGRAM CALL FAST, and
PROGRAM RETURN are valid only in the
primary-space and access-register modes.
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE are valid only in the primary-space,
access-register, and home-space modes. When a
semiprivileged instruction is executed in an invalid
translation mode, a special-operation exception is
recognized.

PROGRAM TRANSFER specifies a new value for
the problem-state bit in the PSW. If a program in
the problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a
privileged-operation exception is recognized. A
privileged-operation exception is also recognized
on an attempt to use RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST to set the home-space
mode in the problem state.

 Extraction-Authority Control
The extraction-authority-control bit is located in bit
position 4 of control register 0. In the problem
state, bit 4 must be one to allow completion of
these instructions:

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN
� INSERT ADDRESS SPACE CONTROL
� INSERT PSW KEY
� INSERT VIRTUAL STORAGE KEY

Otherwise, a privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

 PSW-Key Mask
The PSW-key mask consists of bits 0-15 in control
register 3, with the bits corresponding to the
values 0-15, respectively, of the PSW key. These
bits are used in the problem state to control which
keys and entry points are authorized for the
program. The PSW-key mask is modified by
PROGRAM TRANSFER, is modified or loaded by
BRANCH AND SET AUTHORITY and PROGRAM
CALL, and is loaded by LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL FAST, and
PROGRAM RETURN. The PSW-key mask is
used in the problem state to control the following:

� The PSW-key values that can be set by
means of the instruction SET PSW KEY
FROM ADDRESS.
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� The PSW-key values that are valid for the five
move instructions that specify a second
access key: MOVE TO PRIMARY, MOVE TO
SECONDARY, MOVE WITH KEY, MOVE
WITH SOURCE KEY, and MOVE WITH DES-
TINATION KEY.

� The entry points which can be called by
means of PROGRAM CALL. In this case, the
PSW-key mask is ANDed with the authori-
zation key mask in the entry-table entry, and,
if the result is zero, the program is not author-
ized.

When an instruction in the problem state attempts
to use a key not authorized by the PSW-key
mask, a privileged-operation exception is recog-
nized. The same action is taken when an instruc-
tion in the problem state attempts to call an entry
not authorized by the PSW-key mask. The
PSW-key mask is not examined in the supervisor
state, all keys and entry points being valid.

 Secondary-Space Control
Bit 5 of control register 0 is the secondary-space-
control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary segment table has been
established. Bit 5 may be required to be one to
allow completion of SET ADDRESS SPACE
CONTROL FAST and must be one to allow com-
pletion of these instructions:

� MOVE TO PRIMARY
� MOVE TO SECONDARY
� SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-
nized. The secondary-space control is examined
in both the problem and supervisor states.

 Subsystem-Linkage Control
When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, bit 0 of control
register 5 is the subsystem-linkage-control bit.
When the ASF control is one, bit 96 of the primary
ASN-second-table entry is the subsystem-linkage-
control bit. The subsystem-linkage control must
be one to allow completion of these instructions:

 � PROGRAM CALL
 � PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and

controls both the space-switching and current-
primary versions of the instructions.

 ASN-Translation Control
Bit 12 of control register 14 is the
ASN-translation-control bit. This bit provides a
mechanism whereby the control program can indi-
cate whether ASN translation may occur while a
particular program is being executed. Bit 12 must
be one to allow completion of these instructions:

� LOAD ADDRESS SPACE PARAMETERS
� SET SECONDARY ASN
� PROGRAM CALL with space switching
� PROGRAM RETURN with space switching

and also when the restored secondary ASN is
not equal to the restored primary ASN

� PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog-
nized. The ASN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by
PROGRAM CALL even when PROGRAM CALL
obtains the address of the ASN-second-table entry
directly from the entry-table entry, instead of by
performing ASN translation.

 Authorization Index
| The authorization index is contained in bit posi-
| tions 0-15 of control register 4. The authorization

index is associated with the primary address
space and is loaded along with the PASN when
PROGRAM CALL with space switching,
PROGRAM CALL FAST with space switching,
PROGRAM RETURN with space switching,
PROGRAM TRANSFER with space switching, or
LOAD ADDRESS SPACE PARAMETERS is exe-
cuted. The authorization index is used to deter-
mine whether a program is authorized to establish
a particular address space. A program may be
authorized to establish the address space as a
secondary-address space, as a primary-address
space, or both. The authorization index is exam-
ined in both the problem and supervisor states.

Associated with each address space is an
authority table. The authorization index is used to
select an entry in the authority table. Each entry
contains two bits, which indicate whether the
program with that authorization index is permitted
to establish the address space as a primary
address space, as a secondary address space, or
both.
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The instruction SET SECONDARY ASN with
space switching, and the instruction PROGRAM
RETURN when the restored secondary ASN is not
equal to the restored primary ASN, use the
authorization index to test the secondary-authority
bit in the authority-table entry to determine if the
address space can be established as a secondary
address space. The tested bit must be one; oth-
erwise, a secondary-authority exception is recog-
nized.

The instruction PROGRAM TRANSFER with
space switching uses the authorization index to
test the primary-authority bit in the authority-table
entry to determine if the address space can be
established as a primary address space. The
tested bit must be one; otherwise, a primary-
authority exception is recognized.

The instruction PROGRAM CALL with space
switching causes a new authorization index to be
loaded from the ASN-second-table entry, and
PROGRAM CALL FAST causes one to be loaded
directly from the PCF-entry-table entry. This
permits the program which is called to be given an
authorization index which authorizes it to access
more or different address spaces than those
authorized for the calling program. The
instructions PROGRAM RETURN with space
switching and PROGRAM TRANSFER with space
switching restore the authorization index that is
associated with the returned-to address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-
register translation. This is described in “Access-
Register-Specified Address Spaces” on
page 5-32.

|  Program-Call-Fast Control
| The program-call-fast-control bit is located in bit
| position 28 of control register 0. Bit 28 must be
| one to allow execution of PROGRAM CALL FAST.
| When bit 28 is zero, PROGRAM CALL FAST is
| treated as a PROGRAM CALL instruction.

Access-Register and Linkage-Stack
Mechanisms
Bit 15 of control register 0 is the address-space-
function (ASF) control bit. Bit 15 must be one to
allow completion of these instructions:

� BRANCH AND SET AUTHORITY
� BRANCH AND STACK
� BRANCH IN SUBSPACE GROUP
� EXTRACT STACKED REGISTERS
� EXTRACT STACKED STATE
� MODIFY STACKED STATE
� PROGRAM CALL FAST

 � PROGRAM RETURN
 � TEST ACCESS

Otherwise, a special-operation exception is recog-
nized. The ASF control is examined in both the
problem and supervisor states and controls both
the space-switching and current-primary forms of
PROGRAM RETURN.

Under certain circumstances when the ASF
control is or has been zero, erroneous entries may
exist in the ART-lookaside buffer (ALB), and this
can cause erroneous access-register translation.
A description of the circumstances and of how to
remove the erroneous entries from the ALB
appears in “Formation of ALB Entries” on
page 5-51.

The ASF control also controls the setting of the
access-register mode by RESUME PROGRAM,
SET ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST, the avail-
ability of the stacking PROGRAM CALL operation,
control-register contents, the sizes of the entry-
table entry and ASN-second-table entry, and other
functions. A complete description of the effects of
the ASF control is in “Address-Space-Function
Control” on page 5-40.

The use of access registers also involves the
extended authorization index, ALE sequence
number, and ASTE sequence number as authori-
zation mechanisms. These are described in
“Access-Register-Specified Address Spaces” on
page 5-32.
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│tion │Op.│Mode │Ctl.÷│(ð.5)│(14.12)│(ð.4)│3.15)│4.15)│8.15)│No.ø│No.ù│(ð.15)│13.ð)│

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│Implic. │ │ A │ │ │ │ │ │ │ EA │ALQ │ASQ │ EALB │ │

│ AR │ │ │ │ │ │ │ │ │ │ │ │ │ │

│ trans. │ │ │ │ │ │ │ │ │ │ │ │ │ │

│BAKR │ │SO-PA │ │ │ │ │ │ │ │ │ │ SO │ │

│BSA-ba │ │ │ │ │ │ │ Q │ │ │ │ │ SO │ │

│BSA-ra │ │ │ │ │ │ │ │ │ │ │ │ SO │ │

│BSG │ │SO-PSAH│ │ │ │ │ │ │ │ │ASQ │ SO │ │

│EPAR │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │ │

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│EREG │ │SO-PAH │ │ │ │ │ │ │ │ │ │ SO │ │

│ESAR │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │ │

│ESTA │ │SO-PAH │ │ │ │ │ │ │ │ │ │ SO │ │

│IAC │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │ │

│IPK │ │ │ │ │ │ Q │ │ │ │ │ │ │ │

│IVSK │ │SO-PSAH│ │ │ │ Q │ │ │ │ │ │ │ │

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│LASP │ P │ │ │ │ SO │ │ │ CC │ │ │ │ Y │ CC │

│LRA │ P │ │ │ │ │ │ │ │ CCA │CCA │CCA │ │ │

│MSTA │ │SO-PAH │ │ │ │ │ │ │ │ │ │ SO │ │

│MVCDK │ │ │ │ │ │ │ Q │ │ │ │ │ │ │

│MVCK │ │ │ │ │ │ │ Q │ │ │ │ │ │ │

│MVCP │ │SO-PS │ │ SO │ │ │ Q │ │ │ │ │ │ │

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│MVCS │ │SO-PS │ │ SO │ │ │ Q │ │ │ │ │ │ │

│MVCSK │ │ │ │ │ │ │ Q │ │ │ │ │ │ │

│bPC-cp │ │SO-P │ SO │ │ │ │ Qñ │ │ │ │ │ Y │ │

│sPC-cp │ │SO-PA │ SO │ │ │ │ Qñ │ │ │ │ │ Z │ │

│bPC-ss │ │SO-P │ SO │ │ SO │ │ Qñ │ │ │ │ │ Y │ X1 │

│sPC-ss │ │SO-PA │ SO │ │ SO │ │ Qñ │ │ │ │ │ Z │ X1 │

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│PCF-cpññ│ │SO-PA │ │ │ │ │ │ │ │ │ │ SO │ │

│PCF-ssññ│ │SO-PA │ │ │ │ │ │ │ │ │ │ SO │ X1 │

│PR-cp │ │SO-PA │ │ │ SOô │ │ │ SAö │ │ │ │ SO │ │

│PR-ss │ │SO-PA │ │ │ SO │ │ │PASAö│ │ │ │ SO │ X1 │

│PT-cp │ Qò│SO-P │ SO │ │ │ │ │ │ │ │ │ │ │

│PT-ss │ Qò│SO-P │ SO │ │ SO │ │ │ PA │ │ │ │ Y │ X1 │

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│RP │ │ │ │ │ │ │ │ │ │ │ │ SOõ │ X2 │

│SAC │ Qó│SO-PSAH│ │ SO │ │ │ │ │ │ │ │ SOõ │ X2 │

│SACF │ Qó│SO-PSAH│ │ SOñð│ │ │ │ │ │ │ │ SOõ │ X2 │

│SPKA │ │ │ │ │ │ │ Q │ │ │ │ │ │ │

│SSAR-cp │ │SO-PSAH│ │ │ SO │ │ │ │ │ │ │ │ │

│SSAR-ss │ │SO-PSAH│ │ │ SO │ │ │ SA │ │ │ │ Y │ │

└────────┴───┴───────┴─────┴─────┴───────┴─────┴─────┴─────┴─────┴────┴────┴──────┴─────┘

Figure 5-5 (Part 1 of 2). Summary of Authorization Mechanisms
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┌────────┬───────────┬────────────────────────────────────────────────────────────┬─────┐

│ │ │ │ │

│ │ │ Authorization Mechanism │ │

│Func- │ ├─────┬─────┬───────┬─────┬─────┬─────┬─────┬────┬────┬──────┤Space│

│tion │ Mode │ │ │ │ │PSW- │ │Ext.-│ │ │ │Sw.- │

│or │Requirement│ │Sec.-│ASN- │Extr.│Key │Auth.│Auth.│ │ │ │Event│

│In- ├───┬───────┤Subs.│Space│Trans. │Auth.│Mask │Index│Index│ALE │ASTE│ASF │Ctl. │

│struc- │Pr.│Trans. │Link.│Ctl. │Ctl. │Ctl. │(3.ð-│(4.ð-│(8.ð-│Seq.│Seq.│Ctl. │(1.ð,│

│tion │Op.│Mode │Ctl.÷│(ð.5)│(14.12)│(ð.4)│3.15)│4.15)│8.15)│No.ø│No.ù│(ð.15)│13.ð)│

├────────┼───┼───────┼─────┼─────┼───────┼─────┼─────┼─────┼─────┼────┼────┼──────┼─────┤

│TAR │ │ │ │ │ │ │ │ │ CC │ CC │ CC │ SO │ │

│TPROT │ P │ │ │ │ │ │ │ │ CC │ CC │ CC │ │ │

└────────┴───┴───────┴─────┴─────┴───────┴─────┴─────┴─────┴─────┴────┴────┴──────┴─────┘

Figure 5-5 (Part 2 of 2). Summary of Authorization Mechanisms

Explanation for Summary of Authorization
Mechanisms: 

ñ The PSW-key mask is ANDed with the
authorization key mask in the entry-
table entry.

ò The exception is recognized on an
attempt to set the supervisor state
when in the problem state.

ó The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

ô ASN translation is performed for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

õ The exception is recognized on an
attempt to set the access-register
mode.

ö Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN
is not equal to the new PASN.

÷ Subsystem-linkage control is bit 0 of
control register 5 if the address-space-
function (ASF) control, bit 15 of control
register 0, is zero; or it is bit 96 of the
primary ASN-second-table entry if the
ASF control is one.

ø ALE sequence number is bits 8-15 of
the access-list-entry token and bits 8-15
of the access-list entry.

ù ASTE sequence number is bits 96-127
of the access-list entry and bits
160-191 of the ASN-second-table entry.

ñð Whether the exception is recognized is
unpredictable.

ññ PROGRAM CALL FAST is treated as
PROGRAM CALL if the program-call-
fast control, bit 28 of control register 0,
is zero.

A Access-register translation occurs only
in the access-register mode.

ALQ ALE-sequence exception.

ASQ ASTE-sequence exception.

bPC Basic (nonstacking) PROGRAM CALL.

CC Test results in setting a condition code.

CCA Test results in setting a condition code.
The test occurs only in the access-
register mode.

CRx.y Control register x, bit position y.

EA Extended-authority exception.

EALB When bit 15 of control register 0 is or
has been zero, erroneous ALB entries
may exist under certain circumstances.
See “Formation of ALB Entries” on
page 5-51.

P Privileged-operation exception for privi-
leged instruction.

PA Primary-authority exception.

PASA Primary-authority exception or
secondary-authority exception.

Q Privileged-operation exception for semi-
privileged instruction. Authority
checked only in the problem state.

SA Secondary-authority exception.

SO Special-operation exception.
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SO-P CPU must be in the primary-space
mode; special-operation exception if the
CPU is in the secondary-space,
access-register, home-space, or real
mode.

SO-PA CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the
secondary-space, home-space, or real
mode.

SO-PAH CPU must be in the primary-space,
access-register, or home-space mode;
special-operation exception if the CPU
is in the secondary-space or real mode.

SO-PS CPU must be in the primary-space or
secondary-space mode; special-
operation exception if the CPU is in the
home-space, access-register, or real
mode.

SO-PSAH CPU must be in the primary-space,
secondary-space, access-register, or
home-space mode; special-operation
exception if the CPU is in the real
mode.

sPC Stacking PROGRAM CALL.

X1 When bit 0 of control register 1 is one,
a space-switch event is recognized.
The operation is completed.

X2 When bit 0 of control register 1 or 13 is
one and the instruction space is
changed to or from the home address
space, a space-switch event is recog-
nized. The operation is completed.

Y The bit is tested to determine the size
of the ASTE and/or the ETE.

Z Stacking PROGRAM CALL can occur
only when the ASF control is one.

 PC-Number Translation
PC-number translation is the process of translating
the 20-bit PC number to locate an entry-table
entry as part of the execution of the PROGRAM
CALL instruction. To perform this translation, the
20-bit PC number is divided into two fields. Bits
12-23 are the linkage index (LX), and bits 24-31
are the entry index (EX). The effective address,
from which the PC-number is taken, has the fol-
lowing format:

┌────────────┬────────────┬────────┐

│////////////│ LX │ EX │

└────────────┴────────────┴────────┘

ð 12 24 31

The translation is performed by means of two
tables: a linkage table and an entry table. Both
of these tables reside in real storage. The
linkage-table designation may reside in control
register 5, or it may reside instead in a third area
in storage, called the primary ASN-second-table
entry (primary ASTE), in which case the origin of
the primary ASTE is in control register 5. The
entry table is designated by means of a linkage-
table entry.

PC-Number Translation Control
PC-number translation may be controlled by
means of a linkage-table designation in control
register 5, or it may be controlled by means of
controls in control registers 0 and 5 and a linkage-
table designation in storage.

Control Register 0
Bit 15 of control register 0 is the address-space-
function (ASF) control bit. When the ASF control
is zero, the linkage-table designation is in control
register 5, and the entry-table entry has a length
of 16 bytes. When the ASF control is one, control
register 5 contains the origin of the primary
ASN-second-table entry, the linkage-table desig-
nation is in the primary ASTE, and the entry-table
entry has a length of 32 bytes.

The ASF control has other effects also. A com-
plete description of the effects of the ASF control
is in “Address-Space-Function Control” on
page 5-40.

Control Register 5
When the ASF control in control register 0 is zero,
control register 5 contains the linkage-table desig-
nation. The register has the following format:

┌─┬────────────────────────┬───────┐

│V│ Linkage-Table Origin │ LTL │

└─┴────────────────────────┴───────┘

ð 1 25 31

Subsystem-Linkage Control (V):  Bit 0 of control
register 5 is the subsystem-linkage-control bit. Bit
0 must be one to allow completion of these
instructions:

 � PROGRAM CALL
 � PROGRAM TRANSFER
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Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and the supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

Linkage-Table Origin:  Bits 1-24 of control reg-
ister 5, with seven zeros appended on the right,
form a 31-bit real address that designates the
beginning of the linkage table.

Linkage-Table Length (LTL):  Bits 25-31 of
control register 5 specify the length of the linkage
table in units of 128 bytes, thus making the length
of the linkage table variable in multiples of 32 four-
byte entries. The length of the linkage table, in
units of 128 bytes, is one more than the value in
bit positions 25-31. The linkage-table length is
compared against the leftmost seven bits of the
linkage-index portion of the PC number to deter-
mine whether the linkage index designates an
entry within the linkage table.

When the ASF control is one, control register 5
specifies the location of the primary
ASN-second-table entry. The register has the fol-
lowing format:

┌─┬─────────────────────────┬─────┐

│ │ PASTEO │ │

└─┴─────────────────────────┴─────┘

ð 1 26 31

Primary-ASTE Origin (PASTEO):  Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASTE.

When the ASF control is one, the linkage-table
designation is in bytes 12-15 of the primary ASTE.
Thus, the subsystem-linkage control (V) is bit 0 of
bytes 12-15 of the primary ASTE, the linkage-table
origin (LTO) is bits 1-24 of bytes 12-15, and the
linkage-table length (LTL) is bits 25-31 of bytes
12-15.

PC-Number Translation Tables
The PC-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

 Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

┌─┬─────────────────────────┬──────┐

│I│ Entry-Table Origin │ ETL │

└─┴─────────────────────────┴──────┘

ð 1 26 31

The fields in the linkage-table entry are allocated
as follows:

LX Invalid Bit (I):  Bit 0 controls whether the
entry table associated with the linkage-table entry
is available.

When the bit is zero, PC-number translation pro-
ceeds by using the linkage-table entry. When the
bit is one, an LX-translation exception is recog-
nized.

Entry-Table Origin:  Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL):  When the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is zero, bits 26-31 specify the length of the
entry table in units of 64 bytes, thus making the
entry table variable in multiples of four 16-byte
entries. When the ASF control is one, bits 26-31
specify the entry-table length in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 64 or 128 bytes, is one more than the
value in bit positions 26-31. The entry-table
length is compared against the leftmost six bits of
the entry index to determine whether the entry
index designates an entry within the entry table.

 Entry-Table Entries
When the ASF control in control register 0 is zero,
the entry-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a
length of 32 bytes. The format of the 16-byte
entry-table entry is identical to that of the first 16
bytes of the 32-byte entry. The 32-byte entry-
table entry has the following format:

┌────────────────┬────────────────┐

│ Auth Key Mask │ ASN │

└────────────────┴────────────────┘

ð 16 31
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┌─┬─────────────────────────────┬─┐

│A│ Entry Instruction Address │P│

└─┴─────────────────────────────┴─┘

32 63

┌─────────────────────────────────┐

│ Entry Parameter │

└─────────────────────────────────┘

64 95

┌────────────────┬────────────────┐

│ Entry Key Mask │ │

└────────────────┴────────────────┘

96 112 127

┌─────────────────────────────────┐

│ Linkage-Stack Fields │

└─────────────────────────────────┘

128 159

┌─┬────────────────────────┬──────┐

│ │ ASTE Address │ │

└─┴────────────────────────┴──────┘

16ð 186 191

┌─────────────────────────────────┐

│ │

└─────────────────────────────────┘

192 223

┌─────────────────────────────────┐

│ │

└─────────────────────────────────┘

224 255

The fields in the entry-table entry are allocated as
follows:

Authorization Key Mask:  Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current PSW-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

| ASN:   Bits 16-31 specify whether a space-
| switching (PC-ss) operation or a to-current-primary
| (PC-cp) operation is to occur. When bits 16-31
| are zero, PC-cp is specified. When bits 16-31 are
| not all zeros, PC-ss is specified, and the bits are

the ASN that replaces the primary ASN.

Entry Addressing Mode (A):  Bit 32 replaces the
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. When
bit 32 is zero, bits 33-39 must also be zero; other-
wise, a PC-translation-specification exception is
recognized.

Entry Instruction Address:  Bits 33-62, with a
zero appended on the right, form the instruction
address which replaces the instruction address in
the PSW as part of the PROGRAM CALL opera-
tion.

Entry Problem State (P):  Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Entry Parameter:  Bits 64-95 are placed in
general register 4.

Entry Key Mask:  Bits 96-111 are ORed into the
PSW-key mask in control register 3 as part of the
PROGRAM CALL operation.

ASTE Address:  When the address-space-
function (ASF) control is one and bits 16-31 are
not all zeros, bits 161-185, with six zeros
appended on the right, form the real
ASN-second-table-entry address that should result
from applying the ASN-translation process to bits
16-31. When the ASF control is one, it is unpre-
dictable whether PC-ss uses bits 161-185 or uses
ASN translation to obtain the ASTE address.

Bits 128-159 are used in connection with the
linkage stack and are described in “Extended
Entry-Table Entries” on page 5-61.

Bits 112-127, 160, and 186-255 are reserved for
possible future extensions and should be zeros.

Programming Note:  The entry parameter is
intended to provide the called program with an
address which can be depended upon and used
as the basis of addressability in locating neces-
sary information which may be environment
dependent. The parameter may be appropriately
changed for each environment by setting up dif-
ferent entry tables. The alternative -- obtaining
this information from the calling program -- may
require extensive validity checking or may present
an integrity exposure.
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 PC-Number-Translation Process
The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation may
also require the use of the primary
ASN-second-table entry, which also resides in real
storage.

For the purposes of PC-number translation, the
20-bit PC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry
from the linkage table, the starting address and

length of which are specified by the linkage-table
designation in either control register 5 or the
primary ASTE. This entry designates the entry
table to be used. The EX field of the PC number
is then used to select an entry from the entry
table.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch
entries from the primary ASTE, linkage table, and
entry table, key-controlled protection does not
apply.

The PC-number-translation process is shown in
Figure 5-6 on page 5-29.
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 Linkage-Table Designation

in CR5 or Primary ASTE

 ┌─┬───────────┬───┐

 │V│ LTO │LTL│

 └─┴──────┬────┴───┘ PC Number

 │(x128) ┌──────┬────┐

┌────────────┘ │ LX │ EX │

│ └───┬──┴───┬┘

│ │(x4) │(xN)

│ ┌─────────────────────────────────────┘ │

│ │ │

│ 6 │

│ ┌─┐ Linkage Table │

└───5│+│ ┌──────────────────┐ │

 └┬┘ │ │ │

 │ │ │ │

 │ │ │ │

 └─5├─┬────────────┬───┤ │

 R │I│ ETO │ETL│ │

 ├─┴───────┬────┴───┤ │

 │ │(x64) │ │

 │ │ │ │

 └─────────┼────────┘ │

 │ │

┌──────────────────┘ │

│ │

│ ┌────────────────────────────────────────────┘

│ │

│ 6

│ ┌─┐ Entry Table

└───5│+│ ┌───────────────────────────────────────────────────────────────────────┐

 └┬┘ │ │

 │ │ │

 └─5├────────┬────────┬─┬──────────────┬─┬────────────────┬────────┬────────┤

 R │ AKM │ ASN │A│ IA │P│ PARM │ EKM │ │

 ├────────┴────────┼─┴──────────────┴─┼────────────────┴────────┴────────┤

│ L.-S. Fields │ ASTE Address │ │

 ├─────────────────┴──────────────────┴──────────────────────────────────┤

 │ │

 │ │

 └───────────────────────────────────────────────────────────────────────┘

N: 16 if ASF control, bit 15 of control register ð, is zero; 32 if

ASF control is one

R: Address is real

Figure 5-6. PC-Number Translation

Obtaining the Linkage-Table
Designation
When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, the linkage-
table designation is the contents of control register
5. When the ASF control is one, the linkage-table
designation is obtained from bytes 12-15 of the
primary ASN-second-table entry, the starting
address of which is specified by the contents of
control register 5.

When the ASF control is one, the 31-bit real
address of the linkage-table designation is
obtained by appending six zeros on the right to

the primary-ASTE origin, bits 1-25 of control reg-
ister 5, and adding 12. The addition cannot cause
a carry into bit position 0. All 31 bits of the
address are used, regardless of whether the
current PSW specifies the 24-bit or 31-bit
addressing mode.

When the ASF control is one, all four bytes of the
linkage-table designation are fetched concurrently
from the primary ASTE. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the linkage-table
designation designates a location which is not
available in the configuration, an addressing
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exception is recognized, and the operation is sup-
pressed. Besides the linkage-table designation,
no other field in the primary ASTE is examined.

 Linkage-Table Lookup
The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry
is obtained by appending seven zeros on the right
to the contents of bit positions 1-24 of the linkage-
table designation and adding the linkage index,
with two rightmost and 17 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored,
causing the table to wrap from 2óñ - 1 to zero.
All 31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com-
pared against the linkage-table length, bits 25-31
of the linkage-table designation, to establish
whether the addressed entry is within the linkage
table. If the value in the linkage-table-length field
is less than the value in the seven leftmost bits of
the linkage index, an LX-translation exception is
recognized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other
CPUs. The fetch access is not subject to pro-
tection. When the storage address which is gen-
erated for fetching the linkage-table entry
designates a location which is not available in the
configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the linkage-table entry specifies whether
the entry table corresponding to the linkage index
is available. This bit is inspected, and, if it is one,
an LX-translation exception is recognized.

When no exceptions are recognized in the
process of linkage-table lookup, the entry fetched
from the linkage table designates the origin and
length of the corresponding entry table.

 Entry-Table Lookup
The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to
the entry-table origin and adding: (1) if the ASF
control is zero, the entry index, with four rightmost
and 19 leftmost zeros appended; or (2) if the ASF
control is one, the entry index, with five rightmost
and 18 leftmost zeros appended. When a carry
into bit position 0 occurs during the addition, an
addressing exception may be recognized, or the
carry may be ignored, causing the table to wrap
from 2óñ - 1 to zero. All 31 bits of the address
are used, regardless of whether the current PSW
specifies the 24-bit or 31-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value in
the six leftmost bits of the entry index, an
EX-translation exception is recognized.

The 16-byte or 32-byte entry-table entry is fetched
by using the real address. The fetch of the entry
appears to be word-concurrent as observed by
other CPUs, with the leftmost word fetched first.
The order in which the remaining three or seven
words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address which is generated for fetching
the entry-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi-
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation
The exceptions which can be encountered during
the PC-number-translation process and their pri-
ority are described in the definition of the
PROGRAM CALL instruction.

Programming Note:  The linkage-table desig-
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nation is fetched successfully from the primary
ASN-second-table entry regardless of the values
of bit 0, the ASX-invalid bit, and bits 30, 31, and
60-63 in the primary ASTE. A one value of any of
these bits may cause an exception to be recog-
nized in other circumstances.

Home Address Space
Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of
a dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address
space is called the home address space of the
dispatchable unit. Different dispatchable units
may have the same or different home address
spaces. When the control program initiates a
dispatchable unit, it may set the primary and sec-
ondary address spaces equal to the home
address space of the dispatchable unit. There-
after, because of the dispatchable unit's possible
use of the PROGRAM CALL, PROGRAM CALL
FAST, PROGRAM RETURN, PROGRAM
TRANSFER, or SET SECONDARY ASN instruc-
tion, the control program normally cannot depend
on either the primary address space or the sec-
ondary address space being the home address
space when the home address space must be
accessed, for example, during the processing by
the control program of an interruption. Therefore,
the control program normally must take some
special action to ensure that the home address
space is addressed when it must be accessed.
The home-address-space facilities provide an effi-
cient means to take this action.

The home-address-space facilities include:

� The home segment-table designation (HSTD)
in control register 13. The HSTD is used by
DAT in the same way as the primary
segment-table designation (PSTD) in control
register 1 and the secondary segment-table
designation (SSTD) in control register 7.

� Home-space mode, which results when DAT
is on and the address-space control, PSW bits
16 and 17, has the value 11 binary. When
the CPU is in the home-space mode, instruc-
tion and logical addresses are home virtual

addresses and are translated by DAT by
means of the HSTD.

� The ability of the RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, and SET
ADDRESS SPACE CONTROL FAST
instructions to set the home-space mode in
the supervisor state, and the ability of the
INSERT ADDRESS SPACE CONTROL
instruction to return an indication of the home-
space mode.

� The home space-switch-event control, bit 0 of
control register 13.

� Recognition of a space-switch event upon
completion of a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET
ADDRESS SPACE CONTROL FAST instruc-
tion if the CPU was in the home-space mode
before or after the operation but not both
before and after the operation, if any of the
following is true: (1) the primary space-
switch-event control, bit 0 of control register 1,
is one, (2) the home space-switch-event
control is one, or (3) a PER event is to be
indicated.

The space-switch event can be used to enable or
disable PER or tracing when fetching of
instructions begins or ends in particular address
spaces.

 Access-Register Introduction
Many of the functions related to access registers
are described in this section and in “Subroutine
Linkage without the Linkage Stack” on page 5-9,
“Access-Register Translation” on page 5-40, and
“Sequence of Storage References” on page 5-75.
Additionally, translation modes and access-list-
controlled protection are described in Chapter 3,
“Storage”; the PER-2 means of restricting storage-
alteration events to designated address spaces
and the handling of access registers during resets
and during the store-status operation are
described in Chapter 4, “Control”; interruptions are
described in Chapter 6, “Interruptions”;
instructions are described in Chapter 7, “General
Instructions,” and Chapter 10, “Control
Instructions”; the handling of access registers
during a machine-check interruption and the pro-
grammed validation of the access registers are
described in Chapter 11, “Machine-Check
Handling”; and the alter-and-display controls for
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access registers are described in Chapter 12,
“Operator Facilities.”

 Summary
These major functions are provided:

� A maximum of 16 address spaces, including
the instruction space, for immediate and
simultaneous use by a semiprivileged
program; the address spaces are specified by
16 new registers called access registers.

� Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions,
or even a single instruction such as MOVE (MVC)
or MOVE LONG (MVCL), to operate on storage
operands in multiple address spaces, without the
requirement of changing either the translation
mode or other control information. Thus, a
program residing in one address space can use
the complete instruction set to operate on data in
that address space and in up to 15 other address
spaces, and it can move data between any and all
pairs of these address spaces. Furthermore, the
program can change the contents of the access
registers in order to access still other address
spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in Chapter 7, “General Instructions.”
They are:

 � COPY ACCESS
 � EXTRACT ACCESS
� LOAD ACCESS MULTIPLE
� LOAD ADDRESS EXTENDED

 � SET ACCESS
� STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction is used in
connection with access registers and is described
in Chapter 10, “Control Instructions.”

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST instructions
allow setting of the access-register mode, and the
INSERT ADDRESS SPACE CONTROL instruction
provides an indication of the access-register

mode. The stacking PROGRAM CALL,
PROGRAM CALL FAST, PROGRAM RETURN,
and RESUME PROGRAM instructions also allow
setting of the access-register mode. All of these
instructions are described in Chapter 10, “Control
Instructions.”

Access registers are used in a special way by the
BRANCH IN SUBSPACE GROUP instruction.
The use of access registers by that instruction is
described in detail only in the definition of the
instruction in Chapter 10, “Control Instructions.”
However, “Subspace-Group Tables” on page 5-52
describes the use of the dispatchable-unit control
table and the extended ASN-second-table entry by
BRANCH IN SUBSPACE GROUP.

 Access-Register Functions

 Access-Register-Specified Address
Spaces
The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode,
which results when DAT is on and PSW bits 16
and 17 are 01 binary, an instruction B or R field
that is used to specify the logical address of a
storage operand designates not only a general
register but also an access register. The desig-
nated general register is used in the ordinary way
to form the logical address of the storage operand.
The designated access register is used to specify
the address space to which the logical address is
relative. The access register specifies the
address space by specifying a segment-table des-
ignation for the address space, and this segment-
table designation is used by DAT to translate the
logical address. An access register specifies a
segment-table designation in an indirect way, not
by containing the segment-table designation.

An access register may specify the primary or
secondary segment-table designation in control
register 1 or 7, respectively, or it may specify a
segment-table designation contained in an
ASN-second-table entry. In the latter case, the
access register designates an entry in a table
called an access list, and the designated access-
list entry in turn designates the ASN-second-table
entry.

The process of using the contents of an access
register to obtain a segment-table designation for
use by DAT is called access-register translation
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(ART). This is depicted in Figure 5-7 on
page 5-33.

 Instruction

 ┌────────────┬───┬─────────┐ Displacement

│ │ B │ D ├──────────────────────┐

 └────────────┴┬─┬┴─────────┘ │

 │ │ │

 │ │ General Register │

In Access-Register Mode │ │ ┌────────────────────────┐ │

┌──────────────────────────┘ └─5│ Base Address │ │

│ └───────────┬────────────┘ │

│ │ │

│ Access Register 6 │

│ ┌────────────────────────┐ ┌───┐ │

└─5│ │ │ + │%───────────────┘

 └───────────┬────────────┘ └─┬─┘

 │ │

│ │ Logical Address

 6 6

 ┌─────┐ ┌─────┐

 │ │ │ │

│ ART ├──────── STD ────────5│ DAT │

 │ │ │ │

 └─────┘ └──┬──┘

 │

 6

 Real Address

Figure 5-7. Use of Access Registers

An access register is said to specify an
AR-specified address space by means of an
AR-specified segment-table designation. The
virtual addresses in an AR-specified address
space are called AR-specified virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual,
instruction addresses are primary virtual.

Designating Access Registers:  In the access-
register mode, an instruction B or R field desig-
nates an access register, for use in
access-register translation, under the following
conditions:

� The field is a B field which designates a
general register containing a base address.
The base address is used, along with a dis-
placement (D) and possibly an index (X), to
form the logical address of a storage operand.

� The field is an R field which designates a
general register containing the logical address
of a storage operand.

For example, consider the following instruction:

 MVC ð(L,1),ð(2)

The second operand, of length L, is to be moved
to the first-operand location. The logical address
of the second operand is in general register 2, and
that of the first-operand location in general register
1. The address space containing the second
operand is specified by access register 2, and that
containing the first-operand location by access

register 1. These two address spaces may be dif-
ferent address spaces, and each may be different

| from the current instruction address space (the
primary address space).

When PSW bits 16 and 17 are 01, the B field of
the LOAD REAL ADDRESS instruction designates
an access register, for use in access-register
translation, regardless of whether DAT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage oper-
ands by means of implicitly designated general
registers and access registers.

The MOVE TO PRIMARY and MOVE TO SEC-
ONDARY instructions specify storage operands by
means of primary virtual and secondary virtual
addresses, and access registers do not apply to
these instructions. An exception is recognized
when either of these instructions is executed in
the access-register mode. The MOVE WITH KEY
instruction can be used in place of MOVE TO
PRIMARY and MOVE TO SECONDARY in the
access-register mode. The MOVE WITH
SOURCE KEY and MOVE WITH DESTINATION
KEY instructions also can be used.

An instruction R field may designate an access
register for other than the purpose of access-
register translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning
of each instruction chapter.

Obtaining the Segment Table Designation:
This section and the following ones introduce the
access-register-translation process and present
the concepts related to access lists.

The segment-table designation specified by an
access register is obtained by access-register
translation as follows:

� If the access register contains 00000000 hex,
the specified segment-table designation is the
primary segment-table designation (PSTD),
obtained from control register 1.

� If the access register contains 00000001 hex,
the specified segment-table designation is the
secondary segment-table designation (SSTD),
obtained from control register 7.
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� If the access register contains any other
value, the specified segment-table designation
is obtained from an ASN-second-table entry.
The contents of the access register designate

| an access-list entry that contains the real
address of the ASN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as con-
taining 00000000 hex, and its actual contents are
not examined. Thus, a logical address specified
by means of a zero B or R field in the access-
register mode is always relative to the primary
address space, regardless of the contents of
access register 0. However, there is one excep-
tion to how access register 0 is treated: the TEST
ACCESS instruction uses the actual contents of
access register 0, instead of treating access reg-
ister 0 as containing 00000000 hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space
to be addressed, in the access-register mode,
without requiring the use of an access-list entry.
This is useful when the primary address space is
changed by a space-switching PROGRAM CALL
(PC-ss), PROGRAM CALL FAST (PCF-ss),
PROGRAM RETURN (PR-ss), or PROGRAM
TRANSFER (PT-ss) instruction. Similarly, the
treatment of an access register containing the
value 00000001 hex as designating the secondary
address space allows that space to be addressed
after a space-switching operation, again without
requiring the use of an access-list entry.

The contents of the access registers are not
changed by the PROGRAM CALL, PROGRAM
CALL FAST, and PROGRAM TRANSFER
instructions. Therefore, an access register con-
taining 00000000 or 00000001 hex may specify a
different address space after the execution of
PROGRAM CALL, PROGRAM CALL FAST, or
PROGRAM TRANSFER than before the exe-
cution. For example, if a space-switching
PROGRAM CALL instruction is executed, an
access register containing 00000000 hex specifies
the old primary address space before the exe-
cution and the new primary address space after
the execution.

When access-register translation obtains a
segment-table designation from an
ASN-second-table entry, bit 0 of the entry, the

ASX-invalid bit, must be zero; otherwise, an
exception is recognized.

Access Lists:  The access-list entry that is desig-
nated by the contents of an access register can
be located in either one of two access lists, the
dispatchable-unit access list or the primary-space
access list. A bit in the access register specifies
which of the two access lists contains the desig-
nated entry. Both of the access lists reside in real
or absolute storage. The locations of the access
lists are specified by means of control registers 2
and 5.

Control register 2 contains the origin of a real-
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation — the real origin and length — of
the dispatchable-unit access list.

When the address-space-function (ASF) control,
bit 15 of control register 0, is one, control register
5 contains the origin of a real-storage area called
the primary ASN-second-table entry. The primary
ASN-second-table entry contains the designation
of the primary-space access list, and it also con-
tains the linkage-table designation. When the
ASF control is zero, the linkage-table designation
is in control register 5.

The ASF control determines the contents of
control register 5 for the instructions LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
CALL, PROGRAM RETURN, and PROGRAM
TRANSFER. The access-register-translation
process always treats control register 5 as con-
taining the primary-ASN-second-table-entry origin
and does not examine the ASF control.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains one
of the following, depending on the model:
(1) some multiple of eight 16-byte entries, up to a
maximum of 1,024 entries, or (2) some multiple of
sixteen 16-byte entries, up to a maximum of 4,096
entries.

Programs and Dispatchable Units:  When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable
unit.” A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is some-
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times called a process or a task, is a unit of work
that is performed through the execution of a
program by one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with
the primary address space that is specified by the
primary ASN in control register 4 and the primary
segment-table designation in control register 1.
The primary-space access list that is available for
use by a dispatchable unit changes as the primary
address space of the dispatchable unit changes,
that is, whenever a program in a different primary
address space begins to be executed to perform
the dispatchable unit. Whenever a LOAD
ADDRESS SPACE PARAMETERS, PROGRAM
CALL, PROGRAM CALL FAST, PROGRAM
RETURN, or PROGRAM TRANSFER instruction
replaces the primary ASN in control register 4 and
the primary segment-table designation in control
register 1, it also replaces the
primary-ASN-second-table-entry origin in control
register 5, if the address-space-function control is
one.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described),
and the primary-space access list is a function of
which program is being executed, through being a
function of the primary address space of the
program. Also, all dispatchable units and pro-
grams in the same primary address space have
the same primary-space access list.

Access-List-Entry Token:  The contents of an
access register are called an access-list-entry
token (ALET) since, in the general case, they des-
ignate an entry in an access list. An ALET has
the following format:

┌───────┬─┬────────┬────────────────┐

│ððððððð│P│ ALESN │ ALEN │

└───────┴─┴────────┴────────────────┘

ð 7 8 16 31

The ALET contains a primary-list bit (P) that speci-
fies which access list contains the designated
access-list entry: the dispatchable-unit access list
if the bit is zero, or the primary-space access list if
the bit is one. The specified access list is called
the effective access list.

The ALET also contains an access-list-entry
number (ALEN) which, when multiplied by 16, is
the number of bytes from the beginning of the
effective access list to the designated access-list
entry. During access-register translation, an
exception is recognized if the ALEN designates an
entry that is outside the effective access list or if
the leftmost seven bits in the ALET are not all
zeros.

The access-list-entry sequence number (ALESN)
in the ALET is described in the next section.

The above format of the ALET does not apply
when the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a
general register, or in storage, and it has no
special protection from manipulation by the
problem program. Any program can transfer
ALETs back and forth among access registers,
general registers, and storage. A called program
can save the contents of the access registers in
any storage area available to it, load and use the
access registers for its own purposes, and then
restore the original contents of the access regis-
ters before returning to its caller.

Allocating and Invalidating Access-List
Entries:  It is intended that access lists be pro-
vided by the control program and that they be pro-
tected from direct manipulation by any problem
program. This protection may be obtained by
means of key-controlled protection or by placing
the access lists in real storage not accessible by
any problem program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
entry specifies an address space and can be used
by a suitably authorized program to access that
space. An invalid access-list entry is available for
allocation as a valid entry. It is intended that the
control program provide services that allocate
valid access-list entries and that invalidate previ-
ously allocated entries.
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Allocation of an access-list entry may consist in
the following steps. A problem program passes
some kind of identification of an address space to
the control program, and it passes a specification
of either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. If
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying
the subject address space, and returns to the
problem program an access-list-entry token
(ALET) that designates the allocated entry. The
problem program can subsequently place the
ALET in an access register in order to access the
address space. Later, through the use of the
invalidation service of the control program, the
access-list entry that was allocated may be made
invalid. An exception is recognized during access-
register translation if an ALET is used that desig-
nates an invalid access-list entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the first time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence
number (ALESN) is provided in both the ALET
and the access-list entry. When the control
program allocates an access-list entry, it should
place the same ALESN in the entry and in the
designating ALET that it returns to the problem
program. When the control program reallocates
an access-list entry, it should change the value of
the ALESN. An exception is recognized during
access-register translation if the ALESN in the
ALET used is not equal to the ALESN in the des-
ignated access-list entry.

The ALESN check is a reliability mechanism, not
an authority mechanism, because the ALET is not
protected from the problem program, and the
problem program can change the ALESN in the
ALET to any value. Also, this is not a fail-proof
reliability mechanism because the ALESN is one
byte and its value wraps around after 256 reallo-
cations, assuming that the value is incremented by
one for each reallocation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associ-
ated with either a dispatchable unit or a primary

address space, the valid entries in the list are
intended to be associated with the different pro-
grams that are executed, in some order, to
perform the work of the dispatchable unit. It is
intended that each program be able to have a par-
ticular authority that permits the use of only those
access-list entries that are associated with the
program. The authority being referred to here is
represented by a 16-bit extended authorization
index (EAX) in control register 8. Other elements
used in the related authorization mechanism are:
(1) a private bit in the access-list entry, (2) an
access-list-entry authorization index (ALEAX) in
the access-list entry, and (3) the authority table.

A program is authorized to use an access-list
entry, in access-register translation, if any of the
following conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real address of
the ASN-second-table entry (ASTE) for the
address space, and the ASTE contains the
real address of the authority table. This con-
dition provides another means, less well-
performing than condition 2, for authorizing
only particular programs. However, providing
for condition 3 to be met instead of condition 2
can be advantageous because it permits
several programs, each executed with a dif-
ferent EAX, all to use a single access-list
entry to access a particular address space.

Access-register translation tests for the three con-
ditions in the order indicated by their numbers,
and a higher-numbered condition is not tested for
if a lower-numbered condition is met. An excep-
tion is recognized if none of the conditions is met.

Figure 5-8 on page 5-37 shows an example of
how the authorization mechanism can be used. In
the figure, “PBZ” means that the private bit is
zero, and “PBO” means that the private bit is one.
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The figure shows an access list — assume it is a
dispatchable-unit access list — in which the
entries of interest are entries 4, 7, 9, and 12.
Each access-list entry contains a private bit, an
ALEAX, and the real address of the ASTE for an
address space. The private bit in entry 4 is zero,
and, therefore, the value of the ALEAX in entry 4
is immaterial and is not shown. The private bits in
entries 7, 9, and 12 are ones, and the ALEAX
values in these entries are as shown. The
numbers used to identify the address spaces (36,
25, 62, and 17) are arbitrary. They may be the
ASNs of the address spaces; however, ASNs are
in no way used in access-register translation.
Only the authority table for address space 17 is
shown. In it, the secondary bit selected by EAX
10 is one. Assume that no secondary bits are
ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro-
grams, named A, B, and C, that is executed to
perform the work of the dispatchable unit associ-
ated with the access list. These programs may be
in the same or different address spaces. The
EAX in control register 8 when each of these pro-
grams is executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since

the private bit in ALE 4 is zero. Program B can
use ALE 7 to access space 25 because the
ALEAX in the ALE equals the EAX for the
program, and no other program can use this ALE.
Similarly, only program C can use ALE 9.
Program B can use ALE 12 because the ALEAX
and EAX are equal, and program C can use it
because C's EAX selects a secondary bit that is
one in the authority table for space 17.

The example would be the same if programs A, B,
and C were all in the same address space and the
access list were the primary-space access list for
that space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by
any program, regardless of the value of the
current EAX. An ALE in which the private bit is
one may be called private because the ability of a
program to use the ALE depends on the current
EAX.

Notes on the Authorization Mechanism:  An
access list is a kind of capability list, in the sense
in which the word “capability” is used in computer
science. It is up to the control program to formu-
late the policies that are used to allocate entries in
an access list, and the programmed authorization
checking required during allocation may be very

 Access List

 ┌─────────────────┐

/ / ASTE for Space 36

 ├─────────────────┤ ┌─────────────────┐

4│ PBZ ├────5│ │

 ├─────────────────┤ └─────────────────┘

/ / ASTE for Space 25

 ├─────────────────┤ ┌─────────────────┐

 7│ PBO, ALEAX = 5 ├────5│ │

 ├─────────────────┤ └─────────────────┘

/ / ASTE for Space 62

 ├─────────────────┤ ┌─────────────────┐

 9│ PBO, ALEAX = 1ð ├────5│ │

 ├─────────────────┤ └─────────────────┘

/ / ASTE for Space 17 Authority Table

├─────────────────┤ ┌─────────────────┐ ┌─────────────────┐

12│ PBO, ALEAX = 5 ├────5│ ├────5│S bit selected by│

├─────────────────┤ └─────────────────┘ │EAX 1ð is one. │

 / / └─────────────────┘

 └─────────────────┘

 Program A Program B Program C

┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐

│ EAX = ð │%───5│ EAX = 5 │%───5│ EAX = 1ð │

└─────────────────┘ └─────────────────┘ └─────────────────┘

Figure 5-8. Example of Authorizing the Use of Access-List Entries
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complex and lengthy. After a valid entry has been
made in an access list, the access-register-
translation process enforces the control-program
policies in a well-performing way by means of the
authorization mechanism described above.

Using access lists has an advantage over using
only ASNs and authority tables. For example,
assume that an access register could contain an
ASN and that access-register translation would do
ASN translation of the ASN and then use the EAX
to test the authority table. This would make the
EAX relevant to all existing address spaces, and,
therefore, it would make the management of EAXs
and their assignment to programs more difficult.
With the actual definitions of the ALET and
access-register translation, an EAX is relevant to
only the address spaces that are represented in
the current dispatchable-unit and primary-space
access lists. Also, since ASN translation is not
done as a part of access-register translation, the
number of concurrently existing address spaces,
as represented by ASN-second-table entries, can
be greater than the number of available ASNs
(64K).

The extended entry-table entry and linkage stack
can be used to assign EAXs to programs and to
change the EAX in control register 8 during
program linkages. These components are intro-
duced in “Linkage-Stack Introduction” on
page 5-57.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 0-15 of control reg-
ister 4, can play a role in the use of access regis-
ters. The space-switching form of SET
SECONDARY ASN (SSAR-ss) establishes a new
secondary address space if the secondary bit
selected by the AX is one in the authority table
associated with the new secondary space. The
secondary space can be addressed by means of
an ALET having the value 00000001 hex.

Revoking Accessing Capability:  Another mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an
ASN-second-table-entry sequence number
(ASTESN), and so does the ASTE designated by
the ALE when the ASTE is extended to 64 bytes,

as it is when the address-space-function control is
one. During access-register translation, the
ASTESN in the ALE must equal the ASTESN in
the designated ASTE; otherwise, an exception is
recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated
ASTE into the ALE. Subsequently, the control
program can, in effect, revoke the addressing
capability represented by the ALE by changing the
ASTESN in the ASTE. Changing the ASTESN in
the ASTE makes all previously usable ALEs that
designate the ASTE unusable.

Making an ALE unusable may be required in
either of two cases:

1. Some element of the control-program policy
for determining the authority of a program to
have access to the address space specified
by the ASTE has changed. This may mean
that some or all of the programs that were
authorized to the address space, and for
which ALEs have been allocated, are no
longer authorized.

Changing the ASTESN in the ASTE ends the
usability of all ALEs that designate the ASTE.
If this revocation of capability is to be selec-
tive, then, when an exception is recognized
because of unequal ASTESNs, the control
program can reapply its programmed proce-
dures for determining authorization, and an
ALE which should have remained usable can
be made usable again by copying the new
ASTESN into it. When the usability of an ALE
is restored, the control program normally
should cause reexecution of the instruction
that encountered the exception.

2. The ASTE has been reassigned to specify a
conceptually different address space, and
ALEs which specified the old address space
must not be allowed to specify the new one.
(Bit 0 of the ASTE, the ASX-invalid bit, can be
set to one to delete the assignment of the
ASTE to an address space, and this prevents
the use of the ASTE in access-register trans-
lation. But after reassignment, bit 0 normally
again is zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and
as an integrity mechanism in the second.
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The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALEs that designate each ASTE. Furthermore, it
avoids the need of searching through these
access lists in order to find the ALEs and set them
invalid, to prevent the use of the ALEs in access-
register translation. The latter activity could be
particularly time-consuming, or could present a
particularly difficult management problem, because
the access lists could be in auxiliary storage, such
as a direct-access storage device, when the need
arises to invalidate the ALEs.

The ASTESN is a four-byte field. Assuming a rea-
sonable frequency of authorization-policy changes
or address-space reassignments, the approxi-
mately four billion possible values of the ASTESN
provide a fail-proof authority or integrity mech-
anism over the lifetime of the system.

Preventing Store References:  The access-list
entry contains a fetch-only bit which, when one,
specifies that the access-list entry cannot be used
to perform storage-operand store references. The
principal description of the effect of the fetch-only
bit is in “Access-List-Controlled Protection” on
page 3-11.

Improving Translation Performance:  Access-
register translation (ART) conceptually occurs
each time a logical address is used to reference a
storage operand in the access-register mode. To
improve performance, ART normally is imple-
mented such that some or all of the information
contained in the ART tables (access-list-
designation sources, access lists, ASN second
tables, and authority tables) is maintained in a
special buffer referred to as the ART-lookaside
buffer (ALB). The CPU necessarily refers to an
ART-table entry in real storage only for the initial
access to that entry. The information in the entry
may be placed in the ALB, and subsequent trans-
lations may be performed using the information in
the ALB.

The PURGE ALB instruction can be used to clear
all information from the ALB after a change has
been made to an ART-table entry in real storage.

 Access-Register Instructions
The following instructions are provided for exam-
ining and changing the contents of access regis-
ters:

 � COPY ACCESS
 � EXTRACT ACCESS
� LOAD ACCESS MULTIPLE
� LOAD ADDRESS EXTENDED

 � SET ACCESS
� STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the con-
tents of a specified access register with the con-
tents of a specified general register. Conversely,
the EXTRACT ACCESS instruction moves the
contents of an access register to a general reg-
ister. The COPY ACCESS instruction moves the
contents of one access register to another.

The LOAD ACCESS MULTIPLE instruction loads
a specified set of consecutively numbered access
registers from a specified storage location whose
length in words equals the number of access reg-
isters loaded. Conversely, the STORE ACCESS
MULTIPLE instruction function stores the contents
of a set of access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that
it loads a specified general register with an effec-
tive address specified by means of the B, X, and
D fields of the instruction. In addition, LOAD
ADDRESS EXTENDED operates on the access
register having the same number as the general
register loaded. When the address-space control,
PSW bits 16 and 17, is 00, 10, or 11 binary,
LOAD ADDRESS EXTENDED loads the access
register with 00000000, 00000001, or 00000002
hex, respectively. When the address space
control is 01 binary, LOAD ADDRESS
EXTENDED loads the target access register with
a value that depends on the B field of the instruc-
tion. If the B field is zero, LOAD ADDRESS
EXTENDED loads the target access register with
00000000 hex. If the B field is nonzero, LOAD
ADDRESS EXTENDED loads the target access
register with the contents of the access register
designated by the B field. However, in the last
case when bits 0-6 of the access register desig-
nated by the B field are not all zeros, the results in
the target general register and access register are
unpredictable.
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The address-space-control values 00, 01, 10, and
11 binary specify primary-space, access-register,
secondary-space, and home-space mode, respec-
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the
access-register values 00000000 and 00000001
hex specify the primary and secondary address
spaces, respectively, and the value 00000002 hex
designates entry 2 in the dispatchable-unit access
list. Loading the target access register with
00000002 hex when the address-space control is
11 binary is intended to support assignment, by
the control program, of entry 2 in the dispatchable-
unit access list as specifying the home address
space.

 Access-Register Translation
Access-register translation is introduced in
“Access-Register-Specified Address Spaces” on
page 5-32.

 Access-Register-Translation
Control
Access-register translation is controlled by an
address-space control, by the address-space-
function (ASF) control in control register 0, and by
controls in control registers 2, 5, and 8. The
address-space control, PSW bits 16 and 17, is
described in “Translation Modes” on page 3-28.
The other controls are described below.

Additional controls are located in the access-
register-translation tables.

 Address-Space-Function Control
Bit 15 of control register 0 is the address-space-
function (ASF) control. This bit must be one when
a RESUME PROGRAM, SET ADDRESS SPACE
CONTROL, or SET ADDRESS SPACE CONTROL
FAST instruction that is to set the access-register
mode is executed, and when a BRANCH AND
SET AUTHORITY, BRANCH AND STACK,
BRANCH IN SUBSPACE GROUP, EXTRACT
STACKED REGISTERS, EXTRACT STACKED
STATE, MODIFY STACKED STATE, PROGRAM
CALL FAST, PROGRAM RETURN, or TEST
ACCESS instruction is executed; otherwise, a
special-operation exception is recognized.

When the ASF control is one:

� PC-number translation obtains the linkage-
table designation from the primary
ASN-second-table entry by first obtaining the
primary-ASTE origin from control register 5,
instead of obtaining the linkage-table desig-
nation from control register 5.

� PC-number translation treats the length of the
entry-table entry as changed from 16 bytes to
32 bytes.

� ASN translation treats the boundary alignment
and length of the ASN-second-table entry as
changed from 16 bytes to 64 bytes.

Access-register translation always treats control
register 5 as containing the primary-ASTE origin
and always treats the ASN-second-table entry
designated by an access-list entry as being 64
bytes, and, for these purposes, it does not
examine the ASF control. However, when the
ASF control is or has been zero, erroneous entries
may exist in the ART-lookaside buffer (ALB), and,
therefore, access-register translation may be per-
formed erroneously; see “Formation of ALB
Entries” on page 5-51.

Also when the ASF control is one:

� PROGRAM CALL with space switching may
obtain the address of an ASN-second-table
entry from the entry-table entry used, instead
of obtaining it by means of ASN translation.

� LOAD ADDRESS SPACE PARAMETERS,
when it performs PASN translation, and also
the space-switching forms of PROGRAM
CALL and PROGRAM TRANSFER place the
origin of the new primary ASTE in control reg-
ister 5 instead of placing a linkage-table desig-
nation in that register. (PROGRAM RETURN
requires that the ASF control be one. A
space-switching PROGRAM RETURN also
places the new primary-ASTE origin in control
register 5.)

Control Register 2
The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

┌─┬─────────────────────────┬─────┐

│ │ DUCTO │ │

└─┴─────────────────────────┴─────┘

ð 1 26 31
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 Dispatchable-Unit-Control-Table Origin
(DUCTO):  Bits 1-25 of control register 2, with six
zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register
translation may obtain the dispatchable-unit
access-list designation from the dispatchable-unit
control table.

Control Register 5
The location of the primary ASN-second-table
entry is specified in control register 5. The reg-
ister has the following format:

┌─┬─────────────────────────┬─────┐

│ │ PASTEO │ │

└─┴─────────────────────────┴─────┘

ð 1 26 31

Primary-ASTE Origin (PASTEO):  Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates
the beginning of the primary ASN-second-table
entry. Access-register translation may obtain the
primary-space access-list designation from the
primary ASTE. The primary-ASTE origin is set by
LOAD ADDRESS SPACE PARAMETERS when it
performs PASN translation and by the space-
switching forms of PROGRAM CALL, PROGRAM
CALL FAST, PROGRAM RETURN, and
PROGRAM TRANSFER. When any of these
instructions places the primary-ASTE origin in
control register 5, it also places zeros in bit posi-
tions 0 and 26-31 of control register 5.

When the ASF control is zero, LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, and
PROGRAM TRANSFER treat control register 5 as
containing the linkage-table designation. Access-
register translation treats control register 5 as con-
taining the primary-ASTE origin regardless of the
value of the ASF control.

When control register 5 contains the
primary-ASTE origin, bits 0 and 26-31 of the reg-
ister are subject to possible future assignment,
and they should not be depended upon to be
zeros.

Control Register 8
The extended authorization index is in control reg-
ister 8. The register has the following format:

┌────────────────┬───

│ EAX │

└────────────────┴───

ð 16

Extended Authorization Index (EAX):  Bits 0-15
of control register 8 are the extended authorization
index. During access-register translation, the EAX
may be compared against the access-list-entry
authorization index (ALEAX) in an access-list
entry, and it may be used as an index to locate a
secondary bit in an authority table. The EAX may
be set by a stacking PROGRAM CALL operation,
and it is restored by PROGRAM RETURN.

 Access Registers
There are sixteen 32-bit access registers num-
bered 0-15. The contents of an access register
are called an access-list-entry token (ALET). An
ALET has the following format:

┌───────┬─┬────────┬────────────────┐

│ððððððð│P│ ALESN │ ALEN │

└───────┴─┴────────┴────────────────┘

ð 7 8 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P):  When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the
access list to be used by access-register trans-
lation. When bit 7 is zero, the dispatchable-unit
access list is used; this is specified by the
dispatchable-unit access-list designation in the
dispatchable-unit control table designated by the
contents of control register 2. When bit 7 is one,
the primary-space access list is used; this is spec-
ified by the primary-space access-list designation
in the primary ASTE designated by the contents of
control register 5.

Access-List-Entry Sequence Number
(ALESN):  Bits 8-15 may be used as a check on
whether the access-list entry designated by the
ALET has been invalidated and reallocated since
the ALET was obtained. During access-register
translation when the ALET is not 00000000 or
00000001 hex, bits 8-15 of the ALET are com-
pared against the access-list-entry sequence
number (ALESN) in the designated access-list
entry.

Access-List-Entry Number (ALEN):  When the
ALET is not 00000000 or 00000001 hex, bits
16-31 of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space
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access list, as determined by bit 7. The access-
list designation that is used is called the effective
access-list designation; it consists of the effective
access-list origin and the effective access-list
length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real or absolute address specified by the
effective access-list origin, and the result is the
real or absolute address of the designated access-
list entry. The ALEN is compared against the
effective access-list length to determine whether
the designated access-list entry is within the list,
and an ALEN-translation exception is recognized if
the entry is outside the list. Although the largest
possible value of the ALEN is 65,535, an access
list can contain at most 1,024 or 4,096 entries,
depending on the model.

Bits 0-6 must be zeros during access-register
translation; otherwise, an ALET-specification
exception is recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-
register translation as containing 00000000 hex,
and its actual contents are not examined; the
access-register translation done as part of TEST
ACCESS is the only exception. Access register 0
is also treated as containing 00000000 hex when
it is designated by the B field of LOAD ADDRESS
EXTENDED when PSW bits 16 and 17 are 01
binary. When access register 0 is specified for
TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, or STORE
ACCESS MULTIPLE, the actual contents of the
access register are used. Access register 0, like
any other access register, can be loaded by
COPY ACCESS, LOAD ACCESS MULTIPLE,
LOAD ADDRESS EXTENDED, and SET
ACCESS.

Another definition of ALETs 00000000 and
00000001 hex is given in “BRANCH IN SUB-
SPACE GROUP” on page 10-12.

 Access-Register-Translation
Tables
When the ALET being translated is not 00000000
or 00000001 hex, access-register translation per-
forms a two-level lookup to locate first the effec-
tive access-list designation and then an entry in
the effective access list. The effective access-list
designation resides in real storage. The effective
access list resides in real or absolute storage.

Access-register translation uses an address in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry resides in real storage.
The authority table resides in real or absolute
storage.

Authority-table entries are described in “Authority-
Table Entries” on page 3-24. Access-list desig-
nations, access-list entries, and ASN-second-table
entries are described in the following sections.

| Dispatchable-Unit-Control Table and
| Access-List Designations

When the ALET being translated is not 00000000
or 00000001 hex, access-register translation
obtains the dispatchable-unit access-list desig-
nation if bit 7 of the ALET is zero, or it obtains the
primary-space access-list designation if bit 7 is
one. The obtained access-list designation is
called the effective access-list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte
area called the dispatchable-unit control table
(DUCT). The DUCT resides in real storage, and
its location is specified by the DUCT origin in
control register 2.

The dispatchable-unit control table has the fol-
lowing format:
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 Hex Dec

──────────┬───────────────────┐

 ð ð │ BASTEO │

──────────┼─┬─────────────────┤

 │S│ │

 4 4 │A│ SSASTEO │

──────────┼─┴─────────────────┤

 8 8 │ │

──────────┼───────────────────┤

 C 12 │ SSASTESN │

──────────┼───────────────────┤

1ð 16 │ DUALD │

──────────┼───────────────────┤

 14 2ð │ │

 18 24 │ │

──────────┼───────────────────┤

 1C 28 │///////////////////│

──────────┼─┬─────────────────┤

 2ð 32 │A│ Return Address │

──────────┼─┴───────┬───┬─┬─┬─┤

|  24 36 │ PSW Key │PSW│R│ │ │

|  │ Mask │Key│A│ │P│

──────────┼─────────┴───┴─┴─┴─┤

 28 4ð │ │

──────────┼──────────────┬──┬─┤

 2C 44 │Trap-Control- │ │ │

│Block Address │ │E│

──────────┼──────────────┴──┴─┤

|  3ð 48 │ │

 / /

 3C 6ð │ │

──────────┴───────────────────┘

Bytes 0-7 (BASTEO, SA, and SSASTEO) and
12-15 (SSASTESN) of the DUCT are described in
“Subspace-Group Dispatchable-Unit Control
Table” on page 5-53. Bytes 32-39 (A, return
address, PSW key mask, PSW key, RA, and P)
are described in “BRANCH AND SET
AUTHORITY” on page 10-6. Bytes 44-47 (trap-
control-block address and E) are described in
“TRAP” on page 10-106. Bytes 8-11, 20-27,
40-43, and 48-63 are reserved for possible future
extensions and should contain all zeros. Bytes
28-31 are available for use by programming.

The primary-space access-list designation
(PSALD) is located in bytes 16-19 of a 64-byte
area called the primary ASN-second-table entry.
The primary ASTE resides in real storage, and its
location is specified by the primary-ASTE origin in
control register 5. The format of the primary
ASTE is described in “Extended
ASN-Second-Table Entries” on page 5-45.

The dispatchable-unit and primary-space access-
list designations both have the same format.

There are two possible formats of the access-list
designation, called format 0 and format 1. A
model implements one or the other of these two
formats but not both; that is, the access-list-
designation format that is available is model-
dependent, and no control is provided by which
the program can specify the format. A model pro-
vides no special indication of the format that it
implements.

The two possible formats of the access-list desig-
nation are as follows.

Format-0 Access-List Designation
┌─┬────────────────────────┬───────┐

│ │ Access-List Origin │ ALL │

└─┴────────────────────────┴───────┘

ð 1 25 31

The fields in the format-0 access-list designation
are allocated as follows:

Access-List Origin:  Bits 1-24 of the format-0
access-list designation, with seven zeros
appended on the right, form a 31-bit address that
designates the beginning of the access list. This
address is treated unpredictably as either a real
address or an absolute address.

Access-List Length (ALL):  Bits 25-31 of the
format-0 access-list designation specify the length
of the access list in units of 128 bytes, thus
making the length of the access list variable in
multiples of eight 16-byte entries. The length of
the access list, in units of 128 bytes, is one more
than the value in bit positions 25-31. The access-
list length, with six zeros appended on the left, is
compared against bits 0-12 of an access-list-entry
number (bits 16-28 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Format-1 Access-List Designation
┌─┬───────────────────────┬────────┐

│ │ Access-List Origin │ ALL │

└─┴───────────────────────┴────────┘

ð 1 24 31

The fields in the format-1 access-list designation
are allocated as follows:

  Chapter 5. Program Execution 5-43



  
 

Access-List Origin:  Bits 1-23 of the format-1
access-list designation, with eight zeros appended
on the right, form a 31-bit address that designates
the beginning of the access list. This address is
treated unpredictably as either a real address or
an absolute address.

Access-List Length (ALL):  Bits 24-31 of the
format-1 access-list designation specify the length
of the access list in units of 256 bytes, thus
making the length of the access list variable in
multiples of sixteen 16-byte entries. The length of
the access list, in units of 256 bytes, is one more
than the value in bit positions 24-31. The access-
list length, with four zeros appended on the left, is
compared against bits 0-11 of an access-list-entry
number (bits 16-27 of an access-list-entry token)
to determine whether the access-list-entry number
designates an entry in the access list.

Bit 0 is reserved for a possible future extension
and should be zero.

Programming Note:  The maximum number of
access-list entries allowed by a format-0 or
format-1 access-list designation is 1,024 or 4,096,
respectively. There are two access lists available
for use at any time. Therefore, if a model imple-
ments the format-0 access-list designation, a
maximum of 2,048 2G-byte address spaces can
be addressable without control-program inter-
vention, which is a total of 4T bytes; and if a
model implements the format-1 access-list desig-
nation, a maximum of 8,192 2G-byte address
spaces can be addressable without control-
program intervention, which is a total of 16T bytes.

 Access-List Entries
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7
is one. The entry fetched from the effective
access list is 16 bytes in length and has the fol-
lowing format:

┌─┬───┬─┬─┬────────┬────────────────┐

│ │ │F│ │ │ │

│I│ │O│P│ ALESN │ ALEAX │

└─┴───┴─┴─┴────────┴────────────────┘

ð 1 6 7 8 16 31

┌───────────────────────────────────┐

│ │

└───────────────────────────────────┘

32 63

┌─┬──────────────────────────┬──────┐

│ │ ASTE Address │ │

└─┴──────────────────────────┴──────┘

64 9ð 95

┌───────────────────────────────────┐

│ ASTESN │

└───────────────────────────────────┘

96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I):  Bit 0, when zero, indicates
that the access-list entry specifies an address
space. When bit 0 is one during access-register
translation, an ALEN-translation exception is
recognized.

Fetch-Only Bit (FO):  Bit 6 controls which types
of operand references are permitted to the
address space specified by the access-list entry.
When bit 6 is zero, both fetch-type and store-type
references are permitted. When bit 6 is one, only
fetch-type references are permitted, and an
attempt to store causes a protection exception for
access-list-controlled protection to be recognized
and the operation to be suppressed.

Private Bit (P):  Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-List-Entry Sequence Number
(ALESN):  Bits 8-15 are compared against the
ALESN in the ALET during access-register trans-
lation. Inequality causes an ALE-sequence excep-
tion to be recognized. It is intended that the
control program change bits 8-15 each time it real-
locates the access-list entry.

Access-List-Entry Authorization Index
(ALEAX):  Bits 16-31 may be used to determine
whether the program for which access-register
translation is being performed is authorized to use
the access-list entry. The program is authorized if
any of the following conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori-
zation index (EAX) in control register 8.
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3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

 ASN-Second-Table-Entry (ASTE) Address: Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTE for the speci-
fied address space. Access-register translation
obtains the segment-table designation for the
address space from the ASTE.

ASTE Sequence Number (ASTESN):  Bits
96-127 may be used to revoke the addressing
capability represented by the access-list entry.
Bits 96-127 are compared against an ASTE
sequence number (ASTESN) in the designated
ASTE during access-register translation.

| Bits 1-5, 32-64, and 90-95 are reserved for pos-
sible future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0
and 1 are intended not to be used in access-
register translation. Bits 1-127 of access-list entry
0 and bits 1-63 of access-list entry 1 are reserved
for possible future extensions and should be
zeros. Bit 0 of access-list entries 0 and 1, and
bits 64-127 of access-list entry 1, are available for
use by programming. The control program should
set bit 0 of access-list entries 0 and 1 to one in
order to prevent the use of these entries by
means of ALETs in which the ALEN is 0 or 1.

Extended ASN-Second-Table Entries
When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in ASN
translation. Also, the ASN second table begins on
a 64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the
ASN-second-table entry as being 64 bytes on a
64-byte boundary, and access-register translation
does not examine the ASF control. The first 32
bytes of the 64-byte ASTE have the following
format:

┌─┬───────────────────────────┬─┬─┐

│I│ ATO │ð│B│

└─┴───────────────────────────┴─┴─┘

ð 1 3ð 31

┌───────────────┬────────────┬────┐

│ AX │ ATL │ðððð│

└───────────────┴────────────┴────┘

32 48 6ð 63

┌───────────────STD───────────────┐

┌─┬──────────────┬──┬─┬─┬─┬───────┐

│X│ STO │ │G│P│S│ STL │

└─┴──────────────┴──┴─┴─┴─┴───────┘

64 84 86 89 95

┌───────────────LTD───────────────┐

┌─┬────────────────────────┬──────┐

│V│ LTO │ LTL │

└─┴────────────────────────┴──────┘

96 121 127

┌──────────Format-ð ALD───────────┐

┌─┬───────────────────────┬───────┐

│ │ ALO │ ALL │

└─┴───────────────────────┴───────┘

128 153 159

┌──────────Format-1 ALD───────────┐

┌─┬──────────────────────┬────────┐

│ │ ALO │ ALL │

└─┴──────────────────────┴────────┘

128 152 159

┌─────────────────────────────────┐

│ ASTESN │

└─────────────────────────────────┘

16ð 191

┌─────────────────────────────────┐

│ │

└─────────────────────────────────┘

192 223

┌─────────────────────────────────┐

│/////////////////////////////////│

└─────────────────────────────────┘

224 255

The fields in bit positions 0-127 of the ASTE are
defined with respect to certain mechanisms and
instructions in “ASN-Second-Table Entries” on
page 3-19. The fields in the ASTE are defined
with respect to the BRANCH IN SUBSPACE
GROUP instruction in “Subspace-Group
ASN-Second-Table Entries” on page 5-54. With
respect to access-register translation only, and
only for an instruction other than BRANCH IN
SUBSPACE GROUP, the fields in the ASTE are
allocated as follows:
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ASX-Invalid Bit (I):  Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero, access-register trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized.

Authority-Table Origin (ATO):  Bits 1-29, with
two zeros appended on the right, form a 31-bit
address that designates the beginning of the
authority table. This address is treated unpredict-
ably as either a real address or an absolute
address, although it is treated as a real address
for ASN authorization. The authority table is
accessed in access-register translation only if the
private bit in the access-list entry is one and the
access-list-entry authorization index (ALEAX) in
the access-list entry is not equal to the extended
authorization index (EAX) in control register 8.

Base-Space Bit (B):  Bit 31 is ignored during
access-register translation if the subspace-group
facility is installed and the ASF control is one. If
the subspace-group facility is not installed or the
ASF control is zero, bit 31 must be zero; other-
wise, an ASN-translation-specification exception
may be recognized. Bit 31 is further described in
“Subspace-Group ASN-Second-Table Entries” on
page 5-54.

Authorization Index (AX):  Bits 32-47 are not
used in access-register translation.

Authority-Table Length (ATL):  Bits 48-59
specify the length of the authority table in units of
four bytes, thus making the authority table variable
in multiples of 16 entries. The length of the
authority table, in units of four bytes, is one more
than the ATL value. The contents of the ATL field
are used to establish whether the entry designated
by a particular EAX is within the authority table.
An extended-authority exception is recognized if
the entry is not within the table.

Segment-Table Designation (STD):  Bits 65-95
are obtained as the result of access-register trans-
lation and are used by DAT to translate the logical
address for the storage-operand reference being
made. Bit 64, the space-switch-event control, is
not used in or as a result of access-register trans-
lation.

Linkage-Table Designation (LTD):  Bits 96-127
are not used in access-register translation.

Access-List Designation (ALD):  When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.
The PSALD is a format-0 ALD or a format-1 ALD,
depending on the model.

ASN-Second-Table-Entry Sequence Number
(ASTESN):  Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized. It is
intended that the control program change the
value of bits 160-191 when the authorization poli-
cies for the address space specified by the ASTE
change or when the ASTE is reassigned to specify
another address space.

Bits 30, 31, and 60-63 must be zeros during
access-register translation if the authority table is
to be accessed; otherwise, an ASN-translation-
specification exception may be recognized.

Bits 84, 85, 128, and 192-223 are reserved for
possible future extensions and should be zeros.
Bits 224-255 are available for use by program-
ming. The second 32 bytes of the 64-byte ASTE
also are reserved for possible future extensions
and should contain all zeros.

 Access-Register-Translation
Process
This section describes the access-register-
translation process as it is performed during a
storage-operand reference in the access-register
mode. LOAD REAL ADDRESS when PSW bits
16 and 17 are 01 binary, TEST ACCESS in any
translation mode, and TEST PROTECTION in the
access-register mode, perform access-register
translation the same as described here, except
that the following exceptions cause a setting of the
condition code instead of being treated as
program-interruption conditions:

 � ALET specification
 � ALEN translation
 � ALE sequence
 � ASTE validity
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 � ASTE sequence
 � Extended authority

BRANCH IN SUBSPACE GROUP performs
access-register translation as described in
“BRANCH IN SUBSPACE GROUP” on
page 10-12.

Access-register translation operates on the access
register designated in a storage-operand reference
in order to obtain a segment-table designation for
use by DAT. When one of access-registers 1-15
is designated, the access-list-entry token (ALET)
that is in the access register is used to obtain the
segment-table designation. When access register
0 is designated, an ALET having the value
00000000 hex is used, except that TEST
ACCESS uses the actual contents of access reg-
ister 0.

When the ALET is 00000000 or 00000001 hex,
the primary or secondary segment-table desig-
nation, respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the
ALET are checked for zeros, the primary-list bit in
the ALET and the contents of control register 2 or
5 are used to obtain the effective access-list des-
ignation, and the access-list entry number (ALEN)
in the ALET is used to select an entry in the effec-
tive access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of
one or more of: (1) the private bit and access-list-
entry authorization index (ALEAX) in the access-
list entry, (2) the extended authorization index
(EAX) in control register 8, and (3) an entry in the
authority table addressed by the
ASN-second-table entry.

If a store-type reference is to be performed, the
fetch-only bit in the access-list entry is checked for
being zero.

When no exceptions are recognized, the segment-
table designation in the ASN-second-table entry is
obtained.

In order to avoid the delay associated with refer-
ences to real or absolute storage, the information
fetched from real or absolute storage normally is
also placed in a special buffer, the ART-lookaside
buffer (ALB), and subsequent translations
involving the same information may be performed
by using the contents of the ALB. The operation
of the ALB is described in “ART-Lookaside Buffer”
on page 5-51.

Whenever access to real or absolute storage is
made during access-register translation for the
purpose of fetching an entry from an access-list-
designation source, access list, ASN second table,
or authority table, key-controlled protection does
not apply.

The principal features of access-register trans-
lation, including the effect of the ALB, are shown
in Figure 5-9 on page 5-48.

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated,
or for the access register designated by the R±

field of TEST ACCESS, access-register translation
uses the access-list-entry token (ALET) that is in
the access register. When access register 0 is
designated, except for TEST ACCESS, an ALET
having the value 00000000 hex is used, and the
contents of access register 0 are not examined.

Obtaining the Primary or Secondary
Segment-Table Designation
When the ALET being translated is 00000000 hex,
the primary segment-table designation in control
register 1 is obtained. When the ALET is
00000001 hex, the secondary segment-table des-
ignation in control register 7 is obtained. In each
of these two cases, access-register translation is
completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET
are checked for being all zeros. If bits 0-6 are not
all zeros, an ALET-specification exception is
recognized, and the operation is suppressed.
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Access-List Designation ALET in Access Register Control Register 1

┌─┬────────────────┬────┐ ┌─┐ ┌────┬─┬─────┬──────────┐ ┌─────────────────┐

│ │ ALO │ALL │%────┤1│ │ │P│ALESN│ ALEN │ │ PSTD │

└─┴────────┬───────┴────┘ └─┘ └────┴─┴──┬──┴────┬─────┘ └────────┬────────┘

 │ │ │ │

┌──────────┘ │ │ ┌────────────┘

│ ┌───────────────────────────────────────────┼───────┘ │

│ │ │ │ Control Register 7

│ 6 └─────────────────────┐ │ ┌─────────────────┐

│ ┌─┐ Access List │ │ │ SSTD │

└─5│+│ ┌──────────────────────────────────────────────────┐ │ │ └────────┬────────┘

 └┬┘ │ │ │ │ │

 │ │ │ │ │ ┌────────┘

 │ ├─┬─┬─┬─────┬─────┬──────────┬──────────┬──────────┤ │ │ │

│ │ │F│ │ │ │ │ │ │ │ │ │

└──5│I│O│P│ALESN│ALEAX│ │ASTE Addr.│ ASTESN │ │ │ │

 ├─┴┬┴┬┴────┬┴──┬──┴──────────┴─────┬────┴────┬─────┤ │ │ │

 │ │ │ │ │ │ │ │ │ │ │

 └──┼─┼─────┼───┼───────────────────┼─────────┼─────┘ │ │ │

 6 6 │ │ │ │ │ │ │

 ┌──────┐ ┌────┐│ │ │ │ ┌────┐ │ │ │

│=ð if │ │ =ð?│└───┼───────────────────┼─────────┼──────5│ =? │%──┘ │ │

 │store?│ └────┘ │ │ │ └────┘ │ │

 └──────┘ │ │ │ │ │

CR 8 │ │ │ │ │

┌───────┬───────┐ │ │ │ │ │

│ EAX │ │ │ │ │ │ │

└───┬───┴───────┘ │ │ │ │ │

 │ │ │ │ │ │

 │ ┌────┐ │ │ │ ┌────┐ │ │

┌───┴────5│ =? │%──────┘ │ └────5│ =? │%───┐ │ │

│ └────┘ │ └────┘ │ │ │

│ │ │ │ │

│ ┌─────────────────────────────────────┘ │ │ │

│ │ │ │ │

│ │ ASN-Second-Table Entry │ │ │

│ │ ┌─┬─────────────┬──────┬──────┬────────────┬──────────┬─────┴────┬──/ │ │

│ └─5 │I│ ATO │ │ ATL │ STD │ │ ASTESN │ │ │

│ └─┴─────┬───────┴──────┴──────┴─────┬──────┴──────────┴──────────┴──/ │ │

└───────┐ │ │ │ │

 │ │(x 4) └────────────────────────────────┐ │ │

┌───────┼────────┘ ┌─────────┐ 6 6 6

│ │(x 1/4) ┌─┐ │ │ ┌─────────────┐

│ 6 │2├────5│ ALB ├───────────────────5│ 3 │

│ ┌─┐ Authority Table └─┘ │ │ └──────┬──────┘

└─────5│+│ ┌───┐ └─────────┘ │

 └┬┘ │ │ 6

 │ ├─┬─┤ ┌─────────────┐

└──5│P│S│ │Obtained STD │

 ├─┴─┤ └─────────────┘

 │ │

 └───┘

Explanation:

 ┌─┐ The appropriate ALD is obtained:

 │1│ When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.

 └─┘ When P in the ALET is one, the PSALD in the primary ASTE is obtained.

 ┌─┐ Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search

 │2│ the ALB. This information, along with information from the ALE, ASTE, and ATE, may be

 └─┘ placed in the ALB.

 ┌─┐ The appropriate STD is obtained:

 │3│ When the ALET is zero, the PSTD in CR 1 is obtained.

 └─┘ When the ALET is one, the SSTD in CR 7 is obtained.

When the ALET is larger than one:

If a match exists, the STD from the ALB is used.

If no match exists, tables from real or absolute storage are fetched. The resulting STD from the

ASTE is obtained, and entries may be formed in the ALB.

Figure 5-9. Access-Register Translation
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Obtaining the Effective Access-List
Designation
The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes
16-19 of the dispatchable-unit control table
(DUCT). When bit 7 is one, the effective ALD is
the primary-space ALD located in bytes 16-19 of
the primary ASN-second-table entry (primary
ASTE).

| When bit 7 is zero, the 31-bit real address of the
dispatchable-unit ALD is obtained by appending
six zeros on the right to the DUCT origin, bits 1-25
of control register 2, and adding 16. The addition

| cannot cause a carry into bit position 0.

| When bit 7 is one, the 31-bit real address of the
primary-space ALD is obtained by appending six
zeros on the right to the primary-ASTE origin, bits
1-25 of control register 5, and adding 16. The

| addition cannot cause a carry into bit position 0.

The obtained 31-bit real address is used to fetch
the effective ALD—either the dispatchable-unit
ALD or the primary-space ALD, depending on bit
7 of the ALET. The fetch of the effective ALD
appears to be word-concurrent, as observed by
other CPUs, and is not subject to protection.
When the storage address that is generated for
fetching the effective ALD refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the oper-
ation is suppressed. When the primary-space
ALD is fetched, bit 0, the ASX-invalid bit, and bits
30, 31, and 60-63 in the primary ASTE are
ignored.

 Access-List Lookup
A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary-space access list if bit 7 is one. The
effective access list is treated unpredictably as
being in either real or absolute storage.

The access-list-entry-number (ALEN) portion of
the ALET is used to select an entry in the effective
access list. If the format-0 ALD is implemented,
the real or absolute address of the access-list
entry is obtained by appending seven zeros on the
right to bits 1-24 of the effective ALD and adding
the ALEN to this value. If the format-1 ALD is

implemented, the real or absolute address of the
access-list entry is obtained by appending eight
zeros on the right to bits 1-23 of the effective ALD
and adding the ALEN to this value. For these
additions, the ALEN is extended with four right-
most zeros and 11 leftmost zeros. In either case,
when a carry into bit position 0 occurs during the
addition, an addressing exception may be recog-
nized, or the carry may be ignored, causing the

| access list to wrap from 2óñ - 1 to zero. The
result is a 31-bit real or absolute address.

As part of the access-list-lookup process if the
format-0 ALD is implemented, the leftmost 13 bits
of the ALEN are compared against the effective
access-list length, bits 25-31 of the effective ALD,
to establish whether the addressed entry is within
the access list. For this comparison, the access-
list length is extended with six leftmost zeros. If
the value formed from the access-list length is
less than the value in the 13 leftmost bits of the
ALEN, an ALEN-translation exception is recog-
nized, and the operation is nullified. If the
format-1 ALD is implemented, the leftmost 12 bits
of the ALEN are compared against bits 24-31 of
the effective ALD. For this comparison, the
access-list length is extended with four leftmost
zeros. If the value formed from the access-list
length is less than the value in the 12 leftmost bits
of the ALEN, an ALEN-translation exception is
recognized, and the operation is nullified.

The 16-byte access-list entry is fetched by using
the real or absolute address. The fetch of the
entry appears to be word-concurrent as observed
by other CPUs, with the leftmost word fetched
first. The order in which the remaining three
words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address that is generated for fetching the
access-list entry refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by
designating an ASN-second-table entry. This bit
is inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the
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access-list entry is compared against the ALESN
in the ALET to determine whether the ALET desig-
nates the conceptually correct access-list entry.
Inequality causes an ALE-sequence exception to
be recognized and the operation to be nullified.

Locating the ASN-Second-Table Entry
The ASN-second-table-entry (ASTE) address in
the access-list entry is used to locate the ASTE.
Bits 65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real
address of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be
word-concurrent as observed by other CPUs, with
the leftmost word fetched first. The order in which
the remaining words are fetched is unpredictable.
The fetch access is not subject to protection.
When the storage address that is generated for
fetching the ASTE refers to a location which is not
available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the ASTE indicates whether the ASTE
specifies an address space. This bit is inspected,
and, if it is one, an ASTE-validity exception is
recognized, and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions
96-127 of the access-list entry to determine
whether the addressing capability represented by
the access-list entry has been revoked. Inequality
causes an ASTE-sequence exception to be recog-
nized and the operation to be nullified.

Authorizing the Use of the Access-List
Entry
The private bit, bit 7, in the access-list entry is
used to determine whether the program is author-
ized to use the access-list entry. The access-list-
entry authorization index (ALEAX) in bit positions
16-31 of the access-list entry, the extended
authorization index (EAX) in bit positions 0-15 of
control register 8, and the authority table desig-
nated by the ASTE may also be used.

When the private bit is zero, the program is
authorized, and the authorization step of access-
register translation is completed.

When the private bit is one but the ALEAX is
equal to the EAX, the program is authorized, and
the authorization step of access-register trans-
lation is completed.

When the private bit is one and the ALEAX is not
equal to the EAX, bits 30, 31, and 60-63 of the
ASTE must be zeros; otherwise, an
ASN-translation-specification exception may be
recognized, which would cause the operation to
be suppressed. A one value of bit 31 does not
cause an exception to be recognized if the
subspace-group facility is installed and the ASF
control is one.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended
authorization uses the EAX to select an entry in
the authority table designated by the ASTE, and it
tests the secondary-authority bit in the selected
entry for being one. The program is authorized if
the tested bit is one.

Extended authorization is the same as the
secondary-ASN-authorization process described

| in“ASN Authorization” on page 3-23 , except as
follows:

� The authority-table origin is treated as a real
or absolute address instead of as a real
address.

� The EAX in control register 8 is used instead
of the authorization index (AX) in control reg-
ister 4.

� When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority
exception is recognized instead of a
secondary-authority exception. The operation
is nullified if the extended-authority exception
is recognized.

When the private bit is one, the ALEAX is not
equal to the EAX, and the secondary bit in the
authority-table entry selected by the EAX is not
one, an extended-authority exception is recog-
nized, and the operation is nullified.
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Checking for Access-List-Controlled
Protection
If a store-type reference is to be performed and
the fetch-only bit, bit 6, in the access-list entry is
one, a protection exception is recognized, and the
operation is suppressed.

Obtaining the Segment-Table
Designation from the
ASN-Second-Table Entry
When the ALET being translated is other than
00000000 or 00000001 hex and no exception is
recognized in the steps described above, access-
register translation obtains the segment-table des-
ignation from bit positions 65-95 of the ASTE. Bit
64 of the ASTE, the space-switch-event control, is
ignored.

Recognition of Exceptions during
Access-Register Translation
The exceptions which can be encountered during
the access-register-translation process and their
priority are shown in the section “Access
Exceptions” in Chapter 6, “Interruptions.”

Programming Note:  When updating an access-
list entry or ASN-second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost
word is fetched first, that words of a partially
updated entry will not be fetched.

 ART-Lookaside Buffer

To enhance performance, the access-register-
translation (ART) mechanism normally is imple-
mented such that access-list designations and
information specified in access lists, ASN second
tables, and authority tables are maintained in a
special buffer, referred to as the ART-lookaside
buffer (ALB). Access-list designations, access-list
entries, ASN-second-table entries, and authority-
table entries are collectively referred to as
ART-table entries. The CPU necessarily refers to
an ART-table entry in real or absolute storage only
for the initial access to that entry. The information
in the entry may be placed in the ALB, and subse-
quent ART operations may be performed using
the information in the ALB. The presence of the
ALB affects the ART process to the extent that a
modification of an ART-table entry in real or abso-
lute storage does not necessarily have an imme-

diate effect, if any, on the translation. In a
multiple-CPU configuration, each CPU has its own
ALB.

Entries within the ALB are not explicitly address-
able by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is
possible. Furthermore, information in the ALB
may be cleared under conditions additional to
those for which clearing is mandatory.

 ALB Structure
The description of the logical structure of the ALB
covers the implementation by all systems oper-
ating as defined by ESA/390. The ALB entries
are considered as being of four types: ALB
access-list designations (ALB ALDs), ALB access-
list entries (ALB ALEs), ALB ASN-second-table
entries (ALB ASTEs), and ALB authority-table
entries (ALB ATEs). An ALB entry is considered
as containing within it both the information
obtained from the ART-table entry in real or abso-
lute storage and the attributes used to fetch the
ART-table entry from real or absolute storage.
There is not an indication in an ALB ALD of
whether the ALD-source origin used to select the
ALD in real storage was the dispatchable-unit-
control-table origin or the primary-ASTE origin.

Formation of ALB Entries
The formation of ALB entries and the effect of any
manipulation of an ART-table entry in real storage
by the program depend on whether the ART-table
entry is attached to a particular CPU and on
whether the entry is valid.

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register trans-
lation. The ART-table entry may be attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-
table entries have no invalid bit and are always
valid. The primary-space access-list designation
is valid regardless of the value of the invalid bit in
the primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.
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An access-list designation is attached to a CPU
when the designation is within the dispatchable-
unit control table specified by the dispatchable-
unit-control-table origin in control register 2 or is
within the primary ASTE specified by the
primary-ASTE origin in control register 5. Control
register 5 is considered to contain the
primary-ASTE origin regardless of the value of the
address-space-function (ASF) control, bit 15 of
control register 0; however, see the note below.

An access-list entry is attached to a CPU when
the entry is within the access list specified by
either an ALB ALD or an attached ALD.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE address in
either an ALB ALE or an attached and valid ALE.

An authority-table entry is attached to a CPU
when it is within the authority table designated by
either an ALB ASTE or an attached and valid
ASTE.

Note:  During the execution of a PROGRAM
CALL, PROGRAM TRANSFER, or LOAD
ADDRESS SPACE PARAMETERS instruction that
loads control register 5 when the ASF control is
zero, an unpredictable access-list-designation
(ALD) may be placed in the ALB. This unpredict-
able ALB ALD may then be used at any time to
place other entries (ALE, ASTE, and ATE) in the
ALB. If access-register translation uses any of
these erroneous ALB entries, the results are
unpredictable. These specific erroneous entries
are removed from the ALB either by clearing the
entire ALB or by the execution of (1) a
PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, PROGRAM TRANSFER, or
LOAD ADDRESS SPACE PARAMETERS instruc-
tion that loads control register 5 when the ASF
control is one, or (2) a LOAD CONTROL instruc-
tion that loads control register 5, regardless of the
value of the ASF control.

Modification of ART Tables
When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no entry
formed from the ART-table entry is already in the
ALB, the change takes effect no later than the end
of the current instruction.

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to
perform ART requiring that entry, unpredictable
results may occur, to the following extent. The
use of the new value may begin between
instructions or during the execution of an instruc-
tion, including the instruction that caused the
change. Moreover, until the ALB is cleared of
copies of the entry, the ALB may contain both the
old and the new values, and it is unpredictable
whether the old or new value is selected for a par-
ticular ART operation. If the old and new values
are used as representations of effective space
designations, failure to recognize that the effective
space designations are the same may occur, with
the result that operand overlap may not be recog-
nized. Effective space designations and operand
overlap are discussed in “Interlocks within a Single
Instruction” on page 5-77.

When LOAD ACCESS MULTIPLE or LOAD
CONTROL changes the parameters associated
with ART, the values of these parameters at the
start of the operation are in effect for the duration
of the operation.

All entries are cleared from the ALB by the exe-
cution of PURGE ALB and SET PREFIX and by
CPU reset.

 Subspace Groups
The subspace-group facility provides the BRANCH
IN SUBSPACE GROUP instruction, new allo-
cations of fields in the segment-table designation,
dispatchable-unit control table, and extended
ASN-second-table entry, and new operations,
called subspace-replacement operations, of the
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS
instructions. BRANCH IN SUBSPACE GROUP is
introduced in “Subroutine Linkage without the
Linkage Stack” on page  5-9 and described in
detail in “BRANCH IN SUBSPACE GROUP” on
page 10-12.

 Subspace-Group Tables
This section describes the use of the
dispatchable-unit control table and
ASN-second-table entry by the subspace-group
facility.
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 Subspace-Group Dispatchable-Unit
Control Table
The first 32 bytes of the 64-byte dispatchable-unit
control table have the following format when the
subspace-group facility is installed:

 Hex Dec

──────────┬───────────────────┐

 ð ð │ BASTEO │

──────────┼─┬─────────────────┤

 │S│ │

 4 4 │A│ SSASTEO │

──────────┼─┴─────────────────┤

 8 8 │ │

──────────┼───────────────────┤

 C 12 │ SSASTESN │

──────────┼───────────────────┤

1ð 16 │ DUALD │

──────────┼───────────────────┤

 14 2ð │ │

 18 24 │ │

──────────┼───────────────────┤

 1C 28 │///////////////////│

──────────┴───────────────────┘

The fields in the dispatchable-unit control table are
allocated as follows:

Base-ASTE Origin (BASTEO):  Bits 1-25 of
bytes 0-3, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the base space of a subspace group
associated with the dispatchable unit. A compar-
ison of bits 1-25 of bytes 0-3 to the primary-ASTE
origin (PASTEO) in control register 5 is made by
BRANCH IN SUBSPACE GROUP to determine
whether the current primary address space is in
the subspace group for the current dispatchable
unit. For this comparison, either bits 1-25 may be
compared to the PASTEO or the entire contents of
bytes 0-3 may be compared to the entire contents
of control register 5. A comparison of bits 1-25 of
bytes 0-3 to the destination-ASTE origin
(DASTEO) obtained from an access-list entry by
access-register translation of an ALET other than
ALETs 0 and 1 is made by BRANCH IN SUB-
SPACE GROUP to determine if the destination
ASTE is the base-space ASTE. For this compar-
ison, either bits 1-25 may be compared to the
DASTEO or the entire contents of bytes 0-3 may
be compared to the DASTEO with one leftmost
and six rightmost zeros appended. A comparison
of bits 1-25 of bytes 0-3 to an ASTE origin
(ASTEO) obtained by ASN translation may be
made by PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,

and LOAD ADDRESS SPACE PARAMETERS.
For this comparison, either bits 1-25 may be com-
pared to the ASTEO or the entire contents of
bytes 0-3 may be compared to the ASTEO with
one leftmost and six rightmost zeros appended.
When BRANCH IN SUBSPACE GROUP uses
ALET 0, bits 1-25 of bytes 0-3, with six zeros
appended on the right, designate the destination
ASTE.

Subspace-Active Bit (SA):  Bit 0 of bytes 4-7
indicates, when one, that the last BRANCH IN
SUBSPACE GROUP instruction executed for the
dispatchable unit transferred control to a subspace
of the subspace group associated with the
dispatchable unit. Bit 0 being zero indicates any
one of the following: the last BRANCH IN SUB-
SPACE GROUP instruction executed for the
dispatchable unit transferred control to the base
space of the subspace group, BRANCH IN SUB-
SPACE GROUP has not yet been executed for
the dispatchable unit, or the dispatchable unit is
not associated with a subspace group. BRANCH
IN SUBSPACE GROUP sets bit 0 of bytes 4-7 to
one when it transfers control to a subspace of the
subspace group associated with the dispatchable
unit, and it sets bit 0 to zero when it transfers
control to the base space of the subspace group.

Subspace-ASTE Origin (SSASTEO):  Bits 1-25
of bytes 4-7, with six zeros appended on the right,
form a 31-bit real address that designates the
beginning of the ASN-second-table entry that
specifies the subspace last given control by a
BRANCH IN SUBSPACE GROUP instruction exe-
cuted for the dispatchable unit. When BRANCH
IN SUBSPACE GROUP transfers control to a sub-
space by means of an ALET other than ALET 1, it
places the ASTEO for the subspace (the destina-
tion ASTEO) in bit positions 1-25 of bytes 4-7,
places zeros in bit positions 26-31 of bytes 4-7,
and sets the subspace-active bit, bit 0 of bytes
4-7, to one. When BRANCH IN SUBSPACE
GROUP uses ALET 1 to transfer control to a sub-
space, bits 1-25 of bytes 4-7, with six zeros
appended on the right, designate the destination
ASTE, and BRANCH IN SUBSPACE GROUP sets
the subspace-active bit to one and either sets bits
26-31 of bytes 4-7 to zeros or leaves those bits
unchanged. However, if bits 1-25 are all zeros, a
special-operation exception is recognized. When
BRANCH IN SUBSPACE GROUP transfers
control to the base space of the subspace group,
it sets the subspace-active bit to zero, and bits
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1-31 of bytes 4-7 remain unchanged. Bits 1-25 of
bytes 4-7 may be used by PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS to set bits 1-23 and 25-31
of the primary STD in control register 1 or the sec-
ondary STD in control register 7 from the same
bits of the STD in the subspace ASTE.

Subspace-ASTE Sequence Number
(SSASTESN):  Bytes 12-15 may be used to
revoke the linkage capability represented by the
SSASTEO, bits 1-25 of bytes 4-7, in the DUCT.
When BRANCH IN SUBSPACE GROUP transfers
control to a subspace by means of an ALET other
than ALET 1, it obtains the ASTESN in the sub-
space ASTE and places it in bytes 12-15. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to a subspace, it compares bytes
12-15 to the ASTESN in the subspace ASTE, and
it recognizes an ASTE-sequence exception if they
are unequal. When the SSASTEO is used by
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS to
set bits 1-23 and 25-31 of the primary STD in
control register 1 or the secondary STD in control
register 7 from the same bits of the STD in the
subspace ASTE, those instructions first compare
bytes 12-15 to the ASTESN in the subspace
ASTE, and they recognize an ASTE-sequence
exception if the two fields are unequal.

| Bytes 16-19 are described in “Dispatchable-Unit-
| Control Table and Access-List Designations” on
| page 5-42. Bytes 32-39 are described in

“BRANCH AND SET AUTHORITY” on page 10-6.
Bytes 44-47 are described in “TRAP” on
page 10-106. Bytes 8-11, 20-27, 40-43, and
48-63 are reserved for possible future extensions
and should contain all zeros. Bytes 28-31 are
available for use by programming.

 Subspace-Group ASN-Second-Table
Entries
When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in ASN
translation. Also, the ASN second table begins on
a 64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the
ASN-second-table entry as being 64 bytes on a
64-byte boundary, and access-register translation

does not examine the ASF control. BRANCH IN
SUBSPACE GROUP requires that the ASF control
be one. The first 32 bytes of the 64-byte ASTE
have the following format:

┌─┬───────────────────────────┬─┬─┐

│I│ ATO │ð│B│

└─┴───────────────────────────┴─┴─┘

ð 1 3ð 31

┌───────────────┬────────────┬────┐

│ AX │ ATL │ðððð│

└───────────────┴────────────┴────┘

32 48 6ð 63

┌───────────────STD───────────────┐

┌─┬──────────────┬──┬─┬─┬─┬───────┐

│X│ STO │ │G│P│S│ STL │

└─┴──────────────┴──┴─┴─┴─┴───────┘

64 84 86 89 95

┌───────────────LTD───────────────┐

┌─┬────────────────────────┬──────┐

│V│ LTO │ LTL │

└─┴────────────────────────┴──────┘

96 121 127

┌──────────Format-ð ALD───────────┐

┌─┬───────────────────────┬───────┐

│ │ ALO │ ALL │

└─┴───────────────────────┴───────┘

128 153 159

┌──────────Format-1 ALD───────────┐

┌─┬──────────────────────┬────────┐

│ │ ALO │ ALL │

└─┴──────────────────────┴────────┘

128 152 159

┌─────────────────────────────────┐

│ ASTESN │

└─────────────────────────────────┘

16ð 191

┌─────────────────────────────────┐

│ │

└─────────────────────────────────┘

192 223

┌─────────────────────────────────┐

│/////////////////////////////////│

└─────────────────────────────────┘

224 255

The fields in bit positions 0-127 of the ASTE are
defined with respect to certain mechanisms and
instructions in “ASN-Second-Table Entries” on
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page 3-19. The fields in the ASTE are defined for
access-register translation for other than BRANCH
IN SUBSPACE GROUP in “Extended
ASN-Second-Table Entries” on page 5-45. For
BRANCH IN SUBSPACE GROUP only, the fields
in the ASTE are allocated as follows:

ASX-Invalid Bit (I):  Bit 0 controls whether the
address space associated with the ASTE is avail-
able. When bit 0 is zero during access-register
translation of ALET 1 or an ALET other than 0 and
1 for BRANCH IN SUBSPACE GROUP, the trans-
lation proceeds. When the bit is one, an
ASTE-validity exception is recognized. The bit is
ignored during access-register translation of ALET
0. When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bit 0 is also used
as described in the definition of bits 160-191
(ASTESN).

Authority-Table Origin (ATO):  Bits 1-29 are not
used by BRANCH IN SUBSPACE GROUP.

Base-Space Bit (B):  Bit 31 specifies, when one,
that the address space associated with the ASTE
is the base space of a subspace group. When
BRANCH IN SUBSPACE GROUP uses an ALET
other than ALETs 0 and 1 to locate a destination
ASTE, it recognizes a special-operation exception
if the destination-ASTE origin does not equal the
base-ASTE origin in the dispatchable-unit control
table and bit 31 is one in the destination ASTE.

Authorization Index (AX):  Bits 32-47 are not
used by BRANCH IN SUBSPACE GROUP.

Authority-Table Length (ATL):  Bits 48-59 are
not used by BRANCH IN SUBSPACE GROUP.

Segment-Table Designation (STD):  Bits 64-95
are obtained as the result of access-register trans-
lation done for BRANCH IN SUBSPACE GROUP.
When BRANCH IN SUBSPACE GROUP uses an
ALET other than ALETs 0 and 1 to locate a desti-
nation ASTE, it recognizes a special-operation
exception if the destination-ASTE origin does not
equal the base-ASTE origin in the dispatchable-
unit control table and the subspace-group-control
bit, bit 86 (G), in the destination ASTE is zero.
When BRANCH IN SUBSPACE GROUP transfers
control to the base space of a subspace group
associated with the current dispatchable unit, it
places bits 64-95 in control register 1; otherwise,

when BRANCH IN SUBSPACE GROUP transfers
control to a subspace of the subspace group, it
places bits 65-87 and 89-95 in the corresponding
bit positions of control register 1. Bits 64-95 are
used after ASN translation by PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, and LOAD ADDRESS
SPACE PARAMETERS as described in
“ASN-Second-Table Entries” on page 3-19.

Linkage-Table Designation (LTD):  Bits 96-127
are not used by BRANCH IN SUBSPACE
GROUP.

Access-List Designation (ALD):  When this
ASTE is designated by the primary-ASTE origin in
control register 5, bits 128-159 are the primary-
space access-list designation (PSALD). During
access-register translation when the primary-list
bit, bit 7, in the ALET being translated is one, the
PSALD is the effective access-list designation.
The PSALD is a format-0 ALD or a format-1 ALD,
depending on the model.

ASN-Second-Table-Entry Sequence Number
(ASTESN):  Bits 160-191 are used to control
revocation of the accessing capability represented
by access-list entries that designate the ASTE.
During access-register translation, bits 160-191
are compared against the ASTESN in the access-
list entry, and inequality causes an
ASTE-sequence exception to be recognized.

When the ASTE is designated by a
subspace-ASTE origin (SSASTEO) in a
dispatchable-unit control table, bits 160-191 are
also used to control revocation of the linkage
capability represented by that SSASTEO. When
BRANCH IN SUBSPACE GROUP uses ALET 1 to
transfer control to the subspace specified by the
SSASTEO, or when PROGRAM CALL,
PROGRAM RETURN, PROGRAM TRANSFER,
SET SECONDARY ASN, or LOAD ADDRESS
SPACE PARAMETERS uses the SSASTEO to set
bits 1-23 and 25-31 of the primary STD in control
register 1 or the secondary STD in control register
7 from the same bits of the STD in the subspace
ASTE, those instructions first test bit 0 of the sub-
space ASTE for being zero and recognize an
ASTE-validity exception if it is not, and they then
compare bits 160-191 to the subspace-ASTE
sequence number (SSASTESN) in the
dispatchable-unit control table and recognize an
ASTE-sequence exception if there is an inequality.
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However, when either of the two named exception
conditions exists for LOAD ADDRESS SPACE
PARAMETERS, the instruction sets condition code
1 or 2 instead of recognizing the exception.

Bits 84-85, 128, and 192-223 are reserved for
possible future extensions and should be zeros.
Bits 224-255 are available for use by program-
ming. The second 32 bytes of the 64-byte ASTE
also are reserved for possible future extensions
and should contain all zeros.

 Subspace-Replacement
Operations
The subspace-group facility includes new opera-
tions, called subspace-replacement operations, of
PROGRAM CALL, PROGRAM TRANSFER,
PROGRAM RETURN, SET SECONDARY ASN,
and LOAD ADDRESS SPACE PARAMETERS.
(PROGRAM CALL FAST does not have
subspace-replacement operations.) The new
operations apply when the dispatchable unit for
which any of the five named instructions is exe-
cuted is in a state called subspace active. A
dispatchable unit is subspace active if it has used
BRANCH IN SUBSPACE GROUP to transfer
control to a subspace of its subspace group and
has not subsequently used BRANCH IN SUB-
SPACE GROUP to return control to the base
space of the group.

The definitions of the subspace-replacement oper-
ations are included in the definitions of the five
named instructions in Chapter 10, “Control
Instructions.” The operations are described in a
general way as follows. Whenever an address
space is established as the primary or secondary
address space as a result of ASN translation,
then, if that address space is in a subspace group,
as indicated by the subspace-group-control bit, bit
22 (G), being one in the segment-table desig-
nation (STD) for the address space (the new
PSTD in control register 1 or SSTD in control reg-
ister 7), and if the dispatchable unit is subspace-
active, as indicated by the subspace-active bit, bit
0 (SA) of word 1, in the dispatchable-unit control
table (DUCT) being one, the
ASN-second-table-entry (ASTE) origin (ASTEO)
for the address space, which was obtained by
ASN translation, is compared to the base-ASTE
origin (BASTEO), bits 1-25 of word 0, in the
DUCT. If that ASTEO and the BASTEO are

equal, the following occurs. An ASTE-validity
exception is recognized if bit 0 in the ASTE for the
last subspace entered by the dispatchable unit,
which ASTE is designated by the subspace-ASTE
origin (SSASTEO) in the DUCT, is one. An
ASTE-sequence exception is recognized if the
ASTE-sequence number (ASTESN) in word 5 of
the subspace ASTE does not equal the subspace
ASTESN (SSASTESN) in word 3 of the DUCT.
However, LOAD ADDRESS SPACE PARAME-
TERS sets a nonzero condition code instead of
recognizing the ASTE-validity or ASTE-sequence
exception. If no exception exists, bits 1-23 and
25-31 of the STD for the address space (the
PSTD in control register 1 or SSTD in control reg-
ister 7) are replaced by the same bits of the STD
in word 2 of the subspace ASTE.

Whenever the address-space-function control, bit
15 of control register 0, is zero, the above addi-
tional general definition does not apply, and the
definitions of the five instructions are the same as
when the subspace-group facility is not installed.

If an addressing exception is recognized when
attempting to access the DUCT or subspace
ASTE, the instruction execution is suppressed. If
an ASTE-validity or ASTE-sequence exception is
recognized, the instruction execution is nullified.
Such nullification or suppression causes all control
register contents to remain unchanged from what
they were at the beginning of the instruction exe-
cution.

Key-controlled protection does not apply to any
accesses to the DUCT or subspace ASTE.

For comparing the ASTEO obtained by ASN trans-
lation to the BASTEO, either the ASTEO may be
compared to the BASTEO or the ASTEO, with one
leftmost and six rightmost zeros appended, may
be compared to the entire contents of word 0 of
the DUCT.

When the SSASTEO in the DUCT is used to
access the subspace ASTE, no check is made for
whether the SSASTEO is all zeros.

The references to the DUCT and subspace ASTE
are word-concurrent single-access references.
The words of the DUCT are accessed in no partic-
ular order. The words of the subspace ASTE are
accessed in no particular order except that word 0
is accessed first.
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The exceptions that can be recognized during a
subspace-replacement operation are referred to
collectively as the subspace-replacement
exceptions and are listed in priority order in
“Subspace-Replacement Exceptions” on
page 6-44.

 Linkage-Stack Introduction
Many of the functions related to the linkage stack
are described in this section and in “Linkage-Stack
Operations” on page 5-63. Additionally, tracing of
the stacking PROGRAM CALL instruction and of
the PROGRAM RETURN instruction is described
in Chapter 5, “Program Execution”; interruptions in
Chapter 6, “Interruptions”; and the instructions in
Chapter 10, “Control Instructions.”

 Summary
These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides increased (compared to 370-XA)
PSW and control-register status changing and
which saves and restores this status and the
contents of general registers and access reg-
isters through the use of an entry in a linkage
stack.

2. A new branch-type linkage mechanism that
uses the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack
entry and for retrieving all of the status and
the general-register and access-register con-
tents that are in the entry.

4. An instruction for determining whether a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be
associated with and used by each dispatchable
unit. The linkage stack for a dispatchable unit
resides in the home address space of the
dispatchable unit.

It is intended that a dispatchable unit's linkage
stack be protected from the dispatchable unit by

means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by pro-
grams considered to be semiprivileged, that is,
programs which are executed in the problem state
but which are authorized to use additional func-
tions. With these authorization controls, a nonhi-
erarchical organization of programs may be
established, with each program in a sequence of
calling and called programs having a degree of
authority that is arbitrarily different from those of
programs before or after it in the sequence. The
range of functions available to each program, and
the ability to transfer control from one program to
another, are prescribed in tables that are
managed by the control program.

The linkage-stack instructions, which are semipriv-
ileged, are described in Chapter 10, “Control
Instructions.” They are:

� BRANCH AND STACK
� EXTRACT STACKED REGISTERS
� EXTRACT STACKED STATE
� MODIFY STACKED STATE

 � PROGRAM RETURN
 � TEST ACCESS

In addition, the PROGRAM CALL instruction is
changed (relative to 370-XA) to optionally form an
entry in the linkage stack. A PROGRAM CALL
instruction that operates on the linkage stack is
called stacking PROGRAM CALL. Recognition of
PROGRAM CALL as stacking PROGRAM CALL is
under the control of a bit in a 32-byte entry-table
entry. The entry-table entry is extended in length
from 16 bytes to 32 bytes when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is one.

The PROGRAM CALL FAST instruction is avail-
able when the program-call-fast facility is installed.
PROGRAM CALL FAST has the same operation
code as PROGRAM CALL and is a variation of
stacking PROGRAM CALL. PROGRAM CALL
FAST is not further described in this section. It is
described in Chapter 10, “Control Instructions.”

 Linkage-Stack Functions
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Transferring Program Control
The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro-
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author-
ities to coexist in the same address space. On
the other hand, the extended authorization index
in effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options
concerning the PSW-key mask and the secondary
ASN are other means of associating different
authorities with different programs or with the
same called program. The authority of each
program is prescribed in tables that are managed
by the control program. By setting up the tables
so that the same program can be called by means
of different PC numbers, the program can be
assigned different authorities depending on which
PC number is used to call it. The tables also
allow control over which PC numbers can be used
by a program to call other programs.

The stacking PROGRAM CALL and PROGRAM
RETURN linkage operations can link programs
residing in different address spaces and having
different levels of authority. The execution state
and the contents of the general registers and
access registers are saved during the execution of
stacking PROGRAM CALL and are partially
restored during the execution of PROGRAM
RETURN. A linkage stack provides an efficient
means of saving and restoring both the execution
state and the contents of registers during linkage
operations. The availability of the linkage stack is
controlled by the ASF control in control register 0.
When the linkage stack is not available, these two
linkage operations cannot be performed.

During the execution of a PROGRAM CALL
instruction, the PC-number-translation process is
performed to locate a 16-byte or 32-byte entry-
table entry, as determined by the ASF control.
When a 32-byte entry-table entry is located and a
bit, named the PC-type bit, in the entry-table entry

is one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation (the 370-XA operation) is specified.

In addition to the entry information specified in the
16-byte entry-table entry, the 32-byte entry-table
entry further contains information that specifies
options concerning the address-space control and
PSW key in the PSW, and the PSW-key mask,
extended authorization index, and secondary ASN
in the control registers.

During the stacking PROGRAM CALL operation
and by means of the additional information in the
entry-table entry, the address-space control in the
PSW can be set to specify either the primary-
space mode or the access-register mode. The
PSW key can be either left unchanged or replaced
from the entry-table entry. The PSW-key mask in

| control register 3 can be either ORed to or
replaced from the entry-table entry. The extended
authorization index in control register 8 can be
either left unchanged or replaced from the entry-
table entry. The secondary ASN in control reg-
ister 3 can be set equal to the primary ASN of
either the calling program or the called program;
thus, the ability of the called program to have
access to the primary address space of the calling
program can be controlled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers
0-15. The saved execution state includes the PC
number used, a called-space identification, the
updated PSW before any changes are made due
to the entry-table entry, and the extended authori-
zation index, PSW-key mask, primary ASN, and
secondary ASN existing before the operation.
However, the value of the PER mask in the saved
updated PSW is unpredictable. The linkage-stack
state entry also contains an entry-type code that
identifies the entry as one that was formed by
PROGRAM CALL.

A space-switching operation occurs when the
address-space number (ASN) specified in the
entry-table entry is nonzero. When space
switching occurs, the operation is called
PROGRAM CALL with space switching (PC-ss).
When no space switching occurs, the operation is
called PROGRAM CALL to current primary
(PC-cp).
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PROGRAM CALL with space switching performs
ASN translation of the new primary ASN to obtain
a new primary-ASTE origin and a new primary
segment-table designation, which it places in
control registers 5 and 1, respectively. It sets the
secondary segment-table designation in control
register 7 equal to either the old primary segment-
table designation or the new one, depending on
whether it set the secondary ASN equal to the old
primary ASN or the new one, respectively.
PROGRAM CALL to current primary sets the sec-
ondary ASN equal to the primary ASN and the
secondary segment-table designation equal to the
primary segment-table designation.

The instruction PROGRAM RETURN restores
most of the information saved in the linkage stack
by the stacking PROGRAM CALL operation. It
restores the PSW, extended authorization index,
PSW-key mask, primary ASN, secondary ASN,
and the contents of general registers 2-14 and
access-registers 2-14. However, the PER mask in
the current PSW remains unchanged, and the
resulting condition code is unpredictable. The
operation of PROGRAM RETURN is referred to by
saying that PROGRAM RETURN unstacks a state
entry.

For PROGRAM RETURN, a space-switching oper-
ation occurs when the restored primary ASN is not
equal to the primary ASN existing before the oper-
ation. When space switching occurs, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). When no space switching
occurs, the operation is called PROGRAM
RETURN to current primary (PR-cp).

PROGRAM RETURN with space switching per-
forms ASN translation of the restored primary ASN
to obtain a new primary-ASTE origin and a new
primary segment-table designation, which it places
in control registers 5 and 1, respectively. For
PROGRAM RETURN with space switching or to
current primary, (1) if the restored secondary ASN
is the same as the restored primary ASN, the sec-
ondary segment-table designation in control reg-
ister 7 is set equal to the new primary
segment-table designation in control register 1, or
(2) if the the restored secondary ASN is not the
same as the restored primary ASN, ASN trans-
lation and ASN authorization of the restored sec-
ondary ASN are performed to obtain a new
secondary segment-table designation, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-
formed successfully only in the primary-space
mode or access-register mode. An exception is
recognized when the CPU is in the real mode,
secondary-space mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause
an exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is
one, the entry still can be operated on by the
instructions that add information to or retrieve
information from the entry. The unstack-
suppression bit is intended to allow the control
program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack
The execution state and the contents of the
general registers and access registers can also be
saved in the linkage stack by means of the
instruction BRANCH AND STACK. BRANCH
AND STACK uses a branch address as do the
other branching instructions, instead of using a PC
number. BRANCH AND STACK, along with
PROGRAM RETURN, can link programs residing
in the same address space and having the same
level of authority; that is, BRANCH AND STACK
does not change the execution state except for
the instruction address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by
PROGRAM CALL. When it is necessary to distin-
guish between these two types of state entry, an
entry formed by PROGRAM CALL is called a
program-call state entry, and one formed by
BRANCH AND STACK is called a branch state
entry. A branch state entry differs from a
program-call state entry in two ways: (1) it con-
tains a different entry-type code, which identifies it
as a branch state entry, and (2) it contains the
new value of bits 32-63 of the current PSW, the
addressing mode and the branch address, instead

| of a called-space identification and a PC number.
The new value of PSW bits 32-63 is in addition to
the complete PSW that is saved in the state entry.

For BRANCH AND STACK, the addressing mode
and instruction address that are part of the com-
plete PSW saved in the state entry can be the
current addressing mode and the updated instruc-
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tion address (the address of the next sequential
instruction), or they can be specified in a register.
This register can be one that had link information
placed in it by a BRANCH AND LINK (BALR only),
BRANCH AND SAVE, BRANCH AND SAVE AND
SET MODE, or BRANCH AND SET MODE
instruction. Thus, BRANCH AND STACK can be
used either in a calling program or at (or near) the
entry point of a called program, and, in either
case, a PROGRAM RETURN instruction located
at the end of the called program will return cor-
rectly to the calling program. The ability to use
BRANCH AND STACK at an entry point allows
the linkage stack to be used without changing old
calling programs.

When the R² field of BRANCH AND STACK is
zero, the instruction is executed without causing
branching.

When PROGRAM RETURN unstacks a branch
state entry, it ignores the extended authorization
index, PSW-key mask, primary ASN, and sec-
ondary ASN in the entry. The PROGRAM
RETURN instruction restores the PSW and the
contents of general registers 2-14 and access reg-
isters 2-14 that were saved in the entry. However,
the PER mask in the current PSW remains
unchanged, and the resulting condition code is
unpredictable.

BRANCH AND STACK can be executed success-
fully only in the primary-space mode or access-
register mode. An exception is recognized when
the CPU is in the real mode, secondary-space
mode, or home-space mode.

The unstack-suppression bit has the same effect
in a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information
The instruction MODIFY STACKED STATE can
be used by a program to place two words of infor-
mation, contained in a designated general-register

| pair, in an area, called the modifiable area, of the
current linkage-stack state entry (a branch state
entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGIS-
TERS and EXTRACT STACKED STATE can be

used by a program to obtain any of the informa-
tion saved in the current state entry by BRANCH
AND STACK or PROGRAM CALL or placed there
by MODIFY STACKED STATE. EXTRACT
STACKED REGISTERS places the contents of a
specified range of general registers and access
registers back in the registers from which the con-
tents were saved. EXTRACT STACKED STATE
obtains any pair of words of the nonregister infor-
mation saved or placed in a state entry and places
them in a designated general-register pair.
EXTRACT STACKED STATE sets the condition
code to indicate whether the current state entry is
a branch state entry or a program-call state entry.

 Testing Authorization
The instruction TEST ACCESS has as operands
an access-list-entry token (ALET) in a designated
access register and an extended authorization
index (EAX) in a designated general register.
TEST ACCESS applies the access-register-
translation process, which uses the specified EAX
instead of the current EAX in control register 8, to
the ALET, and it sets the condition code to indi-
cate the result. The condition code may indicate:
(1) the ALET is 00000000 hex, (2) the ALET des-
ignates an entry in the dispatchable-unit access
list and can be translated without exceptions in
access-register translation, (3) the ALET desig-
nates an entry in the primary-space access list
and can be translated without exceptions in
access-register translation, or (4) the ALET is
00000001 hex or causes exceptions in access-
register translation.

The principal purpose of TEST ACCESS is to
allow a called program to determine whether an
ALET passed to it by the calling program is
authorized for use by the calling program by
means of the calling program's EAX. This is in
support of a possible programming convention in
which a called program will not operate on an
AR-specified address space by means of its own
EAX unless the calling program is authorized to
operate on that space by means of the calling pro-
gram's EAX. The called program can obtain the
calling program's EAX, for use by TEST ACCESS,
from the current linkage-stack state entry by
means of the EXTRACT STACKED STATE
instruction.

Another purpose of TEST ACCESS is to indicate
the special cases in which the ALET is 00000000
hex, designating the primary address space, or
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00000001 hex, designating the secondary address
space. Because PROGRAM CALL may change
the primary and secondary address spaces,
ALETs 00000000 hex and 00000001 hex may
designate different address spaces when used by
the called program than when used by the calling
program.

Still another purpose of TEST ACCESS is to indi-
cate whether the ALET designates an entry in the
primary-space access list since such a designation
after the primary address space was changed by
a space-switching program-linkage operation may
be an error.

 Program-Problem Analysis
To aid program-problem analysis, the option is
provided of having a trace entry made implicitly for
three additional linkage operations when the
linkage stack is used. When branch tracing is on,
a trace entry is made each time a BRANCH AND
STACK instruction is executed and causes
branching. When ASN tracing is on, a trace entry
is made each time the stacking PROGRAM CALL
operation is performed and each time PROGRAM
RETURN unstacks a linkage-stack state entry

| formed by PROGRAM CALL or PROGRAM CALL
| FAST. A detailed definition of tracing is contained

in “Tracing” on page 4-10.

As a further analysis aid, BRANCH AND STACK
when it causes branching, stacking PROGRAM
CALL, and PROGRAM RETURN are also recog-
nized as PER successful-branching events. For
PROGRAM RETURN, the unstacked state entry
may have been formed by BRANCH AND STACK
or PROGRAM CALL.

The execution of a space-switching stacking
PROGRAM CALL or PROGRAM RETURN
instruction causes a space-switch event if the
primary space-switch-event control is one before
or after the operation or if a PER event is to be
indicated.

Extended Entry-Table Entries
When the address-space-function (ASF) control,
bit 15 of control register 0, is one, the entry-table
entry is extended in length from 16 bytes to 32
bytes. Bit 128 of the 32-byte entry-table entry
specifies whether the basic or the stacking
PROGRAM CALL operation is to be performed,

and bit positions 131-139 and 144-159 contain
information that is used only if stacking is speci-
fied.

This section describes the use of the 32-byte
entry-table entry in both the basic and the stacking
PROGRAM CALL operations. The description
here of the use in the basic PROGRAM CALL
operation is the same as the description in “Entry-
Table Entries” on page 5-26.

The PROGRAM CALL FAST instruction does not
use an entry-table entry; it uses a PCF-entry-table
entry. The PCF-entry-table entry is described in
the definition of PROGRAM CALL FAST in
Chapter 10, “Control Instructions.”

The 32-byte entry-table entry has the following
format:

┌────────────────────────┬────────────────────────┐

│ Authorization Key Mask │ ASN │

└────────────────────────┴────────────────────────┘

ð 16 31

┌─┬─────────────────────────────────────────────┬─┐

│A│ Entry Instruction Address │P│

└─┴─────────────────────────────────────────────┴─┘

32 63

┌─────────────────────────────────────────────────┐

│ Entry Parameter │

└─────────────────────────────────────────────────┘

64 95

┌────────────────────────┬────────────────────────┐

│ Entry Key Mask │ │

└────────────────────────┴────────────────────────┘

96 112 127

┌─┬──┬─┬─┬─┬─┬─┬────┬────┬────────────────────────┐

│T│ │K│M│E│C│S│ EK │ │ Entry Ext. Auth. Index │

└─┴──┴─┴─┴─┴─┴─┴────┴────┴────────────────────────┘

128 131 136 14ð 144 159

┌─┬────────────────────────────────────────┬──────┐

│ │ ASTE Address │ │

└─┴────────────────────────────────────────┴──────┘

16ð 186 191

┌─────────────────────────────────────────────────┐

│ │

└─────────────────────────────────────────────────┘

192 223

┌─────────────────────────────────────────────────┐

│ │

└─────────────────────────────────────────────────┘

224 255
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The fields in the 32-byte entry-table entry are allo-
cated as follows:

Authorization Key Mask:  Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current PSW-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN:  Bits 16-31 specify whether a PC-ss or
PC-cp operation is to occur. When bits 16-31 are
all zeros, a PC-cp operation is specified. When
bits 16-31 are not all zeros, a PC-ss operation is
specified, and the bits are the ASN that replaces
the primary ASN.

Entry Addressing Mode (A):  Bit 32 replaces the
addressing-mode bit, bit 32 of the current PSW,
as part of the PROGRAM CALL operation. When
bit 32 is zero, bits 33-39 must also be zeros; oth-
erwise, a PC-translation-specification exception is
recognized.

Entry Instruction Address:  Bits 33-62, with a
zero appended on the right, form the instruction
address that replaces the instruction address in
the PSW as part of the PROGRAM CALL opera-
tion.

Entry Problem State (P):  Bit 63 replaces the
problem-state bit, bit 15 of the current PSW, as
part of the PROGRAM CALL operation.

Entry Parameter:  Bits 64-95 are placed in
general register 4 as part of the PROGRAM CALL
operation.

Entry Key Mask:  Bits 96-111 are ORed into the
PSW-key mask in control register 3 when bit 132,
the PSW-key-mask control, is zero, or replace the
PSW-key mask in control register 3 when bit 132
is one, as part of the stacking PROGRAM CALL
operation. Bits 96-111 are ORed into the
PSW-key mask as part of the basic PROGRAM
CALL operation.

PC-Type Bit (T):  Bit 128, when one, specifies
that the PROGRAM CALL instruction is to perform
the stacking PROGRAM CALL operation. When

this bit is zero, PROGRAM CALL performs the
basic PROGRAM CALL operation.

PSW-Key Control (K):  Bit 131, when one, speci-
fies that bits 136-139 are to replace the PSW key
in the PSW as part of the stacking PROGRAM
CALL operation. When this bit is zero, the PSW
key remains unchanged. Bit 131 is ignored during
the basic PROGRAM CALL operation.

PSW-Key-Mask Control (M):  Bit 132, when one,
specifies that bits 96-111 are to replace the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. When this
bit is zero, bits 96-111 are ORed into the
PSW-key mask in control register 3 as part of the
stacking PROGRAM CALL operation. Bit 132 is
ignored during the basic PROGRAM CALL opera-
tion.

Extended-Authorization-Index Control (E):  Bit
133, when one, specifies that bits 144-159 are to
replace the current extended authorization index in
control register 8 as part of the stacking
PROGRAM CALL operation. When this bit is
zero, the current extended authorization index
remains unchanged. Bit 133 is ignored during the
basic PROGRAM CALL operation.

Address-Space-Control Control (C):  Bit 134,
when one, specifies that bit 17 of the current PSW
is to be set to one as part of the stacking
PROGRAM CALL operation. When this bit is
zero, bit 17 is set to zero. Because the CPU must
be in either the primary-space mode or the
access-register mode when a stacking PROGRAM
CALL instruction is issued, the result is that the
CPU is placed in the access-register mode if bit
134 is one or the primary-space mode if bit 134 is
zero. Bit 134 is ignored during the basic
PROGRAM CALL operation.

Secondary-ASN Control (S):  Bit 135, when one,
specifies that bits 16-31 are to become the new
secondary ASN, and the new SSTD is to be set
equal to the new PSTD, as part of the stacking
PROGRAM CALL with-space-switching (PC-ss)
operation. When this bit is zero, the new SASN
and SSTD are set equal to the PASN and PSTD,
respectively, of the calling program. Bit 135 is
ignored during the basic PROGRAM CALL opera-
tion and the stacking PROGRAM CALL to-current-
primary (PC-cp) operation.
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Entry Key (EK):  Bits 136-139 replace the PSW
key in the PSW as part of the stacking
PROGRAM CALL operation if the PSW-key
control, bit 131, is one. Bits 136-139 are ignored,
and the current PSW key remains unchanged, if
bit 131 is zero. Bits 136-139 are ignored during
the basic PROGRAM CALL operation.

Entry Extended Authorization Index:  Bits
144-159 replace the current extended authori-
zation index, bits 0-15 of control register 8, as part
of the stacking PROGRAM CALL operation if the
extended-authorization-index control, bit 133, is
one. Bits 144-159 are ignored, and the current
extended authorization index remains unchanged,
if bit 133 is zero. Bits 144-159 are ignored during
the basic PROGRAM CALL operation.

ASTE Address:  When bits 16-31 are not all
zeros, bits 161-185, with six zeros appended on
the right, form the real ASN-second-table-entry
(ASTE) address that should result from applying
the ASN-translation process to bits 16-31. It is
unpredictable whether PC-ss uses bits 161-185 or
uses ASN translation to obtain the ASTE address.

Bits 33-39 must be zeros when bit 32 is zero; oth-
erwise, a PC-translation-specification exception is
recognized.

Bits 112-127, 129, 130, 140-143, 160, and
186-255 are reserved for possible future exten-
sions and should be zeros.

 Linkage-Stack Operations
A linkage stack may be formed by the control
program for each dispatchable unit. The linkage
stack is used to save the execution state and the
contents of the general registers and access regis-
ters during the BRANCH AND STACK, stacking
PROGRAM CALL, and PROGRAM CALL FAST
operations. The linkage stack is also used to
restore a portion of the execution state and
general-register and access-register contents
during the PROGRAM RETURN operation.

PROGRAM CALL FAST is a variation of stacking
PROGRAM CALL and is further referred to in this
section only when there is a distinction between it
and stacking PROGRAM CALL.

A linkage stack resides in virtual storage. The
linkage stack for a dispatchable unit is in the

home address space for that dispatchable unit.
The home address space is designated by the
home segment-table designation in control register
13.

The linkage stack is intended to be protected from
problem-state programs so that these programs
cannot examine or modify the information saved in
the linkage stack, except by means of the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE instructions. This protection can be
obtained by means of key-controlled protection.

A linkage stack may consist of a number of
linkage-stack sections chained together. A
linkage-stack section is variable in length. The
maximum length of each linkage-stack section is
65,560 bytes.

There are three types of entry in the linkage stack:
header entry, trailer entry, and state entry. A
header entry and a trailer entry are at the begin-
ning and end, respectively, of a linkage-stack
section, and they are used to chain linkage-stack
sections together. Header entries and trailer
entries are formed by the control program. A
state entry is used to contain the execution state
and register contents that are saved during the
BRANCH AND STACK or stacking PROGRAM
CALL operation, and it is formed during the opera-
tion. A state entry is further distinguished as
being a branch state entry if it was formed by
BRANCH AND STACK or as being a program-call
state entry if it was formed by PROGRAM CALL.

The actions of forming a state entry and saving
information in it during the BRANCH AND STACK
and stacking PROGRAM CALL operations are
called the stacking process. The actions of
restoring information from a state entry and log-
ically deleting the entry during the PROGRAM
RETURN operation are called the unstacking
process. The part of the unstacking process that
locates a state entry is also performed during the
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE operations.

Each type of linkage-stack entry has a length that
is a multiple of eight bytes. A header entry and
trailer entry each has a length of 16 bytes. A
state entry has a length of 168 bytes.
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Each of the header entry, trailer entry, and state
entry has a common eight-byte area at its end,
called the entry descriptor. The linkage-stack-
entry address in control register 15 designates the
leftmost byte of the entry descriptor of the last
linkage-stack entry, other than the trailer entry, in
a linkage-stack section. This entry is called the
current linkage-stack entry, and the section is
called the current linkage-stack section.

Each entry descriptor in a linkage-stack section,
except the one in the trailer entry of the section,
includes a field that specifies the amount of space
existing between the end of the entry descriptor
and the beginning of the trailer entry. This field is
named the remaining-free-space field. The
remaining-free-space field in a trailer entry is
unused.

When a new state entry is to be formed in the
linkage stack during the stacking process, the new
entry is placed immediately after the entry
descriptor of the current linkage-stack entry, pro-
vided that there is enough remaining free space in
the current linkage-stack section to contain the
new entry. If there is not enough remaining free
space in the current section, and if the trailer entry
in the current section indicates that another
section follows the current section, the new entry
is placed immediately after the entry descriptor of
the header entry of that following section, provided
that there is enough remaining free space in that
section. If the trailer entry indicates that there is
not a following section, an exception is recog-
nized, and a program interruption occurs. It is
then the responsibility of the control program to
allocate another section, chain it to the current
section, and cause the BRANCH AND STACK or
stacking PROGRAM CALL instruction to be reexe-
cuted. If there is a following section but there is
not enough remaining free space in it, an excep-
tion is recognized.

If the remaining-free-space value that is used to
locate a trailer entry is not a multiple of 8, an
exception is recognized. The remaining-free-
space value in the header entry of a linkage-stack
section must be set to a multiple of 8 to ensure
that the remaining-free-space value that may be
used to locate the trailer entry of the section will
be a multiple of 8.

When the stacking process is successful in
forming a new state entry, it updates the linkage-

stack-entry address in control register 15 so that
the address designates the leftmost byte of the
entry descriptor of the new entry, which thus
becomes the new current linkage-stack entry.

When, during the unstacking process in
PROGRAM RETURN, the current linkage-stack
entry is a state entry, the process operates on that
entry and then updates the linkage-stack-entry
address so that it designates the entry descriptor
of the preceding entry in the same linkage-stack
section. The preceding entry thus becomes the
current entry. The new current entry may be
another state entry, or it may be a header entry.

The header entry of a linkage-stack section indi-
cates whether there is a preceding section. If
there is a preceding section, the header entry con-
tains the address of the last linkage-stack entry,
other than the trailer entry, in the preceding
section. That last entry should be a state entry
(not another header entry), unless there is an
error in the linkage stack.

If the unstacking process is performed when the
current linkage-stack entry is a header entry, and
if the header entry indicates that a preceding
linkage-stack section exists, the unstacking
process proceeds by treating the entry designated
in the preceding section as if it were the current
entry, provided that this entry is a state entry. If
the header entry does not indicate a preceding
section, or if the entry designated in the preceding
section is not a state entry, an exception is recog-
nized.

When the unstacking process is performed in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the process locates a state entry but does
not change the linkage-stack-entry address in
control register 15.

Each entry descriptor in a linkage-stack section
includes a field that specifies the length of the
next linkage-stack entry, other than the trailer
entry, in the section. When a state entry is
created during the stacking process, zeros are
placed in this field in the created entry, and the
length of the state entry is placed in this field in
the preceding entry. When a state entry is log-
ically deleted during the unstacking process in
PROGRAM RETURN, zeros are placed in this
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field in the preceding entry. This field is named
the next-entry-size field.

When the stacking or unstacking process operates
on the linkage stack, key-controlled protection
does not apply, but low-address and page pro-
tection do apply.

 Linkage-Stack-Operations Control
The use of the linkage stack is controlled by the
ASF control, bit 15 of control register 0, the home
segment-table designation in control register 13,
and the linkage-stack-entry address in control reg-
ister 15. The home segment-table designation is
described in “Dynamic Address Translation” on
page 3-26. The ASF control and linkage-stack-
entry address are described below.

Control Register 0
Bit 15 of control register 0 is the address-space-
function (ASF) control. When bit 15 is zero, the
entry-table entry is 16 bytes, and PROGRAM
CALL is necessarily basic PROGRAM CALL. Bit
15 also controls whether the linkage stack is avail-
able. The bit must be one for the following
instructions to be executed successfully:

� BRANCH AND STACK
� EXTRACT STACKED REGISTERS
� EXTRACT STACKED STATE
� MODIFY STACKED STATE
� PROGRAM CALL FAST

 � PROGRAM RETURN
 � TEST ACCESS

Otherwise, a special-operation exception is recog-
nized.

TEST ACCESS does not use the linkage stack.
For TEST ACCESS, the ASF control controls
whether the access-list-designation sources are
available.

A complete description of the effects of the ASF
control is in “Address-Space-Function Control” on
page 5-40.

Control Register 15
The location of the entry descriptor of the current
linkage-stack entry is specified in control register
15. The register has the following format:

┌─┬─────────────────────────────┬───┐

│ │ Linkage-Stack-Entry Address │ │

└─┴─────────────────────────────┴───┘

ð 1 29 31

Linkage-Stack-Entry Address:  Bits 1-28 of
control register 15, with three zeros appended on
the right, form the home virtual address of the
entry descriptor of the current linkage-stack entry
in the current linkage-stack section. Bits 1-28 are
changed during the stacking process in BRANCH
AND STACK and stacking PROGRAM CALL and
during the unstacking process in PROGRAM
RETURN. Bits 0 and 29-31 of control register 15
are set to zeros when bits 1-28 are changed.

 Linkage Stack
The linkage stack consists of one or more linkage-
stack sections containing linkage-stack entries.
There are three principal types of linkage-stack
entry: header entry, trailer entry, and state entry.
A state entry is further distinguished as being
either a branch state entry or a program-call state
entry.

Each type of linkage-stack entry has an entry
descriptor at its end. The leftmost byte of the
entry descriptor of the current linkage-stack entry
in the current linkage-stack section is designated
by the linkage-stack-entry address in control reg-
ister 15.

The linkage stack resides in the home address
space, designated by the home segment-table
designation in control register 13. The linkage
stack is available only when the ASF control, bit
15 of control register 0, is one.

 Entry Descriptors
An entry descriptor is at the end of each linkage-
stack entry. The entry descriptor is eight bytes in
length and has the following format:

┌─┬──┬────┬────────┬────────┬────────┐

│U│ET│ SI │ RFS │ NES │ │

└─┴──┴────┴────────┴────────┴────────┘

ð 1 8 16 32 48 63

The fields in the entry descriptor are allocated as
follows:

Unstack-Suppression Bit (U):  When bit 0 is one
in the entry descriptor of a header entry or state
entry encountered during the unstacking process
in PROGRAM RETURN, a stack-operation excep-
tion is recognized. Bit 0 is ignored in a trailer
entry and during the unstacking process in
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
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STATE. The control program can temporarily set
bit 0 to one in the current linkage-stack entry (a
header entry or state entry) to prevent PROGRAM
RETURN from being executed successfully while
still allowing EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY
STACKED STATE to be executed successfully.
Bit 0 is set to zero in the entry descriptor of a
state entry when the entry is formed during the
stacking process.

Entry Type (ET):  Bits 1-7 are a code that speci-
fies the type of the linkage-stack entry containing
the entry descriptor. The assigned codes are:

 Code (in
 Binary) Entry Type
 0000001 Header entry
 0000010 Trailer entry

0000100 Branch state entry
0000101 Program-call state entry

Codes 0000000, 0000011, and 0000110 through
0111111 binary are reserved for possible future
assignments. Codes 1000000 through 1111111
binary are available for use by programming.

Bits 1-7 are set to 0000100 or 0000101 binary in
the entry descriptor of a state entry when the entry
is formed during the stacking process.

A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN if bits
1-7 in the current linkage-stack entry do not indi-
cate that the entry is a state entry or a header
entry; or, when the current entry is a header entry,
if bits 1-7 in the entry designated by the backward
stack-entry address in the header entry do not
indicate that the designated entry is a state entry.
However, a stack-specification exception is recog-
nized, instead of a stack-type exception, if both
the current entry and the designated entry are
header entries.

Section Identification (SI):  Bits 8-15 are an
identification, provided by the control program, of
the linkage-stack section containing the entry
descriptor. In the state entry formed by a stacking
process, the process sets bits 8-15 equal to the
contents of the section-identification field in the
preceding linkage-stack entry.

Remaining Free Space (RFS):  Bits 16-31
specify the number of bytes between the end of
this entry descriptor and the beginning of the
trailer entry in the same linkage-stack section,
except that this field in a trailer entry has no
meaning. Thus, in the last state entry in a
section, or in the header entry if there is no state
entry, bits 16-31 specify the number of bytes avail-
able in the section for performance of the stacking
process. In the state entry formed by a stacking
process, the process sets bits 16-31 equal to the
contents of the remaining-free-space field in the
preceding linkage-stack entry minus the size, in
bytes, of the new entry. Bits 16-31 must be a
multiple of 8 (bits 29-31 must be zeros) in the
entry descriptor of the header entry in a linkage-
stack section; otherwise, a value that is not a mul-
tiple of 8 will be propagated to bits 16-31 in the
entry descriptor of each state entry in the section,
and a stack-specification exception will be recog-
nized if the stacking process attempts to locate
the trailer entry in the section in order to proceed
to the next section.

Next-Entry Size (NES):  Bits 32-47 specify the
size in bytes of the next linkage-stack entry, other
than a trailer entry, in the same linkage-stack
section. This field in the current linkage-stack
entry contains all zeros. This field in a trailer entry
has no meaning. When the stacking process
forms a state entry, it places zeros in the next-
entry-size field of the new entry, and it places the
size of the new entry in the next-entry-size field of
the preceding entry. When the unstacking
process logically deletes a state entry, it places
zeros in the next-entry-size field of the preceding
entry, which entry becomes the current entry.

Bits 48-63 are set to zeros in a state entry when
the entry is formed during the stacking process.
In a header entry, trailer entry, or state entry, bits
48-63 are reserved for possible future extensions
and should always be zeros.

Programming Note:  No entry-type code will be
assigned in which the leftmost bit of the code is
one. The control program can temporarily set the
leftmost bit to one in the entry-type code of the
current linkage-stack entry (a header entry or a
state entry) to prevent the successful execution of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED STATE,
or PROGRAM RETURN.
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 Header Entries
A header entry is at the beginning of each linkage-
stack section. The header entry is 16 bytes in
length and has the following format:

┌─────────────────┬─┬───────────┬───┐

│/////////////////│B│ BSEA │ │

└─────────────────┴─┴───────────┴───┘

ð 32 61 63

┌───────────────────────────────────┐

│ Entry Descriptor │

└───────────────────────────────────┘

64 127

The fields in the first eight bytes of the header
entry are allocated as follows:

Backward Stack-Entry Validity Bit (B):  Bit 32,
when one, specifies that the preceding linkage-
stack section is available and that the backward
stack-entry address, bits 33-60, is valid. Bit 32 is
set to one during the stacking process when the
process proceeds to this section from the pre-
ceding one because there is not enough space
available in the preceding section to perform the
process. During the unstacking process when this
header entry is the current linkage-stack entry, a
stack-empty exception is recognized if bit 32 is
zero.

Backward Stack-Entry Address (BSEA):  When
bit 32 is one, bits 33-60, with three zeros
appended on the right, form the 31-bit home
virtual address of the entry descriptor of the last
linkage-stack entry, other than the trailer entry, in
the preceding linkage-stack section. However, if
the current linkage-stack entry is in the preceding
or an earlier linkage-stack section, bits 33-60 may
have no meaning because the entry they desig-
nate, and earlier entries, may have been logically
deleted. Bits 33-60 are set during the stacking
process when the process proceeds to this section
from the preceding one because there is not
enough space available in the preceding section
to perform the process. During the unstacking
process when this header entry is the current
linkage-stack entry and bit 32 is one, the entry
designated by bits 33-60 is treated as the current
entry.

Bits 61-63 are set to zeros when bits 32-60 are
set during the stacking process. Bits 0-31 are
available for use by programming. Bits 61-63 are
reserved for possible future extensions.

 Trailer Entries
A trailer entry is at the end of each linkage-stack
section. The trailer entry begins immediately after
the area specified by the remaining-free-space
field in the entry descriptors of the header entry
and each state entry in the same linkage-stack
section. The trailer entry is 16 bytes in length and
has the following format:

┌─────────────────┬─┬───────────┬───┐

│/////////////////│F│ FSHA │ │

└─────────────────┴─┴───────────┴───┘

ð 32 61 63

┌───────────────────────────────────┐

│ Entry Descriptor │

└───────────────────────────────────┘

64 127

The fields in the first eight bytes of the trailer entry
are allocated as follows:

Forward-Section Validity Bit (F):  Bit 32, when
one, specifies that the next linkage-stack section
is available and that the forward-section-header
address, bits 33-60, is valid. During the stacking
process when there is not enough space available
in the current linkage-stack section to perform the
process, a stack-full exception is recognized if bit
32 in the trailer entry of the current section is zero.

Forward-Section-Header Address (FSHA):
When bit 32 is one, bits 33-60, with three zeros
appended on the right, form the 31-bit home
virtual address of the entry descriptor of the
header entry in the next linkage-stack section.
During the stacking process when there is not
enough space available in the current section to
perform the process and bit 32 is one, the header
entry designated by bits 33-60 becomes the
current linkage-stack entry.

Bits 0-31 are available for use by programming.
Bits 61-63 are reserved for possible future exten-
sions.

Programming Note:  All of the fields in the trailer
entry are set only by the control program.
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 State Entries
Zero, one, or more state entries may follow the
header entry in each linkage-stack section. A
state entry may be a branch state entry, formed
by a BRANCH AND STACK instruction, or a
program-call state entry, formed by a stacking
PROGRAM CALL instruction. The state entry is
168 bytes in length and has the following format:

Hex Dec

─────────┬───────────────────┬──────────

 ð ð │ │ &

8 8 │ Contents of │ │

/ General Registers / 64 Bytes

 3ð 48 │ ð-15 │ │

 38 56 │ │ 6

─────────┼───────────────────┼──────────

 4ð 64 │ │ &

48 72 │ Contents of │ │

/ Access Registers / 64 Bytes

 7ð 112 │ ð-15 │ │

 78 12ð │ │ 6

─────────┼───────────────────┼──────────

 8ð 128 │ │ &

 88 136 │ Other Status │ 32 Bytes

9ð 144 │ Information │ │

 98 152 │ │ 6

─────────┼───────────────────┼──────────

 Að 16ð │ Entry Descriptor │ 8 Bytes

─────────┴───────────────────┴──────────

Bytes 0-63 of the state entry contain the contents
of general registers 0-15 in the ascending order of
the register numbers. Bytes 64-127 contain the
contents of access registers 0-15 in the ascending
order of the register numbers. The contents of
these fields are moved from the registers to the
state entry during the BRANCH AND STACK and
stacking PROGRAM CALL operations. The con-
tents of general registers 2-14 and access regis-
ters 2-14 are restored from the state entry to the
registers during the PROGRAM RETURN opera-
tion. The contents of a specified range of general
registers and access registers can be restored
from the state entry to the registers by EXTRACT
STACKED REGISTERS.

Bytes 128-159 of the state entry contain the other
status information that is placed in the entry by
BRANCH AND STACK, stacking PROGRAM
CALL, and MODIFY STACKED STATE. A portion
of this status information is restored to the PSW
and control registers by PROGRAM RETURN,
and all of the information can be examined by
means of EXTRACT STACKED STATE. Bytes
160-167 contain the entry descriptor. EXTRACT
STACKED STATE sets the condition code to indi-
cate whether the entry-type code in the entry

descriptor specifies a branch state entry or a
program-call state entry.

Bytes 128-159 of the state entry have the fol-
lowing detailed format:

┌────────┬────────┬────────┬────────┐

│ PKM │ SASN │ EAX │ PASN │

└────────┴────────┴────────┴────────┘

128 13ð 132 134 135

┌───────────────────────────────────┐

│ PSW │

└───────────────────────────────────┘

136 143

In a Branch State Entry

┌─────────────────┬─┬───────────────┐

│ │A│Branch Address │

└─────────────────┴─┴───────────────┘

144 148 151

In a Program-Call State Entry

┌─────────────────┬─────────────────┐

│Called-Space Id. │ PC Number │

└─────────────────┴─────────────────┘

144 148 151

┌───────────────────────────────────┐

│ Modifiable Area │

└───────────────────────────────────┘

152 159

The fields in bytes 128-159 are allocated as
follows. In the following, “of the calling program”
means the value existing at the beginning of the
execution of the BRANCH AND STACK or
stacking PROGRAM CALL instruction that forms
the state entry.

PSW-Key Mask (PKM):  Bytes 128-129 contain
the PSW-key mask, bits 0-15 of control register 3,
of the calling program. The PSW-key mask is
saved in the state entry by BRANCH AND STACK
or stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN
instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Secondary ASN (SASN):  Bytes 130-131 contain
the secondary ASN, bits 16-31 of control register
3, of the calling program. The SASN is saved in
the state entry by BRANCH AND STACK or
stacking PROGRAM CALL, and it is restored to
the control register by a PROGRAM RETURN

5-68 ESA/390 Principles of Operation  



  
 

instruction that unstacks an entry formed by
stacking PROGRAM CALL.

Extended Authorization Index (EAX):  Bytes
132-133 contain the extended authorization index,
bits 0-15 of control register 8, of the calling
program. The EAX is saved in the state entry by
BRANCH AND STACK or stacking PROGRAM
CALL, and it is restored to the control register by
a PROGRAM RETURN instruction that unstacks
an entry formed by stacking PROGRAM CALL.

Primary ASN (PASN):  Bytes 134-135 contain
the primary ASN, bits 16-31 of control register 4,
of the calling program. The PASN is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM
CALL.

Program-Status Word (PSW):  In a branch state
entry formed by a BRANCH AND STACK instruc-
tion in which the R± field is zero, and in a
program-call state entry, bytes 136-143 contain
the updated PSW of the calling program. Thus,
the addressing-mode bit in this PSW specifies the
addressing mode of the calling program, and the
instruction address designates the next sequential
instruction following the BRANCH AND STACK or
stacking PROGRAM CALL instruction that formed
the state entry, or following an EXECUTE instruc-
tion that had the BRANCH AND STACK or
stacking PROGRAM CALL instruction as its target
instruction. In a branch state entry formed by a
BRANCH AND STACK instruction in which the R±

field is nonzero, bytes 136-143 contain the PSW
of the calling program, except that the addressing-
mode bit and instruction address in bytes 140-143
are as specified by the contents of the general
register designated by the R± field. See the defi-
nition of BRANCH AND STACK in Chapter 10,
“Control Instructions” for how the addressing-mode
bit and instruction address are specified. The
value of the PER mask in bytes 136-143 is always
unpredictable. The PSW is saved in the state
entry by BRANCH AND STACK or stacking
PROGRAM CALL and is restored as the current
PSW by PROGRAM RETURN, except that the
PER mask and the condition code, bits 1 and
18-19 of the PSW, are not restored. PROGRAM
RETURN does not change the PER mask in the

current PSW, and it sets the condition code to an
unpredictable value.

Addressing Mode (A):  In a branch state entry,
bit position 0 of bytes 148-151 contains the
addressing-mode bit, bit 32 of the PSW, at the
end of the execution of the BRANCH AND STACK
instruction that formed the state entry. The
addressing-mode bit is saved in bit position 0 of
bytes 148-151 by BRANCH AND STACK.
BRANCH AND STACK does not change the
addressing-mode bit in the PSW.

Branch Address:  In a branch state entry, bit
positions 1-31 of bytes 148-151 contain the
instruction address, bits 33-63 of the PSW, at the
end of the execution of the BRANCH AND STACK
instruction that formed the state entry. The
instruction address is saved in bit positions 1-31 of
bytes 148-151 by BRANCH AND STACK. When
the R² field of BRANCH AND STACK is nonzero,
the instruction causes branching, and bits 1-31 of
bytes 148-151 are the branch address. When the
R² field of BRANCH AND STACK is zero, the
instruction is executed without branching, and bits
1-31 of bytes 148-151 designate the next sequen-
tial instruction following the BRANCH AND STACK
instruction, or following an EXECUTE instruction
that had the BRANCH AND STACK instruction as
its target instruction.

Called-Space Identification:  In a program-call
state entry when the called-space-identification
facility is installed, bytes 144-147 contain the
called-space identification (CSI). The CSI is
saved in the state entry by stacking PROGRAM
CALL. If the PROGRAM CALL operation was
space switching, bytes 0 and 1 of the CSI (bytes
144 and 145 of the state entry) contain the new
primary ASN that was placed in control register 4
by the PROGRAM CALL instruction, and bytes 2
and 3 of the CSI (bytes 146 and 147 of the state
entry) contain the rightmost two bytes of the ASTE
sequence number (ASTESN) in the new primary
ASTE whose address was placed in control reg-
ister 5 by the PROGRAM CALL instruction. If the
PROGRAM CALL operation was the to-current-
primary operation, or if the operation was
PROGRAM CALL FAST, the CSI is all zeros. In a
program-call state entry when the called-space-
identification facility is not installed, or in a branch
state entry, the contents of bytes 144-147 are
unpredictable.
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PC Number:  In a program-call state entry, bit
positions 12-31 of bytes 148-151 contain the PC
number used by the stacking PROGRAM CALL
instruction that formed the entry. Stacking
PROGRAM CALL places the PC number in bit
positions 12-31 of bytes 148-151, and it places
zeros in bit positions 0-11.

Modifiable Area:  Bytes 152-159 are the field
that is set by MODIFY STACKED STATE.
BRANCH AND STACK and stacking PROGRAM
CALL place all zeros in bytes 152-159.

The contents placed in bytes 144-147 by
BRANCH AND STACK and stacking PROGRAM
CALL are unpredictable. Bytes 144-147 are
reserved for possible future extensions.

 Stacking Process
The stacking process is performed as part of a
BRANCH AND STACK or stacking PROGRAM
CALL (or PROGRAM CALL FAST) operation.
(PROGRAM CALL FAST is referred to only when
there is a distinction between it and stacking
PROGRAM CALL.) The process locates space
for a new linkage-stack state entry, forms the
entry, updates the next-entry-size field in the pre-
ceding entry, and updates the linkage-stack-entry
address in control register 15 so that the new
entry becomes the current linkage-stack entry.

For the stacking process to be performed suc-
cessfully, the address-space-function control, bit
15 of control register 0, must be one, DAT must
be on, and the CPU must be in the primary-space
mode or access-register mode; otherwise, a
special-operation exception is recognized, and the
operation is suppressed.

Except as just mentioned, the stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits
32, 16, and 17 of the current PSW. All addresses
used during the stacking process are always
31-bit home virtual addresses.

During the stacking process when any address is
formed through the addition or subtraction of a
value to or from another address, a carry out of,
or a borrow into, bit position 1 of the address, if
any, is ignored.

When the stacking process fetches or stores by
using an address that designates, after translation,

a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the stacking process, but
page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating Space for a New Entry
The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 1-28 of control register 15, with three
zeros appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. This fetch is for the
purpose of obtaining the section-identification and
remaining-free-space fields in the word; the
unstack-suppression bit and entry-type field in the
word are not examined.

The 16-bit unsigned binary value in the remaining-
free-space field, bits 16-31 of the entry descriptor,
is compared against the size in bytes of the
linkage-stack entry to be formed. The size of a
state entry is 168 bytes. If the value in the field is
equal to or greater than the size of the entry to be
formed, processing continues as described in
“Forming the New Entry” on page 5-71; otherwise,
processing continues as described below.

When the remaining-free-space field in the current
linkage-stack entry indicates that there is not
enough space available in the current linkage-
stack section to form the new entry, the second
word of the trailer entry of the current section is
fetched. The address for fetching this word is
determined as follows: to the address formed
from the contents of control register 15, add 8 to
address the first byte after the entry descriptor of
the current entry, then add the contents of the
remaining-free-space field of the current entry to
address the first byte of the trailer entry, and then
add 4 to address the second word of the trailer
entry. The remaining-free-space value used in the
addition must be a multiple of 8; otherwise, a
stack-specification exception is recognized, and
the operation is nullified.
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If the forward-section-validity bit, bit 32, of the
trailer entry is zero, a stack-full exception is recog-
nized, and the operation is nullified; otherwise, the
forward-section-header address in the trailer entry
is used to locate the header entry in the next
linkage-stack section. Bits 33-60 of the trailer
entry, with three zeros appended on the right,
form the 31-bit home virtual address of the left-
most byte of the entry descriptor of the header
entry in the next section.

The first word of the entry descriptor of the header
entry in the next linkage-stack section is fetched.
This fetch is for the purpose of obtaining the
section-identification and remaining-free-space
fields in the word; the unstack-suppression bit and
entry-type field in the word are not examined.

The value in the remaining-free-space field of the
header entry in the next linkage-stack section is
compared against the size in bytes of the entry to
be formed. If the value in the field is equal to or
greater than the size of the entry to be formed, the
following occurs:

� The linkage-stack-entry address, bits 1-28 of
control register 15, is placed, as the backward
stack-entry address, in bit positions 33-60 of
the header entry in the next linkage-stack
section, and zeros are placed in bit positions
61-63.

� The backward stack-entry validity bit, bit 32, in
the header entry in the next section is set to
one.

� Bits 1-28 of the 31-bit home virtual address of
the entry descriptor of the header entry in the
next section are placed in bit positions 1-28 of
control register 15, and zeros are placed in bit
positions 0 and 29-31 of control register 15.
Thus, the header entry in the next section
becomes the current linkage-stack entry, and
the next section becomes the current linkage-
stack section.

� Processing continues as described in
“Forming the New Entry.”

If the value in the remaining-free-space field of the
header entry in the next section (before the next
section becomes the current section) is less than
the size of the linkage-stack entry to be formed, a
stack-specification exception is recognized, and
the operation is nullified.

Forming the New Entry
When the remaining-free-space field in the current
linkage-stack entry indicates that there is enough
space available in the current linkage-stack
section to form the new entry, the new entry is
formed beginning immediately after the entry
descriptor of the current entry.

The new entry is a state entry. The contents of
general registers 0-15 are stored in bytes 0-63 of
the new entry, in the ascending order of the reg-
ister numbers. The contents of access registers
0-15 are stored in bytes 64-127 of the new entry,
in the ascending order of the register numbers.
The PSW-key mask, bits 0-15 of control register 3;
secondary ASN, bits 16-31 of control register 3;
extended authorization index, bits 0-15 of control
register 8; and primary ASN, bits 16-31 of control
register 4, are stored in bytes 128-129, 130-131,
132-133, and 134-135, respectively, of the new
entry. The current PSW, in which the instruction
address has been updated, is stored in bytes
136-143 of the new entry. However, the value of
the PER mask, bit 1 in the PSW stored, is unpre-
dictable. Also, if the instruction being executed is
a BRANCH AND STACK instruction in which the
R± field is nonzero, the addressing-mode bit and
instruction address stored in bytes 140-143 of the
new entry are as specified by the contents of the
general register designated by the R± field.

When the called-space-identification facility is
installed and the instruction is PROGRAM CALL
or PROGRAM CALL FAST, the called-space iden-
tification is stored in bytes 144-147 of the new
entry. When the instruction is performing the
space-switching PROGRAM CALL operation, the
called-space identification is the two-byte ASN,
bytes 2 and 3, in the entry-table entry used by the
instruction, followed by bytes 2 and 3 of the ASTE
sequence number, bytes 2 and 3 being bits
176-191, in the ASN-second-table entry specified
by the ASN. When the instruction is performing
the to-current-primary PROGRAM CALL operation
or the space-switching or to-current-primary
PROGRAM CALL FAST operation, the called-
space identification is all zeros.

When the instruction is BRANCH AND STACK,
the addressing-mode bit and instruction address,
PSW bits 32-63, existing at the end of the exe-
cution of the instruction are stored in bytes
148-151 of the new entry. When the instruction is
PROGRAM CALL, the 20-bit PC number used,
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with 12 zeros appended on the left, is stored in
bytes 148-151. Zeros are stored in bytes 152-159
of the new entry.

When the called-space-identification facility is not
installed or the instruction is BRANCH AND
STACK, the contents of bytes 144-147 of the new
entry are unpredictable.

Bytes 160-167 of the new entry are its entry
descriptor. The unstack-suppression bit, bit 0, of
this entry descriptor is set to zero. The code
0000100 binary is stored in the entry-type field,
bits 1-7, of this entry descriptor if the instruction
being executed is BRANCH AND STACK. The
code 0000101 binary is stored if the instruction is
PROGRAM CALL. The value in the section-
identification field of the current linkage-stack entry
is stored in the section-identification field, bits
8-15, of this entry descriptor. The value in the
remaining-free-space field of the current entry,
minus the size in bytes of the new entry, is stored
in the remaining-free-space field of this entry
descriptor. Zeros are stored in the next-entry-size
field, bits 32-47, and in bit positions 48-63 of this
entry descriptor.

The stores into the new entry appear to be word-
concurrent as observed by other CPUs. The
order in which the stores occur is unpredictable.

Updating the Current Entry
The size in bytes of the new linkage-stack entry is
stored in the next-entry-size field of the current
entry. The remainder of the current entry remains
unchanged.

The order of the stores into the current entry and
the new entry is unpredictable.

Updating Control Register 15
Bits 1-28 of the 31-bit home virtual address of the
entry descriptor of the new linkage-stack entry are
placed in bit positions 1-28 of control register 15,
the linkage-stack-entry address. Zeros are placed
in bit positions 0 and 29-31 of control register 15.
Thus, the new entry becomes the current linkage-
stack-entry.

Recognition of Exceptions during the
Stacking Process
The exceptions which can be encountered during
the stacking process and their priority are
described in the definitions of the BRANCH AND
STACK, PROGRAM CALL, and PROGRAM CALL
FAST instructions.

Programming Note:  Any exception recognized
during the execution of BRANCH AND STACK
and PROGRAM CALL (and PROGRAM CALL
FAST) causes either nullification or suppression.
Therefore, if an exception is recognized, the
stacking process does not store into any linkage-
stack entry or change the contents of control reg-
ister 15.

 Unstacking Process
The unstacking process is performed as part of
the PROGRAM RETURN operation. The process
locates the last state entry in the linkage stack,
restores a portion of the information in the entry to
the CPU registers, updates the next-entry-size
field in the preceding entry, and updates the
linkage-stack-entry address in control register 15
so that the preceding entry becomes the current
linkage-stack entry. The part of the unstacking
process that locates the last state entry is also
performed as part of the EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, and
MODIFY STACKED STATE operations.

For the unstacking process to be performed suc-
cessfully, the address-space-function control, bit
15 of control register 0, must be one, DAT must
be on, and the CPU must be in the primary-space
mode or access-register mode; otherwise, a
special-operation exception is recognized, and the
operation is suppressed. However, when the
unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the CPU may be in the primary-space,
access-register, or home-space mode.

Except as just mentioned, the unstacking process
is performed independent of the current
addressing mode and translation mode, as speci-
fied by bits 32, 16, and 17 of the current PSW. All
addresses used during the unstacking process are
always 31-bit home virtual addresses.

During the unstacking process when any address
is formed through the addition or subtraction of a
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value to or from another address, a carry out of,
or a borrow into, bit position 1 of the address, if
any, is ignored.

When the unstacking process fetches or stores by
using an address that designates, after translation,
a location that is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed.

Key-controlled protection does not apply to the
accesses made during the unstacking process, but
page protection and low-address protection do
apply. A protection exception causes the opera-
tion to be suppressed.

Locating the Current Entry and
Processing a Header Entry
The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack
entry. Bits 1-28 of control register 15, with three
zeros appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. If the entry-type code in
bits 1-7 of the entry descriptor is not 0000001
binary, indicating that the entry is not a header
entry, processing continues as described in
“Checking for a State Entry” on page 5-74; other-
wise, processing continues as described below.

When the entry-type code in the current linkage-
stack entry is 0000001 binary, indicating a header
entry, the next processing depends on which
instruction is being executed. When the
unstacking process is performed as part of the
PROGRAM RETURN operation and the unstack-
suppression bit, bit 0, in the entry descriptor of the
current entry is one, a stack-operation exception is
recognized, and the operation is nullified. When
the unstacking process is performed as part of
EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the unstack-suppression bit is ignored.

When there is not an exception due to the
unstack-suppression bit, the second word of the
current linkage-stack entry (a header entry) is
fetched. The address of this word is determined

by subtracting 4 from the address of the entry
descriptor of the current entry.

If the backward stack-entry validity bit, bit 32, of
the current entry is zero, a stack-empty exception
is recognized, and the operation is nullified; other-
wise, the backward stack-entry address in the
current entry is used to locate a linkage-stack
entry referred to here as the designated entry.
Bits 33-60 of the current entry, with three zeros
appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the designated entry.

It is assumed in this definition of the unstacking
process that the designated linkage-stack entry is
the last entry, other than the trailer entry, in the
preceding linkage-stack section. This assumption
does not imply any processing that is not explicitly
described.

The first word of the entry descriptor of the desig-
nated entry is fetched. If the entry-type code in
this entry descriptor is not 0000001 binary, indi-
cating that the entry is not a header entry, the fol-
lowing occurs:

� When the unstacking process is performed as
part of the PROGRAM RETURN operation,
bits 1-28 of the 31-bit home virtual address of
the entry descriptor of the designated entry
are placed in bit positions 1-28 of control reg-
ister 15, and zeros are placed in bit positions
0 and 29-31 of control register 15. Thus, the
designated entry becomes the current linkage-
stack entry, and the preceding section (based
on the assumption) becomes the current
linkage-stack section. When the unstacking
process is performed as part of EXTRACT
STACKED REGISTERS, EXTRACT
STACKED STATE, or MODIFY STACKED
STATE, the contents of control register 15
remain unchanged, but the designated entry is
temporarily, during the remainder of the defi-
nition of the instruction, referred to as the
current linkage-stack entry.

� Processing continues as described in
“Checking for a State Entry” on page 5-74.

If the entry-type code in the designated entry is
0000001 binary, indicating a header entry, a
stack-specification exception is recognized, and
the operation is nullified.
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Checking for a State Entry
When the entry-type code in the current linkage-
stack entry indicates that the entry is not a header
entry, the code is checked for being 0000100 or
0000101 binary, which are the codes assigned to
a state entry.

If the current linkage-stack entry is a state entry,
the next processing depends on which instruction
is being executed. When the unstacking process
is performed as part of the PROGRAM RETURN
operation, processing continues as described in
“Restoring Information.” When the process is per-
formed as part of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the process is completed; that
is, no additional processing occurs as a part of the
unstacking process.

If the current linkage-stack entry is not a state
entry (and necessarily not a header entry either),
a stack-type exception is recognized, and the
operation is nullified.

 Restoring Information
The remaining parts of the unstacking process
occur only in the PROGRAM RETURN operation.

The current linkage-stack entry is a state entry. If
the unstack-suppression bit in the entry is one, a
stack-operation exception is recognized, and the
operation is nullified.

When there is not an exception due to the
unstack-suppression bit, a portion of the contents
of the current linkage-stack entry are restored to
the CPU registers. The contents of general regis-
ters 2-14 and access registers 2-14 are restored
to those registers from where they were saved in
the current entry by the stacking process. When
the entry-type code in the current entry is 0000101
binary, indicating a program-call state entry, the
PSW-key mask and secondary ASN in control reg-
ister 3, extended authorization index in control
register 8, and primary ASN in control register 4
are similarly restored. During this restoration, the
authorization index in control register 4 and the
monitor masks in control register 8 remain
unchanged. (The authorization index may be
changed by the part of the PROGRAM RETURN
execution that occurs after the unstacking

process.) When the entry-type code is 0000100
binary, indicating a branch state entry, the
PSW-key mask, secondary ASN, extended author-
ization index, and primary ASN in the current entry
are ignored, and all contents of the control regis-
ters remain unchanged. When the current entry is
either a branch state entry or a program-call state
entry, the current PSW is restored from bytes
136-143 of the entry, except that the PER mask
and the condition code are not restored. The PER
mask in the current PSW remains unchanged, and
the condition code is set to a unpredictable value.
Bytes 144-159 of the current entry are ignored.

The fetches from the current entry appear to be
word-concurrent as observed by other CPUs. The
order in which the fetches occur is unpredictable.

Updating the Preceding Entry
Zeros are stored in the next-entry-size field, bits
32-47, of the entry descriptor of the preceding
linkage-stack entry. The remainder of the pre-
ceding entry remains unchanged. The address of
the entry descriptor of the preceding entry is
determined by subtracting the size in bytes of the
current entry from the address of the entry
descriptor of the current entry.

The order of the store into the preceding entry and
the fetches from the current entry is unpredictable.

Updating Control Register 15
Bits 1-28 of the 31-bit home virtual address of the
entry descriptor of the preceding linkage-stack
entry are placed in bit positions 1-28 of control
register 15, the linkage-stack-entry address.
Zeros are placed in bit positions 0 and 29-31 of
control register 15. Thus, the preceding entry
becomes the current linkage-stack entry.

Recognition of Exceptions during the
Unstacking Process
The exceptions which can be encountered during
the unstacking process and their priority are
described in the definition of the PROGRAM
RETURN instruction. The exceptions which apply
to EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED
STATE are described in the definitions of those
instructions.
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Programming Notes:

1. Any exceptions recognized during the exe-
cution of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN
cause either nullification or suppression.
Therefore, if an exception is recognized, the
unstacking process does not change the con-
tents of any CPU register (except for updating
the instruction address in the PSW in the case
of suppression) or store into any linkage-stack
entry.

2. The unstacking process in PROGRAM
RETURN does not restore the PER mask in
the PSW so that an act of turning PER on or
off after the execution of the related BRANCH
AND STACK or PROGRAM CALL instruction
but before the execution of the PROGRAM
RETURN instruction will not be counteracted.
When PROGRAM CALL or PROGRAM
RETURN is space switching, the space-switch
event can be used as a signal to turn PER on
or off, if desired.

Sequence of Storage References
The following sections describe the effects which
can be observed in storage due to overlapped
operations and piecemeal execution of a CPU
program. Most of the effects described in these
sections are observable only when two or more
CPUs or channel programs are in simultaneous
execution and access common storage locations.
Thus, most of the effects need be taken into
account by a program only if the program interacts
with another CPU or a channel program.

Some of the effects described in the following
sections are independent of interaction with
another CPU or a channel program. These
effects, which are therefore more readily observ-
able, relate to prefetched instructions and overlap-
ping operands of a single instruction. These
effects are described in “Conceptual Sequence”
and in “Interlocks for Virtual-Storage References”
on page 5-76.

 Conceptual Sequence
In the real mode, primary-space mode, or
secondary-space mode, the CPU conceptually
processes instructions one at a time, with the exe-
cution of one instruction preceding the execution
of the following instruction. The execution of the
instruction designated by a successful branch
follows the execution of the branch. Similarly, an
interruption takes place between instructions or,
for interruptible instructions, between units of oper-
ation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation of instruction execution appears to
the program itself to be performed sequentially,
with the current instruction being fetched after the
preceding operation is completed and before the
execution of the current operation is begun. This
appearance is maintained even though the
storage-implementation characteristics and overlap
of instruction execution with storage accessing
may cause actual processing to be different. The
results generated are those that would have been
obtained had the operations been performed in
the conceptual sequence. Thus, it is possible for
an instruction to modify the next succeeding
instruction in storage.

Operations in the access-register mode or home-
space mode are the same as in the other trans-
lation modes, with one exception: an instruction
that is a store-type operand of a preceding instruc-
tion may appear to be fetched before the store
occurs. Thus, it is not assured that an instruction
can modify the succeeding instructions. This
exception applies if either the storing instruction or
the instruction stored is executed in the access-
register or home-space mode.

Regardless of the translation mode, there are two
other cases in which the copies of prefetched
instructions are not necessarily discarded:
(1) when the fetch and the store are done by
means of different effective addresses that map to
the same real address, and (2) when the store is
caused by the execution of a vector-facility instruc-
tion. The case involving different effective
addresses is described in more detail in “Inter-
locks for Virtual-Storage References” on
page 5-76.

  Chapter 5. Program Execution 5-75



  
 

Overlapped Operation of Instruction
Execution
In simple models in which operations are not over-
lapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper-
ands and results, and execution times which are
comparable to the propagation delays between
units can cause the actual sequence to differ con-
siderably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained, as observed by the CPU
which generates them, are those that would have
been obtained if the operations had been per-
formed in the conceptual sequence. However,
other CPUs and channel programs may, unless
otherwise constrained, observe a sequence that
differs from the conceptual sequence.

Divisible Instruction Execution
It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists in a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, interme-
diate or partially completed results may be observ-
able by other CPUs and by channel programs.

When a program interacts with the operation on
another CPU, or with a channel program, the
program may have to take into consideration that
a single operation may consist in a series of
storage references, that a storage reference may
in turn consist in a series of accesses, and that
the conceptual and observed sequences of these
accesses may differ.

Storage references associated with instruction
execution are of the following types: instruction
fetches, ART-table and DAT-table fetches, and
storage-operand references. For the purpose of
describing the sequence of storage references,
accesses to storage in order to perform ASN
translation, PC-number translation, tracing, and
the linkage-stack stacking and unstacking proc-
esses are considered to be storage-operand refer-
ences.

Programming Note:  The sequence of execution
of a CPU may differ from the simple conceptual
definition in the following ways:

� As observed by the CPU itself, instructions
may appear to be prefetched in the access-
register or home-space mode regardless of
whether the mode exists at the time of the
conceptual store or during the execution of the
prefetched instruction. They may also appear
to be prefetched because of a vector-facility
store or when different effective addresses are
used. (See “Interlocks for Virtual-Storage
References.”)

� As observed by other CPUs and by channel
programs, the execution of an instruction may
appear to be performed as a sequence of
piecemeal steps. This is described for each
type of storage reference in the following
sections.

� As observed by other CPUs and by channel
programs, the storage-operand accesses
associated with one instruction are not neces-
sarily performed in the conceptual sequence.
(See “Relation between Operand Accesses”
on page 5-86.)

� As observed by channel programs, in certain
unusual situations, the contents of storage
may appear to change and then be restored
to the original value. (See “Storage Change
and Restoration for DAT-Associated Access
Exceptions” on page 5-18.)

Interlocks for Virtual-Storage
References
As described in the immediately preceding
sections, CPU operation appears, with certain
exceptions, to be performed sequentially as
observed by the CPU itself; the stores performed
by one instruction generally appear to be com-
pleted before the next instruction and its operands
are fetched. This appearance is maintained in
overlapped machines by means of interlock circu-
itry that detects accesses to a common storage
location.

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
that are obtained when the operands overlap in
storage, this definition being in terms of a
sequence of stores and fetches. The interlock cir-
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cuitry is used in determining whether operand
overlap exists.

The purpose of this section is to define those
cases in which the machine must appear to
operate sequentially, and in which operands of a
single instruction must or must not be treated as
overlapping.

Proper operation is provided in part by comparing
effective addresses. For the purpose of this defi-
nition, the term “effective address” means an
address before translation, if any, regardless of
whether the address is virtual, real, or absolute. If
two effective addresses have the same value, the
effective addresses are said to be the same even
though one may be real or in a different address
space.

The values of two virtual effective addresses do
not necessarily indicate whether or not the
addresses designate the same storage location.
The address-translation tables may be set up so
that different effective addresses map to the same
real address, or so that the same effective
address in different address spaces maps to dif-
ferent real addresses.

The interlocks for virtual-storage references are
considered in two situations: storage references
of one instruction as they affect storage refer-
ences of another instruction, and multiple storage
references of a single instruction.

Interlocks between Instructions
As observed by the CPU itself, the storage
accesses for operands for each instruction appear
to occur in the conceptual sequence independent
of the effective address used. That is, the
operand stores for one instruction appear to be
completed before the operand fetches for the next
instruction occur. For instruction fetches, the
operand stores for one instruction necessarily
appear to be completed before the next instruction
is fetched only when the same effective address is
used for the operand store and the instruction
fetch, and then only in the real mode, primary-
space mode, or secondary-space mode and when
the store is not done by the vector facility.

When an instruction changes the contents of a
main-storage location in which a conceptually sub-
sequent instruction is to be executed, either
directly or by means of EXECUTE, and when dif-

ferent effective addresses are used to designate
that location for storing the result and fetching the
instruction, the instruction may appear to be
fetched before the store occurs. When either the
storing instruction or the subsequent instruction is
executed in the access-register mode or home-
space mode or when the store is done by the
vector facility, changes to the contents of storage
are not necessarily recognized even if the effec-
tive address used to store the value and the effec-
tive address used to fetch the instruction are the
same. If an intervening operation causes the pre-
fetched instructions to be discarded, then the
updated value is recognized. A definition of when
prefetched instructions must be discarded is
included in “Instruction Fetching” on page 5-79.

Any change to the storage key appears to be
completed before the conceptually following refer-
ence to the associated storage block is made,
regardless of whether the reference to the storage
location is made by means of a virtual, real, or
absolute address. Analogously, any conceptually
prior references to the storage block appear to be
completed when the key for that block is changed
or inspected.

Interlocks within a Single Instruction
For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
which are obtained when the operands overlap in
storage. This result is normally defined in terms
of the sequence of the storage accesses; that is, a
portion of the results of a store-type operand must
appear to be placed in storage before some
portion of the other operand is fetched. This defi-
nition applies provided that the store and fetch
accesses are specified by means of the same
effective addresses and the same effective space
designations.

When multiple address spaces are involved in the
access-register mode, the term “effective space
designation” is used to denote the value used by
the machine to determine whether two spaces are
the same. In the access-register mode, the 32-bit
access-list-entry-token (ALET) value associated
with each storage-operand address is called the
effective space designation. When a B field of
zero is specified, a value of all zeros is used for
the effective space designation. If the effective
space designations are different, the spaces are
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considered to be different even if both ALETs map
to the same segment-table-designation value.

When the store and the fetch accesses are speci-
fied by means of different effective space desig-
nations or by means of different effective
addresses, the operand fetch may appear to
precede the operand store.

Figure 5-10 on page 5-79 summarizes the cases
of overlap and the specified results, including
when MOVE LONG (MVCL) sets condition code 3,
for each case. Effective space designations may
be represented by ALB entries, and the test for
whether two effective space designations are the
same may be performed by comparing ALB
entries. If the program changes an attached and
valid ART-table entry without subsequently
causing the execution of PURGE ALB, two effec-
tive space designations that are the same may
have different representations in the ALB, and
failure to recognize operand overlap may result.
The use of the ALB never causes overlap to be
recognized when the effective space designations
are different.

Programming Note:  A single main-storage
location can be accessed by means of more than
one address in several ways:

1. The DAT tables may be set up such that mul-
tiple addresses in a single address space, or
addresses in different address spaces, map to
a single real address.

2. The translation of logical, instruction, and
virtual addresses may be changed by loading
the DAT parameters in the control registers,
by changing the address-space-control bits in
the PSW, or, for logical and instruction
addresses, by turning DAT on or off.

3. In the access-register mode, different address
spaces may be selected by means of each
access register. In addition, the primary
address space is selected for instruction
fetching and the target of EXECUTE.

4. STORE USING REAL ADDRESS performs a
store by means of a real address.

5. Certain other instructions also use real
addresses, and the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY
access two address spaces.

6. Accesses to storage for the purpose of storing
and fetching information for interruptions is
performed by means of real addresses, and,
for the store-status function, by means of
absolute addresses, whereas accesses by the
program may be by means of virtual
addresses.

7. The real-to-absolute mapping may be
changed by means of the SET PREFIX
instruction or a reset.

8. A main-storage location may be accessed by
channel programs by means of an absolute
address and by the CPU by means of a real
or a virtual address.

9. A main-storage location may be accessed by
another CPU by means of one type of
address and by this CPU by means of a dif-
ferent type of address.

The primary purpose of this section on interlocks
is to describe the effects caused in cases 1, 3,
and 4, above.

For case 2, no effect is observable because pre-
fetched instructions are discarded when the trans-
lation parameters are changed, and the delay of
stores by a CPU is not observable by the CPU
itself.

For case 5, for those instructions which fetch by
using real addresses (for example, LOAD REAL
ADDRESS, which fetches a segment-table entry
and a page-table entry), no effect is observable
because only operand accesses between
instructions are involved. All instructions that
store by using a real address, except STORE
USING REAL ADDRESS (or vector-facility
instructions executed with DAT off), or that store
across address spaces, except in the access-
register mode, cause prefetched instructions to be
discarded, and no effect is observable.

Cases 6 and 7 are situations which are defined to
cause serialization, with the result that prefetched
instructions are discarded. In these cases, no
effect is observable.

The handling of cases 8 and 9 involves accesses
as observed by other CPUs and by channel pro-
grams and is covered in the following sections in
this chapter.

5-78 ESA/390 Principles of Operation  



  
 

┌────────────┬──────────────┬────────────────┬──────────────────────┐

│Effective │Effective │Operands │Is Overlap Recognized?│

│Space │Addresses │Overlap ├─────────┬────────────┤

│Designations│Overlap │Destructively │MVCL Sets│ Operand │

│Equal? │Destructively?│in Real Storage?│ CC 3 │ Results │

├────────────┼──────────────┼────────────────┼─────────┼────────────┤

│ Yes │ No │ No │ No │ No │

│ Yes │ No │ Yes │ No │ Unp. │

│ Yes │ Yes │ No │ \ │ \ │

│ Yes │ Yes │ Yes │ Yes │ Yes │

│ No │ No │ No │ No │ No │

│ No │ No │ Yes │ No │ Unp. │

│ No │ Yes │ No │ No │ No │

│ No │ Yes │ Yes │ No │ Unp. │

├────────────┴──────────────┴────────────────┴─────────┴────────────┤

│Explanation: │

│ │

│ \ This case cannot occur. │

│ Unp. It is unpredictable whether or not the overlap is recognized.│

└───────────────────────────────────────────────────────────────────┘

Figure 5-10. Virtual-Storage Interlocks within a Single Instruction

 Instruction Fetching
Instruction fetching consists in fetching the one,
two, or three halfwords designated by the instruc-
tion address in the current PSW. The immediate
field of an instruction is accessed as part of an
instruction fetch. If, however, an instruction desig-
nates a storage operand at the location occupied
by the instruction itself, the location is accessed
both as an instruction and as a storage operand.
The fetch of the target instruction of EXECUTE is
considered to be an instruction fetch.

The bytes of an instruction may be fetched piece-
meal and are not necessarily accessed in a left-to-
right direction. The instruction may be fetched
multiple times for a single execution; for example,
it may be fetched for testing the addressability of
operands or for inspection of PER events, and it
may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched each time they
are executed. In particular, the fetching of an
instruction may precede the storage-operand ref-
erences for an instruction that is conceptually
earlier. The instruction fetch occurs prior to all
storage-operand references for all instructions that
are conceptually later.

An instruction may be prefetched by using a
virtual address only when the associated DAT
table entries are attached and valid or when
entries which qualify for substitution for the table

entries exist in the TLB. An instruction that has
been prefetched may be interpreted for execution
only for the same virtual address for which the
instruction was prefetched.

No limit is established on the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction exe-
cuted is not necessarily the most recently fetched
copy. Storing caused by other CPUs and by
channel programs does not necessarily change
the copy of prefetched instructions. However, if a
non-vector-facility store that is conceptually earlier
is made by the same CPU using the same effec-
tive address as that by which the instruction is
subsequently fetched, and the CPU is in any of
the real, primary-space, and secondary-space
modes when the the storing instruction is exe-
cuted and is in any of those modes when the sub-
sequent instruction is executed, the updated
information is obtained. If the store is caused by
a vector-facility instruction, if the effective
addresses are different, or if the CPU is in the
access-register mode or home-space mode during
either the storing execution or the execution of the
instruction that is the destination of the store, the
updated information is not necessarily obtained.
However, the updated information is obtained if
either execution is in the real mode since pre-
fetched instructions are discarded if DAT is turned
on or off.

All copies of prefetched instructions are discarded
when:
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� A serializing function is performed.
� The CPU enters the operating state.
� DAT is turned on or off.
� A change is made to a translation parameter

in control register 1 when in the primary-
space, secondary-space, or access-register
mode, or in control register 13 when in the
home-space mode.

The SET ADDRESS SPACE CONTROL instruc-
tion can change the translation mode between any
of the primary-space, secondary-space, access-
register, and home-space modes, and it performs
serialization. The SET ADDRESS SPACE
CONTROL FAST instruction can perform the
same mode changes, but it does not serialize.

Programming Notes:

1. As observed by a CPU itself, its own instruc-
tion prefetching may be apparent when storing
is done by the vector facility, when different
effective addresses map to a single real
address, or when the CPU is in the access-
register or home-space mode. This is
described in “Conceptual Sequence” on
page 5-75 and “Interlocks for Virtual-Storage
References” on page 5-76.

2. Any means of changing PSW bits 16 and 17,
except the SET ADDRESS SPACE
CONTROL FAST instruction, causes serializa-
tion to be performed and prefetched
instructions to be discarded. Turning DAT on
or off causes prefetched instructions to be dis-
carded. Therefore, any change of the trans-
lation mode, except a change made by SET
ADDRESS SPACE CONTROL FAST, always
causes prefetched instructions to be dis-
carded.

3. The following are some effects of instruction
prefetching on one CPU as observed by other
CPUs and by channel programs.

It is possible for one CPU to prefetch the con-
tents of a storage location, after which another
CPU or a channel program can change the
contents of that storage location and then set
a flag to indicate that the change has been
made. Subsequently, the first CPU can test
and find the flag set, branch to the modified
location, and execute the original prefetched
contents.

It is possible, if another CPU or a channel
program concurrently modifies the instruction,

for one CPU to recognize the changes to
some but not all bit positions of an instruction.

It is possible for one CPU to prefetch an
instruction and subsequently, before the
instruction is executed, for another CPU to
change the storage key. As a result, the first
CPU may appear to execute instructions from
a protected storage location. However, the
copy of the instructions executed is the copy
prefetched before the location was protected.

ART-Table and DAT-Table
Fetches
The access-register-translation (ART) table entries
are access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The dynamic-address-translation (DAT)
table entries are segment-table entries and page-
table entries. The fetching of these entries may
occur as follows:

1. An ART-table entry may be prefetched into
the ART-lookaside buffer (ALB) and used from
the ALB without refetching from storage, until
the entry is cleared by a PURGE ALB or SET
PREFIX instruction or by CPU reset. A
DAT-table entry may be prefetched into the
translation-lookaside buffer (TLB) and used
from the TLB without refetching from storage,
until the entry is cleared by an INVALIDATE
PAGE TABLE ENTRY, PURGE TLB, or SET
PREFIX instruction or by CPU reset.
ART-table and DAT-table entries are not nec-
essarily fetched in the sequence conceptually
called for; they may be fetched at any time
they are attached and valid, including during
the execution of conceptually previous
instructions.

2. The fetching of access-list designations,
access-list entries, ASN-second-table entries,
and DAT-table entries appears to be word-
concurrent as observed by other CPUs.
However, the reference to an entry may
appear to access a single byte at a time as
observed by channel programs.

3. The order in which the words of an access-list
entry or ASN-second-table entry are fetched is
unpredictable, except that the leftmost word of
an entry is fetched first. However, the left-
most word of an ASN-second-table entry is
not fetched when access-list-entry token
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00000000 hex is translated for BRANCH IN
SUBSPACE GROUP.

4. An ART-table or DAT-table entry may be
fetched even after some operand references
for the instruction have already occurred. The
fetch may occur as late as just prior to the
actual byte access requiring the ART-table or
DAT-table entry.

5. An ART-table or DAT-table entry may be
fetched for each use of the address, including
any trial execution, and for each reference to
each byte of each operand.

6. The DAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry.

7. When no copy of a segment-table entry desig-
nated by means of an ART-obtained segment-
table designation is in the TLB, the ART fetch
of the ASN-second-table entry precedes the
DAT segment-table-entry fetch. When no
copy of a required authority-table entry is in
the ALB, the ART fetch of the associated
ASN-second-table entry precedes the fetch of
the authority-table entry. When no copy of a
required ASN-second-table entry is in the
ALB, the fetch of the associated access-list
entry precedes the fetch of the
ASN-second-table entry. When no copy of a
required access-list entry is in the ALB, the
fetch of the associated access-list designation
precedes the fetch of the access-list entry.

 Storage-Key Accesses
References to the storage key are handled as
follows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer-
ence, the four access-control bits and the
fetch-protection bit associated with the storage
location are inspected concurrently with the
reference to the storage location.

2. When storing is performed, the change bit is
set in the associated storage key concurrently
with the store operation.

3. The instruction SET STORAGE KEY
EXTENDED causes all seven bits to be set
concurrently in the storage key. The access

to the storage key for SET STORAGE KEY
EXTENDED follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The INSERT STORAGE KEY EXTENDED
instruction provides a consistent image of bits
0-6 of the storage key. Similarly, the
instructions INSERT VIRTUAL STORAGE
KEY and TEST PROTECTION provide a con-
sistent image of bits 0-4 of the storage key.
The access to the storage key for all of these
instructions follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

5. The instruction RESET REFERENCE BIT
EXTENDED modifies only the reference bit.
All other bits of the storage key remain
unchanged. The reference bit and change bit
are examined concurrently to set the condition
code. The access to the storage key for
RESET REFERENCE BIT EXTENDED follows
the sequence rules for storage-operand
update references. The reference bit is the
only bit which is updated.

The record of references provided by the refer-
ence bit is not necessarily accurate, and the han-
dling of the reference bit is not subject to the
concurrency rules. However, in the majority of sit-
uations, reference recording approximately coin-
cides with the storage reference.

The change bit may be set in cases when no
storing has occurred. See “Exceptions to
Nullification and Suppression” on page 5-18.

 Storage-Operand References
A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations designated by the instruction.

During the execution of an instruction, all or some
of the storage operands for that instruction may be
fetched, intermediate results may be maintained
for subsequent modification, and final results may
be temporarily held prior to placing them in
storage. Stores caused by other CPUs and by
channel programs do not necessarily affect these
intermediate results.

Storage-operand references are of three types:
fetches, stores, and updates.
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Storage-Operand Fetch References
When the bytes of a storage operand participate
in the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-
operand fetch reference. A fetch-type operand is
identified in individual instruction definitions by
indicating that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a
time. Unless otherwise specified, the bytes are
not necessarily fetched in any particular sequence.

The storage-operand fetch references of one
instruction occur after those of all preceding
instructions and before those of subsequent
instructions, as observed by other CPUs and by
channel programs. The operands of any one
instruction are fetched in the sequence specified
for that instruction. The CPU may fetch the oper-
ands of instructions before the instructions are
executed. There is no defined limit on the length
of time between when an operand is fetched and
when it is used. Still, as observed by the CPU
itself, its storage-operand references are per-
formed in the conceptual sequence.

Storage-Operand Store References
When the bytes of a storage operand participate
in the instruction execution only as a destination,
to the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-
operand store reference. A store-type operand is
identified in individual instruction definitions by
indicating that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand
consists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not nec-
essarily stored in any particular sequence.

The CPU may delay placing results in storage.
There is no defined limit on the length of time that
results may remain pending before they are
stored. This delay does not affect the sequence
in which results are placed in storage.

The results of one instruction are placed in
storage after the results of all preceding
instructions have been placed in storage and
before any results of the succeeding instructions
are stored, as observed by other CPUs and by
channel programs. The results of any one instruc-
tion are stored in the sequence specified for that
instruction.

The CPU does not fetch operands, ART-table
entries, or DAT-table entries from a storage
location until all information destined for that
location by the CPU has been stored. Prefetched
instructions may appear to be updated before the
information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the
CPU enters the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location con-
sists first in a fetch and subsequently in a store.
The operand is called an update-type operand,
and the combination of the two accesses is
referred to as an update reference. Instructions
such as MOVE ZONES, TRANSLATE, OR (OC,
OI), and ADD DECIMAL cause an update to the
first-operand location. An update-type operand is
identified in the individual instruction definition by
indicating that the access exception is for both
fetch and store.

For most instructions which have update-type
operands, the fetch and store accesses associ-
ated with an update reference do not necessarily
occur one immediately after the other, and it is
possible for other CPUs and channel programs to
make fetch and store accesses to the same
location during this time. Such an update refer-
ence is sometimes called a noninterlocked-update
storage reference.

For certain special instructions, the update refer-
ence is interlocked against certain accesses by
other CPUs. Such an update reference is called
an interlocked-update reference. The fetch and
store accesses associated with an interlocked-
update reference do not necessarily occur one
immediately after the other, but all store accesses
and the fetch and store accesses associated with
interlocked-update references by other CPUs are
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prevented from occurring at the same location
between the fetch and the store accesses of an
interlocked-update reference. Accesses by
channel programs may occur to the location
during the interlock period.

The storage-operand update reference for the fol-
lowing instructions appears to be an interlocked-
update reference as observed by other CPUs.
The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP perform an interlocked-update reference.
On models in which the STORE CHARACTERS
UNDER MASK instruction with a mask of zero
fetches and stores the byte designated by the
second-operand address, the fetch and store
accesses are an interlocked-update reference.

Within the limitations of the above requirements,
the fetch and store accesses associated with an
update reference follow the same rules as the
fetches and stores described in the previous
sections.

Programming Notes:

1. When two CPUs attempt to update information
at a common main-storage location by means
of a noninterlocked-update reference, it is pos-
sible for both CPUs to fetch the information
and subsequently make the store access.
The change made by the first CPU to store
the result in such a case is lost. Similarly, if
one CPU updates the contents of a field by
means of a noninterlocked-update reference,
but another CPU makes a store access to that
field between the fetch and store parts of the
update reference, the effect of the store is
lost. If, instead of a store access, a CPU
makes an interlocked-update reference to the
common storage field between the fetch and
store portions of a noninterlocked-update ref-
erence due to another CPU, any change in
the contents produced by the interlocked-
update reference is lost.

2. The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common
storage field by two or more CPUs. To
ensure that no changes are lost, all CPUs
must use an instruction providing an
interlocked-update reference. In addition, the
program must ensure that channel programs

do not store into the same storage location
since such stores may occur between the
fetch and store portions of an interlocked-
update reference.

3. Only those bytes which are included in the
result field of both operations are considered
to be part of the common main-storage
location. However, all bits within a common
byte are considered to be common even if the
bits modified by the two operations do not
overlap. As an example, if (1) one CPU exe-
cutes the instruction OR (OC) with a length of
1 and the value 80 hex in the second-operand
location, (2) the other CPU executes AND
(NC) with a length of 1 and the value FE hex
in the second-operand location, and (3) the
first operand of both instructions is the same
byte, then the result of one of the updates can
be lost.

4. When the store access is part of an update
reference by the CPU, the execution of the
storing is not necessarily contingent on
whether the information to be stored is dif-
ferent from the original contents of the
location. In particular, the contents of all des-
ignated byte locations are replaced, and, for
each byte in the field, the entire contents of
the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (OI or OC)
with a second operand of all zeros.

b. Execution of OR (OC) with the first-and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and
function values are the same.

 Storage-Operand Consistency

 Single-Access References
A fetch reference is said to be a single-access ref-
erence if the value is fetched in a single access to
each byte of the data field. In the case of overlap-
ping operands, the location may be accessed
once for each operand. A store-type reference is
said to be a single-access reference if a single
store access occurs to each byte location within
the data field. An update reference is said to be
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single access if both the fetch and store accesses
are each single access.

Except for the accesses associated with multiple-
access references and the stores associated with
storage change and restoration for
DAT-associated access exceptions, all storage-
operand references are single-access references.

 Multiple-Access References
In some cases, multiple accesses may be made to
all or some of the bytes of a storage operand.
The following cases may involve multiple-access
references:

1. The storage operands of the following
instructions: CONVERT TO BINARY,
CONVERT TO DECIMAL, MOVE INVERSE,
MOVE WITH OFFSET, PACK, TRANSLATE,
TEST BLOCK, UNPACK, and UPDATE
TREE.

2. The stores into that portion of the first operand
of MOVE LONG or MOVE LONG EXTENDED
which is filled with padding bytes.

3. The storage operands of the decimal
instructions.

4. The stores into a trace entry.

5. The storage operands of vector-facility
instructions.

6. The stores associated with the stop-and-store-
status, store-status-at-address, and store-
extended-status-at-address SIGNAL
PROCESSOR orders.

7. The storage operands of COMPARE UNTIL
SUBSTRING EQUAL.

8. The trap control block and trap save area
used by TRAP.

When a storage-operand store reference to a
location is not a single-access reference, the value
placed at a byte location is not necessarily the
same for each store access; thus, intermediate
results in a single-byte location may be observed
by other CPUs and by channel programs.

Multiple accesses may be made to all or some of
the bytes of the following:

� The trap-control block
� The trap-save area

When multiple store references are made to the
trap-save area, the value placed in each byte
location is not necessarily the same for each
access; thus, intermediate results in a single byte
location may be observed by other CPUs and by
channel programs.

Programming Notes:

1. When multiple fetch or store accesses are
made to a single byte that is being changed
by another CPU or by a channel program, the
result is not necessarily limited to that which
could be obtained by fetching or storing the
bits individually. For example, the execution
of MULTIPLY DECIMAL may consist in repeti-
tive additions and subtractions, each of which
causes the second operand to be fetched
from storage and the first operand to be
updated in storage.

2. When CPU instructions which make multiple-
access references are used to modify storage
locations being simultaneously accessed by
another CPU or by a channel program, mul-
tiple store accesses to a single byte by the
CPU may result in intermediate values being
observed by the other CPU or by the channel
program. To avoid these intermediate values
(for example, when modifying a CCW chain),
only instructions making single-access refer-
ences should be used.

 Block-Concurrent References
For some references, the accesses to all bytes
within a halfword, word, or doubleword are speci-
fied to appear to be block-concurrent as observed
by other CPUs. These accesses do not neces-
sarily appear to channel programs to include more
than a byte at a time. The halfword, word, or
doubleword is referred to in this section as a
block. When a fetch-type reference is specified to
appear to be concurrent within a block, no store
access to the block by another CPU is permitted
during the time that bytes contained in the block
are being fetched. Accesses to the bytes within
the block by channel programs may occur
between the fetches. When a store-type refer-
ence is specified to appear to be concurrent within
a block, no access to the block, either fetch or
store, is permitted by another CPU during the time
that the bytes within the block are being stored.
Accesses to the bytes in the block by channel pro-
grams may occur between the stores.
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 Consistency Specification
| For all instructions in the S, RX, and RXE formats,

with the exception of EXECUTE, CONVERT TO
DECIMAL, CONVERT TO BINARY, and the I/O
instructions, when the operand is addressed on a
boundary which is integral to the size of the
operand, the storage-operand references appear
to be block-concurrent as observed by other
CPUs.

For the instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP, all accesses to
the storage operand appear to be block-
concurrent as observed by other CPUs.

| For the instruction PERFORM LOCKED OPERA-
| TION, The accesses to the even-numbered
| storage operands are word concurrent for function
| codes that are a multiple of 4 and doubleword
| concurrent for function codes that are one more
| than a multiple of 4. The accesses to the
| doublewords in the parameter list are doubleword
| concurrent regardless of the function code.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a word
boundary, and the instructions COMPARE
LOGICAL (CLC), COMPARE LOGICAL CHARAC-
TERS UNDER MASK, INSERT CHARACTERS
UNDER MASK, and STORE CHARACTERS
UNDER MASK access their storage operands in a
left-to-right direction, and all bytes accessed within
each doubleword appear to be accessed concur-
rently as observed by other CPUs.

The instructions LOAD ACCESS MULTIPLE,
LOAD CONTROL, STORE ACCESS MULTIPLE,
and STORE CONTROL access the storage
operand in a left-to-right direction, and all bytes
accessed within each word appear to be accessed
concurrently as observed by other CPUs.

When destructive overlap does not exist, the oper-
ands of MOVE (MVC), MOVE WITH KEY, MOVE
TO PRIMARY, and MOVE TO SECONDARY are
accessed as follows:

1. The first operand is accessed in a left-to-right
direction, and all bytes accessed within a
doubleword appear to be accessed concur-
rently as observed by other CPUs.

2. The second operand is accessed left to right,
and all bytes within a doubleword in the
second operand that are moved into a single

doubleword in the first operand appear to be
fetched concurrently as observed by other
CPUs. Thus, if the first and second operands
begin on the same byte offset within a
doubleword, the fetch of the second operand
appears to be doubleword-concurrent as
observed by other CPUs. If the offsets within
a doubleword differ by 4, the fetch of the
second operand appears to be word-
concurrent as observed by other CPUs.

Destructive overlap is said to exist when the result
location is used as a source after the result has
been stored, assuming processing to be per-
formed one byte at a time.

The operands of MOVE WITH SOURCE KEY,
MOVE WITH DESTINATION KEY, and MOVE
STRING are accessed the same as those of
MOVE (MVC), except that destructive overlap is
assumed not to exist.

The operands for MOVE LONG and MOVE LONG
EXTENDED appear to be accessed doubleword-
concurrent as observed by other CPUs when all of
the following are true:

� Both operands start on doubleword bounda-
ries and are an integral number of
doublewords in length.

� The operands do not overlap.

� The nonpadding part of the operation is being
executed.

The operands for COMPARE LOGICAL LONG
and COMPARE LOGICAL LONG EXTENDED
appear to be accessed doubleword-concurrent as
observed by other CPUs when both operands
start on doubleword boundaries and are an inte-
gral number of doublewords in length.

The operands for COMPARE LOGICAL STRING
appear to be accessed doubleword-concurrent as
observed by other CPUs when both operands
start on doubleword boundaries. The operand for
SEARCH STRING appears to be accessed
doubleword-concurrent as observed by other
CPUs when it starts on a doubleword boundary.

For EXCLUSIVE OR (XC), the operands are proc-
essed in a left-to-right direction, and, when the
first and second operands coincide, all bytes
accessed within a doubleword appear to be
accessed concurrently as observed by other
CPUs.
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Programming Note:  In the case of EXCLUSIVE
OR (XC) designating operands which coincide
exactly, the bytes within the field may appear to
be accessed as many as three times, by two
fetches and one store: once as the fetch portion
of the first operand update, once as the second-
operand fetch, and then once as the store portion
of the first-operand update. Each of the three
accesses appears to be doubleword-concurrent as
observed by other CPUs, but the three accesses
do not necessarily appear to occur one imme-
diately after the other. One or both fetch
accesses may be omitted since the instruction can
be completed without fetching the operands.

Relation between Operand
Accesses
As observed by other CPUs and by channel pro-
grams, storage-operand fetches associated with
one instruction execution appear to precede all
storage-operand references for conceptually sub-
sequent instructions. A storage-operand store
specified by one instruction appears to precede all
storage-operand stores specified by conceptually
subsequent instructions, but it does not neces-
sarily precede storage-operand fetches specified
by conceptually subsequent instructions.
However, a storage-operand store appears to
precede a conceptually subsequent storage-
operand fetch from the same main-storage
location.

When an instruction has two storage operands
both of which cause fetch references, it is unpre-
dictable which operand is fetched first, or how
much of one operand is fetched before the other
operand is fetched. When the two operands
overlap, the common locations may be fetched
independently for each operand.

When an instruction has two storage operands the
first of which causes a store and the second a
fetch reference, it is unpredictable how much of
the second operand is fetched before the results
are stored. In the case of destructively overlap-
ping operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

When an instruction has two storage operands the
first of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched first, or how much of one

operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to
storage. In the case of destructively overlapping
operands, the portion of the second operand
which is common to the first is not necessarily
fetched from storage.

The independent fetching of a single location for
each of two operands may affect the program exe-
cution in the following situation. When the same
storage location is designated by two operand
addresses of an instruction, and another CPU or a
channel program causes the contents of the
location to change during execution of the instruc-
tion, the old and new values of the location may
be used simultaneously. For example, compar-
ison of a field to itself may yield a result other than
equal, or EXCLUSIVE-ORing of a field with itself
may yield a result other than zero.

Other Storage References
The restart, program, supervisor-call, external,
input/output, and machine-check PSWs appear to
be accessed doubleword-concurrent as observed
by other CPUs. These references appear to occur
after the conceptually previous unit of operation
and before the conceptually subsequent unit of
operation. The relationship between the
new-PSW fetch, the old-PSW store, and the
interruption-code store is unpredictable.

Store accesses for interruption codes are not nec-
essarily single-access stores. The store accesses
for the external and supervisor-call-interruption
codes appear to occur between the conceptually
previous and conceptually subsequent operations.
The store accesses for the program-interruption
codes may precede the storage-operand refer-
ences associated with the instruction which results
in the program interruption.

 Serialization
The sequence of functions performed by a CPU is
normally independent of the functions performed
by other CPUs and by channel programs. Simi-
larly, the sequence of functions performed by a
channel program is normally independent of the
functions performed by other channel programs
and by CPUs. However, at certain points in its
execution, serialization of the CPU occurs. Serial-
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ization also occurs at certain points for channel
programs.

 CPU Serialization
All interruptions and the execution of certain
instructions cause a serialization of CPU opera-
tions. A serialization operation consists in com-
pleting all conceptually previous storage accesses
by the CPU, as observed by other CPUs and by
channel programs, before the conceptually subse-
quent storage accesses occur. Serialization
affects the sequence of all CPU accesses to
storage and to the storage keys, except for those
associated with ART-table-entry and
DAT-table-entry fetching.

Serialization is performed by CPU reset, all inter-
ruptions, and by the execution of the following
instructions:

� The general instructions BRANCH ON CON-
DITION (BCR) with the M± and R² field con-
taining all ones and all zeros, respectively,
and COMPARE AND SWAP, COMPARE
DOUBLE AND SWAP, STORE CLOCK,
SUPERVISOR CALL, and TEST AND SET.

� LOAD PSW and SET STORAGE KEY
EXTENDED.

� All I/O instructions.

� PURGE ALB, PURGE TLB, and SET PREFIX.
PURGE ALB and SET PREFIX also cause the
ART-lookaside buffer to be cleared of all
entries. PURGE TLB and SET PREFIX also
cause the translation-lookaside buffer to be
cleared of all entries.

 � SIGNAL PROCESSOR.

� INVALIDATE PAGE TABLE ENTRY.

 � TEST BLOCK.

� MOVE TO PRIMARY, MOVE TO SEC-
ONDARY, PROGRAM CALL, PROGRAM
CALL FAST, PROGRAM TRANSFER, SET
ADDRESS SPACE CONTROL, and SET
SECONDARY ASN.

� PROGRAM RETURN when the state entry to
be unstacked is a program-call state entry.

 � PERFORM LOCKED OPERATION. Serializa-
tion is performed immediately after the lock is
obtained and again immediately before it is
released. However, values fetched from the

parameter list before the lock is obtained are
not necessarily refetched.

� The three trace functions — branch tracing,
ASN tracing, and explicit tracing — cause
serialization to be performed before the trace
action and after completion of the trace action.

The sequence of events associated with a serial-
izing operation is as follows:

1. All conceptually previous storage accesses by
the CPU are completed as observed by other
CPUs and by channel programs. This
includes all conceptually previous stores and
changes to the storage keys.

2. The normal function associated with the serial-
izing operation is performed. In the case of
instruction execution, operands are fetched,
and the storing of results is completed. The
exceptions are LOAD PSW and SET PREFIX,
in which the operand may be fetched before
previous stores have been completed, and
interruptions, in which the interruption code
and associated fields may be stored prior to
the serialization. The fetching of the serial-
izing instruction occurs before the execution of
the instruction and may precede the execution
of previous instructions, but may not precede
the completion of any previous serializing
operation. In the case of an interruption, the
old PSW, the interruption code, and other
information, if any, are stored, and the new
PSW is fetched, but not necessarily in that
sequence.

3. Finally, instruction fetch and operand
accesses for conceptually subsequent opera-
tions may begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage
accesses under the control of other CPUs and of
channel programs.

Programming Notes:

1. The following are some effects of a serializing
operation:

a. When the execution of an instruction
changes the contents of a storage location
that is used as a source of a following
instruction and when different addresses
are used to designate the same absolute
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location for storing the result and fetching
the instruction, a serializing operation fol-
lowing the change ensures that the modi-
fied instruction is executed.

b. When a serializing operation takes place,
other CPUs and channel programs
observe instruction and operand fetching
and result storing to take place in the
sequence established by the serializing
operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily
affect the execution of the serializing instruc-
tion unless a serializing function has been per-
formed after the storing and before the
execution of the serializing instruction.

3. Following is an example showing the effects
of serialization. Location A initially contains
X'FF'.

 CPU 1 CPU 2

 MVI A,X'ðð' G CLI A,X'ðð'

 BCR 15,ð BNE G

The BCR 15,0 instruction executed by CPU
1 is a serializing instruction that ensures that
the store by CPU 1 at location A is completed.
However, CPU 2 may loop indefinitely, or until
the next I/O or external interruption on CPU 2,
because CPU 2 may already have fetched
from location A for every execution of the CLI
instruction. A serializing instruction must be in

the CPU-2 loop to ensure that CPU 2 will
again fetch from location A.

 Channel-Program Serialization
Serialization of a channel program occurs as
follows:

1. All storage accesses and storage-key
accesses by the channel program follow initi-
ation of the execution of START SUB-
CHANNEL, or, if suspended, RESUME
SUBCHANNEL, as observed by CPUs and by
other channel programs. This includes all
accesses for the CCWs, IDAWs, and data.

2. All storage accesses and storage-key
accesses by the channel program are com-
pleted, as observed by CPUs and by other
channel programs, before the subchannel
status indicating status-pending with primary
status is made available to any CPU.

3. If a CCW contains a PCI flag or a suspend
flag which is one, all storage accesses and
storage-key accesses due to CCWs preceding
it in the CCW chain are completed, as
observed by CPUs and by other channel pro-
grams, before the subchannel status indicating
status-pending with intermediate status (PCI
or suspended) is made available to any CPU.

The serialization of a channel program does not
affect the sequence of storage accesses or
storage-key accesses caused by other channel
programs or by another CPU program.
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The interruption mechanism permits the CPU to
change its state as a result of conditions external
to the configuration, within the configuration, or
within the CPU itself. To permit fast response to
conditions of high priority and immediate recogni-

tion of the type of condition, interruption conditions
are grouped into six classes: external,
input/output, machine check, program, restart, and
supervisor call.
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 Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new
PSW. Processing resumes as specified by the
new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the inter-
rupted program. For program and supervisor-call
interruptions, the information stored also contains
a code that identifies the length of the last-

executed instruction, thus permitting the program
to respond to the cause of the interruption. In the
case of some program conditions for which the
normal response is reexecution of the instruction
causing the interruption, the instruction address
directly identifies the instruction last executed.

Except for restart, an interruption can occur only
when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location deter-
mination, and instruction execution are explained
in later sections and are summarized in
Figure 6-1 on page 6-3.
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┌───────────────────┬────────────────────────┬─────┬─────────┬───────┬─────────────┐

│ │ │ │Mask Bits│ │ │

│ │ │ │in Ctrl │ │Execution of │

│ │ │PSW- │Registers│ │Instruction │

│ Source │ Interruption │Mask │ │ ILC │Identified │

│ Identification │ Code │Bits │Reg, Bit│ Set │by Old PSW │

├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤

│MACHINE CHECK │Locations 232-239ñ │ │ │ │ │

│ (old PSW 48, │ │ │ │ │ │

│ new PSW 112) │ │ │ │ │ │

│ │ │ │ │ │ │

│Exigent condition │ │ 13 │ │ u │terminated or│

│ │ │ │ │ │ nullifiedò │

│Repressible cond │ │ 13 │14, 3-7 │ u │unaffectedò │

├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤

│SUPERVISOR CALL │Locations 138-139 │ │ │ │ │

│ (old PSW 32, │ │ │ │ │ │

│ new PSW 96) │ │ │ │ │ │

│ │ │ │ │ │ │

│Instruction bits │ðððððððð ssssssss │ │ │ 1,2 │completed │

├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤

│PROGRAM │Locations 142-143 │ │ │ │ │

│ (old PSW 4ð, ├──────────────────┬─────┤ │ │ │ │

│ new PSW 1ð4) │ Binary │Hexó │ │ │ │ │

│ ├──────────────────┼─────┤ │ │ │ │

│Operation │ðððððððð pðððððð1 │ððð1 │ │ │ 1,2,3│suppressed │

│Privileged oper │ðððððððð pððððð1ð │ððð2 │ │ │ 2,3│suppressed │

│Execute │ðððððððð pððððð11 │ððð3 │ │ │ 2 │suppressed │

│Protection │ðððððððð pðððð1ðð │ððð4 │ │ │ 1,2,3│suppressed or│

│ │ │ │ │ │ │ terminated │

│Addressing │ðððððððð pðððð1ð1 │ððð5 │ │ │ 1,2,3│suppressed or│

│ │ │ │ │ │ │ terminated │

│Specification │ðððððððð pðððð11ð │ððð6 │ │ │ð,1,2,3│suppressed or│

│ │ │ │ │ │ │ completed │

│Data │ðððððððð pðððð111 │ððð7 │ │ │ 1,2,3│suppressed, │

│ │ │ │ │ │ │ terminated,│

│ │ │ │ │ │ │ or │

│ │ │ │ │ │ │ completed │

│Fixed-pt overflow │xxxxxxxx pððð1ððð │ððð8 │ 2ð │ │ 1,2 │completed │

│Fixed-point divide │ðððððððð pððð1ðð1 │ððð9 │ │ │ 1,2 │suppressed or│

│ │ │ │ │ │ │ completed │

│Decimal overflow │ðððððððð pððð1ð1ð │ðððA │ 21 │ │ 2,3│completed │

│Decimal divide │ðððððððð pððð1ð11 │ðððB │ │ │ 2,3│suppressed │

│HFP exp. overflow │xxxxxxxx pððð11ðð │ðððC │ │ │ 1,2,3│completed │

│HFP exp. underflow │xxxxxxxx pððð11ð1 │ðððD │ 22 │ │ 1,2,3│completed │

│HFP significance │xxxxxxxx pððð111ð │ðððE │ 23 │ │ 1,2 │completed │

│HFP divide │xxxxxxxx pððð1111 │ðððF │ │ │ 1,2 │suppressed or│

│ │ │ │ │ │ │ inhibitedô │

│Segment transl │ðððððððð pðð1ðððð │ðð1ð │ │ │ 1,2,3│nullified │

│Page translation │ðððððððð pðð1ððð1 │ðð11 │ │ │ 1,2,3│nullified │

│Translation spec │ðððððððð pðð1ðð1ð │ðð12 │ │ │ 1,2,3│suppressed │

│Special operation │ðððððððð pðð1ðð11 │ðð13 │ │ ð, 1 │ 1,2,3│suppressed │

│Operand │ðððððððð pðð1ð1ð1 │ðð15 │ │ │ 2 │suppressed │

│Trace table │ðððððððð pðð1ð11ð │ðð16 │ │ │ 1,2 │nullified │

│ASN-transl spec │ðððððððð pðð1ð111 │ðð17 │ │ │ 1,2,3│suppressed │

│Vector operationô │ðððððððð pðð11ðð1 │ðð19 │ │ │ 2,3│nullified │

│Space-switch event │ðððððððð pðð111ðð │ðð1C │ │ 1, ð │ð,1,2 │completed │

│HFP square root │ðððððððð pðð111ð1 │ðð1D │ │ │ 2,3│suppressed or│

│ │ │ │ │ │ │ inhibited │

│Unnormalized │xxxxxxxx pðð1111ð │ðð1E │ │ │ 2 │inhibitedô │

│ operandô │ │ │ │ │ │ │

│PC-transl spec │ðððððððð pðð11111 │ðð1F │ │ │ 2 │suppressed │

│AFX translation │ðððððððð pð1ððððð │ðð2ð │ │ │ 1,2 │nullified │

│ASX translation │ðððððððð pð1ðððð1 │ðð21 │ │ │ 1,2 │nullified │

│LX translation │ðððððððð pð1ððð1ð │ðð22 │ │ │ 2 │nullified │

└───────────────────┴──────────────────┴─────┴─────┴─────────┴───────┴─────────────┘

Figure 6-1 (Part 1 of 3). Interruption Action
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┌───────────────────┬────────────────────────┬─────┬─────────┬───────┬─────────────┐

│ │ │ │Mask Bits│ │ │

│ │ │ │in Ctrl │ │Execution of │

│ │ │PSW- │Registers│ │Instruction │

│ Source │ Interruption │Mask │ │ ILC │Identified │

│ Identification │ Code │Bits │Reg, Bit│ Set │by Old PSW │

├───────────────────┼──────────────────┬─────┼─────┼─────────┼───────┼─────────────┤

│EX translation │ðððððððð pð1ððð11 │ðð23 │ │ │ 2 │nullified │

│Primary authority │ðððððððð pð1ðð1ðð │ðð24 │ │ │ 2 │nullified │

│Secondary auth │ðððððððð pð1ðð1ð1 │ðð25 │ │ │ 1,2 │nullified │

│ALET specification │ðððððððð pð1ð1ððð │ðð28 │ │ │ 1,2,3│suppressed │

│ALEN translation │ðððððððð pð1ð1ðð1 │ðð29 │ │ │ 1,2,3│nullified │

│ALE sequence │ðððððððð pð1ð1ð1ð │ðð2A │ │ │ 1,2,3│nullified │

│ASTE validity │ðððððððð pð1ð1ð11 │ðð2B │ │ │ 1,2,3│nullified │

│ASTE sequence │ðððððððð pð1ð11ðð │ðð2C │ │ │ 1,2,3│nullified │

│Extended authority │ðððððððð pð1ð11ð1 │ðð2D │ │ │ 1,2,3│nullified │

│Stack full │ðððððððð pð11ðððð │ðð3ð │ │ │ 2 │nullified │

│Stack empty │ðððððððð pð11ððð1 │ðð31 │ │ │ 1,2 │nullified │

│Stack specification│ðððððððð pð11ðð1ð │ðð32 │ │ │ 1,2 │nullified │

│Stack type │ðððððððð pð11ðð11 │ðð33 │ │ │ 1,2 │nullified │

│Stack operation │ðððððððð pð11ð1ðð │ðð34 │ │ │ 1,2 │nullified │

│Monitor event │ðððððððð p1ðððððð │ðð4ð │ │ 8, 16-31│ 2 │completed │

│PER event │xxxxxxxx 1nnnnnnnõ│ðð8ð │ 1 │ 9, ð-4ø │ð,1,2,3│completedö │

├───────────────────┼──────────────────┴─────┼─────┼─────────┼───────┼─────────────┤

│EXTERNAL │Locations 134-135 │ │ │ │ │

│ (old PSW 24, ├──────────────────┬─────┤ │ │ │ │

│ new PSW 88) │ Binary │Hexó │ │ │ │ │

│ ├──────────────────┼─────┤ │ │ │ │

│Interrupt key │ðððððððð ð1ðððððð │ðð4ð │ 7 │ ð, 25 │ u │unaffected │

│Malfunction alert │ððð1ðð1ð ðððððððð │12ðð │ 7 │ ð, 16 │ u │unaffected │

│Emergency signal │ððð1ðð1ð ððððððð1 │12ð1 │ 7 │ ð, 17 │ u │unaffected │

│External call │ððð1ðð1ð ðððððð1ð │12ð2 │ 7 │ ð, 18 │ u │unaffected │

│TOD-clock sync chk │ððð1ðððð ðððððð11 │1ðð3 │ 7 │ ð, 19 │ u │unaffected │

│Clock comparator │ððð1ðððð ððððð1ðð │1ðð4 │ 7 │ ð, 2ð │ u │unaffected │

│CPU timer │ððð1ðððð ððððð1ð1 │1ðð5 │ 7 │ ð, 21 │ u │unaffected │

| │ETR │ððð1ð1ðð ððððð11ð │14ð6 │ 7 │ ð, 27 │ u │unaffected │

│Service signal │ðð1ðð1ðð ððððððð1 │24ð1 │ 7 │ ð, 22 │ u │unaffected │

├───────────────────┼──────────────────┴─────┼─────┼─────────┼───────┼─────────────┤

│INPUT/OUTPUT │Locations 184-191 │ │ │ │ │

│ (old PSW 56, │ │ │ │ │ │

│ new PSW 12ð) │ │ │ │ │ │

│ │ │ │ │ │ │

│I/O-interruption │ │ 6 │ 6, ð-7÷ │ u │unaffected │

│ subclass │ │ │ │ │ │

├───────────────────┼────────────────────────┼─────┼─────────┼───────┼─────────────┤

│RESTART │None │ │ │ │ │

│ (old PSW 8, │ │ │ │ │ │

│ new PSW ð) │ │ │ │ │ │

│ │ │ │ │ │ │

│Restart key │ │ │ │ u │unaffected │

└───────────────────┴────────────────────────┴─────┴─────────┴───────┴─────────────┘

Figure 6-1 (Part 2 of 3). Interruption Action
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┌──────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ Locations for the old PSWs, new PSWs, and interruption codes are real locations.│

│ ñ A model-independent machine-check interruption code of 64 bits is stored at │

│ real locations 232-239. │

│ ò The effect of the machine-check condition is indicated by bits in the machine-│

│ check-interruption code. The setting of these bits indicates the extent of │

│ the damage and whether the unit of operation is nullified, terminated, or │

│ unaffected. │

│ ó The interruption code in the column labeled "Hex" is the hex code for the │

│ basic interruption; this code does not show the effects of concurrent inter- │

│ ruption conditions represented by n, p, or x in the column labeled "Binary." │

│ ô Vector-operation and unnormalized-operand exceptions are associated with │

│ the vector facility. "Inhibited" is a type of ending which occurs only for │

│ instructions associated with the vector facility. These are described in │

│ the publication IBM Enterprise Systems Architecture/39ð Vector Operations, │

│ SA22-72ð7. │

│ õ When the interruption code indicates a PER event, an ILC of ð may be stored │

│ only when bits 8-15 of the interruption code are 1ðððð11ð (PER, specifi- │

│ cation). │

│ ö The unit of operation is completed, unless a program exception concurrently │

│ indicated causes the unit of operation to be inhibited, nullified, suppressed,│

│ or terminated. │

│ ÷ Bits ð-7 of control register 6 provide detailed masking of I/O-interruption │

│ subclasses ð-7 respectively. │

│ ø Additional masks in control register 9, bit positions 16-31, provide detailed │

│ control over the source of PER general-register-alteration events which are │

│ masked by control register 9, bit 3. │

│ n A possible nonzero code indicating another concurrent program-interruption │

│ condition │

│ p If one, the bit indicates a concurrent PER-event interruption condition. │

│ s Bits of the I field of SUPERVISOR CALL. │

│ u Not stored. │

│ x Exception-extension code. This field is described in the publication IBM │
│ Enterprise Systems Architecture/39ð Vector Operations, SA22-72ð7. This field │

│ is set to zero except by vector instructions. │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 6-1 (Part 3 of 3). Interruption Action

 Interruption Code
The six classes of interruptions (external, I/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old PSW is stored and from which the
new PSW is fetched. For most classes, the
causes are further identified by an interruption
code and, for some classes, by additional informa-
tion placed in permanently assigned real storage
locations during the interruption. (See also
“Assigned Storage Locations” on page 3-43.) For
external, program, and supervisor-call inter-
ruptions, the interruption code consists of 16 bits.

For external interruptions, the interruption code is
stored at real locations 134-135. A parameter
may be stored at real locations 128-131, or a CPU
address may be stored at real locations 132-133.

For I/O interruptions, the I/O-interruption code is
stored at real locations 184-191. The
I/O-interruption code consists of a 32-bit

subsystem-identification word and a 32-bit inter-
ruption parameter.

For machine-check interruptions, the interruption
code consists of 64 bits and is stored at real
locations 232-239. Additional information for iden-
tifying the cause of the interruption and for recov-
ering the state of the machine may be provided by
the contents of the machine-check failing-storage
address and the contents of the fixed-logout and
machine-check-save areas. (See Chapter 11,
“Machine-Check Handling.”)

For program interruptions, the interruption code is
stored at real locations 142-143, and the
instruction-length code is stored in bit positions 5
and 6 of real location 141. Further information
may be provided in the form of the data-exception
code (DXC), translation-exception identification,

| monitor-class number, PER code, addressing-
| and-translation-mode identification, PER address,
| monitor code, exception access identification, and

  Chapter 6. Interruptions 6-5



  
 

| PER access identification, which are stored at real
locations 144-161.

Enabling and Disabling
By means of mask bits in the current PSW,
floating-point-control (FPC) register, and control
registers, the CPU may be enabled or disabled for
all external, I/O, and machine-check interruptions
and for some program interruptions. When a
mask bit is one, the CPU is enabled for the corre-
sponding class of interruptions, and those inter-
ruptions can occur.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I/O interruptions remain pending.
External-interruption conditions either remain
pending or persist until the cause is removed.
Machine-check-interruption conditions, depending
on the type, are ignored, remain pending, or
cause the CPU to enter the check-stop state. The
disallowed program-interruption conditions are
ignored, except that some causes are indicated
also by the setting of the condition code, and
IEEE exceptions set flags in the FPC register.
The setting of the HFP-significance and
HFP-exponent-underflow program-mask bits
affects the manner in which HFP operations are
completed when the corresponding condition
occurs. Similarly, the setting of the IEEE mask
bits in the FPC register affects the manner in
which BFP operations are completed when the
corresponding condition occurs.

Programming Notes:

1. Mask bits in the PSW provide a means of dis-
allowing most maskable interruptions; thus,
subsequent interruptions can be disallowed by
the new PSW introduced by an interruption.
Furthermore, the mask bits can be used to
establish a hierarchy of interruption priorities,
where a condition in one class can interrupt
the program handling a condition in another
class but not vice versa. To prevent an
interruption-handling routine from being inter-
rupted before the necessary housekeeping
steps are performed, the new PSW must
disable the CPU for further interruptions within
the same class or within a class of lower pri-
ority.

2. Because the mask bits in control registers are
not changed as part of the interruption proce-
dure, these masks cannot be used to prevent
an interruption immediately after a previous
interruption in the same class. The mask bits
in control registers provide a means for selec-
tively enabling the CPU for some sources and
disabling it for others within the same class.

3. Controlling bits exist for several program inter-
ruptions, but with no mask bit in the PSW.
Such bits include the IEEE mask bits in the
FPC register, the monitor masks in bit posi-
tions 16-31 of control register 8, and the
primary space-switch-event-control bit, bit 0 of
control register 1. A bit of this nature is some-
what arbitrarily considered to be a “mask” bit
only if the polarity is such that interruption is
enabled when the bit is one. Thus, for
example, the SSM-suppression-control bit, bit
1 of control register 0, is considered to be a
mask bit, while the AFP-register-control bit, bit
13 of control register 0, is not. Regardless of
the polarity of such control bits, to avoid
another program interruption, an interruption-
handling routine must avoid issuing
instructions subject to these bits until they
have been set appropriately.

Handling of Floating Interruption
Conditions
An interruption condition which can be presented
to any CPU in the configuration is called a floating
interruption condition. The condition is presented
to the first CPU in the configuration which is
enabled for the corresponding interruption and
which can perform the interruption, and then the
condition is cleared and not presented to any
other CPU in the configuration. A CPU cannot
perform the interruption when it is in the check-
stop state, has an invalid prefix, is in a string of
program interruptions due to a specification excep-
tion of the type which is recognized early, or is in
the stopped state. However, a CPU with the rate
control set to instruction step can perform the
interruption when the start key is activated.

Service signal, I/O, and certain machine-check
conditions are floating interruption conditions.

6-6 ESA/390 Principles of Operation  



  
 

 Instruction-Length Code
The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed. It permits identifying the
instruction causing the interruption when the
instruction address in the old PSW designates the
next sequential instruction. The ILC is provided
also by the BRANCH AND LINK instructions in the
24-bit addressing mode.

The ILC for program and supervisor-call inter-
ruptions is stored in bit positions 5 and 6 of the
bytes at real locations 141 and 137, respectively.
For external, I/O, machine-check, and restart inter-
ruptions, the ILC is not stored since it cannot be
related to the length of the last-executed instruc-
tion.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. That
instruction may be one for which a specification
exception was recognized due to an odd instruc-
tion address or for which an access exception
(addressing, page-translation, protection, segment-
translation, or translation-specification) was recog-
nized during the fetching of the instruction.
Whenever an instruction is executed by means of
EXECUTE, instruction-length code 2 is set to indi-
cate the length of EXECUTE and not that of the
target instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value does not depend on whether the opera-
tion code is assigned or on whether the instruction
is installed. The following table summarizes the
meaning of the instruction-length code:

┌──────────────┬─────┬───────────────┐

│ ILC │Instr│ │

├───────┬──────┤Bits │ Instruction │

│Decimal│Binary│ ð-1 │ Length │

├───────┼──────┼─────┼───────────────┤

│ ð │ ðð │ │Not available │

│ 1 │ ð1 │ ðð │One halfword │

│ 2 │ 1ð │ ð1 │Two halfwords │

│ 2 │ 1ð │ 1ð │Two halfwords │

│ 3 │ 11 │ 11 │Three halfwords│

└───────┴──────┴─────┴───────────────┘

 Zero ILC
Instruction-length code 0, after a program inter-
ruption, indicates that the instruction address
stored in the old PSW does not identify the
instruction causing the interruption.

An ILC of 0 occurs when a specification exception
due to a PSW-format error is recognized as part
of early exception recognition and the PSW has

| been introduced by LOAD PSW, PROGRAM
| CALL FAST, PROGRAM RETURN, or an inter-

ruption. (See “Exceptions Associated with the
PSW” on page 6-9.) In the case of LOAD PSW,

| PROGRAM CALL FAST, or PROGRAM RETURN,
| the instruction address of the instruction or of
| EXECUTE has been replaced in the PSW by the
| new instruction address. When the invalid PSW is

introduced by an interruption, the PSW-format
error cannot be attributed to an instruction.

| In the case of LOAD PSW, PROGRAM CALL
| FAST, PROGRAM RETURN, and the supervisor-

call interruption, a PER event may be indicated
concurrently with a specification exception having
an ILC of 0.

In the case of a PROGRAM RETURN instruction
that causes both a space-switch event and a
PSW-format error, the space-switch event is
recognized, but it is unpredictable whether the ILC
is 0 or 1, or 0 or 2 if EXECUTE was used.

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of
an exception that prohibits access to the instruc-
tion, the instruction is considered to have been
executed, but the instruction-length code cannot
be set on the basis of the first two bits of the
instruction. As far as the significance of the ILC
for this case is concerned, the following two situ-
ations are distinguished:

1. When an odd instruction address causes a
specification exception to be recognized or
when an addressing, protection, or translation-
specification exception is encountered on
fetching an instruction, the ILC is set to 1, 2,
or 3, indicating the multiple of 2 by which the
instruction address has been incremented. It
is unpredictable whether the instruction
address is incremented by 2, 4, or 6. By
reducing the instruction address in the old
PSW by the number of halfword locations indi-
cated in the ILC, the instruction address ori-
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ginally appearing in the PSW may be
obtained.

2. When a segment-translation or page-
translation exception is recognized while
fetching an instruction, the ILC is arbitrarily set
to 1, 2, or 3. In this case, the operation is nul-
lified, and the instruction address is not incre-
mented.

The ILC is not necessarily related to the first two
bits of the instruction when the first halfword of an
instruction can be fetched but an access exception
is recognized on fetching the second or third
halfword. The ILC may be arbitrarily set to 1, 2,
or 3 in these cases. The instruction address is or
is not updated, as described in situations 1 and 2
above.

When any exceptions are encountered on fetching
the target instruction of EXECUTE, the ILC is 2.

Programming Notes:

1. A nonzero instruction-length code for a
program interruption indicates the number of
halfword locations by which the instruction
address in the program old PSW must be
reduced to obtain the instruction address of
the last instruction executed, unless one of the
following situations exists:

a. The interruption is caused by an exception
resulting in nullification.

b. An interruption for a PER event occurs
before the execution of an interruptible
instruction is completed, and no other
program-interruption condition is indicated
concurrently.

c. The interruption is caused by a PER event
or space-switch event due to LOAD PSW
or a branch or linkage instruction,
including SUPERVISOR CALL (but not
including MONITOR CALL).

d. The interruption is caused by an
addressing exception or protection excep-
tion for the storage operand of a LOAD
CONTROL instruction that loads the
control register (1 or 13) containing the
segment-table designation that specifies
the address space from which instructions
are fetched.

For situations a and b above, the instruction
address in the PSW is not incremented, and

the instruction designated by the instruction
address is the same as the last one executed.
These situations are the only ones in which
the instruction address in the old PSW identi-
fies the instruction causing the exception. Sit-
uation b can be distinguished from a PER
event indicated after completion of an interrup-
tible or noninterruptible instruction in that, for
situation b, the instruction address in the PSW
is the same as the PER address in the word
at real location 152.

For situation c, the instruction address has
been replaced as part of the operation, and
the address of the last instruction executed
cannot be calculated using the one appearing
in the program old PSW.

For situation d, the effective address of the
last instruction executed can be calculated,
but, since the segment-table designation for
the instruction address space is unpredictable,
the corresponding real address is unknown.

2. The instruction-length code (ILC) is redundant
when a PER event is indicated since the PER
address in the word at real location 152 identi-
fies the instruction causing the interruption (or
the EXECUTE instruction, as appropriate).
Similarly, the ILC is redundant when the oper-
ation is nullified, since in this case the instruc-
tion address in the PSW is not incremented.
If the ILC value is required in this case, it can
be derived from the operation code of the
instruction identified by the old PSW.

3. The address of the last instruction executed
before a program interruption is insufficient to
locate the program problem if one of the fol-
lowing situations exists:

a. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address
was introduced into the PSW by a means
other than sequential operation (by a
branch or linkage instruction, LOAD PSW,
an interruption, or conclusion of an IPL
sequence).

b. The interruption is caused by a specifica-
tion exception due to an odd instruction
address, which necessarily also results
from introduction of an instruction address
into the PSW.
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c. The interruption is caused by an early
specification exception due to a STORE
THEN OR SYSTEM MASK or SET
SYSTEM MASK instruction that switches
to or from the real mode while introducing
invalid values in bit positions 0-7 of the
PSW.

For situations a and b, the instruction address
was replaced by the operation preceding the
last instruction execution, and the address of
the program location related to that preceding
operation is unavailable.

For situation c, the address of the last instruc-
tion executed is available, but the corre-
sponding real address is unknown.

4. The address of the last instruction executed is
not available when an interruption is caused
by an early specification exception due to a
LOAD PSW or PROGRAM RETURN instruc-
tion or an interruption.

Exceptions Associated with the
PSW
Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called
PSW-format errors.

Early Exception Recognition
For the following error conditions, a program inter-
ruption for a specification exception occurs imme-
diately after the PSW becomes active:

� A one is introduced into an unassigned bit
position of the PSW (that is, any of bit posi-
tions 0, 2-4, or 24-31).

� A zero is introduced into bit position 32 of the
PSW, but bits 33-39 are not all zeros.

� A zero is introduced into bit position 12 of the
PSW.

The interruption occurs regardless of whether the
wait state is specified. If the invalid PSW causes
the CPU to become enabled for a pending I/O,
external, or machine-check interruption, the
program interruption occurs instead, and the

pending interruption is subject to the mask bits of
the new PSW introduced by the program inter-
ruption.

When an interruption or the execution of LOAD
PSW, PROGRAM CALL FAST, or PROGRAM
RETURN introduces a PSW with one of the above
error conditions, the instruction-length code is set
to 0, and the newly introduced PSW is stored
unmodified as the old PSW. When one of the
above error conditions is introduced by execution
of SET SYSTEM MASK or STORE THEN OR
SYSTEM MASK, the instruction-length code is set
to 2, and the instruction address is incremented by
4. The PSW containing the invalid value intro-
duced into the system-mask field is stored as the
old PSW.

When a PSW with one of the above error condi-
tions is introduced during initial program loading,
the loading sequence is not completed, and the
load indicator remains on.

Late Exception Recognition
For the following conditions, the exception is
recognized as part of the execution of the next
instruction:

� A specification exception is recognized due to
an odd instruction address in the PSW (PSW
bit 63 is one).

� An access exception (addressing, page-
translation, protection, segment-translation, or
translation-specification) is associated with the
location designated by the instruction address
or with the location of the second or third
halfword of the instruction starting at the des-
ignated instruction address.

The instruction-length code and instruction
address stored in the program old PSW under
these conditions are discussed in “ILC on
Instruction-Fetching Exceptions” on page 6-7.

If an I/O, external, or machine-check-interruption
condition is pending and the PSW causes the
CPU to be enabled for that condition, the corre-
sponding interruption occurs, and the PSW is not
inspected for exceptions which are recognized
late. Similarly, a PSW specifying the wait state is
not inspected for exceptions which are recognized
late.
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Programming Notes:

1. The execution of LOAD ADDRESS SPACE
PARAMETERS, LOAD PSW, PROGRAM
CALL, PROGRAM CALL FAST, PROGRAM
RETURN, PROGRAM TRANSFER, RESUME
PROGRAM, SET PREFIX, SET SECONDARY
ASN, SET SYSTEM MASK, STORE THEN
AND SYSTEM MASK, and STORE THEN OR
SYSTEM MASK is suppressed on an
addressing or protection exception, and hence
the program old PSW provides information
concerning the program causing the excep-
tion.

2. When the first halfword of an instruction can
be fetched but an access exception is recog-
nized on fetching the second or third halfword,
the ILC is not necessarily related to the opera-
tion code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of inter-
ruptions may occur. (See “Priority of
Interruptions” on page 6-45.)

 External Interruption
The external interruption provides a means by
which the CPU responds to various signals origi-
nating from either inside or outside the configura-
tion.

An external interruption causes the old PSW to be
| stored at real locations 24-31 and a new PSW to
| be fetched from real locations 88-95.

The source of the interruption is identified in the
interruption code which is stored at real locations
134-135. The instruction-length code is not
stored.

Additionally, for the malfunction-alert, emergency-
signal, and external-call conditions, a 16-bit CPU
address is associated with the source of the inter-
ruption and is stored at real locations 132-133.
When the CPU address is stored, bit 6 of the
interruption code is set to one. For all other con-
ditions, no CPU address is stored, bit 6 of the
interruption code is set to zero, and zeros are
stored at real locations 132-133.

| For the ETR and service-signal interruptions, a
32-bit parameter is associated with the interruption
and is stored at real locations 128-131. Bit 5 of

the external-interruption code indicates that a
parameter has been stored. When bit 5 is zero,
the contents of real locations 128-131 remain
unchanged.

External-interruption conditions are of two types:
those for which an interruption-request condition is
held pending, and those for which the condition
directly requests the interruption. Clock
comparator, CPU timer, and TOD-clock sync
check are conditions which directly request
external interruptions. If a condition which directly
requests an external interruption is removed
before the request is honored, the request does
not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the inter-
ruption, and, if the condition persists, more than
one interruption may result from a single occur-
rence of the condition.

When several interruption requests for a single
source are generated before the interruption
occurs, and the interruption condition is of the type
which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for inter-
ruption by that source. The external interruption
occurs at the completion of a unit of operation.
The external mask, PSW bit 7, and external
subclass-mask bits in control register 0 control
whether the CPU is enabled for a particular
source. Each source for an external interruption
has a subclass-mask bit assigned to it, and the
source can cause an interruption only when the
external-mask bit is one and the corresponding
subclass-mask bit is one.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction exe-
cution or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one con-
currently pending request, the interruption occurs
for the pending condition or conditions having the
highest priority.

The priorities for external-interruption requests in
descending order are as follows:

 � Interrupt key
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 � Malfunction alert
 � Emergency signal
 � External call
� TOD-clock sync check

 � Clock comparator
 � CPU timer

|  � ETR
 � Service signal

All requests are honored one at a time. When
more than one emergency-signal request exists at
a time or when more than one malfunction-alert
request exists at a time, the request associated
with the smallest CPU address is honored first.

 Clock Comparator
An interruption request for the clock comparator
exists whenever either of the following conditions
is met:

1. The TOD clock is in the set or not-set state,
and the value of the clock comparator is less
than the value in the compared portion of the
TOD clock, both compare values being con-
sidered unsigned binary integers.

2. The TOD clock is in the error or not-
operational state.

If the condition responsible for the request is
removed before the request is honored, the
request does not remain pending, and no inter-
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from a single occurrence of the condition.

When the TOD clock accessed by a CPU is set or
changes state, interruption conditions, if any, that
are due to the clock comparator may or may not
be recognized for up to 1.048576 seconds after
the change.

The subclass-mask bit is in bit position 20 of
control register 0. This bit is initialized to zero.

The clock-comparator condition is indicated by an
external-interruption code of 1004 hex.

 CPU Timer
An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made posi-
tive before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists,
more than one interruption may occur from a
single occurrence of the condition.

When the TOD clock accessed by a CPU is set or
changes state, interruption conditions, if any, that
are due to the CPU timer may or may not be
recognized for up to 1.048576 seconds after the
change.

The subclass-mask bit is in bit position 21 of
control register 0. This bit is initialized to zero.

The CPU-timer condition is indicated by an
external-interruption code of 1005 hex.

 Emergency Signal
An interruption request for an emergency signal is
generated when the CPU accepts the emergency-
signal order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by
another CPU in the configuration. The request is
preserved and remains pending in the receiving
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
CPU for each CPU in the configuration, including
the receiving CPU itself.

The subclass-mask bit is in bit position 17 of
control register 0. This bit is initialized to zero.

The emergency-signal condition is indicated by an
external-interruption code of 1201 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real
locations 132-133.
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|  ETR
| An interruption request for the ETR is generated
| when a port-availability change occurs at any port
| in the current CPC-port group or when an ETR
| alert occurs. The terms specific to the ETR are
| not defined in this publication.

| If the same ETR condition occurs more than once
| before the interruption occurs, the request is gen-
| erated only once. The request is generated for all
| CPUs in the configuration.

| The subclass-mask bit is in bit position 27 of
| control register 0. This bit is initialized to zero.

| The ETR condition is indicated by an external-
| interruption code of 1406 hex.

 External Call
An interruption request for an external call is gen-
erated when the CPU accepts the external-call
order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by
another CPU in the configuration. The request is
preserved and remains pending in the receiving
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

Only one external-call request, along with the
processor address, may be held pending in a CPU
at a time.

The subclass-mask bit is in bit position 18 of
control register 0. This bit is initialized to zero.

The external-call condition is indicated by an
external-interruption code of 1202 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real
locations 132-133.

 Interrupt Key
An interruption request for the interrupt key is gen-
erated when the operator activates that key. The
request is preserved and remains pending in the
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by
CPU reset.

When the interrupt key is activated while the CPU
is in the load state, it depends on the model
whether an interruption request is generated or
the condition is lost.

The subclass-mask bit is in bit position 25 of
control register 0. This bit is initialized to one.

The interrupt-key condition is indicated by an
external-interruption code of 0040 hex.

 Malfunction Alert
An interruption request for a malfunction alert is
generated when another CPU in the configuration
enters the check-stop state or loses power. The
request is preserved and remains pending in the
receiving CPU until it is cleared. The pending
request is cleared when it causes an interruption
and by CPU reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each of the other CPUs in the configura-
tion. Removal of a CPU from the configuration
does not generate a malfunction-alert condition.

The subclass-mask bit is in bit position 16 of
control register 0. This bit is initialized to zero.

The malfunction-alert condition is indicated by an
external-interruption code of 1200 hex. The
address of the CPU that generated the condition
is stored at real locations 132-133.

 Service Signal
An interruption request for a service signal is gen-
erated upon the completion of certain
configuration-control and maintenance functions,
such as those initiated by means of the model-
dependent DIAGNOSE instruction. A 32-bit
parameter is provided with the interruption to
assist the program in determining the operation for
which the interruption is reported.

Service signal is a floating interruption condition
and is presented to the first CPU in the configura-
tion which can perform the interruption. The inter-
ruption condition is cleared when it causes an
interruption in any one of the CPUs and also by
subsystem reset.

The subclass-mask bit is in bit position 22 of
control register 0. This bit is initialized to zero.
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The service-signal condition is indicated by an
external-interruption code of 2401 hex. A 32-bit
parameter is stored at real locations 128-131.

TOD-Clock Sync Check
The TOD-clock-sync-check condition indicates that
more than one TOD clock exists in the configura-

| tion and that bits 32 through the rightmost incre-
| mented bit of the clocks are not running in
| synchronism. When a single clock exists in the
| configuration, a TOD-clock sync check does not
| occur.

An interruption request for a TOD-clock sync
check exists when the TOD clock accessed by
this CPU is running (that is, the clock is in the set
or not-set state), the clock accessed by any other

| CPU in the configuration is running, and bits 32
| through the rightmost incremented bit of the two

clocks do not match. When a clock is set or
changes state, or when a running clock is added
to the configuration, a delay of up to 1.048576
seconds (2òð microseconds) may occur before the
mismatch condition is recognized.

When only two TOD clocks are in the configura-
tion and either or both of the clocks are in the
error, stopped, or not-operational state, it is unpre-
dictable whether a TOD-clock-sync-check condi-
tion is recognized; if the condition is recognized, it
may continue to persist up to 1.048576 seconds

| after both clocks have been running with bit 32
| through the rightmost incremented bit matching.

However, in this case, the condition does not
persist if one of the TOD clocks is removed from
the configuration.

When more than one CPU shares a TOD clock,
only the CPU with the smallest CPU address
among those sharing the clock indicates a
TOD-clock-sync-check condition associated with
that clock.

If the condition responsible for the request is
removed before the request is honored, the
request does not remain pending, and no inter-
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from a single occurrence of the condition.

The subclass-mask bit is in bit position 19 of
control register 0. This bit is initialized to zero.

The TOD-clock-sync-check condition is indicated
by an external-interruption code of 1003 hex.

 I/O Interruption
The input/output (I/O) interruption provides a
means by which the CPU responds to conditions
originating in I/O devices and the channel sub-
system.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
same time. The requests are preserved and
remain pending until accepted by a CPU, or until
cleared by some other means, such as subsystem
reset.

The I/O interruption occurs at the completion of a
unit of operation. Priority is established among
requests so that in each CPU only one interruption
request is processed at a time. Priority among
requests for interruptions of differing
I/O-interruption subclasses is according to the
numerical value of the I/O-interruption subclass
(with zero having the highest priority), in conjunc-
tion with the I/O-interruption subclass-mask set-
tings in control register 6. For more details, see
Chapter 16, “I/O Interruptions.”

When a CPU becomes enabled for I/O inter-
ruptions and the channel subsystem has estab-
lished priority for a pending I/O-interruption
condition, the interruption occurs at the completion
of the instruction execution or interruption that
causes the enabling.

An I/O interruption causes the old PSW to be
| stored at real locations 56-63 and a new PSW to
| be fetched from real locations 120-127. Additional

information, in the form of an eight-byte
I/O-interruption code, is stored at real locations
184-191. The I/O-interruption code consists of a
32-bit subsystem-identification word and a 32-bit
interruption parameter.

An I/O interruption can occur only while a CPU is
enabled for the interruption subclass presenting
the request. The I/O-mask bit, bit 6 of the PSW,
and the I/O-interruption subclass mask in control
register 6 determine whether the CPU is enabled
for a particular I/O interruption.

I/O interruptions are grouped into eight
I/O-interruption subclasses, numbered from 0-7.
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Each I/O-interruption subclass has an associated
I/O-interruption subclass-mask bit in bit positions
0-7 of control register 6. Each subchannel has an
I/O-interruption subclass value associated with it.
The CPU is enabled for I/O interruptions of a par-
ticular I/O-interruption subclass only when PSW bit
6 is one and the associated I/O-interruption
subclass-mask bit in control register 6 is also one.
If the corresponding I/O-interruption subclass-
mask bit is zero, then the CPU is disabled for I/O
interruptions with that subclass value. I/O inter-
ruptions for all subclasses are disallowed when
PSW bit 6 is zero.

 Machine-Check Interruption
The machine-check interruption is a means for
reporting to the program the occurrence of equip-
ment malfunctions. Information is provided to
assist the program in determining the source of
the fault and extent of the damage.

A machine-check interruption causes the old PSW
| to be stored at real locations 48-55 and a new
| PSW to be fetched from real locations 112-119.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at real locations 232-239. Further
information identifying the cause of the interruption
and the location of the fault may be stored at real
locations 216-511.

The interruption action and the storing of the asso-
ciated information are under the control of PSW
bit 13 and bits in control register 14. See
Chapter 11, “Machine-Check Handling” for more
detailed information.

 Program Interruption
Program interruptions are used to report
exceptions and events which occur during exe-
cution of the program.

A program interruption causes the old PSW to be
| stored at real locations 40-47 and a new PSW to
| be fetched from real locations 104-111.

The cause of the interruption is identified by the
interruption code. The interruption code is placed

at real locations 142-143, the instruction-length
code is placed in bit positions 5 and 6 of the byte
at real location 141 with the rest of the bits set to
zeros, and zeros are stored at real location 140.
For some causes, additional information identifying
the reason for the interruption is stored at real
locations 144-161.

Except for PER events, the condition causing the
interruption is indicated by a coded value placed
in the rightmost seven bit positions of the inter-
ruption code. Only one condition at a time can be
indicated. Bits 0-7 of the interruption code are set
to zeros, except when they are set with an
exception-extension code by a vector instruction.

PER events are indicated by setting bit 8 of the
interruption code to one. When this is the only
condition, bits 0-7 and 9-15 are also set to zeros.
When a PER event is indicated concurrently with
another program-interruption condition, bit 8 is
one, and the coded value for the other condition is
indicated in bit positions 0-7 and 9-15.

When there is a corresponding mask bit, a
program interruption can occur only when that
mask bit is one. The program mask in the PSW
controls four of the exceptions, the IEEE masks in
the FPC register control the IEEE exceptions, bit 1
in control register 0 controls whether SET
SYSTEM MASK causes a special-operation
exception, bits 16-31 in control register 8 control
interruptions due to monitor events, and a hier-
archy of masks control interruptions due to PER
events. When any controlling mask bit is zero, the
condition is ignored; the condition does not remain
pending.

Programming Notes:

1. When the new PSW for a program interruption
has a PSW-format error or causes an excep-
tion to be recognized in the process of instruc-
tion fetching, a string of program interruptions
may occur. See “Priority of Interruptions” on
page 6-45 for a description of how such
strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by the
channel subsystem, in which case the excep-
tion is indicated in the subchannel-status word
or extended-status word.
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 Exception-Extension Code
When an arithmetic exception is recognized during
execution of an interruptible vector instruction, a
nonzero exception-extension code is stored in bits
0-7 of the program-interruption code. This code is
set to a nonzero value only for arithmetic
exceptions occurring during the execution of
vector instructions. For more details, see the pub-
lication IBM Enterprise Systems Architecture/390
Vector Operations, SA22-7207.

Data-Exception Code (DXC)

When a data exception causes a program inter-
ruption and the basic-floating-point-extensions
facility is installed, a data-exception code (DXC) is
stored at location 147, and zeros are stored at
locations 144-146. The DXC distinguishes
between the various types of data-exception con-
ditions. When the AFP-register (additional
floating-point register) control bit, bit 13 of control
register 0, is one, the DXC is also placed in the
DXC field of the floating-point-control (FPC) reg-
ister. The DXC field in the FPC register remains
unchanged when any other program exception is
reported. The DXC is an 8-bit code indicating the
specific cause of a data exception. The data
exceptions and data-exception codes are shown in
Figure 6-2 on page 6-16 and Figure 6-3.

Figure 6-3. Data-exception codes (DXC)

Priority of Program Interruptions for
Data Exceptions

When more than one data exception applies and
is enabled, the exception with the smallest DXC
value is reported. Thus, for example, DXC 2 (BFP
instruction) takes precedence over any IEEE
exception condition.

When both a specification exception and an
AFP-register data exception apply, it is unpredict-
able which one is reported.

 Program-Interruption Conditions
The following is a detailed description of each
program-interruption condition.

 Addressing Exception
An addressing exception is recognized when the
CPU attempts to reference a main-storage
location that is not available in the configuration.
A main-storage location is not available in the con-
figuration when the location is not installed, when
the storage unit is not in the configuration, or
when power is off in the storage unit. An address
designating a storage location that is not available
in the configuration is referred to as invalid.

DXC
(Hex) Data Exception

00 Decimal operand

01 AFP register

02 BFP instruction

08 IEEE inexact and truncated

0C IEEE inexact and incremented

10 IEEE underflow, exact

18 IEEE underflow, inexact and truncated

1C IEEE underflow, inexact and incremented

20 IEEE overflow, exact

28 IEEE overflow, inexact and truncated

2C IEEE overflow, inexact and incremented

40 IEEE division by zero

80 IEEE invalid operation
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Figure 6-2. Data Exceptions

Exception

Applicable
Instruction

Types

Effect
of

CR0.13
FPC
Mask

FPC
Flag

DXC
(Binary)

Interruption
Action

DXC
Placed
in Real
Loc 147

DXC
Placed
in FPC
Byte 2

Decimal operand Decimalñ 0 none none 0000
0000

Suppress or
Terminate

Yes No

1 Yes Yes

AFP register FPS &
HFP

0* none none 0000
0001

Suppress Yes No

BFP instruction BFP 0* none none 0000
0010

Suppress Yes No

IEEE invalid operation BFP 1* 0.0 1.0 1000
0000

Suppress Yes Yes

IEEE division by zero BFP 1* 0.1 1.1 0100
0000

Suppress Yes Yes

IEEE overflow BFP 1* 0.2 1.2 0010
xy00

Complete Yes Yes

IEEE underflow BFP 1* 0.3 1.3 0001
xy00

Complete Yes Yes

IEEE inexact BFP 1* 0.4 1.4 0000
1y00

Complete Yes Yes

Explanation: 

ñ Decimal-operand data exception applies to the decimal instructions (Chapter 8) and the general
instruction CONVERT TO BINARY (Chapter 7).

0* This exception is recognized only when CR0.13 is zero.
1* This exception is recognized only when CR0.13 is one.
xy For IEEE overflow and IEEE underflow, bits 4 and 5 of the DXC are set to 00, 10, or 11 binary,

indicating that the result is exact, inexact and truncated, or inexact and incremented, respectively.
y For IEEE inexact, bit 5 of the DXC is set to zero or one, indicating that the result is inexact and

truncated or inexact and incremented, respectively.
BFP Binary-floating-point instructions (Chapter 19).
FPS Floating-point-support instructions (Chapter 9).
HFP Hexadecimal-floating-point instructions (Chapter 18).

The operation is suppressed when the address of
the instruction is invalid. Similarly, the operation is
suppressed when the address of the target
instruction of EXECUTE is invalid. Also, the unit
of operation is suppressed when an addressing
exception is encountered in accessing a table or
table entry. The tables and table entries to which
the rule applies are the dispatchable-unit-control
table, the primary ASN-second-table entry, and
entries in the access list, segment table, page
table, linkage table, entry table, ASN first table,
ASN second table, authority table, linkage stack,

and trace table. Addressing exceptions result in
suppression when they are encountered for refer-
ences to the segment table and page table, in
both implicit references for dynamic address trans-
lation and references associated with the exe-
cution of LOAD REAL ADDRESS and TEST
PROTECTION. Similarly, addressing exceptions
for accesses to the dispatchable-unit-control table,
primary ASN-second-table entry, access list, ASN
second table, or authority table result in sup-
pression when they are encountered in access-
register translation done either implicitly or as part
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of LOAD REAL ADDRESS, TEST ACCESS, or
TEST PROTECTION. Except for some specific
instructions whose execution is suppressed, the
operation is terminated for an operand address
that can be translated but designates an unavail-
able location. See Figure 6-4 on page 6-18.

For termination, changes may occur only to result
fields. In this context, the term “result field”
includes the condition code, registers, and any
storage locations that are provided and that are
designated to be changed by the instruction.
Therefore, if an instruction is due to change only
the contents of a field in storage, and every byte
of the field is in a location that is not available in
the configuration, the operation is suppressed.
When part of an operand location is available in
the configuration and part is not, storing may be

performed in the part that is available in the con-
figuration.

When an addressing exception occurs during the
fetching of an instruction or during the fetching of
a DAT table entry associated with an instruction
fetch, it is unpredictable whether the ILC is 1, 2, or
3. When the exception is associated with fetching
the target of EXECUTE, the ILC is 2.

In all cases of addressing exceptions not associ-
ated with instruction fetching, the ILC is 1, 2, or 3,
indicating the length of the instruction that caused
the reference.

An addressing exception is indicated by a
program-interruption code of 0005 hex (or 0085
hex if a concurrent PER event is indicated).

  Chapter 6. Interruptions 6-17



  
 

┌───────────┬────────────────────────────────────────────────────────────────┐

│ │ Action on │

│ ├────────────┬────────────┬───────────┬──────────────────────────┤

│ │ Table- │ Table- │Instruction│ │

│Exception │Entry Fetchñ│Entry Storeò│ Fetch │ Operand Reference │

├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤

│Addressing │Suppress │Suppress │Suppress │Suppress for IPTE, LASP, │

│exception │ │ │ │LPSW, MSCH, PLOö, RP, │

│ │ │ │ │SCKC, SPT, SPX, SSCH, SSM,│

│ │ │ │ │STCRW, STNSM, STOSM, TPI, │

│ │ │ │ │and TPROT │

│ │ │ │ │Terminate for all others.ô│

├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤

│Protection │ -- │ -- │Suppress │Suppress for IPTE, LASP, │

│exception │ │ │ │LPSW, MSCH, PLOö, RP, │

│for key- │ │ │ │SCKC, SPT, SPX, SSCH, SSM,│

│controlled │ │ │ │STCRW, STNSM, STOSM, and │

| │protection │ │ │ │TPIõ │

│ │ │ │ │Terminate for all others.ô│

├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤

│Protection │ -- │ -- │ -- │Suppress │

│exception │ │ │ │ │

│for access-│ │ │ │ │

│list- │ │ │ │ │

│controlled │ │ │ │ │

│protection │ │ │ │ │

├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤

│Protection │ -- │Suppressó │ -- │Suppress for STCRW, │

│exception │ │ │ │STNSM, STOSM, and TPIõ. │

│for page │ │ │ │ │

│protection │ │ │ │Terminate for all others.ô│

├───────────┼────────────┼────────────┼───────────┼──────────────────────────┤

│Protection │ -- │Suppress │ -- │Suppress for IPTE, STCRW, │

│exception │ │ │ │STNSM, STOSM, and TPIõ. │

│for low- │ │ │ │ │

│address │ │ │ │ │

│protection │ │ │ │Terminate for all others.ô│

├───────────┴────────────┴────────────┴───────────┴──────────────────────────┤

│Explanation: │

│ │

│ -- Not applicable. │

│ │

| │ ñ Table entries include segment table, page table, PCF-entry table, │

│ linkage table, entry table, ASN first table, ASN second table, │

│ authority table, dispatchable-unit-control table, primary ASN-second- │

│ table-entry, access list, and linkage stack. │

│ │

│ ò Table entries include linkage stack and trace table. │

│ │

│ ó Page protection applies to the linkage stack but not the trace table. │

│ │

│ ô For termination, changes may occur only to result fields. In this │

│ context, "result field" includes condition code, registers, and │

│ storage locations, if any, which are designated to be changed by the │

│ instruction. However, no change is made to a storage location or a │

│ storage key when the reference causes an access exception. Therefore, │

│ if an instruction is due to change only the contents of a field in │

│ main storage, and every byte of that field would cause an access ex- │

│ ception, the result is the same as if the operation had been sup- │

│ pressed. If the suppression-on-protection facility is installed, │

│ the action is, for page protection, or may be, for key-controlled │

│ protection and low-address protection, suppression (except for the │

│ condition code) instead of termination; see "Suppression on Protec- │

│ tion" in Chapter 3, “Storage.” │

│ │

│ õ When the effective address of TPI is zero, the store access is to │

│ implicit real locations 184-191, and key-controlled protection, page │

│ protection, and low-address protection do not apply. │

│ │

│ ö Suppression occurs only for the compare-and-load and compare-and- │

│ swap operations. │

└────────────────────────────────────────────────────────────────────────────┘

Figure 6-4. Summary of Action for Addressing and Protection Exceptions
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 AFX-Translation Exception
An AFX-translation exception is recognized when,
during ASN translation in the space-switching form
of PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, or SET SECONDARY
ASN, or during ASN translation in PROGRAM
RETURN when the restored SASN does not equal
the restored PASN, bit 0 of the ASN-first-table
entry used is not zero.

The ASN being translated is stored at real
locations 146-147, and real locations 144-145 are
set to zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The AFX-translation exception is indicated by a
program-interruption code of 0020 hex (or 00A0
hex if a concurrent PER event is indicated).

 ALEN-Translation Exception
An ALEN-translation exception is recognized
during access-register translation when either:

1. The access register used contains an access-
list-entry number that designates an access-
list entry which is beyond the end of the
access list designated by the effective access-
list designation.

2. Bit 0 of the access-list entry is not zero.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALEN-translation exception is indicated by a
program-interruption code of 0029 hex (or 00A9
hex if a concurrent PER event is indicated).

 ALE-Sequence Exception
An ALE-sequence exception is recognized during
access-register translation when the access reg-
ister used contains an access-list-entry sequence
number (ALESN) which is not equal to the ALESN
in the access-list entry that is designated by the
access register.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALE-sequence exception is indicated by a
program-interruption code of 002A hex (or 00AA
hex if a concurrent PER event is indicated).

 ALET-Specification Exception
An ALET-specification exception is recognized
during access-register translation when bit posi-
tions 0-6 of the access-list-entry token in the
access register used do not contain all zeros.
However, when access-register 0 is used, except
in TEST ACCESS, it is treated as containing all
zeros, and this exception is not recognized. TEST
ACCESS uses the actual contents of access reg-
ister 0.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ALET-specification exception is indicated by a
program-interruption code of 0028 hex (or 00A8
hex if a concurrent PER event is indicated).

 ASN-Translation-Specification
Exception
An ASN-translation-specification exception may be
recognized during ASN translation in the space-
switching form of PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, or SET SEC-
ONDARY ASN, during ASN translation in
PROGRAM RETURN when the restored SASN
does not equal the restored PASN, or during ASN
translation in LOAD ADDRESS SPACE PARAME-
TERS, when either:

1. Bit positions 28-31 or 26-31, depending on the
address-space-function control, bit 15 of
control register 0, of the valid ASN-first-table
entry used do not contain zeros.

2. Bit positions 30, 31, and 60-63 of the valid
ASN-second-table entry used do not contain
zeros.

An ASN-translation-specification exception also
may be recognized during implicit access-register
translation and during access-register translation
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in the execution of LOAD REAL ADDRESS, TEST
ACCESS, and TEST PROTECTION when bit posi-
tions 30, 31, and 60-63 of the valid
ASN-second-table entry used do not contain
zeros, provided that it is necessary to examine the
authority table that is designated by the
ASN-second-table entry. This examination is nec-
essary if the private bit in the access-list entry
used is not zero and the access-list-entry authori-
zation index in the access-list entry is not equal to
the extended authorization index in control register
8.

Whether an ASN-translation-specification excep-
tion is recognized in the above cases may depend
on the model or may be unpredictable.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ASN-translation-specification exception is indi-
cated by a program-interruption code of 0017 hex
(or 0097 hex if a concurrent PER event is indi-
cated).

 ASTE-Sequence Exception
An ASTE-sequence exception is recognized when
any of the following is true:

1. During access-register translation, except as
in 2, the access-list entry used contains an
ASN-second-table-entry sequence number
(ASTESN) which is not equal to the ASTESN
in the ASN-second-table entry that is desig-
nated by the access-list entry. The access-list
entry is the one designated by the access reg-
ister used.

2. During access-register translation of ALET 1
by BRANCH IN SUBSPACE GROUP, the
subspace ASTESN (SSASTESN) in the
dispatchable-unit control table (DUCT) is not
equal to the ASTESN in the subspace ASTE
designated by the subspace-ASTE origin
(SSASTEO) in the DUCT.

3. During a subspace-replacement operation, the
subspace ASTESN (SSASTESN) in the
dispatchable-unit control table (DUCT) is not
equal to the ASTESN in the subspace ASTE
designated by the subspace-ASTE origin
(SSASTEO) in the DUCT.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real

location 160, and bits 0-3 are set to zeros. In the
third case, all zeros are stored at real location
160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-sequence exception is indicated by a
program-interruption code of 002C hex (or 00AC
hex if a concurrent PER event is indicated).

Programming Note:  The storing of zeros at real
location 160 in the case of an ASTE-sequence
exception recognized during a subspace-
replacement operation is a unique indication since
the use of access register 0 in access-register
translation cannot result in the exception.

 ASTE-Validity Exception
An ASTE-validity exception is recognized when
any of the following is true:

1. During access-register translation, except as
in 2, the access-list entry used designates an
ASN-second-table entry in which bit 0 is not
zero. The access-list entry is the one desig-
nated by the access register used.

2. During access-register translation of ALET 1
by BRANCH IN SUBSPACE GROUP, the
subspace-ASTE origin (SSASTEO) in the
dispatchable-unit control table designates an
ASN-second-table entry in which bit 0 is not
zero.

3. During a subspace-replacement operation, the
subspace-ASTE origin (SSASTEO) in the
dispatchable-unit control table designates an
ASN-second-table entry in which bit 0 is not
zero.

In the first and second cases, the number of the
access register is stored in bit positions 4-7 at real
location 160, and bits 0-3 are set to zeros. In the
third case, all zeros are stored at real location
160.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-validity exception is indicated by a
program-interruption code of 002B hex (or 00AB
hex if a concurrent PER event is indicated).

6-20 ESA/390 Principles of Operation  



  
 

Programming Note:  The storing of zeros at real
location 160 in the case of an ASTE-validity
exception recognized during a subspace-
replacement operation is a unique indication since
the use of access register 0 in access-register
translation cannot result in the exception.

 ASX-Translation Exception
An ASX-translation exception is recognized when,
during ASN translation in the space-switching form
of PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, or SET SECONDARY
ASN, or during ASN translation in PROGRAM
RETURN when the restored SASN does not equal
the restored PASN, bit 0 of the ASN-second-table
entry used is not zero.

The ASN being translated is stored at real
locations 146-147, and real locations 144-145 are
set to zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The ASX-translation exception is indicated by a
program-interruption code of 0021 hex (or 00A1
hex if a concurrent PER event is indicated).

 Data Exception
The data-exception conditions are shown in
Figure 6-2 on page 6-16. A mask bit may or may
not control whether an interruption occurs, as
noted for each condition.

When a non-maskable data-exception condition is
recognized, a program interruption for a data
exception always occurs.

Each of the IEEE exception conditions is con-
trolled by a mask bit in the floating-point-control
(FPC) register. The handling of these conditions
is described in the section “IEEE Exception
Conditions” on page 19-10.

A data exception is recognized for the following
cases:

� Decimal-operand  data exception is recog-
nized when an instruction which operates on
decimal operands encounters invalid decimal

| digit or sign codes or has its operands speci-
fied improperly. The operation is suppressed

when a sign code is invalid; otherwise, the
operation is suppressed on some models and
terminated on others. See the section
“Decimal-Operand Data Exception” on
page 8-4 for details. When the basic-floating-
point-extensions facility is installed, the
decimal-operand data exception is reported
with DXC 0.

� AFP-register  data exception is recognized
when the basic-floating-point-extensions
facility is installed, bit 13 of control register 0
is zero, and a floating-point-support (FPS)
instruction or a hexadecimal-floating-point
(HFP) instruction specifies a floating-point reg-
ister other than 0, 2, 4, or 6. The operation is
suppressed and is reported with DXC 1.

� BFP-instruction  data exception is recognized
when bit 13 of control register 0 is zero and a
BFP instruction is executed. The operation is
suppressed and is reported with DXC 2.

� IEEE-exception-condition  data exceptions
are recognized when a BFP instruction
encounters an exceptional condition. The
operation is suppressed or completed,
depending on the type of condition. See the
section “IEEE Exception Conditions” on
page 19-10 for details.

The instruction-length code is 1, 2, or 3.

The data exception is indicated by a program-
interruption code of 0007 hex (or 0087 hex if a
concurrent PER event is indicated).

 Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in estab-
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

The decimal-divide exception is indicated by a
program-interruption code of 000B hex (or 008B
hex if a concurrent PER event is indicated).
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 Decimal-Overflow Exception
A decimal-overflow exception is recognized when
one or more nonzero digits are lost because the
destination field in a decimal operation is too short
to contain the result.

The interruption may be disallowed by the
decimal-overflow mask (PSW bit 21).

The operation is completed. The result is
obtained by ignoring the overflow digits, and con-
dition code 3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indicated by a
program-interruption code of 000A hex (or 008A
hex if a concurrent PER event is indicated).

 Execute Exception
The execute exception is recognized when the
target instruction of EXECUTE is another
EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

The execute exception is indicated by a program-
interruption code of 0003 hex (or 0083 hex if a
concurrent PER event is indicated).

 EX-Translation Exception
An EX-translation exception is recognized during
PC-number translation in PROGRAM CALL when
the entry-table entry indicated by the entry-index
part of the PC number is beyond the end of the
entry table as designated by the linkage-table
entry.

The PC number is stored in bit positions 12-31 of
the word at real location 144, and the leftmost 12
bits of the word are set to zeros.

An EX-translation exception is recognized in
PROGRAM CALL FAST when bits 304-319 (flags)
of the PCF-entry-table entry used are not all
zeros.

The PC number is stored in bit positions 12-31 of
the word at real location 144, bits 0-10 of the word
are set to zeros, and bit 11 of the word is set to
one.

The operation is nullified.

The instruction-length code is 2.

The EX-translation exception is indicated by a
program-interruption code of 0023 hex (or 00A3
hex if a concurrent PER event is indicated).

 Extended-Authority Exception
An extended-authority exception is recognized
during access-register translation when all of the
following are true:

1. The private bit in the access-list entry used is
not zero.

2. The access-list-entry authorization index
(ALEAX) in the access-list entry is not equal
to the extended authorization index (EAX) in
control register 8.

3. Either of the following is true:

a. The authority-table entry designated by
the EAX is beyond the length of the
authority table used. The authority table
is the one designated by the
ASN-second-table entry that is designated
by the access-list entry used.

b. The secondary-authority bit designated by
the EAX is zero.

The access-list entry is the one designated by the
access register used.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The extended-authority exception is indicated by a
program-interruption code of 002D hex (or 00AD
hex if a concurrent PER event is indicated).

 Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in signed binary division the divisor is zero or
when the quotient in signed binary division or the
result of CONVERT TO BINARY cannot be
expressed as a 32-bit signed binary integer.

In the case of division, the operation is sup-
pressed. The execution of CONVERT TO
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BINARY is completed by ignoring the leftmost bits
that cannot be placed in the register.

The instruction-length code is 1 or 2.

The fixed-point-divide exception is indicated by a
program-interruption code of 0009 hex (or 0089
hex if a concurrent PER event is indicated).

 Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or signed left-shift operations.

The interruption may be disallowed by the fixed-
point-overflow mask (PSW bit 20).

The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1 or 2.

The fixed-point-overflow exception is indicated by
a program-interruption code of XX08 hex (or XX88
hex if a concurrent PER event is indicated), where
XX is the exception-extension code.

 HFP-Divide Exception
An HFP-divide exception is recognized when in
HFP division the divisor has a zero fraction.

The operation is suppressed, except that the oper-
ation is inhibited when the exception is recognized
by the vector facility.

The instruction-length code is 1 or 2.

The HFP-divide exception is indicated by a
program-interruption code of XX0F hex (or XX8F
hex if a concurrent PER event is indicated), where
XX is the exception-extension code.

 HFP-Exponent-Overflow Exception
An HFP-exponent-overflow exception is recog-
nized when the result characteristic of an HFP
operation exceeds 127 and the result fraction is
not zero.

The operation is completed. The fraction is nor-
malized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-overflow exception is indicated
by a program-interruption code of XX0C hex (or
XX8C hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

 HFP-Exponent-Underflow Exception
An HFP-exponent-underflow exception is recog-
nized when the result characteristic of an HFP
operation is less than zero and the result fraction
is not zero. For an extended-format HFP result,
HFP-exponent underflow is indicated only when
the high-order characteristic underflows.

The interruption may be disallowed by the
HFP-exponent-underflow mask (PSW bit 22).

The operation is completed. The
HFP-exponent-underflow mask also affects the
result of the operation. When the mask bit is
zero, the sign, characteristic, and fraction are set
to zero, making the result a true zero. When the
mask bit is one, the fraction is normalized, the
characteristic is made 128 larger than the correct
characteristic, and the sign and fraction remain
correct.

The instruction-length code is 1, 2, or 3.

The HFP-exponent-underflow exception is indi-
cated by a program-interruption code of XX0D hex
(or XX8D hex if a concurrent PER event is indi-
cated), where XX is the exception-extension code.

 HFP-Significance Exception
An HFP-significance exception is recognized when
the result fraction in HFP addition or subtraction is
zero.

The interruption may be disallowed by the
HFP-significance mask (PSW bit 23).

The operation is completed. The HFP-significance
mask also affects the result of the operation.
When the mask bit is zero, the operation is com-
pleted by replacing the result with a true zero.
When the mask bit is one, the operation is com-
pleted without further change to the characteristic
of the result.

The instruction-length code is 1 or 2.

  Chapter 6. Interruptions 6-23



  
 

The HFP-significance exception is indicated by a
program-interruption code of XX0E hex (or XX8E
hex if a concurrent PER event is indicated), where
XX is the exception-extension code.

 HFP-Square-Root Exception
An HFP-square-root exception is recognized when
the second operand of an HFP SQUARE ROOT
instruction is less than zero.

The operation is suppressed, except that the oper-
ation is inhibited when the exception is recognized
by the vector facility.

The instruction-length code is 2 or 3.

The HFP-square-root exception is indicated by a
program-interruption code of 001D hex (or 009D
hex if a concurrent PER event is indicated).

 LX-Translation Exception
An LX-translation exception is recognized during
PC-number translation in PROGRAM CALL when
either:

1. The linkage-table entry indicated by the
linkage-index part of the PC number is beyond
the end of the linkage table as designated by
the linkage-table designation being used.

2. Bit 0 of the linkage-table entry is not zero.

The PC number is stored in bit positions 12-31 of
the word at real location 144, and the leftmost 12
bits of the word are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The LX-translation exception is indicated by a
program-interruption code of 0022 hex (or 00A2
hex if a concurrent PER event is indicated).

 Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class speci-
fied by instruction bits 12-15 is one. The informa-
tion in control register 8 has the following format:

Control Register 8
──┬───────────────┐

│ Monitor Masks │

──┴───────────────┘

 16 31

The monitor-mask bits, bits 16-31 of control reg-
ister 8, correspond to monitor classes 0-15,
respectively. Any number of monitor-mask bits
may be on at a time; together they specify the
classes of monitor events that are monitored at
that time. The mask bits are initialized to zeros.

When MONITOR CALL is executed and the corre-
sponding monitor-mask bit is one, a program inter-
ruption for monitor event occurs.

Additional information is stored at real locations
148-149 and 156-159. The format of the informa-
tion stored at these locations is as follows:

Real Locations 148-149
┌────────┬───────────┐

│ │ Monitor │

│ðððððððð│ Class No. │

└────────┴───────────┘

ð 8 15

Real Locations 156-159
┌─┬─────────────────────────────────┐

│ð│ Monitor Code │

└─┴─────────────────────────────────┘

ð 1 31

The contents of bit positions 8-15 of the
MONITOR CALL instruction are stored at real
location 149 and constitute the monitor-class
number. Zeros are stored at real location 148.
The effective address specified by the B± and D±

fields of the instruction forms the monitor code,
which is stored in the word at real location 156.
The value of the address is under control of the
addressing mode, bit 32 of the current PSW; in
the 24-bit addressing mode, bits 0-7 of the
address are zeros, while in the 31-bit addressing
mode, bit 0 is zero.

The operation is completed.

The instruction-length code is 2.

The monitor event is indicated by a program-
interruption code of 0040 hex (or 00C0 hex if a
concurrent PER event is indicated).
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 Operand Exception
An operand exception is recognized when any of
the following is true:

1. Execution of CLEAR SUBCHANNEL, HALT
SUBCHANNEL, MODIFY SUBCHANNEL,
RESUME SUBCHANNEL, START SUB-
CHANNEL, STORE SUBCHANNEL, or TEST
SUBCHANNEL is attempted, and bits 0-15 of
general register 1 do not contain 0001 hex.

2. Execution of MODIFY SUBCHANNEL is
attempted, and bits 0-1 and 5-7 of word 1 and
bits 0-30 (or 0-31 if the concurrent-sense
facility is not installed) of word 6 of the SCHIB
operand are not all zeros.

3. Execution of MODIFY SUBCHANNEL is
attempted, and bits 9 and 10 of word 1 of the
SCHIB operand are both ones.

4. Execution of RESET CHANNEL PATH is
attempted, and bits 0-23 of general register 1
are not all zeros.

5. Execution of SET ADDRESS LIMIT is
attempted, and bits 0 and 16-31 of general
register 1 are not all zeros.

6. Execution of SET CHANNEL MONITOR is
attempted, bit 30 of general register 1 is one,
and bits 0 and 27-31 of general register 2 are
not all zeros.

7. Execution of SET CHANNEL MONITOR is
attempted, and bits 4-29 of general register 1
are not all zeros.

8. On some models, execution of START SUB-
CHANNEL is attempted, and bits 5-7, 13-15,
and 25-31 of word 1 and bit 0 of word 2 of the
ORB operand are not all zeros.

9. On some models, execution of START SUB-
CHANNEL is attempted, the incorrect-length-
indication suppression facility is not installed,
and bit 24 of word 1 of the ORB is one.

The operation is suppressed.

The instruction-length code is 2.

The operand exception is indicated by a program-
interruption code of 0015 hex (or 0095 hex if a
concurrent PER event is indicated).

 Operation Exception
An operation exception is recognized when the
CPU attempts to execute an instruction with an
invalid operation code. The operation code may
be unassigned, or the instruction with that opera-
tion code may not be installed on the CPU.

| ***

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The operation exception is indicated by a
program-interruption code of 0001 hex (or 0081
hex if a concurrent PER event is indicated).

Programming Notes:

1. Some models may offer instructions not
described in this publication, such as those
provided for assists or as part of special or
custom features. Consequently, operation
codes not described in this publication do not
necessarily cause an operation exception to
be recognized. Furthermore, these
instructions may cause modes of operation to
be set up or may otherwise alter the machine
so as to affect the execution of subsequent
instructions. To avoid causing such an opera-
tion, an instruction with an operation code not
described in this publication should be exe-
cuted only when the specific function associ-
ated with the operation code is desired.

2. The operation code 00, with a two-byte
instruction format, currently is not assigned. It
is improbable that this operation code will ever
be assigned.

 Page-Translation Exception
Except for the operands of MOVE PAGE, a page-
translation exception is recognized when either:

1. The page-table entry indicated by the page-
index portion of a virtual address is outside
the page table.

2. The page-invalid bit is one.

The exception is recognized as part of the exe-
cution of an instruction that needs the page-table
entry in the translation of an instruction or operand
address, except for the operand address in LOAD
REAL ADDRESS and TEST PROTECTION, in
which case the condition is indicated by the
setting of the condition code.
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For the operands of MOVE PAGE, a page-
translation exception is recognized when any of
the following is true:

1. The page-table entry indicated by the page-
index portion of a virtual address is outside
the page table.

2. The page-invalid bit is one, and the operand is
also invalid in expanded storage. If this is
true for both operands, the exception is recog-
nized for the source operand (the second
operand).

3. For both operands, the page-invalid bit is one,
and the operand is valid in expanded storage.
The exception is recognized for the destina-
tion operand (the first operand).

4. The page-invalid bit is one for the destination
operand, that operand is valid in expanded
storage, the source operand is valid in main
storage, and the destination-reference-
intention bit, bit 22 of general register 0, is
one. The exception is recognized for the des-
tination operand.

5. The page-invalid bit is one, and the operand is
valid in expanded storage, but either:

a. The translation path is locked.

b. The translation path is unlocked, but the
expanded-storage block causes an
expanded-storage data error.

The case when for both operands the page-
invalid bit is one and the operand is valid in
expanded storage is recognized before this
case.

When the page-translation-exception condition
exists for any of the above reasons other than that
the page-table entry is outside the page table, and
the condition-code-option bit, bit 23 of general reg-
ister 0, is one, MOVE PAGE sets a nonzero con-
dition code instead of recognizing the exception.
Move-page facility 1 requires bit 23 of general reg-
ister 0 to be one.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 144-147 and conditionally at real
location 160. See “Assigned Storage Locations”
on page 3-43 for a detailed description of this
information.

The unit of operation is nullified, except that when
the exception is caused by an expanded-storage
data error occurring when MOVE PAGE moves
data between main storage and expanded
storage, the contents of the first-operand location
are unpredictable.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during a ref-
erence to the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The page-translation exception is indicated by a
program-interruption code of 0011 hex (or 0091
hex if a concurrent PER event is indicated).

 PC-Translation-Specification Exception
A PC-translation-specification exception is recog-
nized during PC-number translation in PROGRAM
CALL when bit position 32 of the entry-table entry
used is zero and bit positions 33-39 are not all
zeros.

The operation is suppressed.

The instruction-length code is 2.

The PC-translation-specification exception is indi-
cated by a program-interruption code of 001F hex
(or 009F hex if a concurrent PER event is indi-
cated).

 PER Event
A PER event is recognized when the CPU is
enabled for PER and one or more of these events
occur.

The PER mask, bit 1 of the PSW, controls
whether the CPU is enabled for PER. When the
PER mask is zero, PER events are not recog-
nized. When the bit is one, PER events are
recognized, subject to the PER-event-mask bits in
control register 9.

The unit of operation is completed, unless another
condition has caused the unit of operation to be
inhibited, nullified, suppressed, or terminated.
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| Information identifying the event is stored at real
locations 150-155 and conditionally at real location
161.

The instruction-length code is 0, 1, 2, or 3. Code
0 is set only if a specification exception is indi-
cated concurrently.

The PER event is indicated by setting bit 8 of the
program-interruption code to one.

See “Program-Event Recording” on page 4-14 for
a detailed description of the PER event and the
associated interruption information.

 Primary-Authority Exception
A primary-authority exception is recognized during
ASN authorization in PROGRAM TRANSFER with
space switching (PT-ss) when either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by
the ASN-second-table entry for the ASN used.

2. The primary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 146-147,
and real locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The primary-authority exception is indicated by a
program-interruption code of 0024 hex (or 00A4
hex if a concurrent PER event is indicated).

 Privileged-Operation Exception
A privileged-operation exception is recognized
when any of the following is true:

1. Execution of a privileged instruction is
attempted in the problem state.

2. The value of the rightmost bit of the general
register designated by the R² field of the
PROGRAM TRANSFER instruction is zero
and would cause the PSW problem-state bit to
change from the problem state (one) to the
supervisor state (zero).

3. In the problem state, the key value specified
by the second operand of the SET PSW KEY

FROM ADDRESS instruction corresponds to a
zero PSW-key-mask bit in control register 3.

4. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R³ field of the MOVE WITH KEY
instruction corresponds to a zero
PSW-key-mask bit in control register 3.

5. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R³ field for the instruction MOVE
TO PRIMARY, MOVE TO SECONDARY, or
MOVE WITH KEY corresponds to a zero
PSW-key-mask bit in control register 3.

6. In the problem state, any of the instructions

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN
� INSERT ADDRESS SPACE CONTROL
� INSERT PSW KEY
� INSERT VIRTUAL STORAGE KEY

is encountered, and the extraction-authority
control, bit 4 of control register 0, is zero.

7. In the problem state, the result of ANDing the
authorization key mask (AKM) with the
PSW-key mask in control register 3 during
PROGRAM CALL produces a result of zero.

8. In the problem state, bits 20-23 of the second-
operand address of the SET ADDRESS
SPACE CONTROL or SET ADDRESS
SPACE CONTROL FAST instruction have the
value 0011 binary.

9. In the problem state, the key value specified
by the rightmost byte of general register 1 for
the instruction MOVE WITH SOURCE KEY or
MOVE WITH DESTINATION KEY corre-
sponds to a zero PSW-key-mask bit in control
register 3.

10. In the problem state, the key value specified
by the rightmost byte of the register desig-
nated by the R± field for the instruction
BRANCH AND SET AUTHORITY corresponds
to a zero PSW-key-mask bit in control register
3.

11. In the problem state, bits 16 and 17 of the
PSW field in the second operand of RESUME
PROGRAM have the value 11 binary.

The operation is suppressed.

The instruction-length code is 2 or 3.
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The privileged-operation exception is indicated by
a program-interruption code of 0002 hex (or 0082
hex if a concurrent PER event is indicated).

 Protection Exception
A protection exception is recognized when any of
the following is true:

1. Key-Controlled Protection: The CPU attempts
to access a storage location that is protected
against the type of reference, and the access
key does not match the storage key.

 2. Access-List-Controlled Protection: The CPU
attempts to store, in the access-register mode,
by means of an access-list entry which has
the fetch-only bit set to one.

3. Low-Address Protection: The CPU attempts a
store that is subject to low-address protection,
the effective address is in the range 0-511,
and the low-address protection control, bit 3 of
control register 0, is one.

4. Page Protection: The CPU attempts to store,
with DAT on, into a page which has the page-
protection bit set to one.

The operation is suppressed when the location of
the instruction is protected against fetching. Simi-
larly, the operation is suppressed when the
location of the target instruction of EXECUTE is
protected against fetching.

For access-list-controlled protection, the operation
is suppressed. For the other three types of pro-
tection, except in the case of some specific
instructions whose execution is suppressed, the
operation is terminated when a protection excep-
tion is encountered during a reference to an
operand location. See Figure 6-4 on page 6-18.
However, if the suppression-on-protection facility
is installed, the operation may be suppressed
(except for the condition code) as described in
“Suppression on Protection” on page 3-12.

For termination, changes may occur only to result
fields. In this context, the term “result field”
includes condition code, registers, and storage
locations, if any, which are due to be changed by
the instruction. However, no change is made to a
storage location when a reference to that location
causes a protection exception. Therefore, if an
instruction is due to change only the contents of a
field in storage, and every byte of that field would

cause a protection exception, the operation is sup-
pressed. When termination occurs on fetching,
the protected information is not loaded into an
addressable register nor moved to another storage
location.

If the suppression-on-protection facility is installed,
information about the address causing the excep-
tion is stored at real locations 144-147 and condi-
tionally at real location 160. See “Suppression on
Protection” on page 3-12.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

For a protected operand location, the instruction-
length code (ILC) is 1, 2, or 3, indicating the
length of the instruction that caused the reference.

The protection exception is indicated by a
program-interruption code of 0004 hex (or 0084
hex if a concurrent PER event is indicated).

 Secondary-Authority Exception
A secondary-authority exception is recognized
during ASN authorization in SET SECONDARY
ASN with space switching, or during ASN authori-
zation in PROGRAM RETURN when the restored
SASN does not equal the restored PASN, when
either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by
the ASN-second-table entry for the ASN used.
For PROGRAM RETURN, the ASN is the
SASN being restored from the linkage-stack
state entry used.

2. The secondary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 146-147,
and real locations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The secondary-authority exception is indicated by
a program-interruption code of 0025 hex (or 00A5
hex if a concurrent PER event is indicated).
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 Segment-Translation Exception
A segment-translation exception is recognized
when either:

1. The segment-table entry indicated by the
segment-index portion of a virtual address is
outside the segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of the exe-
cution of an instruction that needs the segment-
table entry in the translation of an instruction or
operand address, except for the operand address
in LOAD REAL ADDRESS and TEST PRO-
TECTION, in which case the condition is indicated
by the setting of the condition code.

When an interruption occurs, information about the
virtual address causing the exception is stored at
real locations 144-147 and conditionally at real
location 160. See “Assigned Storage Locations”
on page 3-43 for a detailed description of this
information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The segment-translation exception is indicated by
a program-interruption code of 0010 hex (or 0090
hex if a concurrent PER event is indicated).

 Space-Switch Event
A space-switch event is recognized at the com-
pletion of the operation in each of the following
cases:

1. The space-switching form of PROGRAM
CALL, PROGRAM CALL FAST, PROGRAM
RETURN, or PROGRAM TRANSFER is exe-
cuted and any of the following is true:

a. The primary space-switch-event-control
bit, bit 0 of control register 1, is one before
the operation.

b. The primary space-switch-event-control bit
is one after the operation.

c. A PER event is indicated.

2. RESUME PROGRAM, SET ADDRESS
SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST is executed, the
CPU is in the home-space mode either before
or after the operation, but not both before and
after the operation, and any of the following is
true:

a. The primary space-switch-event-control
bit, bit 0 of control register 1, is one.

b. The home space-switch-event-control bit,
bit 0 of control register 13, is one.

c. A PER event is indicated.

For PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, and PROGRAM
TRANSFER, and for a RESUME PROGRAM, SET
ADDRESS SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that changes
the translation mode to the home-space mode, the
old PASN, which is in the right half of control reg-
ister 4 before the operation, is stored at real
locations 146-147, and the old primary space-
switch-event-control bit is placed in bit position 0
and zeros are placed in bit positions 1-15 at real
locations 144-145.

For a RESUME PROGRAM, SET ADDRESS
SPACE CONTROL, or SET ADDRESS SPACE
CONTROL FAST instruction that changes the
translation mode away from the home-space
mode, zeros are stored at real locations 146-147,
and the home space-switch-event-control bit is
placed in bit position 0 and zeros are placed in bit
positions 1-15 at real locations 144-145.

For a PROGRAM RETURN instruction that intro-
duces a PSW-format error, it is unpredictable
whether the instruction-length code is 0 or 1, or 0
or 2 if EXECUTE was used.

The operation is completed.

The instruction-length code is 0, 1, or 2.

The space-switch event is indicated by a program-
interruption code of 001C hex (or 009C hex if a
concurrent PER event is indicated).
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Programming Notes:

1. The space-switch event permits the control
program to gain control whenever a program
enters or leaves a particular address space.
The primary space-switch-event-control bit is
loaded into control register 1, along with the
remaining bits of the primary segment-table
designation, whenever control register 1 is
loaded.

2. The space-switch event may be useful in
obtaining programmed authorization checking,
in causing additional trace information to be
recorded, or in enabling or disabling the CPU
for PER or tracing.

3. Bit 64 of the ASN-second-table entry (ASTE)
is loaded into bit position 0 of control register
1 as part of the PC-ss, PR-ss, and PT-ss
operations. If bit 64 of the ASTE for a partic-
ular address space is set to one, then a
space-switch event is recognized when a
program enters or leaves the address space
by means of any of PC-ss, PR-ss, or PT-ss.
Bit 224 of the PCF-entry-table entry provides
the same results for PCF-ss.

4. The occurrence of a space-switch event at the
completion of a PC-ss, PCF-ss, PR-ss, or
PT-ss operation when any PER event is indi-
cated, or at the completion of execution of a
RESUME PROGRAM, SET ADDRESS
SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that
changes to or from the home-space mode
when any PER event is indicated, permits the
control program to determine the address
space from which the instruction causing the
PER event was fetched.

 Special-Operation Exception
A special-operation exception is recognized when
any of the following is true:

1. Execution of SET SYSTEM MASK is
attempted in the supervisor state, and the
SSM-suppression control, bit 1 of control reg-
ister 0, is one.

2. Execution of any of the following instructions
is attempted with DAT off:

� EXTRACT PRIMARY ASN
� EXTRACT SECONDARY ASN
� INSERT ADDRESS SPACE CONTROL
� INSERT VIRTUAL STORAGE KEY

� SET ADDRESS SPACE CONTROL
� SET SECONDARY ASN

3. Execution of MOVE TO PRIMARY or MOVE
TO SECONDARY is attempted, and the CPU
is not in the primary-space or secondary-
space mode.

4. Execution of basic PROGRAM CALL or
PROGRAM TRANSFER is attempted, and the
CPU is not in the primary-space mode.

5. Execution of BRANCH AND STACK, stacking
PROGRAM CALL, PROGRAM CALL FAST,
PROGRAM RETURN, or TRAP is attempted,
and the CPU is not in the primary-space or
access-register mode.

6. Execution of EXTRACT STACKED REGIS-
TERS, EXTRACT STACKED STATE or
MODIFY STACKED STATE is attempted, and
the CPU is not in the primary-space, access-
register, or home-space mode.

7. Execution of LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL with space
switching (PC-ss), PROGRAM TRANSFER
with space switching (PT-ss), or SET SEC-
ONDARY ASN (SSAR-cp or SSAR-ss) is
attempted, or execution of a PROGRAM
RETURN instruction requiring PASN or SASN
translation is attempted, and the
ASN-translation control, bit 12 of control reg-
ister 14, is zero.

8. Execution of PROGRAM CALL or PROGRAM
TRANSFER is attempted, and the subsystem-
linkage control, bit 0 of the linkage-table des-
ignation in control register 5 or the primary
ASN-second-table entry, is zero.

9. Execution of SET ADDRESS SPACE
CONTROL, MOVE TO PRIMARY, or MOVE
TO SECONDARY is attempted, and the
secondary-space control, bit 5 of control reg-
ister 0, is zero. The exception may be recog-
nized for this reason when execution of SET
ADDRESS SPACE CONTROL FAST is
attempted.

10. Execution of BRANCH AND SET
AUTHORITY, BRANCH AND STACK,
BRANCH IN SUBSPACE GROUP, EXTRACT
STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED
STATE, PROGRAM RETURN, or TEST
ACCESS is attempted, or execution of a
RESUME PROGRAM, SET ADDRESS
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SPACE CONTROL, or SET ADDRESS
SPACE CONTROL FAST instruction that is to
set the access-register mode is attempted,
and the address-space-function control, bit 15
of control register 0, is zero.

11. Execution of BRANCH IN SUBSPACE
GROUP is attempted, and any of the following
is true:

a. The current primary address space is not
in a subspace group associated with the
current dispatchable unit, that is, the
primary-ASTE origin (PASTEO) in control
register 5 does not equal the base-ASTE
origin (BASTEO) in the dispatchable-unit
control table (DUCT).

b. The access-list-entry token (ALET) in
access register R² is ALET 1, but a sub-
space has not previously been entered by
the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP, that is,
the subspace-ASTE origin (SSASTEO) in
the DUCT is all zeros.

c. The ALET used is other than ALET 0 and
ALET 1, and the destination ASTE
(DASTE) does not specify the base space
or a subspace of the subspace group, that
is, the DASTE origin (DASTEO) obtained
from an access-list entry does not equal
the BASTEO in the DUCT, and either the
subspace-group bit (G) in the segment-
table designation in the DASTE is zero or
the base-space bit (B) in the DASTE is
one.

12. Execution of BRANCH AND SET AUTHORITY
is attempted, and the R² field is zero in the
base-authority state or nonzero in the
reduced-authority state.

13. Execution of TRAP is attempted, and the
TRAP-enabled bit, bit 31 in bytes 44-47 of the
dispatchable-unit control table, is zero.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The special-operation exception is indicated by a
program-interruption code of 0013 hex (or 0093
hex if a concurrent PER event is indicated).

 Specification Exception
A specification exception is recognized when any
of the following is true:

1. A one is introduced into an unassigned bit
position of the PSW (that is, any of bit posi-
tions 0, 2-4, or 24-31). This is handled as an
early PSW specification exception.

2. A zero is introduced into bit position 12 of the
PSW. This is handled as an early PSW spec-
ification exception.

3. A zero is introduced into bit position 32 of the
PSW, but bits 33-39 are not all zeros. This is
handled as an early PSW specification excep-
tion.

4. The PSW contains an odd instruction address.

5. An operand address does not designate an
integral boundary in an instruction requiring
such integral-boundary designation.

6. An odd-numbered general register is desig-
nated by an R field of an instruction that
requires an even-numbered register desig-
nation.

7. A floating-point register other than 0, 2, 4, or 6
is designated for a short or long operand, or a
floating-point register other than 0 or 4 is des-
ignated for an extended operand, when the
basic-floating-point-extensions facility is not
installed.

8. A floating-point register other than 0, 1, 4, 5,
8, 9, 12, or 13 is designated for an extended
operand when the basic-floating-point-
extensions facility is installed.

9. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

10. The length of the first-operand field is less
than or equal to the length of the second-
operand field in decimal multiplication or divi-
sion.

11. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

12. Bits 20 and 21 of the second-operand address
of SET ADDRESS SPACE CONTROL or SET
ADDRESS SPACE CONTROL FAST are not
both zeros.

13. The addressing-mode bit in the general reg-
ister designated by the R² field of PROGRAM
TRANSFER is zero, but the leftmost seven
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bits of the instruction address in the same reg-
ister are not all zeros.

14. Execution of COMPARE AND FORM
CODEWORD is attempted, and general regis-
ters 1, 2, and 3 do not initially contain even
values.

15. Execution of UPDATE TREE is attempted,
| and the initial contents of general registers 4
| and 5 are not a multiple of 8.

16. Execution of MOVE PAGE (facility 1) is
attempted, and bit positions 16-23 of general
register 0 do not contain 00000001 binary.

17. Execution of MOVE PAGE (facility 2) is
attempted, and bit positions 16-19 of general
register 0 do not contain zeros or bits 20 and
21 of the register are both one.

18. Execution of COMPARE LOGICAL STRING,
MOVE STRING, or SEARCH STRING is
attempted, and bits 0-23 of general register 0
are not all zeros.

19. Execution of EXECUTE is attempted, and the
target address is odd.

20. Execution of RESUME PROGRAM is
attempted, and bits 32-63 of the PSW field in
the second operand are not valid for place-
ment in the current PSW. Either bit 32 is zero
and bits 33-39 are not all zeros or bit 63 is
one.

The execution of the instruction identified by the
old PSW is suppressed. However, for early PSW
specification exceptions (causes 1-3), the opera-
tion that introduces the new PSW is completed,
but an interruption occurs immediately thereafter.

Except as noted below, the instruction-length code
(ILC) is 1, 2, or 3, indicating the length of the
instruction causing the exception.

When the instruction address is odd (cause 4), it
is unpredictable whether the ILC is 1, 2, or 3.

When the exception is recognized because of an
early PSW specification exception, (causes 1-3),
and the exception has been introduced by LOAD
PSW, PROGRAM CALL FAST, PROGRAM
RETURN, or an interruption, the ILC is 0. When
the exception is introduced by SET SYSTEM
MASK or by STORE THEN OR SYSTEM MASK,
the ILC is 2.

The specification exception is indicated by a
program-interruption code of 0006 hex (or 0086
hex if a concurrent PER event is indicated).

Programming Note:  See “Exceptions Associated
with the PSW” on page 6-9 for a definition of
when the exceptions associated with the PSW are
recognized.

 Stack-Empty Exception
A stack-empty exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN when
the current linkage-stack entry is a header entry
and the backward stack-entry validity bit in the
header entry is zero.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-empty exception is indicated by a
program-interruption code of 0031 hex (or 00B1
hex if a concurrent PER event is indicated).

 Stack-Full Exception
A stack-full exception is recognized during the
stacking process in BRANCH AND STACK,
stacking PROGRAM CALL, or PROGRAM CALL
FAST when there is not enough remaining free
space in the current linkage-stack section and the
forward-section validity bit in the trailer entry of the
section is zero.

The operation is nullified.

The instruction-length code is 2.

The stack-full exception is indicated by a program-
interruption code of 0030 hex (or 00B0 hex if a
concurrent PER event is indicated).

 Stack-Operation Exception
A stack-operation exception is recognized during
the unstacking process in PROGRAM RETURN
when the unstack-suppression bit is one in any
linkage-stack state entry or header entry encount-
ered during the process.

The operation is nullified.

The instruction-length code is 1 or 2.
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The stack-operation exception is indicated by a
program-interruption code of 0034 hex (or 00B4
hex if a concurrent PER event is indicated).

 Stack-Specification Exception
A stack-specification exception is recognized in
each of the following cases:

1. During the stacking process in BRANCH AND
STACK, stacking PROGRAM CALL, or
PROGRAM CALL FAST when there is not
enough remaining free space in the current
linkage-stack section and either of the fol-
lowing is true:

a. The remaining-free-space value used to
locate the trailer entry of the current
section is not a multiple of 8.

b. There is not enough remaining free space
in the next section.

2. During the unstacking process in EXTRACT
STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED
STATE, or PROGRAM RETURN when the
current linkage-stack entry is a header entry in
which the backward stack-entry address des-
ignates another header entry.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-specification exception is indicated by a
program-interruption code of 0032 hex (or 00B2
hex if a concurrent PER event is indicated).

 Stack-Type Exception
A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REG-
ISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, or PROGRAM RETURN in
each of the following cases:

1. The current linkage-stack entry is not a
header entry or a state entry.

2. When the current linkage-stack entry is a
header entry, the preceding entry, designated
by the backward stack-entry address in the
header entry, is not a header entry or a state
entry. (A stack-specification exception is
recognized if the preceding entry is a header
entry.)

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-type exception is indicated by a
program-interruption code of 0033 hex (or 00B3
hex if a concurrent PER event is indicated).

 Trace-Table Exception
A trace-table exception is recognized when the
CPU attempts to store a trace-table entry which
would reach or cross the next 4K-byte block
boundary. For the purpose of recognizing this
exception in the TRACE instruction, the explicit
trace entry is treated as being 76 bytes long.

The operation is nullified.

The instruction-length code is 1, 2, or 3, indicating
the length of the instruction causing the exception.

The trace-table exception is indicated by a
program-interruption code of 0016 hex (or 0096
hex if a concurrent PER event is indicated).

 Translation-Specification Exception
A translation-specification exception is recognized
when translation of a virtual address is attempted
and any of the following is true:

1. Bit positions 8-12 of control register 0 do not
contain the code 10110.

2. The segment-table entry used for the trans-
lation is valid, and bit position 0 in the entry
does not contain zero.

3. The page-table entry used for the translation
is valid, and bit positions 0, 20, and 23 in the
entry do not contain zeros.

4. The private-space control, bit 23, in the
segment-table designation used for the trans-
lation is one, the segment-table entry used for
the translation is valid, and the common-
segment bit, bit 27, in the segment-table entry
is one.

The exception is recognized only as part of the
execution of an instruction using address trans-
lation, that is, when DAT is on and a logical
address, instruction address, or virtual address
must be translated, or when LOAD REAL
ADDRESS or INVALIDATE PAGE TABLE ENTRY
is executed. Cause 1 is recognized on any trans-
lation attempt; causes 2, 3, and 4 are recognized
only for table entries that are actually used.
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The unit of operation is suppressed.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception.

The translation-specification exception is indicated
by a program-interruption code of 0012 hex (or
0092 hex if a concurrent PER event is indicated).

Programming Note:  When a translation-
specification exception is recognized in the
process of translating an instruction address, the
operation is suppressed. In this case, the
instruction-length code (ILC) is needed to derive
the address of the instruction, as the instruction
address in the old PSW has been incremented by
the amount indicated by the ILC. In the case of
segment-translation and page-translation
exceptions, the operation is nullified, the instruc-
tion address in the old PSW identifies the instruc-
tion, and the ILC may be arbitrarily set to 1, 2, or
3.

 Unnormalized-Operand Exception
An unnormalized-operand exception is recognized
when, in a vector floating-point divide or multiply
operation, a source-operand element has a
nonzero fraction with a leftmost hexadecimal digit
of zero. For more details, see the publication IBM
Enterprise Systems Architecture/390 Vector Oper-
ations, SA22-7207.

The unit of operation is inhibited.

The instruction-length code is 2.

The unnormalized-operand exception is indicated
by a program-interruption code of XX1E hex (or
XX9E hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

 Vector-Operation Exception
A vector-operation exception is recognized when a
vector-facility instruction is executed while bit 14 of
control register 0 is zero on a CPU which has the
vector facility installed and available. The vector-
operation exception is also recognized when a
vector-facility instruction is executed and the
vector facility is not installed or available on this
CPU, but the facility can be made available to the
program either on this CPU or another CPU in the
configuration.

When a vector-facility instruction is executed, and
the vector facility is not installed on any CPU
which is or can be placed in the configuration, it
depends on the model whether a vector-operation
exception or an operation exception is recognized.

The operation is nullified when the vector-
operation exception is recognized.

The instruction-length code is 2 or 3.

The vector-operation exception is indicated by a
program-interruption code of 0019 hex (or 0099
hex if a concurrent PER event is indicated).

 Collective Program-Interruption
Names
For the sake of convenience, certain program
exceptions are grouped together under a single
collective name. These collective names are used
when it is necessary to refer to the complete set
of exceptions, such as in instruction definitions.
Four collective names are used:

 � Access exceptions
 � ASN-translation exceptions
 � Subspace-replacement exceptions
 � Trace exceptions

The individual exceptions and their priorities are
listed in “Multiple Program-Interruption Conditions”
on page 6-37.

Recognition of Access
Exceptions
Figure 6-5 on page 6-35 summarizes the condi-
tions that can cause access exceptions and the
action taken when they are encountered.
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│ │ │TAR and TPROT, │ │

│ │Translation for │and Access for │Translation and│

│ │Virtual Address │Logical Address │Access for Any │

│ │of LRA │of TPROTñ │Other Address │

│ ├──────┬─────────┼───────┬────────┼──────┬────────┤

│ │Indi- │ │Indi- │ │Indi- │ │

│ Condition │cation│ Action │cation │ Action │cation│ Action │

├──────────────────────────────────┼──────┼─────────┼───────┼────────┼──────┼────────┤

│Access registerò │ │ │ │ │ │ │

│Bits ð-6 not all zeros │ cc3 │ Complete│ cc3 │Complete│ AS │Suppress│

│ │ │ │ │ │ │ │

│Effective access-list designationò│ │ │ │ │ │ │

│Designation protected against │ - │ - │ - │ - │ - │ - │

│ fetching │ │ │ │ │ │ │

│Invalid address of designation │ A │ Suppress│ A │Suppress│ A │Suppress│

│ │ │ │ │ │ │ │

│Access-list entryò │ │ │ │ │ │ │

│Access-list-length violation │ cc3 │ Complete│ cc3 │Complete│ AT │Nullify │

│Entry protected against fetching │ - │ - │ - │ - │ - │ - │

│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│

│I bit on │ cc3 │ Complete│ cc3 │Complete│ AT │Nullify │

│Sequence number in access register│ cc3 │ Complete│ cc3 │Complete│ ALQ │Nullify │

│ not equal to sequence number in │ │ │ │ │ │ │

│ entry │ │ │ │ │ │ │

│ │ │ │ │ │ │ │

│ASN-second-table entryò │ │ │ │ │ │ │

│Entry protected against fetching │ - │ - │ - │ - │ - │ - │

│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│

│I bit on │ cc3 │ Complete│ cc3 │Complete│ AV │Nullify │

│Sequence number in access-list │ cc3 │ Complete│ cc3 │Complete│ ASQ │Nullify │

│ entry not equal to sequence │ │ │ │ │ │ │

│ number in entry │ │ │ │ │ │ │

│Bits 3ð, 31, and 6ð-63 not all │ ATS │ Suppress│ ATS │Suppress│ ATS │Suppress│

│ zerosó │ │ │ │ │ │ │

│ │ │ │ │ │ │ │

│Authority-table entryò ô │ │ │ │ │ │ │

│Authority-table-length violation │ cc3 │ Complete│ cc3 │Complete│ EA │Nullify │

│Entry protected against fetching │ - │ - │ - │ - │ - │ - │

│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│

│Secondary-authority bit not one │ cc3 │ Complete│ cc3 │Complete│ EA │Nullify │

│ │ │ │ │ │ │ │

│Control-register-ð contentsõ │ │ │ │ │ │ │

│Invalid encoding of bits 8-12 │ TS │ Suppress│ -ö │ -ö │ TS │Suppress│

│ │ │ │ │ │ │ │

│Segment-table entry │ │ │ │ │ │ │

│Segment-table-length violation │ cc3 │ Complete│ cc3 │Complete│ ST │Nullify │

│Entry protected against fetching │ - │ - │ - │ - │ - │ - │

│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│

│I bit on │ cc1 │ Complete│ cc3 │Complete│ ST │Nullify │

│One in a bit position which is │ TS │ Suppress│ TS │Suppress│ TS │Suppress│

│ checked for zero÷ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │

│Page-table entry │ │ │ │ │ │ │

│Page-table-length violation │ cc3 │ Complete│ cc3 │Complete│ PT │Nullify │

│Entry protected against fetching │ - │ - │ - │ - │ - │ - │

│Invalid address of entry │ A │ Suppress│ A │Suppress│ A │Suppress│

│I bit on │ cc2 │ Complete│ cc3 │Complete│ PT │Nullify │

│One in a bit position which is │ TS │ Suppress│ TS │Suppress│ TS │Suppress│

│ checked for zero÷ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │

│Access for instruction fetch │ │ │ │ │ │ │

│Location protected │ - │ - │ - │ - │ P │Suppress│

│Invalid address │ - │ - │ - │ - │ A │Suppress│

│ │ │ │ │ │ │ │

│Access for operands │ │ │ │ │ │ │

│Location protected │ - │ - │cc setø│Complete│ P │ Term.\ │

│Invalid address │ - │ - │ A │Suppress│ A │ Term.\ │

└──────────────────────────────────┴──────┴─────────┴───────┴────────┴──────┴────────┘

Figure 6-5 (Part 1 of 2). Handling of Access Exceptions
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┌────────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ - The condition does not apply. │

│ \ Action is to terminate except where otherwise specified in this publication. │

│ For access-list-controlled protection, the action is always to suppress. │

│ ñ TAR does not have a logical address. The rows "Control-register-ð contents" │

│ through "Access for operands" apply only to TPROT, not to TAR. │

│ ò Exceptions related to an access register, effective access-list designa- │

│ tion, access-list entry, ASN-second-table entry, or authority-table entry │

│ are recognized only in the access-register mode, except that for LOAD REAL │

│ ADDRESS they are recognized when PSW bits 16 and 17 are ð1 binary, and │

│ for TEST ACCESS they are recognized regardless of the translation mode. │

│ ó An ASN-translation-specification exception is recognized only if it is │

│ necessary to access the authority table. │

│ ô Authority table is not accessed and secondary-authority bit is not checked │

│ if the private bit in the access-list entry is zero or the access-list- │

│ entry authorization index in the access-list entry is equal to the extended │

│ authorization index in control register 8. │

│ õ A translation-specification exception for an invalid code in control reg- │

│ ister ð, bit positions 8-12, is recognized as part of the execution of the │

│ instruction using address translation; when DAT is on, it is recognized │

│ during translation of the instruction address, and, when DAT is off, it is │

│ only recognized during execution of INVALIDATE PAGE TABLE ENTRY or for │

│ translation of the operand address of LOAD REAL ADDRESS. │

│ ö A translation-specification exception cannot occur for the logical address │

│ of TEST PROTECTION because this exception would have been recognized during │

│ the instruction fetch for the instruction. │

│ ÷ A translation-specification exception for a format error in a table entry │

│ is recognized only when the execution of an instruction requires the entry │

│ for translation of an address. │

│ ø The condition code is set as follows: │

│ ð Operand location not protected. │

│ 1 Fetches permitted, but stores not permitted. │

│ 2 Neither fetches nor stores permitted. │

│ A Addressing exception. │

│ ALQ ALE-sequence exception. │

│ AS ALET-specification exception. │

│ ASQ ASTE-sequence exception. │

│ AT ALEN-translation exception. │

│ ATS ASN-translation-specification exception. │

│ AV ASTE-validity exception. │

│ cc1 Condition code 1 set. │

│ cc2 Condition code 2 set. │

│ cc3 Condition code 3 set. │

│ EA Extended-authority exception. │

│ P Protection exception. │

│ PT Page-translation exception. │

│ ST Segment-translation exception. │

│ TS Translation-specification exception. │

└────────────────────────────────────────────────────────────────────────────────────┘

Figure 6-5 (Part 2 of 2). Handling of Access Exceptions

Any access exception is recognized as part of the
execution of the instruction with which the excep-
tion is associated. An access exception is not
recognized when the CPU attempts to prefetch
from an unavailable location or detects some other
access-exception condition, but a branch instruc-
tion or an interruption changes the instruction
sequence such that the instruction is not exe-
cuted.

Every instruction can cause an access exception
to be recognized because of instruction fetch.
Additionally, access exceptions associated with
instruction execution may occur because of an
access to an operand in storage.

An access exception due to fetching an instruction
is indicated when the first instruction halfword
cannot be fetched without encountering the excep-
tion. When the first halfword of the instruction has
no access exceptions, access exceptions may be
indicated for additional halfwords according to the
instruction length specified by the first two bits of
the instruction; however, when the operation can
be performed without accessing the second or
third halfwords of the instruction, it is unpredict-
able whether the access exception is indicated for
the unused part. Since the indication of access
exceptions for instruction fetch is common to all
instructions, it is not covered in the individual
instruction definitions.
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Except where otherwise indicated in the individual
instruction description, the following rules apply for
exceptions associated with an access to an
operand location. For a fetch-type operand,
access exceptions are necessarily indicated only
for that portion of the operand which is required
for completing the operation. It is unpredictable
whether access exceptions are indicated for those
portions of a fetch-type operand which are not
required for completing the operation. For a store-
type operand, access exceptions are recognized
for the entire operand even if the operation could
be completed without the use of the inaccessible
part of the operand. In situations where the value
of a store-type operand is defined to be unpredict-
able, it is unpredictable whether an access excep-
tion is indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word “access” is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined by each particular instruction.

 Multiple Program-Interruption
Conditions
Except for PER events, only one program-
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. When more than one program-
interruption condition exists, only the condition
having the highest priority is identified in the inter-
ruption code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page or
protection boundary is unpredictable and is not
necessarily related to the sequence specified for
the access of bytes within the operand.

The type of ending which occurs (nullification, sup-
pression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is indi-
cated which permits termination, and another con-

dition also exists which would cause either
nullification or suppression, then the unit of opera-
tion is suppressed.

Figure 6-6 on page 6-38 lists the priorities of all
program-interruption conditions other than PER
events and exceptions associated with some of
the more complex control instructions. All
exceptions associated with references to storage
for a particular instruction halfword or a particular
operand byte are grouped as a single entry called
“access.” Figure 6-7 on page  6-41 lists the pri-
ority of access exceptions for a single access.
Thus, the second figure specifies which of several
exceptions, encountered either in the access of a
particular portion of an instruction or in any partic-
ular access associated with an operand, has
highest priority, and the first figure specifies the
priority of this condition in relation to other condi-
tions detected in the operation. Similarly, the pri-
orities for exceptions occurring as part of ASN
translation and tracing are covered in Figure 6-8
on page 6-44 and Figure 6-10 on page 6-45,
respectively.

For some instructions, the priority is shown in the
individual instruction description.

The relative priorities of any two conditions listed
in the figure can be found by comparing the pri-
ority numbers, as found in the figure, from left to
right until a mismatch is found. If the first ine-
quality is between numeric characters, either the
two conditions are mutually exclusive or, if both
can occur, the condition with the smaller number
is indicated. If the first inequality is between
alphabetic characters, then the two conditions are
not exclusive, and it is unpredictable which is indi-
cated when both occur.

To understand the use of the table, consider an
example involving the instruction ADD DECIMAL,
which is a six-byte instruction. Assume that the
first four bytes of the instruction can be accessed
but that the instruction crosses a boundary so that
an addressing exception exists for the last two
bytes. Additionally, assume that the first operand
addressed by the instruction contains invalid
decimal digits and is in a location that can be
fetched from, but not stored into, because of key-
controlled protection. The three exceptions which
could result from attempted execution of the ADD
DECIMAL are:
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┌────────┬─────────────────────────────────────┐

│Priority│ │

│Number │Exception │

├────────┼─────────────────────────────────────┤

│ 7.B │Access exceptions for third instruc- │

│ │tion halfword. │

│ 8.B │Access exceptions (operand 1). │

│ 8.D │Data exception. │

└────────┴─────────────────────────────────────┘

Since the first inequality (7≠8) is between numeric
characters, the addressing exception would be
indicated. If, however, the entire ADD DECIMAL
instruction can be fetched, and only the second
two exceptions listed above exist, then the ine-
quality (B≠D) is between alphabetic characters,
and it is unpredictable whether the protection
exception or the data exception would be indi-
cated.

┌──────────────────────────────────────────────────────────────────────────────────┐

│ 1. Specification exception due to any PSW error of the type that causes an │

│ immediate interruption.ñ │

│ │

│ 2. Specification exception due to an odd instruction address in the PSW. │

│ │

│ 3. Access exceptions for first halfword of EXECUTE.ò │

│ │

│ 4. Access exceptions for second halfword of EXECUTE.ò │

│ │

│ 5. Specification exception due to target instruction of EXECUTE not being │

│ specified on halfword boundary.ò │

│ │

│ 6. Access exceptions for first instruction halfword. │

│ │

│ 7.A Access exceptions for second instruction halfword.ó │

│ │

│ 7.B Access exceptions for third instruction halfword.ó │

│ │

│ 7.C.1 Vector-operation exception. │

│ │

│ 7.C.2 Operation exception. │

│ │

│ 7.C.3 Privileged-operation exception for privileged instructions. │

│ │

│ 7.C.4 Execute exception. │

│ │

│ 7.C.5 Special-operation exception. │

│ │

│ 8.A Specification exception due to conditions other than those included in │

│ 1, 2, and 5 above. │

│ │

│ 8.Bô Access exceptions for an access to an operand in storage.õ │

│ │

│ 8.Cô Access exceptions for any other access to an operand in storage.õ │

│ │

│ 8.D Data exception.ö │

│ │

│ 8.E Decimal-divide exception.÷ │

│ │

│ 8.F Trace exceptions. │

│ │

│ 9. Events other than PER events, exceptions which result in completion, │

│ and the following exceptions: fixed-point divide, HFP divide, operand, │

│ HFP square root, and unnormalized operand. Either these exceptions and │

│ events are mutually exclusive or their priority is specified in the │

│ corresponding definitions. │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 6-6 (Part 1 of 2). Priority of Program-Interruption Conditions

6-38 ESA/390 Principles of Operation  



  
 

┌──────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ Numbers indicate priority, with "1" being the highest priority; letters indicate │

│ no priority. │

│ │

│ ñ PSW errors which cause an immediate interruption may be introduced by a new │

│ PSW loaded as a result of an interruption or by the instructions LOAD PSW, │

│ PROGRAM RETURN, SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority │

│ shown in the chart is for a PSW error introduced by an interruption and may │

│ also be considered as the priority for a PSW error introduced by the previous │

│ instruction. The error is introduced only if the instruction encounters no │

│ other exceptions. The resulting interruption has a higher priority than any │

│ interruption caused by the instruction which would have been executed next; it│

│ has lower priority, however, than any interruption caused by the instruction │

│ which introduced the erroneous PSW. │

│ │

│ ò Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities start- │

│ ing with 6 are for the target instruction. When no EXECUTE is encountered, │

│ priorities 3, 4, and 5 do not apply. │

│ │

│ ó Separate accesses may occur for each halfword of an instruction. The second │

│ instruction halfword is accessed only if bits ð-1 of the instruction are not │

│ both zeros. The third instruction halfword is accessed only if bits ð-1 of │

│ of the instruction are both ones. Access exceptions for one of these half- │

│ words are not necessarily recognized if the instruction can be completed │

│ without use of the contents of the halfword or if an exception of lower pri- │

│ ority can be determined without the use of the halfword. │

│ │

│ ô As in instruction fetching, separate accesses may occur for each portion of │

│ an operand. Each of these accesses, and also accesses for different operands,│

│ are of equal priority, and the two entries 8.B and 8.C are listed to represent│

│ the relative priorities of exceptions associated with any two of these │

│ accesses. Access exceptions for INSERT STORAGE KEY EXTENDED, INSERT VIRTUAL │

│ STORAGE KEY, INVALIDATE PAGE TABLE ENTRY, LOAD REAL ADDRESS, RESET REFERENCE │

│ BIT EXTENDED, SET STORAGE KEY EXTENDED, and TEST PROTECTION are also included │

│ in 8.B. │

│ │

│ õ For MOVE LONG, MOVE LONG EXTENDED, COMPARE LOGICAL LONG, and COMPARE LOGICAL │

│ LONG EXTENDED, an access exception for a particular operand can be indicated │

│ only if the R field for that operand designates an even-numbered register. │

│ │

│ ö A decimal-operand data exception can be indicated only if the sign, digit, or │

│ digits responsible for the exception were fetched without encountering an │

│ access exception. │

│ │

│ ÷ The exception can be indicated only if the digits used in establishing the │

│ exception, and also the signs, were fetched without encountering an access │

│ exception, only if the signs are valid, and only if the digits used in estab- │

│ lishing the exception are valid. │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 6-6 (Part 2 of 2). Priority of Program-Interruption Conditions

 Access Exceptions
The access exceptions consist of those exceptions
which can be encountered while using an abso-
lute, instruction, logical, real, or virtual address to
access storage. Thus, in the access-register
mode, the exceptions are:

 1. ALET specification
 2. ALEN translation

 3. ALE sequence
 4. ASTE validity
 5. ASTE sequence
 6. ASN-translation specification
 7. Extended authority

8. Addressing (the ART tables)
 9. Translation specification
10. Segment translation
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11. Page translation
12. Addressing (the DAT tables)
13. Addressing (the operand or instruction)
14. Protection (key-controlled, access-list-

controlled, page, and low-address)

With DAT on but in other than the access-register
mode, exceptions 9-14 in the above list, except for
access-list-controlled protection, can be encount-
ered.

With DAT off, the exceptions are:

1. Addressing (the operand or instruction)
2. Protection (key-controlled and low-address)

Additionally, the instructions LOAD REAL
ADDRESS and INVALIDATE PAGE TABLE
ENTRY can encounter a translation-specification
exception and addressing exceptions for the ART
and DAT tables even with DAT off.
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┌──────────────────────────────────────────────────────────────────┐

│A. Protection exception (low-address protection) due to │

│ a store-type operand reference with an effective ad- │

│ dress in the range ð-511. Not recognized if DAT is │

| │ on and the segment-table designation to be used in │

| │ the translation cannot be obtained because of another│

| │ exception. │

│ │

│B.1.A.1 ALET-specification exception due to bits ð-6 of │

│ access register not being all zeros.ñ │

│ │

│B.1.A.2 Addressing exception for access to effective access- │

│ list designation.ò │

│ │

│B.1.A.3 ALEN-translation exception due to access-list entry │

│ being outside the list.ñ │

│ │

│B.1.A.4 Addressing exception for access to access-list │

│ entry.ò │

│ │

│B.1.A.5 ALEN-translation exception due to I bit in access- │

│ list entry having the value one.ñ │

│ │

│B.1.A.6 ALE-sequence exception due to access-list-entry │

│ sequence number (ALESN) in access register not being │

│ equal to ALESN in access-list entry.ñ │

│ │

│B.1.A.7 Addressing exception for access to ASN-second-table │

│ entry.ò │

│ │

│B.1.A.8 ASTE-validity exception due to I bit in ASN-second- │

│ table entry having the value one.ñ │

│ │

│B.1.A.9 ASTE-sequence exception due to ASN-second-table- │

│ entry sequence number (ASTESN) in access-list entry │

│ not being equal to ASTESN in ASN-second-table entry.ñ│

│ │

│B.1.A.1ð ASN-translation-specification exception due to a one │

│ in bit positions 3ð, 31, or 6ð-63 of ASN-second-table│

│ entry (optional and only if authority-table access │

│ is required).ò │

│ │

| │ Note: Exceptions B.1.A.11 through B.1.A.13 are │

| │ recognized only when the private bit in the access- │

| │ list entry is one and the access-list extended- │

| │ authorization index (ALEAX) in the entry is not equal│

| │ to the extended-authorization index in control │

| │ register 8. │

│ │

│B.1.A.11 Extended-authority exception due to authority-table │

│ entry being outside table.ñ │

│ │

│B.1.A.12 Addressing exception for access to authority-table │

│ entry.ò │

└──────────────────────────────────────────────────────────────────┘

Figure 6-7 (Part 1 of 4). Priority of Access Exceptions
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┌──────────────────────────────────────────────────────────────────┐

│B.1.A.13 Extended-authority exception due to (1) private bit │

│ in access-list entry not being zero, (2) access-list-│

│ entry authorization index in access-list entry not │

│ being equal to extended authorization index in con- │

│ trol register 8, and (3) secondary-authority bit │

│ selected by extended authorization index not being │

│ one.ñ │

│ │

│B.1.B Translation-specification exception due to invalid │

│ encoding of bits 8-12 of control register ð.ó │

│ │

│B.2.A Protection exception (access-list-controlled protec- │

│ tion) due to store-type operand reference to a │

│ virtual address which is protected against stores.ñ │

│ │

│B.2.B.1 Segment-translation exception due to segment-table │

│ entry being outside table.ô │

│ │

│B.2.B.2 Addressing exception for access to segment-table │

│ entry.õ │

│ │

│B.2.B.3 Segment-translation exception due to I bit in seg- │

│ ment-table entry having the value one.ô │

│ │

│B.2.B.4 Translation-specification exception due to invalid │

│ ones in segment-table entry (bit ð, and common- │

│ segment bit if private-space bit in segment-table │

│ designation is one).õ │

│ │

│B.2.B.5 Page-translation exception due to page-table entry │

│ being outside table.ô │

│ │

│B.2.B.6 Addressing exception for access to page-table entry.ó│

│ │

│B.2.B.7 Page-translation exception due to I bit in page-table│

│ entry having the value one (not recognized for op- │

│ erand of MOVE PAGE).ô │

│ │

│ Note: Exceptions B.2.B.8.A, B.3.A, B.3.B, and B.4. │

│ are recognized only when DAT is off or the I bit in │

│ the page-table entry is zero. │

│ │

│B.2.B.8.A Translation-specification exception due to invalid │

│ ones in page-table entry (bits ð, 2ð, and 23).õ │

│ │

│B.3.A Protection exception (page protection) due to a │

│ store-type operand reference to a virtual address │

│ which is protected against stores.ö │

│ │

│B.3.B Addressing exception for access to instruction or │

│ operand. │

│ │

│B.4. Protection exception (key-controlled protection) due │

│ to attempt to access a protected instruction or op- │

│ erand location. │

└──────────────────────────────────────────────────────────────────┘

Figure 6-7 (Part 2 of 4). Priority of Access Exceptions
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┌──────────────────────────────────────────────────────────────────┐

│ Note: The following access exceptions are recognized│

│ only by MOVE PAGE. │

│ │

│B.2.B.8.B Page-translation exception due to I bit in page-table│

│ entry having the value one and the operand not being │

│ valid in expanded storage.ö If this is true for both│

│ operands, the exception is recognized for the second │

│ operand.÷ │

│ │

│ Note: Exceptions B.2.B.9.A.1 through B.2.B.9.C and │

│ B.3.C are recognized only for an operand of MOVE PAGE│

│ when DAT is on, the I bit in the page-table entry is │

│ one, and the operand is valid in expanded storage. │

│ │

│B.2.B.9.A.1 Page-translation exception due to both operands being│

│ valid in expanded storage. The exception is recog- │

│ nized for the first operand.ø │

│ │

│B.2.B.9.A.2 Page-translation exception due to the translation │

│ path to the operand being locked.ø │

│ │

│B.2.B.9.B Page-translation exception due to the operand being │

│ the first operand, the second operand being valid in │

│ main storage, and the destination-reference- │

│ intention bit in general register ð being one │

│ (facility 2 only).ø │

│ │

│B.2.B.9.C Protection exception (page protection or key- │

│ controlled protection) due to the operand being │

│ protected. │

│ │

│B.3.C Page-translation exception due to the accesses to the│

│ operand resulting in an expanded-storage data error.÷│

├──────────────────────────────────────────────────────────────────┤

│Explanation: │

│ │

│ ñ Not applicable when not in the access-register mode; not │

│ applicable for execution of TEST ACCESS and for translation of│

│ operand address of LOAD REAL ADDRESS and TEST PROTECTION. │

│ │

│ ò Not applicable when not in the access-register mode, except │

│ applicable for execution of TEST ACCESS and, when PSW bits 16 │

│ and 17 are ð1 binary, for translation of operand address of │

│ LOAD REAL ADDRESS. │

│ │

│ ó Not applicable when DAT is off, except for execution of │

│ INVALIDATE PAGE TABLE ENTRY and for translation of operand │

│ address of LOAD REAL ADDRESS. │

│ │

│ ô Not applicable when DAT is off; not applicable to operand │

│ addresses for LOAD REAL ADDRESS and TEST PROTECTION. │

│ │

│ õ Not applicable when DAT is off except for translation of │

│ operand address for LOAD REAL ADDRESS. │

└──────────────────────────────────────────────────────────────────┘

Figure 6-7 (Part 3 of 4). Priority of Access Exceptions
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┌──────────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ │

│ ö Not applicable when DAT is off. │

│ │

│ ÷ With move-page facility 1, or with move-page facility 2 when │

│ the condition-code-option bit is one, the exception is not │

│ recognized. Instead, condition code 1 is set if the condition│

│ is true for only the first operand, or condition code 2 is set│

│ if the condition is true for the second operand or both │

│ operands. │

│ │

│ ø With move-page facility 1, or with move-page facility 2 when │

│ the condition-code-option bit is one, the exception is not │

│ recognized. Instead, condition code 1 is set. │

└──────────────────────────────────────────────────────────────────┘

Figure 6-7 (Part 4 of 4). Priority of Access Exceptions

 ASN-Translation Exceptions
The ASN-translation exceptions are those
exceptions which are common to the process of
translating an ASN in the instructions PROGRAM
RETURN, PROGRAM TRANSFER, and SET
SECONDARY ASN. The exceptions and the pri-
ority in which they are detected are shown in
Figure 6-8.

┌──────────────────────────────────────────────┐

│ 1. Addressing exception for access to ASN-│

│ first-table entry. │

│ │

│ 2. AFX-translation exception due to I bit │

│ (bit ð) in ASN-first-table entry being │

│ one. │

│ │

│ 3. ASN-translation-specification exception│

│ due to invalid ones (bits 28-31) in │

│ first-table entry. │

│ │

│ 4. Addressing exception for access to ASN-│

│ second-table entry. │

│ │

│ 5. ASX-translation exception due to I bit │

│ (bit ð) in ASN-second-table entry being│

│ one. │

│ │

│ 6. ASN-translation-specification exception│

│ due to invalid ones (bits 3ð, 31, 6ð- │

│ 63) in ASN-second-table entry (op- │

│ tional). │

└──────────────────────────────────────────────┘

Figure 6-8. Priority of ASN-Translation Exceptions

 Subspace-Replacement Exceptions
The subspace-replacement exceptions are those
exceptions which can be recognized during a
subspace-replacement operation in PROGRAM
CALL, PROGRAM RETURN, PROGRAM
TRANSFER, or SET SECONDARY ASN. The
exceptions can be recognized only if the
subspace-group facility is installed and the
address-space-function control, bit 15 of control
register 0, is one. The exceptions and their pri-
ority are shown in Figure 6-9.

┌──────────────────────────────────────────────┐

│ 1. Addressing exception for access to │

│ dispatchable-unit control table. │

│ │

│ 2. Addressing exception for access to │

│ subspace ASN-second-table entry. │

│ │

│ 3. ASTE-validity exception due to bit ð │

│ being one in subspace ASN-second-table │

│ entry. │

│ │

│ 4. ASTE-sequence exception due to subspace│

│ ASN-second-table-entry sequence number │

│ in dispatchable-unit control table not │

│ being equal to ASN-second-table-entry │

│ sequence number in subspace ASN-second-│

│ table entry. │

└──────────────────────────────────────────────┘

Figure 6-9. Priority of Subspace-Replacement
Exceptions

 Trace Exceptions
The trace exceptions are those exceptions which
can be encountered while forming a trace-table
entry. The exceptions and their priority are shown
in Figure 6-10 on page 6-45.
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┌──────────────────────────────────────────────┐

│ A. Protection exception (low-address pro- │

│ tection) due to entry address being in │

│ the range ð-511. │

│ │

│ B.1 Trace-table exception due to new entry │

│ reaching or crossing next 4K-byte │

│ boundary. │

│ │

│ B.2 Addressing exception for access to │

│ trace-table entry. │

└──────────────────────────────────────────────┘

Figure 6-10. Priority of Trace Exceptions

 Restart Interruption
The restart interruption provides a means for the
operator or another CPU to invoke the execution
of a specified program. The CPU cannot be disa-
bled for this interruption.

A restart interruption causes the old PSW to be
stored at real location 8 and a new PSW, desig-
nating the start of the program to be executed, to
be fetched from real location 0. The instruction-
length code and interruption code are not stored.

If the CPU is in the operating state, the exchange
of the PSWs occurs at the completion of the
current unit of operation and after all other
pending interruption conditions for which the CPU
is enabled have been honored. If the CPU is in
the stopped state, the CPU enters the operating
state and exchanges the PSWs without first hon-
oring any other pending interruptions.

The restart interruption is initiated by activating the
restart key. The operation can also be initiated at
the addressed CPU by executing a SIGNAL
PROCESSOR instruction which specifies the
restart order.

When the rate control is set to the instruction-step
position, it is unpredictable whether restart causes
a unit of operation or additional interruptions to be
performed after the PSWs have been exchanged.

Programming Note:  To perform a restart when
the CPU is in the check-stop state, the CPU has
to be reset. Resetting with loss of the least
amount of information can be accomplished by
means of the system-reset-normal key, which
does not clear the contents of program-
addressable registers, including the control regis-
ters, but causes the channel subsystem to be
reset. The CPU-reset SIGNAL PROCESSOR

order can be used to clear the CPU without
affecting the channel subsystem.

 Supervisor-Call Interruption
The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and
the interruption occurs immediately upon the exe-
cution of the instruction.

The supervisor-call interruption causes the old
PSW to be stored at real location 32 and a new
PSW to be fetched from real location 96.

The contents of bit positions 8-15 of the SUPER-
VISOR CALL instruction are placed in the right-
most byte of the interruption code. The leftmost
byte of the interruption code is set to zero. The
instruction-length code is 1, unless the instruction
was executed by means of EXECUTE, in which
case the code is 2.

The interruption code is placed at real locations
138-139; the instruction-length code is placed in
bit positions 5 and 6 of the byte at real location
137, with the other bits set to zeros; and zeros are
stored at real location 136.

Priority of Interruptions
During the execution of an instruction, several
interruption-causing events may occur simultane-
ously. The instruction may give rise to a program
interruption, a request for an external interruption
may be received, equipment malfunctioning may
be detected, an I/O-interruption request may be
made, and the restart key may be activated.
Instead of the program interruption, a supervisor-
call interruption might occur; or both can occur if
PER is active. Simultaneous interruption requests
are honored in a predetermined order.

An exigent machine-check condition has the
highest priority. When it occurs, the current oper-
ation is terminated or nullified. Program and
supervisor-call interruptions that would have
occurred as a result of the current operation may
be eliminated. Any pending repressible machine-
check conditions may be indicated with the
exigent machine-check interruption. Every rea-
sonable attempt is made to limit the side effects of
an exigent machine-check condition, and requests
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for external, I/O, and restart interruptions normally
remain unaffected.

In the absence of an exigent machine-check con-
dition, interruption requests existing concurrently
at the end of a unit of operation are honored, in
descending order of priority, as follows:

 � Supervisor call
 � Program
� Repressible machine check

 � External
 � Input/output
 � Restart

The processing of multiple simultaneous inter-
ruption requests consists in storing the old PSW
and fetching the new PSW belonging to the inter-
ruption first honored. This new PSW is subse-
quently stored without the execution of any
instructions, and the new PSW associated with the
next interruption is fetched. Storing and fetching
of PSWs continues until no more interruptions are
to be serviced. The priority is reevaluated after
each new PSW is loaded. Each evaluation takes
into consideration any additional interruptions
which may have become pending. Additionally,
external and I/O interruptions, as well as machine-
check interruptions due to repressible conditions,
occur only if the current PSW at the instant of
evaluation indicates that the CPU is interruptible
for the cause.

Instruction execution is resumed using the last-
fetched PSW. The order of executing interruption
subroutines is, therefore, the reverse of the order
in which the PSWs are fetched.

If the new PSW for a program interruption does
not specify the wait state and has an odd instruc-
tion address, or causes an access exception to be
recognized, another program interruption occurs.
Since this second interruption introduces the same
unacceptable PSW, a string of interruptions is
established. These program exceptions are
recognized as part of the execution of the fol-
lowing instruction, and the string may be broken

by an external, I/O, machine-check, or restart
interruption or by the stop function.

If the new PSW for a program interruption con-
tains a zero in bit position 12 or contains a one in
an unassigned bit position or if the leftmost seven
bits of the instruction address are not zeros when
bit 32 indicates 24-bit addressing, another
program interruption occurs. This condition is of
higher priority than restart, I/O, external, or
repressible machine-check conditions, or the stop
function, and CPU reset has to be used to break
the string of interruptions.

A string of interruptions for other interruption
classes can also exist if the new PSW allows the
interruption which has just occurred. These
include machine-check interruptions, external
interruptions, and I/O interruptions due to PCI con-
ditions generated because of CCWs which form a
loop. Furthermore, a string of interruptions
involving more than one interruption class can
exist. For example, assume that the CPU timer is
negative and the CPU-timer subclass mask is one.
If the external new PSW has a one in an unas-
signed bit position, and the program new PSW is
enabled for external interruptions, then a string of
interruptions occurs, alternating between external
and program. Even more complex strings of inter-
ruptions are possible. As long as more inter-
ruptions must be serviced, the string of
interruptions cannot be broken by employing the
stop function; CPU reset is required.

Similarly, CPU reset has to be invoked to termi-
nate the condition that exists when an interruption
is attempted with a prefix value designating a
storage location that is not available to the CPU.

Interruptions for all requests for which the CPU is
enabled occur before the CPU is placed in the
stopped state. When the CPU is in the stopped
state, restart has the highest priority.

Programming Note:  The order in which concur-
rent interruption requests are honored can be
changed to some extent by masking.
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STORE MULTIPLE  . . . . . . . . . . . . . 7-89
SUBTRACT  . . . . . . . . . . . . . . . . . . 7-90
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This chapter includes all the unprivileged
instructions described in this publication other than
the decimal and floating-point instructions.

 Data Format
The general instructions treat data as being of four
types: signed binary integers, unsigned binary
integers, unstructured logical data, and decimal
data. Data is treated as decimal by the conver-
sion, packing, and unpacking instructions.
Decimal data is described in Chapter 8, “Decimal
Instructions.”

The general instructions manipulate data which
resides in general registers or in storage or is
introduced from the instruction stream. Some
general instructions operate on data which resides
in the PSW or the TOD clock.

In a storage-and-storage operation the operand
fields may be defined in such a way that they
overlap. The effect of this overlap depends upon
the operation. When the operands remain
unchanged, as in COMPARE or TRANSLATE
AND TEST, overlapping does not affect the exe-
cution of the operation. For instructions such as
MOVE and TRANSLATE, one operand is replaced
by new data, and the execution of the operation
may be affected by the amount of overlap and the
manner in which data is fetched or stored. For
purposes of evaluating the effect of overlapped
operands, data is considered to be handled one
eight-bit byte at a time. Special rules apply to the
operands of MOVE LONG and MOVE INVERSE.
See “Interlocks within a Single Instruction” on
page 5-77 for how overlap is detected in the
access-register mode.

 Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

In some operations, the result is achieved by the
use of the one's complement of the number. The
one's complement of a number is obtained by
inverting each bit of the number, including the
sign.

For signed binary integers, the leftmost bit repres-
ents the sign, which is followed by the numeric
field. Positive numbers are represented in true
binary notation with the sign bit set to zero. When
the value is zero, all bits are zeros, including the
sign bit. Negative numbers are represented in
two's-complement binary notation with a one in
the sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of
the same absolute value. The two's complement
of a number is obtained by forming the one's com-
plement of the number, adding a value of one in
the rightmost bit position, allowing a carry into the
sign position, and ignoring any carry out of the
sign position.

This number representation can be considered the
rightmost portion of an infinitely long represen-
tation of the number. When the number is posi-
tive, all bits to the left of the most significant bit of
the number are zeros. When the number is nega-
tive, these bits are ones. Therefore, when a
signed operand must be extended with bits on the
left, the extension is achieved by setting these bits
equal to the sign bit of the operand.
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The notation for signed binary integers does not
include a negative zero. It has a number range in
which, for a given length, the set of negative
nonzero numbers is one larger than the set of
positive nonzero numbers. The maximum positive
number consists of a sign bit of zero followed by
all ones, whereas the maximum negative number
(the negative number with the greatest absolute
value) consists of a sign bit of one followed by all
zeros.

A signed binary integer of either sign, except for
zero and the maximum negative number, can be
changed to a number of the same magnitude but
opposite sign by forming its two's complement.
Forming the two's complement of a number is
equivalent to subtracting the number from zero.
The two's complement of zero is zero.

The two's complement of the maximum negative
number cannot be represented in the same
number of bits. When an operation, such as
LOAD COMPLEMENT, attempts to produce the
two's complement of the maximum negative
number, the result is the maximum negative
number, and a fixed-point-overflow exception is
recognized. An overflow does not result, however,
when the maximum negative number is comple-
mented as an intermediate result but the final
result is within the representable range. An
example of this case is a subtraction of the
maximum negative number from -1. The product
of two maximum negative numbers of a given
length is representable as a positive number of
double that length.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression “32-bit signed
binary integer” denotes an integer with 31 numeric
bits and a sign bit, and the expression “64-bit
signed binary integer” denotes an integer with 63
numeric bits and a sign bit.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer is carried
into the sign bit. However, in algebraic left-
shifting, the sign bit does not change even if sig-
nificant numeric bits are shifted out.

Programming Notes:

1. An alternate way of forming the two's comple-
ment of a signed binary integer is to invert all
bits to the left of the rightmost one bit, leaving
the rightmost one bit and all zero bits to the
right of it unchanged.

2. The numeric bits of a signed binary integer
may be considered to represent a positive
value, with the sign representing a value of
either zero or the maximum negative number.

 Binary Arithmetic

Signed Binary Arithmetic

Addition and Subtraction
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is considered to be extended on
the left to the length of the longer operand by
propagating the sign-bit value.

Subtraction is performed by adding the one's com-
plement of the second operand and a value of one
to the first operand.

 Fixed-Point Overflow
A fixed-point-overflow condition exists for signed
binary addition or subtraction when the carry out
of the sign-bit position and the carry out of the left-
most numeric bit position disagree. Detection of
an overflow does not affect the result produced by
the addition. In mathematical terms, signed addi-
tion and subtraction produce a fixed-point overflow
when the result is outside the range of represen-
tation for signed binary integers. Specifically, for
ADD and SUBTRACT, which operate on 32-bit
signed binary integers, there is an overflow when
the proper result would be greater than or equal to
+2óñ or less than -2óñ. The actual result placed
in the general register after an overflow differs
from the proper result by 2óò. A fixed-point over-
flow causes a program interruption if allowed by
the program mask.

The instructions SHIFT LEFT SINGLE and SHIFT
LEFT DOUBLE produce an overflow when the
result is outside the range of representation for
signed binary integers. The actual result differs
from that for addition and subtraction in that the
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sign of the result remains the same as the original
sign.

Unsigned Binary Arithmetic
Addition of unsigned binary integers is performed
by adding all bits of each operand. When one of
the operands is shorter, the shorter operand is
considered to be extended on the left with zeros.
Unsigned binary arithmetic is used in address
arithmetic for adding the X, B, and D fields. (See
“Address Generation” on page 5-7.) It is also
used to obtain the addresses of the function bytes
in TRANSLATE and TRANSLATE AND TEST.
Furthermore, unsigned binary arithmetic is used
on 32-bit unsigned binary integers by ADD
LOGICAL and SUBTRACT LOGICAL. Given the
same two operands, ADD and ADD LOGICAL
produce the same 32-bit result. The instructions
differ only in the interpretation of this result. ADD
interprets the result as a signed binary integer and
inspects it for sign, magnitude, and overflow to set
the condition code accordingly. ADD LOGICAL
interprets the result as an unsigned binary integer
and sets the condition code according to whether
the result is zero and whether there was a carry
out of bit position 0. Such a carry is not consid-
ered an overflow, and no program interruption for
overflow can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD LOGICAL
in that the one's complement of the second
operand and a value of one are added to the first
operand.

Programming Notes:

1. Logical addition and subtraction may be used
to perform arithmetic on multiple-precision
binary-integer operands. Thus, for multiple-
precision addition, ADD LOGICAL can be
used to add the corresponding parts of the
operands beginning with the lowest-order
parts. If the condition code indicates a carry,
a value of one should be added to the sum of
the next-higher-order parts. If the multiple-
precision operands are signed, ADD should
be used on the highest-order parts. The con-
dition code then indicates any overflow or the
proper sign and magnitude of the entire result;
an overflow is also indicated by a program
interruption for fixed-point overflow if allowed
by the program mask. If the multiple-precision
operands are unsigned, ADD LOGICAL
should be used throughout.

2. Another use for ADD LOGICAL is to incre-
ment values representing binary counters,
which are allowed to wrap around from all
ones to all zeros without indicating overflow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most opera-
tions, which of two unequal operands is the
greater (high). Signed-binary-comparison opera-
tions are provided which treat the operands as
signed binary integers, and logical-comparison
operations are provided which treat the operands
as unsigned binary integers or as unstructured
data.

COMPARE and COMPARE HALFWORD are
signed-binary-comparison operations. These
instructions are equivalent to SUBTRACT and
SUBTRACT HALFWORD without replacing either
operand, the resulting difference being used only
to set the condition code. The operations permit
comparison of numbers of opposite sign which
differ by 2óñ or more. Thus, unlike SUBTRACT,
COMPARE cannot cause overflow.

Logical comparison of two operands is performed
byte by byte, in a left-to-right sequence. The
operands are equal when all their bytes are equal.
When the operands are unequal, the comparison
result is determined by a left-to-right comparison
of corresponding bit positions in the first unequal
pair of bytes: the zero bit in the first unequal pair
of bits indicates the low operand, and the one bit
the high operand. Since the remaining bit and
byte positions do not change the comparison, it is
not necessary to continue comparing unequal
operands beyond the first unequal bit pair.

 Instructions
The general instructions and their mnemonics,
formats, and operation codes are listed in
Figure 7-1 on page 7-6. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

A detailed definition of instruction formats,
operand designation and length, and address gen-
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eration is contained in “Instructions” on page 5-2.
Exceptions to the general rules stated in that
section are explicitly identified in the individual
instruction descriptions.

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designations for the assembler
language are shown with each instruction. For
LOAD AND TEST, for example, LTR is the mne-
monic and R±, R² the operand designation.

Programming Notes:

1. In general, bimodal addressing affects the
general instructions only in the manner in
which logical storage addresses are handled.
The instructions BRANCH AND LINK (BAL,
BALR), BRANCH AND SAVE (BAS, BASR),
BRANCH AND SAVE AND SET MODE,
BRANCH AND SET MODE, BRANCH RELA-
TIVE AND SAVE, CHECKSUM, COMPARE
LOGICAL LONG, COMPARE LOGICAL
LONG EXTENDED, COMPARE LOGICAL
STRING, COMPARE UNTIL SUBSTRING
EQUAL, LOAD ADDRESS, MOVE LONG,
MOVE LONG EXTENDED, MOVE STRING,
SEARCH STRING, and TRANSLATE AND
TEST are affected in that the leftmost byte of
the results in registers is handled differently in
the two modes. Otherwise, the general
instructions are executed the same way in
both the 24-bit and 31-bit addressing modes.

2. The following additional general instructions
are available in ESA/370 and ESA/390 as
compared to 370-XA:

� COMPARE UNTIL SUBSTRING EQUAL
 � COPY ACCESS
 � EXTRACT ACCESS
� LOAD ACCESS MULTIPLE
� LOAD ADDRESS EXTENDED

 � MOVE PAGE
 � SET ACCESS
� STORE ACCESS MULTIPLE

3. The following additional general instructions
are available in ESA/390 when the string-
instruction facility is installed:

� COMPARE LOGICAL STRING
 � MOVE STRING
 � SEARCH STRING

4. The following additional general instructions
are available in ESA/390 when the compare-
and-move-extended facility is installed:

� COMPARE LOGICAL LONG EXTENDED
� MOVE LONG EXTENDED

5. The following additional general instructions
are available in ESA/390 when the immediate-
and-relative-instruction facility is installed:

� ADD HALFWORD IMMEDIATE
� BRANCH RELATIVE AND SAVE
� BRANCH RELATIVE ON CONDITION
� BRANCH RELATIVE ON COUNT
� BRANCH RELATIVE ON INDEX HIGH
� BRANCH RELATIVE ON INDEX LOW OR

EQUAL
� COMPARE HALFWORD IMMEDIATE
� LOAD HALFWORD IMMEDIATE

 � MULTIPLY SINGLE
� MULTIPLY HALFWORD IMMEDIATE
� TEST UNDER MASK HIGH
� TEST UNDER MASK LOW

6. The general instruction CHECKSUM is avail-
able in ESA/390 when the checksum facility is
installed.

7. The general instruction PERFORM LOCKED
OPERATION is available in ESA/390 when
the perform-locked-operation facility is
installed.

| 8. The general instruction STORE CLOCK
| EXTENDED is available in ESA/390 when the
| extended-TOD-clock facility is installed.

| 9. The general instructions CONVERT UNICODE
| TO UTF-8, CONVERT UTF-8 TO UNICODE,
| and TRANSLATE EXTENDED are available in
| ESA/390 when the extended-translation facility
| is installed.
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│ADD │AR │RR C │ │ IF │ R │ │1A │

│ADD │A │RX C │ A │ IF │ R │ B²│5A │

│ADD HALFWORD │AH │RX C │ A │ IF │ R │ B²│4A │

│ADD HALFWORD IMMEDIATE │AHI │RI C IR│ │ IF │ R │ │A7A │

│ADD LOGICAL │ALR │RR C │ │ │ R │ │1E │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│ADD LOGICAL │AL │RX C │ A │ │ R │ B²│5E │

│AND │NR │RR C │ │ │ R │ │14 │

│AND │N │RX C │ A │ │ R │ B²│54 │

│AND (character) │NC │SS C │ A │ │ ST│B± B²│D4 │

│AND (immediate) │NI │SI C │ A │ │ ST│B± │94 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│BRANCH AND LINK │BALR │RR │ │ T │B R │ │ð5 │

│BRANCH AND LINK │BAL │RX │ │ │B R │ │45 │

│BRANCH AND SAVE │BASR │RR │ │ T │B R │ │ðD │

│BRANCH AND SAVE │BAS │RX │ │ │B R │ │4D │

│BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B R │ │ðC │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│BRANCH AND SET MODE │BSM │RR │ │ │B R │ │ðB │

│BRANCH ON CONDITION │BCR │RR │ │ ¢ñ │B │ │ð7 │

│BRANCH ON CONDITION │BC │RX │ │ │B │ │47 │

│BRANCH ON COUNT │BCTR │RR │ │ │B R │ │ð6 │

│BRANCH ON COUNT │BCT │RX │ │ │B R │ │46 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│BRANCH ON INDEX HIGH │BXH │RS │ │ │B R │ │86 │

│BRANCH ON INDEX LOW OR EQUAL │BXLE │RS │ │ │B R │ │87 │

│BRANCH RELATIVE AND SAVE │BRAS │RI IR│ │ │B R │ │A75 │

│BRANCH RELATIVE ON CONDITION │BRC │RI IR│ │ │B │ │A74 │

│BRANCH RELATIVE ON COUNT │BRCT │RI IR│ │ │B R │ │A76 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│BRANCH RELATIVE ON INDEX HIGH │BRXH │RSI IR│ │ │B R │ │84 │

│BRANCH RELATIVE ON INDEX LOW OR EQ. │BRXLE│RSI IR│ │ │B R │ │85 │

│CHECKSUM │CKSM │RRE C CK│ A SP│ │ R │ R²│B241│

│COMPARE │CR │RR C │ │ │ │ │19 │

│COMPARE │C │RX C │ A │ │ │ B²│59 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ R │I1 │B21A│

│COMPARE AND SWAP │CS │RS C │ A SP│ $ │ R ST│ B²│BA │

│COMPARE DOUBLE AND SWAP │CDS │RS C │ A SP│ $ │ R ST│ B²│BB │

│COMPARE HALFWORD │CH │RX C │ A │ │ │ B²│49 │

│COMPARE HALFWORD IMMEDIATE │CHI │RI C IR│ │ │ │ │A7E │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│COMPARE LOGICAL │CLR │RR C │ │ │ │ │15 │

│COMPARE LOGICAL │CL │RX C │ A │ │ │ B²│55 │

│COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B± B²│D5 │

│COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B± │95 │

│COMPARE LOGICAL C. UNDER MASK │CLM │RS C │ A │ │ │ B²│BD │

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 1 of 5). Summary of General Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ R │R± R²│ðF │

│COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C CM│ A SP│ │ R │R± R³│A9 │

│COMPARE LOGICAL STRING │CLST │RRE C SR│ A SP│ Gð │ R │R± R²│B25D│

│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R± R²│B257│

│CONVERT TO BINARY │CVB │RX │ A │Dd IK │ R │ B²│4F │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│CONVERT TO DECIMAL │CVD │RX │ A │ │ ST│ B²│4E │

| │CONVERT UNICODE TO UTF-8 │CUUTF│RRE C ET│ A SP│ │ R ST│R± R²│B2A6│

| │CONVERT UTF-8 TO UNICODE │CUTFU│RRE C ET│ A SP│ │ R ST│R± R²│B2A7│

│COPY ACCESS │CPYA │RRE │ │ │ │U± U²│B24D│

│DIVIDE │DR │RR │ SP│ IK │ R │ │1D │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│DIVIDE │D │RX │ A SP│ IK │ R │ B²│5D │

│EXCLUSIVE OR │XR │RR C │ │ │ R │ │17 │

│EXCLUSIVE OR │X │RX C │ A │ │ R │ B²│57 │

│EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B± B²│D7 │

│EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B± │97 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│EXECUTE │EX │RX │ AI SP│ EX │ │ │44 │

│EXTRACT ACCESS │EAR │RRE │ │ │ R │ U²│B24F│

│INSERT CHARACTER │IC │RX │ A │ │ R │ B²│43 │

│INSERT CHARACTERS UNDER MASK │ICM │RS C │ A │ │ R │ B²│BF │

│INSERT PROGRAM MASK │IPM │RRE │ │ │ R │ │B222│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD │LR │RR │ │ │ R │ │18 │

│LOAD │L │RX │ A │ │ R │ B²│58 │

│LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│9A │

│LOAD ADDRESS │LA │RX │ │ │ R │ │41 │

│LOAD ADDRESS EXTENDED │LAE │RX │ │ │ R │U± BP│51 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD AND TEST │LTR │RR C │ │ │ R │ │12 │

│LOAD COMPLEMENT │LCR │RR C │ │ IF │ R │ │13 │

│LOAD HALFWORD │LH │RX │ A │ │ R │ B²│48 │

│LOAD HALFWORD IMMEDIATE │LHI │RI IR│ │ │ R │ │A78 │

│LOAD MULTIPLE │LM │RS │ A │ │ R │ B²│98 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD NEGATIVE │LNR │RR C │ │ │ R │ │11 │

│LOAD POSITIVE │LPR │RR C │ │ IF │ R │ │1ð │

│MONITOR CALL │MC │SI │ SP│ MO │ │ │AF │

│MOVE (character) │MVC │SS │ A │ │ ST│B± B²│D2 │

│MOVE (immediate) │MVI │SI │ A │ │ ST│B± │92 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MOVE INVERSE │MVCIN│SS MI│ A │ │ ST│B± B²│E8 │

│MOVE LONG │MVCL │RR C │ A SP│II │ R ST│R± R²│ðE │

│MOVE LONG EXTENDED │MVCLE│RS C CM│ A SP│ │ R ST│R± R³│A8 │

│MOVE NUMERICS │MVN │SS │ A │ │ ST│B± B²│D1 │

│MOVE PAGE (facility 1) │MVPG │RRE C M1│ Añ SP│ Gð │ ST│R± R²│B254│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MOVE STRING │MVST │RRE C SR│ A SP│ Gð │ R ST│R± R²│B255│

│MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B± B²│F1 │

│MOVE ZONES │MVZ │SS │ A │ │ ST│B± B²│D3 │

│MULTIPLY │MR │RR │ SP│ │ R │ │1C │

│MULTIPLY │M │RX │ A SP│ │ R │ B²│5C │

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 2 of 5). Summary of General Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│MULTIPLY HALFWORD │MH │RX │ A │ │ R │ B²│4C │

│MULTIPLY HALFWORD IMMEDIATE │MHI │RI IR│ │ │ R │ │A7C │

│MULTIPLY SINGLE │MSR │RRE IR│ │ │ R │ │B252│

│MULTIPLY SINGLE │MS │RX IR│ A │ │ R │ B²│71 │

│OR │OR │RR C │ │ │ R │ │16 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│OR │O │RX C │ A │ │ R │ B²│56 │

│OR (character) │OC │SS C │ A │ │ ST│B± B²│D6 │

│OR (immediate) │OI │SI C │ A │ │ ST│B± │96 │

│PACK │PACK │SS │ A │ │ ST│B± B²│F2 │

│PERFORM LOCKED OPERATION │PLO │SS C PL│ A SP│ $ GM │ R ST│ FC│EE │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SEARCH STRING │SRST │RRE C SR│ A SP│ Gð │ R │ R²│B25E│

│SET PROGRAM MASK │SPM │RR L │ │ │ │ │ð4 │

│SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ R │ │8F │

│SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ R │ │8D │

│SET ACCESS │SAR │RRE │ │ │ │U± │B24E│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SHIFT LEFT SINGLE │SLA │RS C │ │ IF │ R │ │8B │

│SHIFT LEFT SINGLE LOGICAL │SLL │RS │ │ │ R │ │89 │

│SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ R │ │8E │

│SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ R │ │8C │

│SHIFT RIGHT SINGLE │SRA │RS C │ │ │ R │ │8A │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SHIFT RIGHT SINGLE LOGICAL │SRL │RS │ │ │ R │ │88 │

│STORE │ST │RX │ A │ │ ST│ B²│5ð │

│STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│9B │

│STORE CHARACTER │STC │RX │ A │ │ ST│ B²│42 │

│STORE CHARACTERS UNDER MASK │STCM │RS │ A │ │ ST│ B²│BE │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B²│B2ð5│

| │STORE CLOCK EXTENDED │STCKE│S C EK│ A │ $ │ ST│ B²│B278│

│STORE HALFWORD │STH │RX │ A │ │ ST│ B²│4ð │

│STORE MULTIPLE │STM │RS │ A │ │ ST│ B²│9ð │

│SUBTRACT │SR │RR C │ │ IF │ R │ │1B │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SUBTRACT │S │RX C │ A │ IF │ R │ B²│5B │

│SUBTRACT HALFWORD │SH │RX C │ A │ IF │ R │ B²│4B │

│SUBTRACT LOGICAL │SLR │RR C │ │ │ R │ │1F │

│SUBTRACT LOGICAL │SL │RX C │ A │ │ R │ B²│5F │

│SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │ðA │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│TEST AND SET │TS │S C │ A │ $ │ ST│ B²│93 │

│TEST UNDER MASK │TM │SI C │ A │ │ │B± │91 │

│TEST UNDER MASK HIGH │TMH │RI C IR│ │ │ │ │A7ð │

│TEST UNDER MASK LOW │TML │RI C IR│ │ │ │ │A71 │

│TRANSLATE │TR │SS │ A │ │ ST│B± B²│DC │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│TRANSLATE AND TEST │TRT │SS C │ A │ GM │ R │B± B²│DD │

| │TRANSLATE EXTENDED │TRE │RRE C ET│ A SP│ │ R ST│R± R²│B2A5│

│UNPACK │UNPK │SS │ A │ │ ST│B± B²│F3 │

│UPDATE TREE │UPT │E C │ A SP│II GM │ R ST│I4 │ð1ð2│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 7-1 (Part 3 of 5). Summary of General Instructions
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┌────────────────────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ ¢ Causes serialization and checkpoint synchronization. │

│ ¢ñ Causes serialization and checkpoint synchronization when the M± and R² fields contain all │

│ ones and all zeros, respectively. │

│ $ Causes serialization. │

│ A Access exceptions for logical addresses. │

│ Añ Access exceptions; not all access exceptions may occur; see instruction description for │

│ details. │

│ AI Access exceptions for instruction address. │

│ B PER branch event. │

│ B± B± field designates an access register in the access-register mode. │

│ B² B² field designates an access register in the access-register mode. │

│ BP B² field designates an access register when PSW bits 16 and 17 have the value ð1. │

│ C Condition code is set. │

│ CK Checksum facility. │

│ CM Compare-and-move-extended facility. │

│ Dd Decimal-operand data exception. │

│ E E instruction format. │

| │ EK Extended-TOD-clock facility. │

| │ ET Extended-translation facility. │

│ EX Execute exception. │

│ FC Designation of access registers depends on the function code of the instruction. │

│ Gð Instruction execution includes the implied use of general register ð. │

│ GM Instruction execution includes the implied use of multiple general registers: │

│ General registers 1 and 2 for TRANSLATE AND TEST. │

│ General registers 1, 2, and 3 for COMPARE AND FORM CODEWORD. │

│ General registers ð and 1 for COMPARE UNTIL SUBSTRING EQUAL and PERFORM LOCKED │

│ OPERATION. │

│ General registers ð-5 for UPDATE TREE. │

│ IF Fixed-point-overflow exception. │

│ II Interruptible instruction. │

│ IK Fixed-point-divide exception. │

│ IR Immediate-and-relative-instruction facility. │

│ I1 Access register 1 is implicitly designated in the access-register mode. │

│ I4 Access register 4 is implicitly designated in the access-register mode. │

│ L New condition code is loaded. │

│ MI Move-inverse facility. │

│ MO Monitor event. │

│ M1 Move-page facility 1, which is a subset of move-page facility 2. │

│ PL Perform-locked-operation facility. │

│ R PER general-register-alteration event. │

│ R± R± field designates an access register in the access-register mode. │

│ R² R² field designates an access register in the access-register mode. │

│ R³ R³ field designates an access register in the access-register mode. │

│ RI RI instruction format. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 7-1 (Part 4 of 5). Summary of General Instructions
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┌────────────────────────────────────────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ │

│ RR RR instruction format. │

│ RRE RRE instruction format. │

│ RS RS instruction format. │

│ RSI RSI instruction format. │

│ RX RX instruction format. │

│ S S instruction format. │

│ SI SI instruction format. │

│ SP Specification exception. │

│ SR String-instruction facility. │

│ SS SS instruction format. │

│ ST PER storage-alteration event. │

│ T Trace exceptions (includes trace table, addressing, and low-address protection). │

│ U± R± field designates an access register unconditionally. │

│ U² R² field designates an access register unconditionally. │

│ UB R± and R³ fields designate access registers unconditionally, and B² field designates an │

│ access register in the access-register mode. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 7-1 (Part 5 of 5). Summary of General Instructions

 ADD

AR R±,R² [RR]

┌────────┬────┬────┐

│ '1A' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

A R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5A' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is added to the first operand,
and the sum is placed at the first-operand
location. The operands and the sum are treated
as 32-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2 of A only)
 � Fixed-point overflow

 ADD HALFWORD

AH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4A' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

ADD HALFWORD IMMEDIATE

AHI R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'A' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

The second operand is added to the first operand,
and the sum is placed at the first-operand
location. The second operand is two bytes in
length and is treated as a 16-bit signed binary
integer. The first operand and the sum are
treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.
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Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2 of AH only)
 � Fixed-point overflow
� Operation (AHI if the immediate-and-relative-

instruction facility is not installed)

Programming Note:  An example of the use of
the ADD HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 ADD LOGICAL

ALR R±,R² [RR]

┌────────┬────┬────┐

│ '1E' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

AL R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5E' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is added to the first operand,
and the sum is placed at the first-operand
location. The operands and the sum are treated
as 32-bit unsigned binary integers.

Resulting Condition Code:  

0 Result zero; no carry
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

 Program Exceptions: 

� Access (fetch, operand 2 of AL only)

 AND

NR R±,R² [RR]

┌────────┬────┬────┐

│ '14' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

N R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '54' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

NI D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '94' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

NC D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D4' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The AND of the first and second operands is
placed at the first-operand location.

The connective AND is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit positions in
both operands contain ones; otherwise, the result
bit is set to zero.

For AND (NC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.

For AND (NI), the first operand is one byte in
length, and only one byte is stored.

Resulting Condition Code:  

0 Result zero
1 Result not zero
2 --
3 --

  Chapter 7. General Instructions 7-11



 General Instructions  
 

 Program Exceptions: 

� Access (fetch, operand 2, N and NC; fetch
and store, operand 1, NI and NC)

Programming Notes:

1. An example of the use of the AND instruction
is given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. The AND instruction may be used to set a bit
to zero.

3. Accesses to the first operand of AND (NI) and
AND (NC) consist in fetching a first-operand
byte from storage and subsequently storing
the updated value. These fetch and store
accesses to a particular byte do not neces-
sarily occur one immediately after the other.
Thus, the instruction AND cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a
channel program may also be updating the
location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” on page A-42.

BRANCH AND LINK

BALR R±,R² [RR]

┌────────┬────┬────┐

│ 'ð5' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

BAL R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '45' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Information from the current PSW, including the
updated instruction address, is loaded as link
information at the first-operand location. Subse-
quently, the instruction address is replaced by the
branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R² are used to
generate the branch address; however, when the
R² field is zero, the operation is performed without
branching. The branch address is computed
before general register R± is changed.

The link information in the 24-bit addressing mode
consists of the instruction-length code (ILC), the
condition code (CC), the program-mask bits, and
the rightmost 24 bits of the updated instruction
address, arranged in the following format:

┌───┬───┬─────┬──────────────────────┐

│ │ │Prog │ │

│ILC│CC │Mask │ Instruction Address │

└───┴───┴─────┴──────────────────────┘

ð 2 4 8 31

The instruction-length code is 1 or 2.

The link information in the 31-bit addressing mode
consists of the right half of the PSW, that is, the
addressing-mode bit (always a one) and a 31-bit
updated instruction address, arranged in the fol-
lowing format:

┌─┬───────────────────────────────┐

│1│ Instruction Address │

└─┴───────────────────────────────┘

ð 1 31

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Trace (R² field nonzero, BALR only)

Programming Notes:

1. An example of the use of the BRANCH AND
LINK instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the R² field in the RR format is zero,
the link information is loaded without
branching.

3. The BRANCH AND LINK instruction (BAL and
BALR) is provided for compatibility purposes.
It is recommended that, where possible, the
BRANCH AND SAVE instruction (BAS and
BASR) or BRANCH RELATIVE AND SAVE be
used and BRANCH AND LINK avoided, since
the latter places nonzero information in bit
positions 0-7 of the link register in the 24-bit
addressing mode, which may lead to prob-
lems. Additionally, BRANCH AND LINK may
be slower than BRANCH AND SAVE and
BRANCH RELATIVE AND SAVE because the
latter instructions always save the right half of
the PSW, and BRANCH AND LINK, which
does not, may require additional time to test
the addressing mode, and even more time, if

7-12 ESA/390 Principles of Operation  



  General Instructions
 

the 24-bit addressing mode is in effect, to con-
struct the ILC, condition code, and program
mask to be placed in the leftmost byte of the
link register.

4. The condition-code and program-mask infor-
mation, which is provided in the leftmost byte
of the link information only in the 24-bit
addressing mode, can be obtained in both the
24-bit and 31-bit addressing modes by means
of the INSERT PROGRAM MASK instruction.

BRANCH AND SAVE

BASR R±,R² [RR]

┌────────┬────┬────┐

│ 'ðD' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

BAS R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4D' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Bits 32-63 of the current PSW, including the
updated instruction address, are saved as link
information at the first-operand location. Subse-
quently, the instruction address is replaced by the
branch address.

In the 24-bit addressing mode, the link information
consists of a 24-bit instruction address with eight
zeros appended on the left. In the 31-bit
addressing mode, the link information consists of
a 31-bit address with a one appended on the left.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R² are used to
generate the branch address; however, when the
R² field is zero, the operation is performed without
branching. The branch address is computed
before general register R± is changed.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Trace (R² field nonzero, BASR only)

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The BRANCH AND SAVE instruction (BAS
and BASR) is intended to be used for linkage
to programs known to be in the same
addressing mode as the caller. This instruc-
tion should be used in place of the BRANCH
AND LINK instruction (BAL and BALR). See
the programming notes at the end of“Subrou-
tine Linkage without the Linkage Stack” on
page 5-9 . for a detailed discussion of these
and other linkage instructions. See also the
programming note under BRANCH AND LINK
for a discussion of the advantages of the
BRANCH AND SAVE instruction.

BRANCH AND SAVE AND SET
MODE

BASSM R±,R² [RR]

┌────────┬────┬────┐

│ 'ðC' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Bits 32-63 of the current PSW, including the
updated instruction address, are saved as link
information at the first-operand location. Subse-
quently, the addressing mode and instruction
address in the current PSW are replaced from the
second operand. The action associated with the
second operand is not performed if the R² field is
zero.

In the 24-bit addressing mode, the link information
consists of a 24-bit instruction address with eight
zeros appended on the left. In the 31-bit
addressing mode, the link information consists of
a 31-bit address with a one appended on the left.

The contents of general register R² specify the
new addressing mode and designate the branch
address; however, when the R² field is zero, the
operation is performed without branching and
without setting the addressing mode.

When the contents of general register R² are
used, bit 0 of the register specifies the new
addressing mode and replaces bit 32 of the
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current PSW, and the branch address is gener-
ated from the contents of the register under the
control of the new addressing mode. The new
value for the PSW is computed before general
register R± is changed.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Trace (R² field nonzero)

Programming Notes:

1. An example of the use of the BRANCH AND
SAVE AND SET MODE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. BRANCH AND SAVE AND SET MODE is
intended to be the principal calling instruction
to subroutines which may operate in a dif-
ferent addressing mode from that of the caller.
See the programming note at the end of “Sub-
routine Linkage without the Linkage Stack” in
Chapter 5, “Program Execution” for a detailed
discussion of this and other linkage
instructions.

BRANCH AND SET MODE

BSM R±,R² [RR]

┌────────┬────┬────┐

│ 'ðB' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Bit 32 of the current PSW, the addressing mode,
is inserted into the first operand. Subsequently,
the addressing mode and instruction address in
the current PSW are replaced from the second
operand. The action associated with an operand
is not performed if the associated R field is zero.

The value of bit 32 of the PSW is placed in bit
position 0 of general register R±, and bits 1-31 of
the register remain unchanged; however, when
the R± field is zero, the bit is not inserted, and the
contents of general register 0 are not changed.

The contents of general register R² specify the
new addressing mode and designate the branch
address; however, when the R² field is zero, the

operation is performed without branching and
without setting the addressing mode.

When the contents of general register R² are
used, bit 0 of the register specifies the new
addressing mode and replaces bit 32 of the
current PSW, and the branch address is gener-
ated from the contents of the register under the
control of the new addressing mode. The new
value for the PSW is computed before general
register R± is changed.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH AND
SET MODE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. BRANCH AND SET MODE with an R± field of
zero is intended to be the standard return
instruction. BRANCH AND SAVE AND SET
MODE with a nonzero R± field is intended to
be used in a “glue module” to connect old
24-bit programs and new programs which may
exploit bimodal addressing. See the program-
ming note at the end of “Subroutine Linkage
without the Linkage Stack” in Chapter 5,
“Program Execution” for a detailed discussion
of this and other linkage instructions.

BRANCH ON CONDITION

BCR M±,R² [RR]

┌────────┬────┬────┐

│ 'ð7' │ M± │ R² │

└────────┴────┴────┘

ð 8 12 15

BC M±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '47' │ M± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M±; other-
wise, normal instruction sequencing proceeds with
the updated instruction address.
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In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R² are used to
generate the branch address; however, when the
R² field is zero, the operation is performed without
branching.

The M± field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

┌───────────┬─────────────┬──────────┐

│ │ Instruction │ Mask │

│ Condition │ Bit No. of │ Position │

│ Code │ Mask │ Value │

├───────────┼─────────────┼──────────┤

│ ð │ 8 │ 8 │

│ 1 │ 9 │ 4 │

│ 2 │ 1ð │ 2 │

│ 3 │ 11 │ 1 │

└───────────┴─────────────┴──────────┘

The current condition code is used to select the
corresponding mask bit. If the mask bit selected
by the condition code is one, the branch is suc-
cessful. If the mask bit selected is zero, normal
instruction sequencing proceeds with the next
sequential instruction.

When the M± and R² fields of BRANCH ON CON-
DITION (BCR) are all ones and all zeros, respec-
tively, a serialization and
checkpoint-synchronization function is performed.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON
CONDITION instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When a branch is to depend on more than
one condition, the pertinent condition codes
are specified in the mask as the sum of their
mask position values. A mask of 12, for
example, specifies that a branch is to be
made when the condition code is 0 or 1.

3. When all four mask bits are zeros or when the
R² field in the RR format contains zero, the
branch instruction is equivalent to a no-
operation. When all four mask bits are ones,
that is, the mask value is 15, the branch is

unconditional unless the R² field in the RR
format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in signif-
icant performance degradation. To ensure
optimum performance, the program should
avoid use of BCR 15,0 except in cases when
the serialization or checkpoint-synchronization
function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by
X², B², and D²; in the RR format, the branch
address is contained in the register desig-
nated by R². For operands, the address
specified by X², B², and D² is the operand
address, but the register designated by R²

contains the operand, not the operand
address.

BRANCH ON COUNT

BCTR R±,R² [RR]

┌────────┬────┬────┐

│ 'ð6' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

BCT R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '46' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

A one is subtracted from the first operand, and the
result is placed at the first-operand location. The
first operand and result are treated as 32-bit
binary integers, with overflow ignored. When the
result is zero, normal instruction sequencing pro-
ceeds with the updated instruction address. When
the result is not zero, the instruction address in
the current PSW is replaced by the branch
address.

In the RX format, the second-operand address is
used as the branch address. In the RR format,
the contents of general register R² are used to
generate the branch address; however, when the
R² field is zero, the operation is performed without
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branching. The branch address is computed
before general register R± is changed.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON
COUNT instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The first operand and result can be consid-
ered as either signed or unsigned binary inte-
gers since the result of a binary subtraction is
the same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero

| results in -1 and causes branching to be per-
| formed; an initial count of -1 results in -2 and
| causes branching to be performed; and so on.

In a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that, because of the number
range, an initial count of -2óñ results in a posi-
tive value of 2óñ - 1.

4. Counting is performed without branching when
the R² field in the RR format contains zero.

BRANCH ON INDEX HIGH

BXH R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '86' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

BRANCH ON INDEX LOW OR
EQUAL

BXLE R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '87' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

An increment is added to the first operand, and
the sum is compared with a compare value. The
result of the comparison determines whether
branching occurs. Subsequently, the sum is

placed at the first-operand location. The second-
operand address is used as a branch address.
The R³ field designates registers containing the
increment and the compare value.

For BRANCH ON INDEX HIGH, when the sum is
high, the instruction address in the current PSW is
replaced by the branch address. When the sum is
low or equal, normal instruction sequencing pro-
ceeds with the updated instruction address.

For BRANCH ON INDEX LOW OR EQUAL, when
the sum is low or equal, the instruction address in
the current PSW is replaced by the branch
address. When the sum is high, normal instruc-
tion sequencing proceeds with the updated
instruction address.

When the R³ field is even, it designates a pair of
registers; the contents of the even and odd regis-
ters of the pair are used as the increment and the
compare value, respectively. When the R³ field is
odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition
is ignored.

The original contents of the compare-value reg-
ister are used as the compare value even when
that register is also specified to be the first-
operand location. The branch address is com-
puted before general register R± is changed.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. Several examples of the use of the BRANCH
ON INDEX HIGH and BRANCH ON INDEX
LOW OR EQUAL instructions are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The word “index” in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
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binary integer, may be used to increase or
decrease the value in general register R± by
an arbitrary amount.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the
rightmost end of an address space and a
BRANCH ON INDEX HIGH or BRANCH ON
INDEX LOW OR EQUAL instruction is used to
step upward through the data. Since the addi-
tion and comparison operations performed
during the execution of these instructions treat
the operands as 32-bit signed binary integers,
the value following 2óñ - 1 is not 2óñ, which
cannot be represented in that format, but -2óñ.
The instruction does not provide an indication
of such overflow. Consequently, some
common looping techniques based on the use
of these instructions do not work when a data
area ends at address 2óñ - 1. This problem is
illustrated in a BRANCH ON INDEX LOW OR
EQUAL example in Appendix A, “Number
Representation and Instruction-Use
Examples.”

BRANCH RELATIVE AND SAVE

BRAS R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'5' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

Bits 32-63 of the current PSW, including the
updated instruction address, are saved as link
information at the first-operand location. Subse-
quently, the instruction address is replaced by the
branch address.

In the 24-bit addressing mode, the link information
consists of a 24-bit instruction address with eight
zeros appended on the left. In the 31-bit
addressing mode, the link information consists of
a 31-bit address with a one appended on the left.

The contents of the I² field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Operation (if the immediate-and-relative-
instruction facility is not installed)

Programming Notes:

1. The operation is the same as that of the
BRANCH AND SAVE (BAS) instruction except
for the means of specifying the branch
address. An example of the use of BRANCH
AND SAVE is given in Appendix A.

2. The BRANCH RELATIVE AND SAVE instruc-
tion, like the BRANCH AND SAVE instruction,
is intended to be used for linkage to programs
known to be in the same addressing mode as
the caller. These instructions should be used
in place of the BRANCH AND LINK instruction
(BAL and BALR). See the programming notes
at the end of the section “Subroutine Linkage
without the Linkage Stack” in Chapter 5,
“Program Execution,” for a detailed discussion
of these and other linkage instructions. See
also the programming note under BRANCH
AND LINK for a discussion of the advantages
of the BRANCH RELATIVE AND SAVE and
BRANCH AND SAVE instructions.

| 3. When the instruction is the target of
| EXECUTE, the branch is relative to the target
| address; see “Branch-Address Generation” on
| page 5-8.

BRANCH RELATIVE ON
CONDITION

BRC M±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ M± │'4' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

The instruction address in the current PSW is
replaced by the branch address if the condition
code has one of the values specified by M±; other-
wise, normal instruction sequencing proceeds with
the updated instruction address.

The contents of the I² field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.
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The M± field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

┌───────────┬─────────────┬──────────┐

│ │ Instruction │ Mask │

│ Condition │ Bit No. of │ Position │

│ Code │ Mask │ Value │

├───────────┼─────────────┼──────────┤

│ ð │ 8 │ 8 │

│ 1 │ 9 │ 4 │

│ 2 │ 1ð │ 2 │

│ 3 │ 11 │ 1 │

└───────────┴─────────────┴──────────┘

The current condition code is used to select the
corresponding mask bit. If the mask bit selected
by the condition code is one, the branch is suc-
cessful. If the mask bit selected is zero, normal
instruction sequencing proceeds with the next
sequential instruction.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Operation (if the immediate-and-relative-
instruction facility is not installed)

Programming Notes:

1. The operation is the same as that of the
BRANCH ON CONDITION instruction except
for the means of specifying the branch
address. An example of the use of BRANCH
ON CONDITION is given in Appendix A.

2. When a branch is to depend on more than
one condition, the pertinent condition codes
are specified in the mask as the sum of their
mask position values. A mask of 12, for
example, specifies that a branch is to be
made when the condition code is 0 or 1.

3. When all four mask bits are zeros, the branch
instruction is equivalent to a no-operation.
When all four mask bits are ones, that is, the
mask value is 15, the branch is unconditional.

| 4. When the instruction is the target of
| EXECUTE, the branch is relative to the target
| address; see “Branch-Address Generation” on
| page 5-8.

BRANCH RELATIVE ON COUNT

BRCT R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'6' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

A one is subtracted from the first operand, and the
result is placed at the first-operand location. The
first operand and result are treated as 32-bit
binary integers, with overflow ignored. When the
result is zero, normal instruction sequencing pro-
ceeds with the updated instruction address. When
the result is not zero, the instruction address in
the current PSW is replaced by the branch
address.

The contents of the I² field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Operation (if the immediate-and-relative-
instruction facility is not installed)

Programming Notes:

1. The operation is the same as that of the
BRANCH ON COUNT instruction except for
the means of specifying the branch address.
An example of the use of BRANCH ON
COUNT is given in Appendix A.

2. The first operand and result can be consid-
ered as either signed or unsigned binary inte-
gers since the result of a binary subtraction is
the same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be exe-
cuted; an initial count of -1 results in -2 and
causes branching to be executed; and so on.
In a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that, because of the number
range, an initial count of -2óñ results in a posi-
tive value of 2óñ - 1.

| 4. When the instruction is the target of
| EXECUTE, the branch is relative to the target
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| address; see “Branch-Address Generation” on
| page 5-8.

BRANCH RELATIVE ON INDEX
HIGH

BRXH R±,R³,I² [RSI]

┌────────┬────┬────┬────────────────┐

│ '84' │ R± │ R³ │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

BRANCH RELATIVE ON INDEX
LOW OR EQUAL

BRXLE R±,R³,I² [RSI]

┌────────┬────┬────┬────────────────┐

│ '85' │ R± │ R³ │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

An increment is added to the first operand, and
the sum is compared with a compare value. The
result of the comparison determines whether
branching occurs. Subsequently, the sum is
placed at the first-operand location. The R³ field
designates registers containing the increment and
the compare value.

The contents of the I² field are a signed binary
integer specifying the number of halfwords that is
added to the address of the instruction to generate
the branch address.

For BRANCH RELATIVE ON INDEX HIGH, when
the sum is high, the instruction address in the
current PSW is replaced by the branch address.
When the sum is low or equal, normal instruction
sequencing proceeds with the updated instruction
address.

For BRANCH RELATIVE ON INDEX LOW OR
EQUAL, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high,
normal instruction sequencing proceeds with the
updated instruction address.

When the R³ field is even, it designates a pair of
registers; the contents of the even and odd regis-
ters of the pair are used as the increment and the
compare value, respectively. When the R³ field is

odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition
is ignored.

The original contents of the compare-value reg-
ister are used as the compare value even when
that register is also specified to be the first-
operand location.

The sum is placed at the first-operand location,
regardless of whether the branch is taken.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Operation (if the immediate-and-relative-
instruction facility is not installed)

Programming Notes:

1. The operations are the same as those of the
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL instructions except
for the means of specifying the branch
address. Several examples of the use of
BRANCH ON INDEX HIGH and BRANCH ON
INDEX LOW OR EQUAL are given in
Appendix A.

2. The word “index” in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in general register R± by
an arbitrary amount.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the
rightmost end of an address space and a
BRANCH RELATIVE ON INDEX HIGH or
BRANCH RELATIVE ON INDEX LOW OR
EQUAL instruction is used to step upward
through the data. Since the addition and com-
parison operations performed during the exe-
cution of these instructions treat the operands
as 32-bit signed binary integers, the value fol-
lowing 2óñ - 1 is not 2óñ, which cannot be
represented in that format, but -2óñ. The
instruction does not provide an indication of
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such overflow. Consequently, some common
looping techniques based on the use of these
instructions do not work when a data area
ends at address 2óñ - 1. This problem is illus-
trated in a BRANCH ON INDEX LOW OR
EQUAL example in Appendix A.

| 4. When the instruction is the target of
| EXECUTE, the branch is relative to the target
| address; see “Branch-Address Generation” on
| page 5-8.

 CHECKSUM

CKSM R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B241' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Successive four-byte elements of the second
operand are added to the first operand in general
register R± to form a 32-bit checksum in the reg-
ister. The first operand and the four-byte ele-
ments are treated as 32-bit unsigned binary
integers. After each addition of an element, a
carry out of bit position 0 of the first operand is
added to bit position 31 of the first operand. If the
second operand is not a multiple of four bytes, its
last one, two, or three bytes are treated as
appended on the right with the number of all-zeros
bytes needed to form a four-byte element. The
four-byte elements are added to the first operand
until either the entire second operand or a
CPU-determined amount of the second operand
has been processed. The result is indicated in the
condition code.

Bits 16-23 of the instruction are ignored.

The R² field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the second
operand is specified by the contents of the R²

general register. The number of bytes in the
second-operand location is specified by the 32-bit
unsigned binary integer in the R² + 1 general
register.

The handling of the address in general register R²

is dependent on the addressing mode. In the

24-bit addressing mode, the contents of bit posi-
tions 8-31 of general register R² constitute the
address, and the contents of bit positions 0-7 are
ignored. In the 31-bit addressing mode, the con-
tents of bit positions 1-31 of general register R²

constitute the address, and the contents of bit
position 0 are ignored.

The addition of second-operand four-byte ele-
ments to the first operand proceeds left to right,
four-byte element by four-byte element, and ends
as soon as (1) the entire second operand has
been processed or (2) a lesser CPU-determined
amount of the second operand has been proc-
essed. In either case, the result in general reg-
ister R± is a 32-bit checksum for the part of the
second operand that has been processed. When
the second operand is not a multiple of four bytes,
the final second-operand bytes in excess of a mul-
tiple of four are conceptually appended on the
right with an appropriate number of all-zeros bytes
to form the final four-byte element.

If the operation ends because the entire second
operand has been processed, the condition code
is set to 0. If the operation ends because a lesser
CPU-determined amount of the second operand
has been processed, the condition code is set to
3. When the operation is to end with a setting of
condition code 3, any carry out of bit position 0 of
the first operand is added to bit position 31 of the
first operand before the operation ends.

At the completion of the operation, the operand-
length field in the R² + 1 register is decremented
by the number of actual second-operand bytes
added to the first operand (not including any con-
ceptually appended all-zeros bytes), and the
address in the R² register is incremented by the
same number. Thus, the R² + 1 register contains
a zero value if the condition code is set to 0, or it
contains a nonzero value if the condition code is
set to 3.

When condition code 3 is set, the general regis-
ters used by the instruction have been set so that
the remainder of the second operand can be proc-
essed by simply branching back to reexecute the
instruction.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
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the instruction is executed. The minimum amount
is four bytes or the number of bytes specified in
the R² + 1 general register, whichever is smaller.

At the completion of the operation, the leftmost
bits which are not part of the address in general
register R² may be set to zeros or may remain
unchanged, including the case when the initial
length in register R² + 1 is zero.

When the R± register is the same register as the
R² or R² + 1 register, the results are unpredict-
able.

Access exceptions for the portion of the second
operand to the right of the last byte processed
may or may not be recognized. For a second
operand longer than 4K bytes, access exceptions
are not recognized for locations more than 4K
bytes beyond the last byte processed.

Access exceptions are not recognized if the R²

field is odd. When the length of the second
operand is zero, no access exceptions are recog-
nized.

Resulting Condition Code:  

0 Entire second operand processed
1 --
2 --
3 CPU-determined amount of second operand

processed

 Program Exceptions: 

� Access (fetch, operand 2)
� Operation (if the checksum facility is not

installed)

 � Specification

Programming Notes:

1. The initial contents of the R± general register
contribute to the 32-bit checksum. The
program normally should set those contents to
all zeros before issuing the CHECKSUM
instruction.

2. A 16-bit checksum is used in, for example, the
TCP/IP application. The following program
can be executed after the CHECKSUM
instruction to produce in general register R² a
16-bit checksum from the 32-bit checksum in
general register R±. The program is anno-
tated to show the contents of the R² and
R² + 1 registers after the execution of each
instruction. The contents of the R± register
are represented as A,B, meaning the value A
in bit positions 0-15 and the value B in bit
positions 16-31. The value C is a carry from
A + B. Note that register R² + 1 is known to
contain all zeros when CHECKSUM has set
condition code 0.

 Contents Contents

 Program of R2 of R2+1

 LR R2,R1 A,B ð,ð

 SRDL R2,16 ð,A B,ð

 ALR R2,R2+1 B,A B,ð

 ALR R2,R1 A+B+C,A+B B,ð

SRL R2,16 ð,A+B+C B,ð

3. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

4. Figure 7-2 on page 7-22 contains a summary
of the operation.
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 ┌───────────────────────────────────────────────┐

│Contents of R1 ──5 CHECKSUM │

 │ │

│Address in R2 ──5 ADR, contents of R2+1 ──5 LEN│

 └─────────────────┬─────────────────────────────┘

 │

┌───────────────────5│ Note: All addends are unsigned binary integers

│ 6

│ ┌────────┐ No ┌─────────────────────────────────┐

│ │LEN >= 4├─────────────────────5│LEN ──5 INC │

│ └────┬───┘ │ │

│ │ Yes │INC bytes at ADR followed by │

│ 6 │4-INC all-zeros bytes ──5 ELEMENT│

│ ┌──────────────────────────┐ └────────────────┬────────────────┘

│ │4 ──5 INC │ │

│ │ │ │

│ │4 bytes at ADR ──5 ELEMENT│ │

│ └────────────┬─────────────┘ │

│ │ │

│ │%──────────────────────────────────────────┘

│ 6

│ ┌───────────────────────────────┐

│ │CHECKSUM + ELEMENT ──5 CHECKSUM│

│ └──────────────┬────────────────┘

│ │

│ 6

│ ┌───────────────────┐ Yes ┌─────────────────────────┐

│ │Carry from addition├────5│CHECKSUM + 1 ──5 CHECKSUM│

│ └─────────┬─────────┘ └────────────┬────────────┘

│ │ No │

│ │%───────────────────────────┘

│ 6

│ ┌─────────────────────────────────────┐

│ │ADR + INC ──5 ADR, LEN - INC ──5 LEN │

│ └──────────────┬──────────────────────┘

│ │

│ 6

│ ┌─────────────────────────┐

│ │LEN = ð or CPU-determined│

│ │reason to end operation │

│ └────┬───────┬────────────┘

│ │ No │ Yes

└────────────┘ │

 6

 ┌────────────────────────┐

│CHECKSUM ──5 R1 │

 │ │

│ADR ──5 R2, LEN ──5 R2+1│

 └───────────┬────────────┘

 │

 6

 ┌───────┐ No

│LEN = ð├───────────────────────┐

 └───┬───┘ │

 │ Yes │

 6 6

 ┌────────────────────┐ ┌────────────────────┐

│Set condition code ð│ │Set condition code 3│

 └─────────┬──────────┘ └─────────┬──────────┘

 │ │

 6 6

 End operation End operation

Figure 7-2. Execution of CHECKSUM
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 COMPARE

CR R±,R² [RR]

┌────────┬────┬────┐

│ '19' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

C R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '59' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The operands are treated as 32-bit
signed binary integers.

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of C only)

COMPARE AND FORM
CODEWORD

CFC D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B21A' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

General register 2 contains an index, which is
used along with the contents of general registers 1
and 3 to designate the starting addresses of two
fields in storage, called the first and third oper-
ands. The first and third operands are logically
compared, and a codeword is formed for use in
sort/merge algorithms.

The second-operand address is not used to
address data. Bits 17-30 of the second-operand
address, with one rightmost and one leftmost zero
appended, are used as a 16-bit index limit. Bit 31
of the second-operand address is the operand-

control bit. When bit 31 is zero, the codeword is
formed from the high operand; when bit 31 is one,
the codeword is formed from the low operand.
The remainder of the second-operand address is
ignored.

General registers 1 and 3 contain the base
addresses of the first and third operands. Bits
16-31 of general register 2 are used as an index
for addressing both the first and third operands.
General registers 1, 2, and 3 must all initially
contain even values; otherwise, a specification
exception is recognized.

In the access-register mode, access register 1
specifies the address space containing the first
and third operands.

The operation consists in comparing the first and
third operands halfword by halfword and incre-
menting the index until an unequal pair of
halfwords is found or the index exceeds the index
limit. This proceeds in units of operation, between
which interruptions may occur. The condition
code is unpredictable if the instruction is inter-
rupted.

At the start of a unit of operation, the index, bits
16-31 of general register 2, is logically compared
with the index limit. If the index is larger, the
instruction is completed by placing the contents of
general register 3, with bit 0 set to one, in general
register 2, and by setting condition code 0.

If the index is less than or equal to the index limit,
the index is applied to the first-operand and third-
operand base addresses to locate the current pair
of halfwords to be compared. The index, with 16
leftmost zeros appended, and the contents of
general register 1 are added to form a 32-bit inter-
mediate value. A carry out of bit position 0, if any,
is ignored. The address of the current first-
operand halfword is generated from the interme-
diate value by following the normal rules for
operand address generation. The address of the
current third-operand halfword is formed in the
same manner by adding the contents of general
register 3 and the index.

The current first-operand and third-operand
halfwords are logically compared. If they are
equal, the contents of general register 2 are incre-
mented by 2, and a unit of operation ends.
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If the compare values are unequal, the contents of
general register 2 are incremented by 2 and then
shifted left logically by 16 bit positions. If the
operand-control bit is zero, (1) the one's comple-
ment of the higher halfword is placed in the right
half of general register 2, and (2) if operand 1 was
higher, the contents of general registers 1 and 3
are interchanged. If the operand-control bit is
one, (1) the lower halfword is placed in the right
half of general register 2, and (2) if operand 1 was
lower, the contents of general registers 1 and 3
are interchanged.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to
have a length equal to 2 more than the value of
the index limit minus the index. When the index is
initially larger than the index limit, access
exceptions are not recognized for the storage
operands. For operands longer than 4K bytes,
access exceptions are not recognized more than
4K bytes beyond the byte being processed.
Access exceptions are not recognized when a
specification-exception condition exists.

If the B² field designates general register 2, it is
unpredictable whether or not the index limit is
recomputed; thus, in this case the operand length
is unpredictable. However, in no case can the
operands exceed 2ñõ bytes in length.

Resulting Condition Code:  

0 Operands equal
1 Operand-control bit zero and operand 1 low,

or operand-control bit one and operand 3 low
2 Operand-control bit zero and operand 1 high,

or operand-control bit one and operand 3 high
3 --

 Program Exceptions: 

� Access (fetch, operands 1 and 3)
 � Specification

Programming Notes:

1. An example of the use of COMPARE AND
FORM CODEWORD is given in “Sorting
Instructions” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

2. The offset of the halfword of the first and third

operands at which comparison is to begin
should be placed in bit positions 16-31 of
general register 2 before executing
COMPARE AND FORM CODEWORD. The
index limit derived from the second-operand
address should be the offset of the last
halfword of the first and third operands for
which comparison can be made. When the
operands do not compare equal, the left half
of the codeword formed in general register 2
by the execution of COMPARE AND FORM
CODEWORD gives the offset of the first
halfword not compared. If the codewords
compare equal in an UPDATE TREE opera-
tion, bit positions 0-15 of general register 2
will contain the offset at which another
COMPARE AND FORM CODEWORD should
resume comparison for breaking codeword
ties. Operand-control-bit values of zero or
one are used for sorting operands in
ascending or descending order, respectively.
Refer to “Sorting Instructions” on page A-51
for a discussion of the use of codewords in
sorting.

3. The condition code indicates the results of
comparing operands up to 32,768 bytes long.
Equal operands result in a negative codeword
in general register 2. A negative codeword
also results when the index limit is 32,766 and
the operands that are compared differ in only
their last two bytes. If this latter codeword is
used by UPDATE TREE, an incorrect result
may be indicated in general registers 0 and 1.
Therefore, the index limit should not exceed
32,764 when the resulting codeword is to be
used by UPDATE TREE.

4. Figure 7-3 on page 7-25 and Figure 7-4 on
page  7-26 contain summaries of the opera-
tion.

5. Special precautions should be taken if
COMPARE AND FORM CODEWORD is
made the target of EXECUTE. See the pro-
gramming note concerning interruptible
instructions under EXECUTE.

6. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” in Chapter 5, “Program
Execution.”
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┌────────┬─────────┬─────────┬─────────┬────────┬────────┐

│Operand-│ │Resulting│ │ │ │

│Control │ │Condition│ Result │ Result │ Result │

│ Bit │Relation │ Code │ in GR2 │ in GR1 │ in GR3 │

├────────┼─────────┼─────────┼─────────┼────────┼────────┤

│ ð │op1 = op3│ ð │ OGR3b1 │ - │ - │

│ ð │op1 < op3│ 1 │ X, nop3 │ - │ - │

│ ð │op1 > op3│ 2 │ X, nop1 │ OGR3 │ OGR1 │

│ 1 │op1 = op3│ ð │ OGR3b1 │ - │ - │

│ 1 │op1 < op3│ 2 │ X, top1 │ OGR3 │ OGR1 │

│ 1 │op1 > op3│ 1 │ X, top3 │ - │ - │

├────────┴─────────┴─────────┴─────────┴────────┴────────┤

│Explanation: │

│ │

│ - The contents of the register remain unchanged. │

│ │

│ OGR1 The original contents of GR1. │

│ │

│ OGR3 The original contents of GR3. │

│ │

│ OGR3b1 The original contents of GR3 with bit ð set to │

│ one. │

│ │

│ X Bits ð-15 of GR2 are 2 more than the index of │

│ the first unequal halfword. │

│ │

│ nop1 Bits 16-31 of GR2 are the one's complement of │

│ the first unequal halfword in operand 1. │

│ │

│ nop3 Bits 16-31 of GR2 are the one's complement of │

│ the first unequal halfword in operand 3. │

│ │

│ top1 Bits 16-31 of GR2 are the first unequal halfword│

│ in operand 1. │

│ │

│ top3 Bits 16-31 of GR2 are the first unequal halfword│

│ in operand 3. │

└────────────────────────────────────────────────────────┘

Figure 7-3. Operation of COMPARE AND FORM CODEWORD
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 ┌─────────────────────────────────────────────────────┐

│2 x bits 17-3ð of 2nd-operand address ──5 index limit│

 │ │

│Bit 31 of 2nd-operand address ──5 operand-control bit│

 └──────────────────────────┬──────────────────────────┘

 │

 6

 ┌──────────────────────────────────────┐ No

│Bit 31 of GR1, GR2, and GR3 all zeros├─────────────5 Specification

 └──────────────────┬───────────────────┘ exception

 │ Yes

 ┌───────────────────────5│

 │ 6

 │ ┌───────────────────────────────┐ Yes

│ │Bits 16-31 of GR2 > index limit├───────────────────┐

 │ └───────────────┬───────────────┘ │

 │ │ No │

 │ 6 6

┌────┴────┐ ┌──────────────────────────────┐ ┌──────────────────┐

│Unit-of- │ │GR1 + bits 16-31 of GR2 │ │GR3 ──5 GR2 │

│operation│ │──5 1st-operand address │ │ │

│boundary │ │ │ │1 ──5 bit ð of GR2│

└─────────┘ │GR3 + bits 16-31 of GR2 │ │ │

& │──5 3rd-operand address │ │ð ──5 Cond code │

 │ │ │ └────────┬─────────┘

│ │Fetch halfwords from current │ │

│ │1st- and 3rd-operand locations│ 6

 │ │ │ End operation

│ │GR2 + 2 ──5 GR2 │

 │ └──────────────┬───────────────┘

 │ │

 │ 6

 │ Equal ┌─────────────────────────┐ 1st op high

└───────────┤Compare halfwords fetched├───────────────────────────┐

 └────────────┬────────────┘ │

│ 1st op low │

 6 6

 Zero ┌────────────────────────┐ Zero ┌────────────────────────┐

┌─────────┤Test operand-control bit│ ┌──────┤Test operand-control bit│

 │ └───────────┬────────────┘ │ └────────────┬───────────┘

 6 │ One 6 │ One

┌────────────────┐ 6 ┌────────────────┐ 6

│One's complement│ ┌───────────────┐ │One's complement│ ┌──────────┐

│of 3rd-op HW │ │1st-op HW │ │of 1st-op HW │ │3rd-op HW │

│──5 TEMPHW │ │──5 TEMPHW │ │──5 TEMPHW │ │──5 TEMPHW│

└───────┬────────┘ │ │ │ │ └────┬─────┘

 │ │Exchange │ │Exchange │ │

6 │GR1 and GR3 │ │GR1 and GR3 │ 6

┌────────────────┐ │ │ │ │ ┌───────────────┐

│1 ──5 Cond code │ │2 ──5 Cond code│ │2 ──5 Cond code │ │1 ──5 Cond code│

└───────┬────────┘ └───────┬───────┘ └───────┬────────┘ └───────┬───────┘

 │ │ │ │

 │ 6 6 │

 └────────────────────5�%───────────────────�%──────────────────┘

 │

 6

 ┌────────────────────────────┐

│Shift GR2 left 16 positions │

 │ │

│TEMPHW ──5 bits 16-31 of GR2│

 └─────────────┬──────────────┘

 │

 6

 End operation

Figure 7-4. Execution of COMPARE AND FORM CODEWORD
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COMPARE AND SWAP

CS R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'BA' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

COMPARE DOUBLE AND SWAP

CDS R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'BB' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded at the first-operand
location. The result of the comparison is indicated
in the condition code.

For COMPARE AND SWAP, the first and third
operands are 32 bits in length, with each operand
occupying a general register. The second
operand is a word in storage.

For COMPARE DOUBLE AND SWAP, the first
and third operands are 64 bits in length, with each
operand occupying an even-odd pair of general
registers. The second operand is a doubleword in
storage.

When an equal comparison occurs, the third
operand is stored at the second-operand location.
The fetch of the second operand for purposes of
comparison and the store into the second-operand
location appear to be a block-concurrent
interlocked-update reference as observed by other
CPUs.

When the result of the comparison is unequal, the
second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back unchanged
at the second-operand location. This update
appears to be a block-concurrent interlocked-
update reference as observed by other CPUs.

A serialization function is performed before the
operand is fetched and again after the operation is
completed.

The second operand of COMPARE AND SWAP
must be designated on a word boundary. The R±

and R³ fields for COMPARE DOUBLE AND
SWAP must each designate an even-numbered
register, and the second operand for the CDS
instruction must be designated on a doubleword
boundary. Otherwise, a specification exception is
recognized.

Resulting Condition Code:  

0 First and second operands equal, second
operand replaced by third operand

1 First and second operands unequal, first
operand replaced by second operand

2 --
3 --

 Program Exceptions: 

� Access (fetch and store, operand 2)
 � Specification

Programming Notes:

1. Several examples of the use of the
COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP instructions are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. COMPARE AND SWAP can be used by CPU
programs sharing common storage areas in
either a multiprogramming or multiprocessing
environment. Two examples are:

a. By performing the following procedure, a
CPU program can modify the contents of
a storage location even though the possi-
bility exists that the CPU program may be
interrupted by another CPU program that
will update the location or that another
CPU program may simultaneously update
the location. First, the entire word con-
taining the byte or bytes to be updated is
loaded into a general register. Next, the
updated value is computed and placed in
another general register. Then
COMPARE AND SWAP is executed with
the R± field designating the register that
contains the original value and the R³ field
designating the register that contains the
updated value. If the update has been
successful, condition code 0 is set. If the
storage location no longer contains the
original value, the update has not been
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successful, the general register desig-
nated by the R± field of the COMPARE
AND SWAP instruction contains the new
current value of the storage location, and
condition code 1 is set. When condition
code 1 is set, the CPU program can
repeat the procedure using the new
current value.

b. COMPARE AND SWAP can be used for
controlled sharing of a common storage
area, including the capability of leaving a
message (in a chained list of messages)
when the common area is in use. To
accomplish this, a word in storage can be
used as a control word, with a zero value
in the word indicating that the common
area is not in use and that no messages
exist, a negative value indicating that the
area is in use and that no messages exist,
and a nonzero positive value indicating
that the common area is in use and that
the value is the address of the most
recent message added to the list. Thus,
any number of CPU programs desiring to
seize the area can use COMPARE AND
SWAP to update the control word to indi-
cate that the area is in use or to add mes-
sages to the list. The single CPU
program which has seized the area can
also safely use COMPARE AND SWAP to
remove messages from the list.

3. COMPARE DOUBLE AND SWAP can be
used in a manner similar to that described for
COMPARE AND SWAP. In addition, it has
another use. Consider a chained list, with a
control word used to address the first
message in the list, as described in program-
ming note 2b above. If multiple CPU pro-
grams are to be permitted to delete messages
by using COMPARE AND SWAP (and not just
the single CPU program which has seized the
common area), there is a possibility the list
will be incorrectly updated. This would occur
if, for example, after one CPU program has
fetched the address of the most recent
message in order to remove the message,
another CPU program removes the first two
messages and then adds the first message
back into the chain. The first CPU program,
on continuing, cannot easily detect that the list
is changed. By increasing the size of the

control word to a doubleword containing both
the first message address and a word with a
change number that is incremented for each
modification of the list, and by using
COMPARE DOUBLE AND SWAP to update
both fields together, the possibility of the list
being incorrectly updated is reduced to a neg-
ligible level. That is, an incorrect update can
occur only if the first CPU program is delayed
while changes exactly equal in number to a
multiple of 2óò take place and only if the last
change places the original message address
in the control word.

4. COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP do not interlock against
storage accesses by channel programs.
Therefore, the instructions should not be used
to update a location at which a channel
program may store, since the channel-
program data may be lost.

5. To ensure successful updating of a common
storage field by two or more CPUs, all
updates must be done by means of an
interlocked-update reference. COMPARE
AND SWAP, COMPARE DOUBLE AND
SWAP, and TEST AND SET are the only
instructions that perform an interlocked-update
reference. For example, if one CPU executes
OR IMMEDIATE and another CPU executes
COMPARE AND SWAP to update the same
byte, the fetch by OR IMMEDIATE may occur
either before the fetch by COMPARE AND
SWAP or between the fetch and the store by
COMPARE AND SWAP, and then the store
by OR IMMEDIATE may occur after the store
by COMPARE AND SWAP, in which case the
change made by COMPARE AND SWAP is
lost.

6. For the case of a condition-code setting of 1,
COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP may or may not,
depending on the model, cause any of the fol-
lowing to occur for the second-operand
location: a PER storage-alteration event may
be recognized; a protection exception for
storing may be recognized; and, provided no
access exception exists, the change bit may
be set to one. Because the contents of
storage remain unchanged, the change bit
may or may not be one when a PER storage-
alteration event is recognized.
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 COMPARE HALFWORD

CH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '49' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

 COMPARE HALFWORD
IMMEDIATE

CHI R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'E' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The second operand is two bytes in
length and is treated as a 16-bit signed binary
integer. The first operand is treated as a 32-bit
signed binary integer.

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of CH only)
� Operation (CHI if the immediate-and-relative-

instruction facility is not installed)

Programming Note:  An example of the use of
the COMPARE HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 COMPARE LOGICAL

CLR R±,R² [RR]

┌────────┬────┬────┐

│ '15' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

CL R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '55' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

CLI D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '95' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

CLC D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D5' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the fields is reached. For
COMPARE LOGICAL (CL) and COMPARE
LOGICAL (CLC), access exceptions may or may
not be recognized for the portion of a storage
operand to the right of the first unequal byte.

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operand 2, CL and CLC; fetch,
operand 1, CLI and CLC)

Programming Notes:

1. Examples of the use of the COMPARE
LOGICAL instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. COMPARE LOGICAL treats all bits of each
operand alike as part of a field of unstructured
logical data. For COMPARE LOGICAL (CLC),
the comparison may extend to field lengths of
256 bytes.
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 COMPARE LOGICAL
CHARACTERS UNDER MASK

CLM R±,M³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'BD' │ R± │ M³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand is compared with the second
operand under control of a mask, and the result is
indicated in the condition code.

The contents of the M³ field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general
register R±. The byte positions corresponding to
ones in the mask are considered as a contiguous
field and are compared with the second operand.
The second operand is a contiguous field in
storage, starting at the second-operand address
and equal in length to the number of ones in the
mask. The bytes in the general register corre-
sponding to zeros in the mask do not participate in
the operation.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for
no more than the number of bytes specified by the
mask. Access exceptions may or may not be
recognized for the portion of a storage operand to
the right of the first unequal byte. When the mask
is zero, access exceptions are recognized for one
byte at the second-operand address.

Resulting Condition Code:  

0 Operands equal, or mask bits all zeros
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operand 2)

Programming Note:  An example of the use of
the COMPARE LOGICAL CHARACTERS UNDER
MASK instruction is given in Appendix A, “Number
Representation and Instruction-Use Examples.”

COMPARE LOGICAL LONG

CLCL R±,R² [RR]

┌────────┬────┬────┐

│ 'ðF' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The shorter operand is considered to
be extended on the right with padding bytes.

The R± and R² fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R± and R², respec-
tively. The number of bytes in the first-operand
and second-operand locations is specified by bits
8-31 of general registers R± + 1 and R² + 1,
respectively. Bit positions 0-7 of general register
R² + 1 contain the padding byte. The contents of
bit positions 0-7 of general register R± + 1 are
ignored.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R² con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R² constitute the address, and
the contents of bit position 0 are ignored.

The contents of the registers just described are
shown in Figure 7-5 on page 7-31.
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┌──────────────────────────────────────────────────────────────────────────────────┐

│ │

│ 24-Bit Addressing Mode 31-Bit Addressing Mode │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬───────────────────────────────┐ │

│ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴───────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌────────┬────────────────────────┐ │

│ R± + 1 │////////│ First-Operand Length │ │////////│ First-Operand Length │ │

│ └────────┴───────────────────────┘ └────────┴────────────────────────┘ │

│ ð 8 31 ð 8 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬───────────────────────────────┐ │

│ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴───────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌────────┬────────────────────────┐ │

│ R² + 1 │ Pad │ Second-Operand Length │ │ Pad │ Second-Operand Length │ │

│ └────────┴───────────────────────┘ └────────┴────────────────────────┘ │

│ ð 8 31 ð 8 31 │

│ │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 7-5. Register Contents for COMPARE LOGICAL LONG

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found
or the end of the longer operand is reached. If
the operands are not of the same length, the
shorter operand is considered to be extended on
the right with the appropriate number of padding
bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of general regis-
ters R± + 1 and R² + 1 are decremented by the
number of bytes compared, and the contents of
general registers R± and R² are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the point of interruption.
The leftmost bits which are not part of the address
in general registers R± and R² are set to zeros;
the contents of bit positions 0-7 of general regis-
ters R± + 1 and R² + 1 remain unchanged; and
the condition code is unpredictable. If the opera-
tion is interrupted after the shorter operand has
been exhausted, the length field pertaining to the
shorter operand is zero, and its address is
updated accordingly.

If the operation ends because of an inequality, the
address fields in general registers R± and R² at
completion identify the first unequal byte in each
operand. The lengths in bit positions 8-31 of
general registers R± + 1 and R² + 1 are decre-
mented by the number of bytes that were equal,
unless the inequality occurred with the padding
byte, in which case the length field for the shorter
operand is set to zero. The addresses in general
registers R± and R² are incremented by the
amounts by which the corresponding length fields
were reduced.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length
values.

At the completion of the operation, the leftmost
bits which are not part of the address in general
registers R± and R² are set to zeros, including the
case when one or both of the initial length values
are zero. The contents of bit positions 0-7 of
general registers R± + 1 and R² + 1 remain
unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
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than 2K bytes, access exceptions are not recog-
nized more than 2K bytes beyond the byte being
processed. Access exceptions are not indicated
for locations more than 2K bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:  

0 Operands equal, or both zero length
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operands 1 and 2)
 � Specification

Programming Notes:

1. An example of the use of the COMPARE
LOGICAL LONG instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When the R± and R² fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, except that the con-
tents of the designated registers are incre-
mented or decremented only by the number of
bytes compared, not by twice the number of
bytes compared. In the absence of dynamic
modification of the operand area by another
CPU or by a channel program, condition code
0 is set. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed.

3. Special precautions should be taken when
COMPARE LOGICAL LONG is made the
target of EXECUTE. See the programming
note concerning interruptible instructions
under EXECUTE.

4. Other programming notes concerning interrup-
tible instructions are included in “Interruptible
Instructions” in Chapter 5, “Program
Execution.”

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL LONG
EXTENDED

CLCLE R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'A9' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand is compared with the third
operand until unequal bytes are compared, the
end of the longer operand is reached, or a
CPU-determined number of bytes have been com-
pared, whichever occurs first. The shorter
operand is considered to be extended on the right
with padding bytes. The result is indicated in the
condition code.

The R± and R³ fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and third operand is designated by the
contents of general registers R± and R³, respec-
tively. The number of bytes in the first-operand
and third-operand locations is specified by bits
0-31 of general registers R± + 1 and R³ + 1,
respectively. The contents of general registers
R± + 1 and R³ + 1 are treated as 32-bit
unsigned binary integers.

The handling of the addresses in general registers
R± and R³ is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R³ con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R³ constitute the address, and
the contents of bit position 0 are ignored.

The second-operand address is not used to
address data; instead, the rightmost eight bits of
the second-operand address, bits 24-31, are the
padding byte. Bits 0-23 of the second-operand
address are ignored.
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The contents of the registers and address just
described are shown in Figure 7-6 on page 7-33.

┌──────────────────────────────────────────────────────────────────────────────────┐

│ │

│ 24-Bit Addressing Mode 31-Bit Addressing Mode │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R³ │////////│ Third-Operand Address │ │/│ Third-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R³ + 1 │ Third-Operand Length │ │ Third-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

│ │

│ ┌───────────────────────┬────────┐ ┌───────────────────────┬────────┐ │

│ 2nd Op.│///////////////////////│ Pad │ │///////////////////////│ Pad │ │

│ Address└───────────────────────┴────────┘ └───────────────────────┴────────┘ │

│ ð 24 31 ð 24 31 │

│ │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 7-6. Register Contents and Second-Operand Address for COMPARE LOGICAL LONG EXTENDED

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found,
the end of the longer operand is reached, or a
CPU-determined number of bytes have been com-
pared, whichever occurs first. If the operands are
not of the same length, the shorter operand is
considered to be extended on the right with the
appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

If the operation ends because of an inequality, the
address fields in general registers R± and R³ at
completion identify the first unequal byte in each
operand. The lengths in general registers R± + 1
and R³ + 1 are decremented by the number of
bytes that were equal, unless the inequality
occurred with the padding byte, in which case the
length field for the shorter operand is set to zero.
The addresses in general registers R± and R³ are
incremented by the amounts by which the corre-
sponding length fields were decremented. Condi-

tion code 1 is set if the first operand is low, or
condition code 2 is set if the first operand is high.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length
values. Condition code 0 is set.

If the operation is completed because a
CPU-determined number of bytes have been com-
pared without finding an inequality or reaching the
end of the longer operand, the contents of general
registers R± + 1 and R³ + 1 are decremented by
the number of bytes compared, and the contents
of general registers R± and R³ are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the next bytes to be com-
pared. If the operation is completed after the
shorter operand has been exhausted, the length
field pertaining to the shorter operand is zero, and
the operand address is updated accordingly. Con-
dition code 3 is set.
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The padding byte may be formed from D²(B²)
multiple times during the execution of the instruc-
tion, and the registers designated by R± and R³

may be updated multiple times. Therefore, if B²
equals R±, R± + 1, R³, or R³ + 1 and is subject
to change during the execution of the instruction,
the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed. The maximum amount
is approximately 4K bytes of either operand.

At the completion of the operation, the leftmost
bits which are not part of the address in general
registers R± and R³ may be set to zeros or may
remain unchanged, including the case when one
or both of the initial length values are zero.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 4K bytes, access exceptions are not recog-
nized more than 4K bytes beyond the byte being
processed. Access exceptions are not indicated
for locations more than 4K bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd.

Resulting Condition Code:  

0 All bytes compared; operands equal, or both
zero length

1 First operand low
2 First operand high
3 CPU-determined number of bytes compared

without finding an inequality

 Program Exceptions: 

| � Access (fetch, operands 1 and 3)
� Operation (if the compare-and-move-extended

facility is not installed)
 � Specification

Programming Notes:

1. COMPARE LOGICAL LONG EXTENDED is
intended for use in place of COMPARE
LOGICAL LONG when the operand lengths
are specified as 32-bit binary integers.
COMPARE LOGICAL LONG EXTENDED sets
condition code 3 in cases in which COMPARE
LOGICAL LONG would be interrupted.

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the comparison. The program need
not determine the number of bytes that were
compared.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag
that may be set by a program on another CPU
during long operations.

4. When the R± and R³ fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, except that the con-
tents of the designated registers are incre-
mented or decremented only by the number of
bytes compared, not by twice the number of
bytes compared. In the absence of dynamic
modification of the operand area by another
CPU or by a channel program, the condition
code is finally set to 0 after possible settings
to 3. However, it is unpredictable whether
access exceptions are recognized for the
operand since the operation can be completed
without storage being accessed. If storage is
not accessed, condition code 3 may or may
not be set regardless of the operand length.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE LOGICAL STRING

CLST R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B25D' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The first operand is compared with the second
operand until unequal bytes are compared, the
end of either operand is reached, or a
CPU-determined number of bytes have been com-
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pared, whichever occurs first. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

Bits 16-23 of the instruction are ignored.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R± and R², respec-
tively.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R² con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R² constitute the address, and
the contents of bit position 0 are ignored.

The first and second operands may be of the
same or different lengths. The end of an operand
is indicated by an ending character in the last byte
position of the operand. The ending character to
be used to determine the end of an operand is
specified in bit positions 24-31 of general register
0. Bit positions 0-23 of general register 0 are
reserved for possible future extensions and must
contain all zeros; otherwise, a specification excep-
tion is recognized.

The operation proceeds left to right, byte by byte,
and ends as soon as the ending character is
encountered in either or both operands, unequal
bytes which do not include an ending character
are compared, or a CPU-determined number of
bytes have been compared, whichever occurs
first. The CPU-determined number is at least 256.
When the ending character is encountered simul-
taneously in both operands, including when it is in
the first byte position of the operands, the oper-
ands are of the same length and are considered
to be equal, and condition code 0 is set. When
the ending character is encountered in only one
operand, that operand, which is the shorter
operand, is considered to be low, and condition
code 1 or 2 is set. Condition code 1 is set if the
first operand is low, or condition code 2 is set if
the second operand is low. Similarly, when
unequal bytes which do not include an ending
character are compared, condition code 1 is set if
the lower byte is in the first operand, or condition

code 2 is set if the lower byte is in the second
operand. When a CPU-determined number of
bytes have been compared, condition code 3 is
set.

When condition code 1 or 2 is set, the address of
the last byte processed in the first and second
operands is placed in general registers R± and
R², respectively. That is, when condition code 1
is set, the address of the ending character or first
unequal byte in the first operand, whichever was
encountered, is placed in general register R±, and
the address of the second-operand byte corre-
sponding in position to the first-operand byte is
placed in general register R². When condition
code 2 is set, the address of the ending character
or first unequal byte in the second operand,
whichever was encountered, is placed in general
register R², and the address of the first-operand
byte corresponding in position to the second-
operand byte is placed in general register R±.
When condition code 3 is set, the address of the
next byte to be processed in the first and second
operands is placed in general registers R± and
R², respectively. Whenever an address is placed
in a general register, bits 0-7 of the register, in the
24-bit mode, or bit 0, in the 31-bit mode, are set to
zeros.

When condition code 0 is set, the contents of
general registers R± and R² remain unchanged.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the first and second oper-
ands are recognized only for that portion of the
operand which is necessarily examined in the
operation.

The storage-operand-consistency rules are the
same as for the COMPARE LOGICAL LONG
instruction.

Resulting Condition Code:  

0 Entire operands equal; general registers R±

and R² unchanged
1 First operand low; general registers R± and

R² updated with addresses of last bytes proc-
essed
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2 First operand high; general registers R± and
R² updated with addresses of last bytes proc-
essed

3 CPU-determined number of bytes equal;
general registers R± and R² updated with
addresses of next bytes

 Program Exceptions: 

� Access (fetch, operands 1 and 2)
� Operation (if the string-instruction facility is not

installed)
 � Specification

Programming Notes:

1. Several examples of the use of the
COMPARE LOGICAL STRING instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. When condition code 0 is set, no indication is
given of the position of either ending char-
acter.

3. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the comparison. The program need
not determine the number of bytes that were
compared.

4. R± or R² may be zero, in which case general
register 0 is treated as containing an address
and also the ending character.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

COMPARE UNTIL SUBSTRING
EQUAL

CUSE R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B257' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The first operand is compared with the second
operand until equal substrings (sequences of
bytes) of a specified length are found, the end of
the longer operand is reached, or a
CPU-determined number of unequal bytes have
been compared, whichever occurs first. The
shorter operand is considered to be extended on
the right with padding bytes. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

Bits 16-23 of the instruction are ignored.

The R± and R² fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is specified by the
contents of the R± and R² general registers,
respectively. The number of bytes in the first-
operand and second-operand locations is speci-
fied by the 32-bit signed binary integer in general
registers R± + 1 and R² + 1, respectively. When
an operand length is negative, it is treated as
zero, and it remains unchanged upon completion
of the instruction.

Bits 24-31 of general register 0 specify the
unsigned substring length, a value of 0-255, in
bytes. Bits 24-31 of general register 1 are the
padding byte. Bits 0-23 of general registers 0 and
1 are ignored.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R² con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R² constitute the address, and
the contents of bit position 0 are ignored.

The contents of the registers just described are
shown in Figure 7-7 on page 7-37.
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┌─────────────────────────────────────────────────────────────────────────────────┐

│ │

│ ┌───────────────────────┬────────┐ ┌───────────────────────┬────────┐ │

│ GRð │///////////////////////│ SS Len.│ GR1 │///////////////////////│ Pad │ │

│ └───────────────────────┴────────┘ └───────────────────────┴────────┘ │

│ ð 24 31 ð 24 31 │

│ │

├─────────────────────────────────────────────────────────────────────────────────┤

│ │

│ 24-Bit Addressing Mode 31-Bit Addressing Mode │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R² + 1 │ Second-Operand Length │ │ Second-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

└─────────────────────────────────────────────────────────────────────────────────┘

Figure 7-7. Register Contents for COMPARE UNTIL SUBSTRING EQUAL

The result is obtained as if the operands were
processed from left to right. However, multiple
accesses may be made to all or some of the bytes
of each operand.

The comparison proceeds left to right, byte by
byte, and ends as soon as (1) equal substrings of
the specified length are found, (2) the end of the
longer operand is reached without finding equal
substrings of the specified length, or (3) the last
bytes compared are unequal, and a
CPU-determined number of bytes have been com-
pared. The CPU-determined number is at least
256. If the operands are not of the same length,
the shorter operand is considered to be extended
on the right with the appropriate number of
padding bytes.

If the operation ends because equal substrings of
the specified length were found, the condition
code is set to 0. If the operation ends because
the end of the longer operand was reached
without finding equal substrings of the specified
length, the condition code is set to 1 if equal bytes
were the last bytes compared, or it is set to 2 if

unequal bytes were the last bytes compared. If
the operation ends because unequal bytes were
compared when a CPU-determined number of
bytes had been compared, the condition code is
set to 3.

If the specified substring length is zero, it is con-
sidered that equal substrings of the specified
length were found, and condition code 0 is set.

If both operands are of zero length but the speci-
fied substring length is not zero, it is considered
that the end of the longer operand was reached
when unequal bytes were the last bytes com-
pared, and condition code 2 is set.

If equal bytes have been compared but then
unequal bytes are compared, it is considered that
all bytes so far compared are unequal.

At the completion of the operation, the operand-
length fields in the R± + 1 and R² + 1 registers
are decremented by the number of unequal bytes
compared (including equal bytes before unequal
bytes compared), and the addresses in the R±

and R² registers are incremented by the same
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number. However, in the case when a byte of the
longer operand is compared against the padding
byte, the length field for the shorter operand is not
decremented below zero, and the corresponding
address is not incremented above the address of
the first byte after the shorter operand. The left-
most bits which are not part of the addresses in
registers R± and R² are set to zeros, even if the
substring length is zero or both operand lengths
are initially zero.

Thus, when condition code 0 or 1 is set, the
resulting addresses in the R± and R² registers
designate the first bytes of equal substrings in the
two operands, and the lengths in the R± + 1 and
R² + 1 registers have been decremented by the
number of bytes preceding the equal substrings,
except when the equal substring in the shorter
operand begins with the padding byte, in which
case the length field for the shorter operand is
zero, and the corresponding address field has
been incremented by the operand length. When
condition code 2 is set, each address field desig-
nates the first byte after the corresponding
operand, and both length fields are zero. When
condition code 3 is set, each address field desig-
nates the first byte after the last compared byte of
the corresponding operand, and both length fields
have been decremented by the number of bytes
compared, except that a length field is not decre-
mented below zero.

When the contents of the R± and R² fields are the
same, the first and second operands may be com-
pared, or the condition code may be set to 0 or 1
without comparing the operands.

The substring length and padding byte may be
fetched from general registers 0 and 1 multiple
times during the execution of the instruction, and
the registers designated by R± and R² may be
updated multiple times. Therefore, if R± or R² is
zero, the results are unpredictable.

When condition code 3 is set, the general regis-
ters used by the instruction have been set so that
the remainder of the operands can be processed
by simply branching back and reexecuting the
instruction.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-

ance, and it may be a different amount each time
the instruction is executed.

The execution of the instruction is interruptible
when the last bytes compared are unequal; it is
not interruptible when the last bytes compared are
equal. When an interruption occurs, other than
one that causes termination, the contents of the
registers designated by the R± and R² fields are
updated the same as upon normal completion of
the instruction, so that the instruction, when reexe-
cuted, resumes at the point of interruption. The
condition code is unpredictable.

Access exceptions for the portion of a storage
operand to the right of the last byte processed
may or may not be recognized. For operands
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the last byte processed.

When the length of an operand is zero, no access
exceptions are recognized for that operand.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Although the operand address and length
fields remain unchanged when a zero substring
length is specified, the recognition of access
exceptions is not necessarily prevented.

Resulting Condition Code:  

0 Equal substrings of specified length found
1 End of longer operand reached when last

bytes compared are equal
2 End of longer operand reached when last

bytes compared are unequal
3 Last bytes compared are unequal, and

CPU-determined number of bytes compared

 Program Exceptions: 

� Access (fetch, operands 1 and 2)
 � Specification

Programming Notes:

1. When the R± and R² fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or by a channel program, condi-
tion code 0, 1, or 2 is set (as explained in the
next note). However, it is unpredictable
whether access exceptions are recognized for
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the operand since the operation can be com-
pleted without storage being accessed.

2. If the contents of the R± and R² fields are the
same and the operand length is nonzero, and
provided that another CPU or a channel
program is not changing an operand, condition
code 0 is set if the operand length is equal to
or greater than the specified substring length,
or condition code 1 is set if the operand length
is less than the specified substring length.
Whether or not R± equals R², if both operand
lengths are zero, condition code 0 is set if the
specified substring length is zero, or condition
code 2 is set if the specified substring length
is nonzero. In all of these cases, the
addresses in the R± and R² registers and the
lengths in the R± + 1 and R² + 1 registers
remain unchanged.

3. Special precautions should be taken when
COMPARE UNTIL SUBSTRING EQUAL is
made the target of EXECUTE. See the pro-
gramming note concerning interruptible
instructions under EXECUTE.

4. Other programming notes concerning interrup-
tible instructions are included in “Interruptible
Instructions” on page 5-16.

5. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

CONVERT TO BINARY

CVB R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4F' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is changed from decimal to
binary, and the result is placed at the first-operand
location.

The second operand occupies eight bytes in
storage and has the format of packed decimal
data, as described in Chapter 8, “Decimal
Instructions.” It is checked for valid sign and digit

| codes, and a decimal-operand data exception is
recognized when an invalid code is detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in general register

R±. The maximum positive number that can be
converted and still be contained in a 32-bit register
is 2,147,483,647; the maximum negative number
(the negative number with the greatest absolute
value) that can be converted is -2,147,483,648.
For any decimal number outside this range, the
operation is completed by placing the 32 rightmost
bits of the binary result in the register, and a fixed-
point-divide exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Data
 � Fixed-point divide

Programming Notes:

1. An example of the use of the CONVERT TO
BINARY instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. When the second operand is negative, the
result is in two's-complement notation.

3. The storage-operand references for
CONVERT TO BINARY may be multiple-
access references. (See “Storage-Operand
Consistency” on page 5-83.)

CONVERT TO DECIMAL

CVD R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4E' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand is changed from binary to
decimal, and the result is stored at the second-
operand location. The first operand is treated as
a 32-bit signed binary integer.

The result occupies eight bytes in storage and is
in the format for packed decimal data, as
described in Chapter 8, “Decimal Instructions.”
The rightmost four bits of the result represent the
sign. A positive sign is encoded as 1100; a nega-
tive sign is encoded as 1101.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (store, operand 2)

Programming Notes:

1. An example of the use of the CONVERT TO
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The number to be converted is a 32-bit signed
binary integer obtained from a general reg-
ister. Since 15 decimal digits are available for
the result, and the decimal equivalent of 31
bits requires at most 10 decimal digits, an
overflow cannot occur.

3. The storage-operand references for
CONVERT TO DECIMAL may be multiple-
access references. (See “Storage-Operand
Consistency” on page 5-83.)

| CONVERT UNICODE TO UTF-8

| CUUTF R±,R² [RRE]

| ┌────────────────┬────────┬────┬────┐

| │ 'B2A6' │////////│ R± │ R² │

| └────────────────┴────────┴────┴────┘

| ð 16 24 28 31

| The two-byte Unicode characters of the second
| operand are converted to UTF-8 characters and
| placed at the first-operand location. The UTF-8
| characters are one, two, three, or four bytes,
| depending on the Unicode characters that are
| converted. The operation proceeds until the end
| of the first or second operand is reached or a
| CPU-determined number of characters have been
| converted, whichever occurs first. The result is
| indicated in the condition code.

| The R± and R² fields each designate an even-odd
| pair of general registers and must designate an
| even-numbered register; otherwise, a specification
| exception is recognized.

| The location of the leftmost byte of the first
| operand and the second operand is designated by
| the contents of general registers R± and R²,
| respectively. The number of bytes in the first-
| operand and second-operand locations is speci-
| fied by bits 0-31 of general registers R± + 1 and

| R² + 1, respectively. The contents of general
| registers R± + 1 and R² + 1 are treated as 32-bit
| unsigned binary integers.

| The handling of the addresses in general registers
| R± and R² is dependent on the addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 8-31 of general registers R± and R² con-
| stitute the address, and the contents of bit posi-
| tions 0-7 are ignored. In the 31-bit addressing
| mode, the contents of bit positions 1-31 of the reg-
| isters constitute the address, and the contents of
| bit position 0 are ignored.

| The contents of the registers just described are
| shown in Figure 7-8 on page 7-41.

| The characters of the second operand are
| selected one by one for conversion, proceeding
| left to right. The bytes resulting from a conversion
| are placed at the first-operand location, pro-
| ceeding left to right. The operation proceeds until
| the first-operand or second-operand location is
| exhausted or a CPU-determined number of
| second-operand characters have been converted.

| To show the method of converting a Unicode
| character to a UTF-8 character, the bits of a
| Unicode character are identified by letters as
| follows:

|  Unicode Character 111111

|  Bit Numbers ð1234567 89ð12345

| Identifying Bit Letters abcdefgh ijklmnop

| In the case of a Unicode surrogate pair, which is a
| character pair consisting of a character called a
| high surrogate followed by a character called a
| low surrogate, the bits are identified by letters as
| follows:

| Unicode High Surrogate 111111

|  Bit Numbers ð1234567 89ð12345

| Identifying Bit Letters 11ð11ðab cdefghij

| Unicode Low Surrogate 11112222 22222233

|  Bit Numbers 6789ð123 456789ð1

| Identifying Bit Letters 11ð111kl mnopqrst

| Any Unicode character in the range 0000 to 007F
| hex is converted to a one-byte UTF-8 character as
| follows:
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| ┌─────────────────────────────────────────────────────────────────────────────────┐

| │ │

| │ 24-Bit Addressing Mode 31-Bit Addressing Mode │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

| │ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

| │ └────────────────────────────────┘ └────────────────────────────────┘ │

| │ ð 31 ð 31 │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

| │ R² + 1 │ Second-Operand Length │ │ Second-Operand Length │ │

| │ └────────────────────────────────┘ └────────────────────────────────┘ │

| │ ð 31 ð 31 │

| └─────────────────────────────────────────────────────────────────────────────────┘

| Figure 7-8. Register Contents for CONVERT UNICODE TO UTF-8

|  Unicode ðððððððð ðjklmnop

|  Character

|  UTF-8 ðjklmnop

|  Character

| Any Unicode character in the range 0080 to 07FF
| hex is converted to a two-byte UTF-8 character as
| follows:

|  Unicode ðððððfgh ijklmnop

|  Character

|  UTF-8 11ðfghij 1ðklmnop

|  Character

| Any Unicode character in the range 0800 to D7FF
| and DC00 to FFFF hex is converted to a three-
| byte UTF-8 character as follows:

|  Unicode abcdefgh ijklmnop

|  Character

| UTF-8 111ðabcd 1ðefghij 1ðklmnop

|  Character

| Any Unicode surrogate pair starting with a high
| surrogate in the range D800 to DBFF hex is con-
| verted to a four-byte UTF-8 character as follows:

| Unicode 11ð11ðab cdefghij 11ð111kl mnopqrst

|  Characters

| UTF-8 1111ðuvw 1ðxyefgh 1ðijklmn 1ðopqrst

|  Character

| where uvwxy = abcd + 1

| The first six bits of the second Unicode character
| are ignored.

| The second-operand location is considered
| exhausted when it does not contain at least two
| remaining bytes or at least four remaining bytes
| when the first two bytes are a Unicode high surro-
| gate. The first-operand location is considered
| exhausted when it does not contain at least the
| one, two, three, or four remaining bytes required
| to contain the UTF-8 character resulting from the
| conversion of the next second-operand character
| or surrogate pair.

| When the second-operand location is exhausted,
| condition code 0 is set. When the first-operand
| location is exhausted, condition code 1 is set,
| except that condition code 0 is set if the second-
| operand location also is exhausted. When a
| CPU-determined number of characters have been
| converted, condition code 3 is set.

| When the operation is completed, the contents of
| general register R² + 1 are decremented by the
| number of bytes converted, and the contents of
| general register R² are incremented by the same
| number. Also, the contents of general register
| R± + 1 are decremented by the number of bytes
| placed at the first-operand location, and the con-
| tents of general register R± are incremented by
| the same number. When general registers R±
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| and R² are updated, the bits in them that are not
| part of the address may be set to zeros or may
| remain unchanged.

| When condition code 3 is set, the registers have
| been updated so that the instruction, when reexe-
| cuted, resumes at the next byte locations to be
| processed.

| The amount of processing that results in the
| setting of condition code 3 is determined by the
| CPU on the basis of improving system perform-
| ance, and it may be a different amount each time
| the instruction is executed.

| When the R± register is the same register as the
| R² register, the results are unpredictable.

| When the second operand overlaps the first
| operand, the results are unpredictable.

| Access exceptions for the portions of the oper-
| ands to the right of the last byte processed may or
| may not be recognized. For an operand longer
| than 4K bytes, access exceptions are not recog-
| nized for locations more than 4K bytes beyond the
| last byte processed.

| When the length of an operand is zero, no access
| exceptions are recognized for that operand.
| Access exceptions are not recognized for an
| operand if the R field associated with that operand
| is odd.

| Resulting Condition Code:  

| 0 Entire second operand processed
| 1 End of first operand reached
| 2 --
| 3 CPU-determined number of characters con-
| verted

|  Program Exceptions: 

| � Access (fetch, operand 2; store, operand 1)
| � Operation (if the extended-translation facility is
| not installed)
|  � Specification

| Programming Note:  When condition code 3 is
| set, the program can simply branch back to the
| instruction to continue the conversion. The
| program need not determine the number of first-
| operand or second-operand bytes that were proc-
| essed.

| CONVERT UTF-8 TO UNICODE

| CUTFU R±,R² [RRE]

| ┌────────────────┬────────┬────┬────┐

| │ 'B2A7' │////////│ R± │ R² │

| └────────────────┴────────┴────┴────┘

| ð 16 24 28 31

| The one-, two-, three-, or four-byte UTF-8 charac-
| ters of the second operand are converted to two-
| byte Unicode characters and placed at the
| first-operand location. The operation proceeds
| until the end of the first or second operand is
| reached, a CPU-determined number of characters
| have been converted, or an invalid UTF-8 char-
| acter is encountered, whichever occurs first. The
| result is indicated in the condition code.

| The R± and R² fields each designate an even-odd
| pair of general registers and must designate an
| even-numbered register; otherwise, a specification
| exception is recognized.

| The location of the leftmost byte of the first
| operand and the second operand is designated by
| the contents of general registers R± and R²,
| respectively. The number of bytes in the first-
| operand and second-operand locations is speci-
| fied by bits 0-31 of general registers R± + 1 and
| R² + 1, respectively. The contents of general
| registers R± + 1 and R² + 1 are treated as 32-bit
| unsigned binary integers.

| The handling of the addresses in general registers
| R± and R² is dependent on the addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 8-31 of general registers R± and R² con-
| stitute the address, and the contents of bit posi-
| tions 0-7 are ignored. In the 31-bit addressing
| mode, the contents of bit positions 1-31 of the reg-
| isters constitute the address, and the contents of
| bit position 0 are ignored.

| The contents of the registers just described are
| shown in Figure 7-9 on page 7-43.

| The characters of the second operand are
| selected one by one for conversion, proceeding
| left to right. The bytes resulting from a conversion
| are placed at the first-operand location, pro-
| ceeding left to right. The operation proceeds until
| the first-operand or second-operand location is
| exhausted, a CPU-determined number of second-
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| ┌─────────────────────────────────────────────────────────────────────────────────┐

| │ │

| │ 24-Bit Addressing Mode 31-Bit Addressing Mode │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

| │ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

| │ └────────────────────────────────┘ └────────────────────────────────┘ │

| │ ð 31 ð 31 │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

| │ R² + 1 │ Second-Operand Length │ │ Second-Operand Length │ │

| │ └────────────────────────────────┘ └────────────────────────────────┘ │

| │ ð 31 ð 31 │

| └─────────────────────────────────────────────────────────────────────────────────┘

| Figure 7-9. Register Contents for CONVERT UTF-8 TO UNICODE

| operand characters have been converted, or an
| invalid UTF-8 character is encountered in the
| second operand.

| To show the method of converting a UTF-8 char-
| acter to a Unicode character, the bits of a Unicode
| character are identified by letters as follows:

|  Unicode Character 111111

|  Bit Numbers ð1234567 89ð12345

| Identifying Bit Letters abcdefgh ijklmnop

| In the case of a Unicode surrogate pair, which is a
| character pair consisting of a character called a
| high surrogate followed by a character called a
| low surrogate, the bits are identified by letters as
| follows:

| Unicode High Surrogate 111111

|  Bit Numbers ð1234567 89ð12345

| Identifying Bit Letters 11ð11ðab cdefghij

| Unicode Low Surrogate 11112222 22222233

|  Bit Numbers 6789ð123 456789ð1

| Identifying Bit Letters 11ð111kl mnopqrst

| When the contents of the first byte of a UTF-8
| character are in the range 00 to 7F hex, the char-
| acter is a one-byte character, and it is converted
| to a two-byte Unicode character as follows:

|  UTF-8 ðjklmnop

|  Character

|  Unicode ðððððððð ðjklmnop

|  Character

| When the contents of the first byte of a UTF-8
| character are in the range C0 to DF hex, the char-
| acter is a two-byte character, and it is converted
| to a two-byte Unicode character as follows:

|  UTF-8 11ðfghij 1ðklmnop

|  Character

|  Unicode ðððððfgh ijklmnop

|  Character

| The first two bits in the second byte of the UTF-8
| character are ignored.

| When the contents of the first byte of a UTF-8
| character are in the range E0 to EF hex, the char-
| acter is a three-byte character, and it is converted
| to a two-byte Unicode character as follows:

| UTF-8 111ðabcd 1ðefghij 1ðklmnop

|  Character

|  Unicode abcdefgh ijklmnop

|  Character

| The first two bits in the second and third bytes of
| the UTF-8 character are ignored.

| When the contents of the first byte of a UTF-8
| character are in the range F0 to F7 hex, the char-
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| acter is a four-byte character, and it is converted
| to two two-byte Unicode characters (a surrogate
| pair) as follows:

| UTF-8 1111ðuvw 1ðxyefgh 1ðijklmn 1ðopqrst

|  Character

| Unicode 11ð11ðab cdefghij 11ð111kl mnopqrst

|  Characters

| where zabcd = uvwxy -1

| The first two bits in the second, third, and fourth
| bytes of the UTF-8 character are ignored. The
| high order bit (z) produced by the subtract opera-
| tion should be zero but is ignored.

| The second-operand location is considered
| exhausted when it does not contain at least one
| remaining byte or when it does not contain at least
| the two, three, or four remaining bytes required to
| contain the two-, three-, or four-byte UTF-8 char-
| acter indicated by the contents of the first
| remaining byte. The first-operand location is con-
| sidered exhausted when it does not contain at
| least two remaining bytes or at least four
| remaining bytes in the case when a four-byte
| UTF-8 character is to be converted.

| When the second-operand location is exhausted,
| condition code 0 is set. When the first-operand
| location is exhausted, condition code 1 is set,
| except that condition code 0 is set if the second-
| operand location also is exhausted. When a
| CPU-determined number of characters have been
| processed, condition code 3 is set.

| When the contents of the first byte of the next
| UTF-8 character are in the range 80 to BF hex or
| F8 to FF hex, the character is invalid, and condi-
| tion code 2 is set.

| When the operation is completed, the contents of
| general register R² + 1 are decremented by the
| number of bytes converted, and the contents of
| general register R² are incremented by the same
| number. Also, the contents of general register
| R± + 1 are decremented by the number of bytes
| placed at the first-operand location, and the con-
| tents of general register R± are incremented by
| the same number. When general registers R±

| and R² are updated, the bits in them that are not
| part of the address may be set to zeros or may
| remain unchanged.

| When condition code 3 is set, the registers have
| been updated so that the instruction, when reexe-
| cuted, resumes at the next byte locations to be
| processed.

| When condition code 2 is set, general register R²

| contains the address of the invalid UTF-8 char-
| acter.

| The amount of processing that results in the
| setting of condition code 3 is determined by the
| CPU on the basis of improving system perform-
| ance, and it may be a different amount each time
| the instruction is executed.

| When the R± register is the same register as the
| R² register, the results are unpredictable.

| When the second operand overlaps the first
| operand, the results are unpredictable.

| Access exceptions for the portions of the oper-
| ands to the right of the last byte processed may or
| may not be recognized. For an operand longer
| than 4K bytes, access exceptions are not recog-
| nized for locations more than 4K bytes beyond the
| last byte processed.

| When the length of an operand is zero, no access
| exceptions are recognized for that operand.
| Access exceptions are not recognized for an
| operand if the R field associated with that operand
| is odd.

| Resulting Condition Code:  

| 0 Entire second operand processed
| 1 End of first operand reached
| 2 Invalid UTF-8 character
| 3 CPU-determined number of characters proc-
| essed

|  Program Exceptions: 

| � Access (fetch, operand 2; store, operand 1)
| � Operation (if the extended-translation facility is
| not installed)
|  � Specification

| Programming Notes:

| 1. When condition code 3 is set, the program
| can simply branch back to the instruction to
| continue the conversion. The program need
| not determine the number of first-operand or
| second-operand bytes that were processed.
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| 2. Bits 0 and 1 of the continuation bytes of
| multiple-byte UTF-8 characters are not
| checked in order to speed up the conversion.
| Thus, invalid continuation bytes are not
| detected.

 COPY ACCESS

CPYA R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24D' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of access register R² are placed in
access register R±.

Bits 16-23 of the instruction are ignored.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

 DIVIDE

DR R±,R² [RR]

┌────────┬────┬────┐

│ '1D' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

D R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5D' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed at the
first-operand location.

The R± field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the quo-
tient are treated as 32-bit signed binary integers.
The remainder is placed in general register R±,

and the quotient is placed in general register
R± + 1.

The sign of the quotient is determined by the rules
of algebra, and the remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive.

When the divisor is zero, or when the magnitudes
of the dividend and divisor are such that the quo-
tient cannot be expressed by a 32-bit signed
binary integer, a fixed-point-divide exception is
recognized. This includes the case of division of
zero by zero.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of D only)
 � Fixed-point divide
 � Specification

 EXCLUSIVE OR

XR R±,R² [RR]

┌────────┬────┬────┐

│ '17' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

X R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '57' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

XI D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '97' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

XC D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D7' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The EXCLUSIVE OR of the first and second oper-
ands is placed at the first-operand location.
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The connective EXCLUSIVE OR is applied to the
operands bit by bit. The contents of a bit position
in the result are set to one if the bits in the corre-
sponding bit positions in the two operands are
unlike; otherwise, the result bit is set to zero.

For EXCLUSIVE OR (XC), each operand is proc-
essed left to right. When the operands overlap,
the result is obtained as if the operands were
processed one byte at a time and each result byte
were stored immediately after fetching the neces-
sary operand bytes.

For EXCLUSIVE OR (XI), the first operand is one
byte in length, and only one byte is stored.

Resulting Condition Code:  

0 Result zero
1 Result not zero
2 --
3 --

 Program Exceptions: 

� Access (fetch, operand 2, X and XC; fetch
and store, operand 1, XI and XC)

Programming Notes:

1. An example of the use of the EXCLUSIVE OR
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. EXCLUSIVE OR may be used to invert a bit,
an operation particularly useful in testing and
setting programmed binary switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For EXCLUSIVE OR (XR), the sequence A
EXCLUSIVE-OR B, B EXCLUSIVE-OR A, A
EXCLUSIVE-OR B results in the exchange of
the contents of A and B without the use of an
additional general register.

5. Accesses to the first operand of EXCLUSIVE
OR (XI) and EXCLUSIVE OR (XC) consist in
fetching a first-operand byte from storage and
subsequently storing the updated value.
These fetch and store accesses to a particular
byte do not necessarily occur one immediately
after the other. Thus, EXCLUSIVE OR cannot
be safely used to update a location in storage
if the possibility exists that another CPU or a
channel program may also be updating the

location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

 EXECUTE

EX R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '44' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The single instruction at the second-operand
address is modified by the contents of general
register R±, and the resulting instruction, called
the target instruction, is executed.

When the R± field is not zero, bits 8-15 of the
instruction designated by the second-operand
address are ORed with bits 24-31 of general reg-
ister R±. The ORing does not change either the
contents of general register R± or the instruction in
storage, and it is effective only for the interpreta-
tion of the instruction to be executed. When the
R± field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception han-
dling of the target instruction are exactly as if the
target instruction were obtained in normal sequen-
tial operation, except for the instruction address
and the instruction-length code.

| The instruction address in the current PSW is
increased by the length of EXECUTE. This
updated address and the instruction-length code
of EXECUTE are used, for example, as part of the
link information when the target instruction is
BRANCH AND LINK. When the target instruction
is a successful branching instruction, the instruc-

| tion address in the current PSW is replaced by the
branch address specified by the target instruction.

When the target instruction is in turn EXECUTE,
an execute exception is recognized.

The effective address of EXECUTE must be even;
otherwise, a specification exception is recognized.
When the target instruction is two or three
halfwords in length but can be executed without
fetching its second or third halfword, it is unpre-
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dictable whether access exceptions are recog-
nized for the unused halfwords. Access
exceptions are not recognized for the second-
operand address when the address is odd.

The second-operand address of EXECUTE is an
instruction address rather than a logical address;
thus, the target instruction is fetched from the
primary address space when in the primary-space,
secondary-space, or access-register mode.

Condition Code:  The code may be set by the
target instruction.

 Program Exceptions: 

� Access (fetch, target instruction)
 � Execute
 � Specification

Programming Notes:

1. An example of the use of the EXECUTE
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. The ORing of eight bits from the general reg-
ister with the designated instruction permits
the indirect specification of the length, index,
mask, immediate-data, register, or extended-
op-code field.

3. The fetching of the target instruction is consid-
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target instruc-
tion.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R±, X², or
B² register for EXECUTE. Otherwise, on
resumption of execution after an interruption,
or if the instruction is refetched without an
interruption, the updated values of these regis-
ters will be used in the execution of
EXECUTE. Similarly, the program should
normally not let the destination field in storage
of an interruptible instruction include the
location of EXECUTE, since the new contents
of the location may be interpreted when
resuming execution.

 EXTRACT ACCESS

EAR R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24F' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of access register R² are placed in
general register R±.

Bits 16-23 of the instruction are ignored.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

 INSERT CHARACTER

IC R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '43' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The byte at the second-operand location is
inserted into bit positions 24-31 of general register
R±. The remaining bits in the register remain
unchanged.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)

INSERT CHARACTERS UNDER
MASK

ICM R±,M³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'BF' │ R± │ M³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into general
register R± under control of a mask.

The contents of the M³ field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general
register R±. The byte positions corresponding to
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ones in the mask are filled, left to right, with bytes
from successive storage locations beginning at the
second-operand address. When the mask is not
zero, the length of the second operand is equal to
the number of ones in the mask. The bytes in the
general register corresponding to zeros in the
mask remain unchanged.

The resulting condition code is based on the mask
and on the value of the bits inserted. When the
mask is zero or when all inserted bits are zeros,
the condition code is set to 0. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit
is one, the code is set to 1; if this bit is zero, the
code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only
for the number of bytes specified by the mask.
When the mask is zero, access exceptions are
recognized for one byte at the second-operand
address.

Resulting Condition Code:  

0 All inserted bits zeros, or mask bits all zeros
1 Leftmost inserted bit one
2 Leftmost inserted bit zero, and not all inserted

bits zeros
3 --

 Program Exceptions: 

� Access (fetch, operand 2)

Programming Notes:

1. Examples of the use of the INSERT CHAR-
ACTERS UNDER MASK instruction are given
in Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The condition code for INSERT CHARAC-
TERS UNDER MASK is defined such that,
when the mask is 1111, the instruction causes
the same condition code to be set as for
LOAD AND TEST. Thus, the instruction may
be used as a storage-to-register load-and-test
operation.

3. INSERT CHARACTERS UNDER MASK with a
mask of 1111 or 0001 performs a function
similar to that of a LOAD (L) or INSERT
CHARACTER (IC) instruction, respectively,
with the exception of the condition-code

setting. However, the performance of INSERT
CHARACTERS UNDER MASK may be
slower.

INSERT PROGRAM MASK

IPM R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B222' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The condition code and program mask from the
current PSW are inserted into bit positions 2 and 3
and 4-7, respectively, of general register R±. Bits
0 and 1 of the register are set to zeros; bits 8-31
are left unchanged.

Bits 16-23 and 28-31 of the instruction are
ignored.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

 LOAD

LR R±,R² [RR]

┌────────┬────┬────┐

│ '18' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

L R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '58' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is placed unchanged at the
first-operand location.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of L only)

Programming Note:  An example of the use of
the LOAD instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”
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LOAD ACCESS MULTIPLE

LAM R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '9A' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The set of access registers starting with access
register R± and ending with access register R³ is
loaded from the locations designated by the
second-operand address.

The storage area from which the contents of the
access registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of access registers specified. The access
registers are loaded in ascending order of their
register numbers, starting with access register R±

and continuing up to and including access register
R³, with access register 0 following access reg-
ister 15.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Specification

 LOAD ADDRESS

LA R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '41' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The address specified by the X², B², and D² fields
is placed in general register R±. The address
computation follows the rules for address arith-
metic.

In the 24-bit addressing mode, the address is
placed in bit positions 8-31, and bits 0-7 are set to
zeros. In the 31-bit addressing mode, the address
is placed in bit positions 1-31, and bit 0 is set to
zero.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. An example of the use of the LOAD
ADDRESS instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. LOAD ADDRESS may be used to increment
the rightmost bits of a general register, other
than register 0, by the contents of the D² field
of the instruction. The register to be incre-
mented should be designated by R± and by
either X² (with B² set to zero) or B² (with X²
set to zero). The instruction updates 24 bits
in the 24-bit addressing mode and updates 31
bits in the 31-bit addressing mode.

LOAD ADDRESS EXTENDED

LAE R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '51' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The address specified by the X², B², and D² fields
is placed in general register R±. Access register
R± is loaded with a value that depends on the
current value of the address-space-control bits,
bits 16 and 17 of the PSW. If the address-space-
control bits are 01 binary, the value placed in the
access register also depends on whether the B²
field is zero or nonzero.

The address computation follows the rules for
address arithmetic. In the 24-bit addressing
mode, the address is placed in bit positions 8-31
of general register R±, and bits 0-7 are set to
zeros. In the 31-bit addressing mode, the address
is placed in bit positions 1-31 of general register
R±, and bit 0 is set to zero.

The value placed in access register R± is as
shown in the following table:
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However, when PSW bits 16 and 17 are 01 binary
and the B² field is nonzero, bit positions 0-6 of
access register B² must contain all zeros; other-
wise, the results in general register R± and access
register R± are unpredictable.

No storage references for operands take place,
and the address is not inspected for access
exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

Programming Notes:

1. When DAT is on, the different values of the
address-space-control bits correspond to
translation modes as follows:

2. In the access-register mode, the value
00000000 hex in an access register desig-
nates the primary address space, and the
value 00000001 hex designates the secondary
address space. The value 00000002 hex des-
ignates the home address space if the control
program assigns entry 2 of the dispatchable-
unit access list as designating the home
address space and places a zero access-list-
entry sequence number (ALESN) in that entry.

PSW
Bits 16
and 17 Value Placed in Access Register R ±

LOAD AND TEST

LTR R±,R² [RR]

┌────────┬────┬────┐

│ '12' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

The second operand is placed unchanged at the
first-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:  

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: None.

Programming Note:  When the R± and R² fields
designate the same register, the operation is
equivalent to a test without data movement.

 LOAD COMPLEMENT

LCR R±,R² [RR]

┌────────┬────┬────┐

│ '13' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

The two's complement of the second operand is
placed at the first-operand location. The second
operand and result are treated as 32-bit signed
binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

00 00000000 hex (zeros in bit positions
0-31)

10 00000001 hex (zeros in bit positions
0-30 and one in bit position 31)

01 If B² field is zero: 00000000 hex (zeros
in bit positions 0-31)

 If B² field is nonzero: Contents of
access register B²

11 00000002 hex (zeros in bit positions
0-29 and 31, and one in bit position 30)

PSW Bits
16 and

17 Translation Mode

00 Primary-space mode
10 Secondary-space mode
01 Access-register mode
11 Home-space mode
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 Program Exceptions: 

 � Fixed-point overflow

Programming Note:  The operation complements
all numbers. Zero and the maximum negative
number remain unchanged. An overflow condition
occurs when the maximum negative number is
complemented.

 LOAD HALFWORD

LH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '48' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

LOAD HALFWORD IMMEDIATE

LHI R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'8' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

The second operand is sign extended and placed
at the first-operand location. The second operand
is two bytes in length and is treated as a 16-bit
signed binary integer. The second operand is
extended to 32 bits by setting each of the 16 left-
most bit positions equal to the sign bit of the two-
byte operand.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of LH only)
� Operation (LHI if the immediate-and-relative-

instruction facility is not installed)

Programming Note:  An example of the use of
the LOAD HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

 LOAD MULTIPLE

LM R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '98' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The set of general registers starting with general
register R± and ending with general register R³ is
loaded from storage beginning at the location des-
ignated by the second-operand address and con-
tinuing through as many locations as needed.

The general registers are loaded in the ascending
order of their register numbers, starting with
general register R± and continuing up to and
including general register R³, with general register
0 following general register 15.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)

Programming Note:  All combinations of register
numbers specified by R± and R³ are valid. When
the register numbers are equal, only four bytes
are transmitted. When the number specified by
R³ is less than the number specified by R±, the
register numbers wrap around from 15 to 0.

 LOAD NEGATIVE

LNR R±,R² [RR]

┌────────┬────┬────┐

│ '11' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

The two's complement of the absolute value of the
second operand is placed at the first-operand
location. The second operand and result are
treated as 32-bit signed binary integers.

Resulting Condition Code:  

0 Result zero
1 Result less than zero
2 --
3 --
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 Program Exceptions: None.

Programming Note:  The operation complements
positive numbers; negative numbers remain
unchanged. The number zero remains
unchanged.

 LOAD POSITIVE

LPR R±,R² [RR]

┌────────┬────┬────┐

│ '1ð' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

The absolute value of the second operand is
placed at the first-operand location. The second
operand and the result are treated as 32-bit
signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 --
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

 � Fixed-point overflow

Programming Note:  The operation complements
negative numbers; positive numbers and zero
remain unchanged. An overflow condition occurs
when the maximum negative number is comple-
mented; the number remains unchanged.

 MONITOR CALL

MC D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ 'AF' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31 of
control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the I² field contain a binary
number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the I² field is one, a monitor-
event program interruption occurs. The contents
of the I² field are stored at location 149, with
zeros stored at location 148. Bit 9 of the program-
interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the B± and
D± fields forms the monitor code, which is placed
in the word at location 156. Address computation
follows the rules of address arithmetic; in the
24-bit addressing mode, bits 0-7 are set to zeros;
in the 31-bit addressing mode, bit 0 is set to zero.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Monitor event
 � Specification

Programming Notes:

1. MONITOR CALL provides the capability for
passing control to a monitoring program when
selected points are reached in the monitored
program. This is accomplished by implanting
MONITOR CALL instructions at the desired
points in the monitored program. This func-
tion may be useful in performing various
measurement functions; specifically, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often partic-
ular programs were used, and timing informa-
tion can be generated indicating the amount of
time a particular program required for exe-
cution.
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2. The monitor masks provide a means of disal-
lowing all monitor-event program interruptions
or allowing monitor-event program inter-
ruptions for all or selected classes.

3. The monitor code provides a means of associ-
ating descriptive information, in addition to the
class number, with each MONITOR CALL.
Without the use of a base register, up to
4,096 distinct monitor codes can be associ-
ated with a monitoring interruption. With the
base register designated by a nonzero value
in the B± field, each monitoring interruption
can be identified by a 24-bit code in the 24-bit
addressing mode or a 31-bit code in the 31-bit
addressing mode.

 MOVE

MVI D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '92' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

MVC D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D2' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The second operand is placed at the first-operand
location.

For MOVE (MVC), each operand is processed left
to right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
byte.

For MOVE (MVI), the first operand is one byte in
length, and only one byte is stored.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of MVC; store,
operand 1, MVI and MVC)

Programming Notes:

1. Examples of the use of the MOVE instruction
are given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. It is possible to propagate one byte through
an entire field by having the first operand start
one byte to the right of the second operand.

 MOVE INVERSE

MVCIN D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'E8' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The second operand is placed at the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the
second operand. Both operands have the same
length.

The result is obtained as if the second operand
were processed from right to left and the first
operand from left to right. The second operand
may wrap around from location 0 to location
2òô - 1 in the 24-bit addressing mode, or, in the
31-bit addressing mode, to location 2óñ - 1. The
first operand may, in the 24-bit addressing mode,
wrap around from location 2òô - 1 to location 0,
or, in the 31-bit addressing mode, from location
2óñ - 1 to location 0.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
� Operation (if the move-inverse facility is not

installed)
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Programming Notes:

1. An example of the use of the MOVE
INVERSE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The contents of each byte moved remain
unchanged.

3. MOVE INVERSE is the only SS-format
instruction for which the second-operand
address designates the rightmost, instead of
the leftmost, byte of the second operand.

4. The storage-operand references for MOVE
INVERSE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-83.)

 MOVE LONG

MVCL R±,R² [RR]

┌────────┬────┬────┐

│ 'ðE' │ R± │ R² │

└────────┴────┴────┘

 ð 8 12 15

The second operand is placed at the first-operand
location, provided overlapping of operand
locations would not affect the final contents of the
first-operand location. The remaining rightmost

byte positions, if any, of the first-operand location
are filled with padding bytes.

The R± and R² fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R± and R², respec-
tively. The number of bytes in the first-operand
and second-operand locations is specified by bits
8-31 of general registers R± + 1 and R² + 1,
respectively. Bit positions 0-7 of register R² + 1
contain the padding byte. The contents of bit
positions 0-7 of register R± + 1 are ignored.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of registers R± and R² constitute
the address, and the contents of bit positions 0-7
are ignored. In the 31-bit addressing mode, the
contents of bit positions 1-31 of registers R± and
R² constitute the address, and the contents of bit
position 0 are ignored.

The contents of the registers just described are
shown in Figure 7-10.

┌──────────────────────────────────────────────────────────────────────────────────┐

│ │

│ 24-Bit Addressing Mode 31-Bit Addressing Mode │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬───────────────────────────────┐ │

│ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴───────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌────────┬────────────────────────┐ │

│ R± + 1 │////////│ First-Operand Length │ │////////│ First-Operand Length │ │

│ └────────┴───────────────────────┘ └────────┴────────────────────────┘ │

│ ð 8 31 ð 8 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬───────────────────────────────┐ │

│ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴───────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌────────┬────────────────────────┐ │

│ R² + 1 │ Pad │ Second-Operand Length │ │ Pad │ Second-Operand Length │ │

│ └────────┴───────────────────────┘ └────────┴────────────────────────┘ │

│ ð 8 31 ð 8 31 │

│ │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 7-10. Register Contents for MOVE LONG
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The movement starts at the left end of both fields
and proceeds to the right. The operation is ended
when the number of bytes specified by bits 8-31 of
general register R± + 1 have been moved into the
first-operand location. If the second operand is
shorter than the first operand, the remaining right-
most bytes of the first-operand location are filled
with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for
the setting of the condition code, and a check is
made for destructive overlap of the operands.
Operands are said to overlap destructively when
the first-operand location is used as a source after
data has been moved into it, assuming the
inspection for overlap is performed by the use of
logical operand addresses. When the operands
overlap destructively, no movement takes place,
and condition code 3 is set.

Operands do not overlap destructively, and move-
ment is performed, if the leftmost byte of the first
operand does not coincide with any of the second-
operand bytes participating in the operation other
than the leftmost byte of the second operand.
When an operand wraps around from location
2òô - 1 (or 2óñ - 1) to location 0, operand bytes
in locations up to and including 2òô - 1 (or
2óñ - 1) are considered to be to the left of bytes
in locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 2òô - 1 to location 0; in the 31-bit
addressing mode, wraparound is from location
2óñ - 1 to location 0.

In the access-register mode, the contents of
access register R± and access register R² are
compared. If the R± or R² field is zero, 32 zeros
are used rather than the contents of access reg-
ister 0. If all 32 bits of the compared values are
equal, then the destructive overlap test is made.
If all 32 bits of the compared values are not equal,
destructive overlap is declared not to exist. If, for
this case, the operands actually overlap in real
storage, it is unpredictable whether the result
reflects the overlap condition.

When the length specified by bit positions 8-31 of
general register R± + 1 is zero, no movement
takes place, and condition code 0 or 1 is set to
indicate the relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of general regis-
ters R± + 1 and R² + 1 are decremented by the
number of bytes moved, and the contents of
general registers R± and R² are incremented by
the same number, so that the instruction, when
reexecuted, resumes at the point of interruption.
The leftmost bits which are not part of the address
in general registers R± and R² are set to zeros;
the contents of bit positions 0-7 of general regis-
ters R± + 1 and R² + 1 remain unchanged; and
the condition code is unpredictable. If the opera-
tion is interrupted during padding, the length field
in general register R² + 1 is 0, the address in
general register R² is incremented by the original
contents of general register R² + 1, and general
registers R± and R± + 1 reflect the extent of the
padding operation.

When the first-operand location includes the
location of the instruction or of EXECUTE, the
instruction may be refetched from storage and
reinterpreted even in the absence of an inter-
ruption during execution. The exact point in the
execution at which such a refetch occurs is unpre-
dictable.

As observed by other CPUs and by channel pro-
grams, that portion of the first operand which is
filled with the padding byte is not necessarily
stored into in a left-to-right direction and may
appear to be stored into more than once.

At the completion of the operation, the length in
general register R± + 1 is decremented by the
number of bytes stored at the first-operand
location, and the address in general register R± is
incremented by the same amount. The length in
general register R² + 1 is decremented by the
number of bytes moved out of the second-operand
location, and the address in general register R² is
incremented by the same amount. The leftmost
bits which are not part of the address in general
registers R± and R² are set to zeros, including the
case when one or both of the original length
values are zeros or when condition code 3 is set.
The contents of bit positions 0-7 of general regis-
ters R± + 1 and R² + 1 remain unchanged.

When condition code 3 is set, no exceptions asso-
ciated with operand access are recognized. When
the length of an operand is zero, no access
exceptions for that operand are recognized. Simi-
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larly, when the second operand is longer than the
first operand, access exceptions are not recog-
nized for the part of the second-operand field that
is in excess of the first-operand field. For oper-
ands longer than 2K bytes, access exceptions are
not recognized for locations more than 2K bytes
beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R± field is odd, PER
storage-alteration events are not recognized, and
no change bits are set.

Resulting Condition Code:  

0 Operand lengths equal; no destructive overlap
1 First-operand length low; no destructive

overlap
2 First-operand length high; no destructive

overlap
3 No movement performed because of destruc-

tive overlap

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
 � Specification

Programming Notes:

1. An example of the use of the MOVE LONG
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. MOVE LONG may be used for clearing
storage by setting the padding byte to zero
and the second-operand length to zero. On
most models, this is the fastest instruction for
clearing storage areas in excess of 256 bytes.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the pos-
sibility exists that another CPU or a channel
program will attempt to access and use the
area as soon as it appears to be zero. For
more details, see “Storage-Operand
Consistency” on page 5-83.

3. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and
also protection) exceptions may result in ter-
mination of the entire operation, not just the
current unit of operation. The termination may
be such that the contents of all result fields
are unpredictable; in the case of MOVE

LONG, this includes the condition code and
the two even-odd general-register pairs, as
well as the first-operand location in main
storage. The following are situations that
have actually occurred on one or more
models:

a. When a protection exception occurs on a
4K-byte block of a first operand which is
several blocks in length, stores to the pro-
tected block are suppressed. However,
the move continues into the subsequent
blocks of the first operand, which are not
protected. Similarly, an addressing excep-
tion on a block does not necessarily sup-
press processing of subsequent blocks
which are available.

b. Some models may update the general
registers only when an external, I/O,
repressible machine-check, or restart
interruption occurs, or when a program
interruption occurs for which it is required
to nullify or suppress a unit of operation.
Thus, if, after a move into several blocks
of the first operand, an addressing or pro-
tection exception occurs, the general reg-
isters may remain unchanged.

4. When the first-operand length is zero, the
operation consists in setting the condition
code and setting the leftmost bits of general
registers R± and R² to zero.

5. When the contents of the R± and R² fields are
the same, the contents of the designated reg-
isters are incremented or decremented only by
the number of bytes moved, not by twice the
number of bytes moved. Condition code 0 is
set.

6. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist.

In the access-register mode, the contents of
the access registers used are called the effec-
tive space designations. When the effective
space designations are not equal, destructive
overlap is declared not to exist and movement
occurs. When the effective space desig-
nations are the same or when not in the
access-register mode, then the following
cases apply.

Depending on whether the second operand
wraps around from location 2òô - 1 to location
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0, or, in the 31-bit addressing mode, from
location 2óñ - 1 to location 0, movement
takes place in the following cases:

a. When the second operand does not wrap
around, movement is performed if the left-
most byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte partic-
ipating in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost
byte of the first operand coincides with or
is to the left of the leftmost byte of the
second operand, and if the leftmost byte
of the first operand is to the right of the
rightmost second-operand byte partic-
ipating in the operation.

The rightmost second-operand byte is deter-
mined by using the smaller of the first-operand
and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

7. Special precautions should be taken if MOVE
LONG is made the target of EXECUTE. See
the programming note concerning interruptible
instructions under EXECUTE.

8. Since the execution of MOVE LONG is inter-
ruptible, the instruction cannot be used for sit-
uations where the program must rely on
uninterrupted execution of the instruction.
Similarly, the program should normally not let
the first operand of MOVE LONG include the
location of the instruction or of EXECUTE
because the new contents of the location may
be interpreted for a resumption after an inter-
ruption, or the instruction may be refetched
without an interruption.

9. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” in Chapter 5, “Program
Execution.”

10. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE LONG EXTENDED

MVCLE R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'A8' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

All or part of the third operand is placed at the
first-operand location. The remaining rightmost
byte positions, if any, of the first-operand location
are filled with padding bytes. The operation pro-
ceeds until the end of the first-operand location is
reached or a CPU-determined number of bytes
have been placed at the first-operand location,
whichever occurs first. The result is indicated in
the condition code.

The R± and R³ fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and third operand is designated by the
contents of general registers R± and R³, respec-
tively. The number of bytes in the first-operand
and third-operand locations is specified by bits
0-31 of general registers R± + 1 and R³ + 1,
respectively. The contents of general registers
R± + 1 and R³ + 1 are treated as 32-bit
unsigned binary integers.

The handling of the addresses in general registers
R± and R³ is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R³ con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R³ constitute the address, and
the contents of bit position 0 are ignored.

The second-operand address is not used to
address data; instead, the rightmost eight bits of
the second-operand address, bits 24-31, are the
padding byte. Bits 0-23 of the second-operand
address are ignored.

The contents of the registers and address just
described are shown in Figure 7-11 on
page 7-58.
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The movement starts at the left end of both fields
and proceeds to the right. The operation is ended
when the number of bytes specified in general
register R± + 1 have been placed at the first-
operand location or when a CPU-determined
number of bytes have been placed, whichever
occurs first. If the third operand is shorter than
the first operand, the remaining rightmost bytes of
the first-operand location are filled with the
padding byte.

When the operation is completed because the end
of the first operand has been reached, the condi-
tion code is set to 0 if the two operand lengths are
equal, it is set to 1 if the first-operand length is
less than the third-operand length, or it is set to 2
if the first-operand length is greater than the third-
operand length. When the operation is completed
because a CPU-determined number of bytes have
been moved without reaching the end of the first
operand, condition code 3 is set.

No test is made for destructive overlap, and the
results in the first-operand location are unpredict-
able when destructive overlap exists. Operands
are said to overlap destructively when the first-

operand location is used as a source after data
has been moved into it.

Operands do not overlap destructively if the left-
most byte of the first operand does not coincide
with any of the third-operand bytes participating in
the operation other than the leftmost byte of the
third operand. When an operand wraps around
from location 2òô - 1 (or 2óñ - 1) to location 0,
operand bytes in locations up to and including
2òô - 1 (or 2óñ - 1) are considered to be to the
left of bytes in locations from 0 up.

In the 24-bit addressing mode, wraparound is from
location 2òô - 1 to location 0; in the 31-bit
addressing mode, wraparound is from location
2óñ - 1 to location 0.

When the length specified in general register
R± + 1 is zero, no movement takes place, and
condition code 0 or 1 is set to indicate the relative
values of the lengths.

As observed by other CPUs and by channel pro-
grams, that portion of the first operand which is
filled with the padding byte is not necessarily

┌──────────────────────────────────────────────────────────────────────────────────┐

│ │

│ 24-Bit Addressing Mode 31-Bit Addressing Mode │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

│ │

│ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

│ R³ │////////│ Third-Operand Address │ │/│ Third-Operand Address │ │

│ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

│ ð 8 31 ð 1 31 │

│ │

│ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

│ R³ + 1 │ Third-Operand Length │ │ Third-Operand Length │ │

│ └────────────────────────────────┘ └────────────────────────────────┘ │

│ ð 31 ð 31 │

│ │

│ ┌───────────────────────┬────────┐ ┌───────────────────────┬────────┐ │

│ 2nd Op.│///////////////////////│ Pad │ │///////////////////////│ Pad │ │

│ Address└───────────────────────┴────────┘ └───────────────────────┴────────┘ │

│ ð 24 31 ð 24 31 │

│ │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure 7-11. Register Contents and Second-Operand Address for MOVE LONG EXTENDED
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stored into in a left-to-right direction and may
appear to be stored into more than once.

At the completion of the operation, the length in
general register R± + 1 is decremented by the
number of bytes stored at the first-operand
location, and the address in general register R± is
incremented by the same amount. The length in
general register R³ + 1 is decremented by the
number of bytes moved out of the third-operand
location, and the address in general register R³ is
incremented by the same amount.

If the operation is completed because a
CPU-determined number of bytes have been
moved without reaching the end of the first
operand, the contents of general registers R± + 1
and R³ + 1 are decremented by the number of
bytes moved, and the contents of general regis-
ters R± and R³ are incremented by the same
number, so that the instruction, when reexecuted,
resumes at the next byte to be moved. If the
operation is completed during padding, the length
field in general register R³ + 1 is 0, the address
in general register R³ is incremented by the ori-
ginal contents of general register R³ + 1, and
general registers R± and R± + 1 reflect the extent
of the padding operation.

The padding byte may be formed from D²(B²)
multiple times during the execution of the instruc-
tion, and the registers designated by R± and R³

may be updated multiple times. Therefore, if B²
equals R±, R± + 1, R³, or R³ + 1 and is subject
to change during the execution of the instruction,
the results are unpredictable.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed. The maximum amount
is approximately 4K bytes of either operand.

At the completion of the operation, the leftmost
bits which are not part of the address in general
registers R± and R³ may be set to zeros or may
remain unchanged, including the case when one
or both of the original length values are zeros.

When the length of an operand is zero, no access
exceptions for that operand are recognized. Simi-
larly, when the third operand is longer than the
first operand, access exceptions are not recog-

nized for the part of the third-operand field that is
in excess of the first-operand field. For operands
longer than 4K bytes, access exceptions are not
recognized for locations more than 4K bytes
beyond the current location being processed.
Access exceptions are not recognized for an
operand if the R field associated with that operand
is odd. Also, when the R± field is odd, PER
storage-alteration events are not recognized, and
no change bits are set.

Resulting Condition Code:  

0 All bytes moved, operand lengths equal
1 All bytes moved, first-operand length low
2 All bytes moved, first-operand length high
3 CPU-determined number of bytes moved

without reaching end of first operand

 Program Exceptions: 

� Access (fetch, operand 3; store, operand 1)
� Operation (if the compare-and-move-extended

facility is not installed)
 � Specification

Programming Notes:

1. MOVE LONG EXTENDED is intended for use
in place of MOVE LONG when the operand
lengths are specified as 32-bit binary integers
and a test for destructive overlap is not
required. MOVE LONG EXTENDED sets con-
dition code 3 in cases in which MOVE LONG
would be interrupted.

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the movement. The program need
not determine the number of bytes that were
moved.

3. The function of not processing more than
approximately 4K bytes of either operand is
intended to permit software polling of a flag
that may be set by a program on another CPU
during long operations.

4. MOVE LONG EXTENDED may be used for
clearing storage by setting the padding byte to
zero and the third-operand length to zero.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the pos-
sibility exists that another CPU or a channel
program will attempt to access and use the
area as soon as it appears to be zero. For
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more details, see “Storage-Operand
Consistency” on page 5-83.

5. When the contents of the R± and R³ fields are
the same, the contents of the designated reg-
isters are incremented or decremented only by
the number of bytes moved, not by twice the
number of bytes moved. The condition code
is finally set to 0 after possible settings to 3.

6. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

 MOVE NUMERICS

MVN D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D1' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions
of the corresponding bytes in the first operand.
The leftmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after
fetching the necessary operand bytes.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE
NUMERICS instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. MOVE NUMERICS moves the numeric portion
of a decimal-data field that is in the zoned
format. The zoned-decimal format is
described in Chapter 8, “Decimal
Instructions.” The operands are not checked
for valid sign and digit codes.

3. Accesses to the first operand of MOVE
NUMERICS consist in fetching the rightmost

four bits of each byte in the first operand and
subsequently storing the updated value of the
byte. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, this instruc-
tion cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown for OR (OI) in “Multiprogram-
ming and Multiprocessing Examples” in
Appendix A, “Number Representation and
Instruction-Use Examples.”

MOVE PAGE (Facility 1)

MVPG R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B254' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

This definition applies if move-page facility 1 is
installed. The MOVE PAGE instruction of move-
page facility 2 is defined in Chapter 10, “Control
Instructions.”

The first operand is replaced by the second
operand. The first and second operands both are
4K bytes on 4K-byte boundaries. The results are
indicated in the condition code.

Bits 16-23 of the instruction are ignored.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R± and R², respec-
tively.

The handling of the addresses in general registers
R± and R² depends on the addressing mode. In
the 24-bit addressing mode, the contents of bit
positions 8-19 of a general register, with 12 right-
most zeros appended, are the address, and bits
0-7 and 20-31 in the register are ignored. In the
31-bit addressing mode, the contents of bit posi-
tions 1-19 of a general register, with 12 rightmost
zeros appended, are the address, and bits 0 and
20-31 in the register are ignored.

Bits 16-23 of general register 0 must be 00000001
binary; otherwise, a specification exception is
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recognized. Bits 0-15 and 24-31 of general reg-
ister 0 are ignored.

The contents of the registers just described are
shown in Figure 7-12.

When DAT is on and the page-invalid bit is one in
the page-table entry for an operand, additional
address translation is performed to determine
whether the operand is valid in expanded storage.
As a result, the replacement of the first operand
by the second operand may be performed by
moving data from main storage to main storage,
from main storage to expanded storage, or from
expanded storage to main storage, depending on
whether and where the operands are valid. When
4K bytes have been moved, condition code 0 is
set.

Certain conditions prevent data movement from
occurring and cause a nonzero condition code to
be set. Data movement is prevented, and condi-
tion code 1 is set, if (1) the second operand is
valid in either main storage or expanded storage,
but the first operand is invalid in both main
storage and expanded storage; (2) both operands
are valid in expanded storage; or (3) data move-
ment between main storage and expanded
storage is due to occur but the translation path for
the expanded-storage operand is locked or the
expanded-storage block containing that operand
either is not available or causes an expanded-

storage data error. When condition code 1 is set
because of an expanded-storage data error, the
contents of the first-operand location are unpre-
dictable. Data movement is prevented, and condi-
tion code 2 is set, if the second operand is invalid
in both main storage and expanded storage.

When one operand is invalid in both main storage
and expanded storage and an access exception
can be recognized for the other operand, it is
unpredictable whether a nonzero condition code is
set or the access exception is recognized.

The case when the page-table entry for an
operand is outside the page table is treated as a
page-translation-exception condition.

When data is moved to or from expanded storage,
access-list-controlled, page, and key-controlled
protection apply, and it is unpredictable whether
low-address protection applies. The protection
mechanisms apply to main storage in the normal
way.

When the first operand is valid in main storage
and the second operand is valid in expanded
storage, but the expanded-storage block con-
taining the second operand is unavailable, a
storage-alteration PER event may be recognized,
and the change bit may be set, for the first
operand even though the first-operand location
remains unchanged.

┌────────────────────────────────────────────────────────────────────────────────────────┐

│ │

│ ┌────────────────┬────────┬────────┐ │

│ GRð │////////////////│ððððððð1│////////│ │

│ └────────────────┴────────┴────────┘ │

│ ð 16 24 31 │

│ │

│ 24-Bit Addressing Mode │

│ │

│ ┌────────┬────────────┬────────────┐ ┌────────┬────────────┬────────────┐ │

│ R± │////////│Op1 Address │////////////│ R² │////////│Op2 Address │////////////│ │

│ └────────┴────────────┴────────────┘ └────────┴────────────┴────────────┘ │

│ ð 8 2ð 31 ð 8 2ð 31 │

│ │

│ 31-Bit Addressing Mode │

│ │

│ ┌─┬───────────────────┬────────────┐ ┌─┬───────────────────┬────────────┐ │

│ R± │/│ Op1 Address │////////////│ R² │/│ Op2 Address │////////////│ │

│ └─┴───────────────────┴────────────┘ └─┴───────────────────┴────────────┘ │

│ ð 1 2ð 31 ð 1 2ð 31 │

│ │

└────────────────────────────────────────────────────────────────────────────────────────┘

Figure 7-12. Register Contents for MOVE PAGE of Move-Page Facility 1
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Operation in a Multiple-CPU Configuration

The references to main storage and to expanded
storage are not necessarily single-access refer-
ences and are not necessarily performed in a left-
to-right direction, as observed by other CPUs and
by channel programs.

If two or more CPUs move data to or from
expanded storage at approximately the same
instant in time, depending on the model, the oper-
ations may be performed one at a time, or the
operations may be performed concurrently. Con-
current operation may occur even if the
instructions address the same expanded-storage
block.

When two or more CPUs move data to the same
expanded-storage block concurrently, the resulting
values in the expanded-storage block for each
group of bytes transferred may be from any of the
instructions being executed simultaneously. The
number of bytes transferred as a group is unpre-
dictable.

Similarly, for concurrent movement to and from
the same expanded-storage block, the resulting
values for each group of bytes moved from
expanded storage may be either the old or the
new values from the expanded-storage block.

When data movement is due to occur between
main storage and expanded storage, the trans-
lation path being used for the expanded-storage
operand is set to the locked state. When this data
movement is completed successfully, or when
condition code 1 is due to be set because the
movement cannot be completed successfully, the
translation path is set to the unlocked state.

Resulting Condition Code:  

0 Data moved
1 First operand invalid and second operand

valid, both operands valid in expanded
storage, translation path locked, expanded-
storage block unavailable, or expanded-
storage data error

2 Second operand invalid
3 --

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1,
except low-address protection for operand in
expanded storage is unpredictable)

 � Specification

Programming Notes:

1. Since an expanded-storage location may be
accessed by means of more than one trans-
lation path or even without translation, the
locked state of a translation path does not
necessarily prevent concurrent accesses to
the location by different processes. To ensure
predictable results when data is in either main
storage or expanded storage, the program
must use a programmed lock to prevent dif-
ferent processes from performing concurrent
store accesses or concurrent fetch and store
accesses to the same location.

2. Monitoring for PER storage-alteration events
is done using logical addresses. Thus, it
applies to the operands of MOVE PAGE
regardless of whether the operands are in
main storage or expanded storage.

 MOVE STRING

MVST R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B255' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

All or part of the second operand is placed in the
first-operand location. The operation proceeds
until the end of the second operand is reached or
a CPU-determined number of bytes have been
moved, whichever occurs first. The
CPU-determined number is at least one. The
result is indicated in the condition code.

Bits 16-23 of the instruction are ignored.

The location of the leftmost byte of the first
operand and second operand is designated by the
contents of general registers R± and R², respec-
tively.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R² con-
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stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
registers R± and R² constitute the address, and
the contents of bit position 0 are ignored.

The end of the second operand is indicated by an
ending character in the last byte position of the
operand. The ending character to be used to
determine the end of the second operand is speci-
fied in bit positions 24-31 of general register 0. Bit
positions 0-23 of general register 0 are reserved
for possible future extensions and must contain all
zeros; otherwise, a specification exception is
recognized.

The operation proceeds left to right and ends as
soon as the second-operand ending character has
been moved or a CPU-determined number of
second-operand bytes have been moved, which-
ever occurs first. The CPU-determined number is
at least one. When the ending character is in the
first byte position of the second operand, only the
ending character is moved. When the ending
character has been moved, condition code 1 is
set. When a CPU-determined number of second-
operand bytes not including an ending character
have been moved, condition code 3 is set.
Destructive overlap is not recognized. If the
second operand is used as a source after it has
been used as a destination, the results are unpre-
dictable to the extent that an ending character in
the second operand may not be recognized.

When condition code 1 is set, the address of the
ending character in the first operand is placed in
general register R±, and the contents of general
register R² remain unchanged. When condition
code 3 is set, the address of the next byte to be
processed in the first and second operands is
placed in general registers R± and R², respec-
tively. Whenever an address is placed in a
general register, bits 0-7 of the register, in the
24-bit mode, or bit 0, in the 31-bit mode, are set to
zeros.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the first and second oper-
ands are recognized only for that portion of the
operand that is necessarily used in the operation.

The storage-operand-consistency rules are the
same as for the MOVE (MVC) instruction, except
that destructive overlap is not recognized.

Resulting Condition Code:  

0 --
1 Entire second operand moved; general reg-

ister R± updated with address of ending char-
acter in first operand; general register R²

unchanged
2 --
3 CPU-determined number of bytes moved;

general registers R± and R² updated with
addresses of next bytes

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
� Operation (if the string-instruction facility is not

installed)
 � Specification

Programming Notes:

1. An example of the use of the MOVE STRING
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the data movement. The program
need not determine the number of bytes that
were moved.

3. R± or R² may be zero, in which case general
register 0 is treated as containing an address
and also the ending character.

4. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

MOVE WITH OFFSET

MVO D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'F1' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47
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The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second
operand, the second-operand bits are offset by
four bit positions, and the result is placed at the
first-operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first operand is too short
to contain all of the second operand, the
remaining leftmost portion of the second operand
is ignored. Access exceptions for the unused
portion of the second operand may or may not be
indicated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time, as if each result byte were stored imme-
diately after fetching the necessary operand bytes,
and as if the left digit of each second-operand
byte were to remain available for the next result
byte and need not be refetched.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE WITH
OFFSET instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. MOVE WITH OFFSET may be used to shift
packed decimal data by an odd number of
digit positions. The packed-decimal format is
described in Chapter 8, “Decimal Instructions.”
The operands are not checked for valid sign
and digit codes. In many cases, however,
SHIFT AND ROUND DECIMAL may be more
convenient to use.

3. Access to the rightmost byte of the first
operand of MOVE WITH OFFSET consists in
fetching the rightmost four bits and subse-
quently storing the updated value of this byte.
These fetch and store accesses to the right-

most byte of the first operand do not neces-
sarily occur one immediately after the other.
Thus, this instruction cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel program
may also be updating the location. An
example of this effect is shown for OR (OI) in
“Multiprogramming and Multiprocessing
Examples” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

4. The storage-operand references for MOVE
WITH OFFSET may be multiple-access refer-
ences. (See “Storage-Operand Consistency”
on page 5-83.)

 MOVE ZONES

MVZ D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D3' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit posi-
tions of the corresponding bytes in the first
operand. The rightmost four bits of each byte in
the first operand remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE ZONES
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. MOVE ZONES moves the zoned portion of a
decimal field in the zoned format. The zoned
format is described in Chapter 8, “Decimal
Instructions.” The operands are not checked
for valid sign and digit codes.
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3. Accesses to the first operand of MOVE
ZONES consist in fetching the leftmost four
bits of each byte in the first operand and sub-
sequently storing the updated value of the
byte. These fetch and store accesses to a
particular byte do not necessarily occur one
immediately after the other. Thus, this instruc-
tion cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown for the OR (OI) instruction in
“Multiprogramming and Multiprocessing
Examples” in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

 MULTIPLY

MR R±,R² [RR]

┌────────┬────┬────┐

│ '1C' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

M R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5C' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second word of the first operand (multipli-
cand) is multiplied by the second operand (multi-
plier), and the doubleword product is placed at the
first-operand location.

The R± field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

Both the multiplicand and multiplier are treated as
32-bit signed binary integers. The multiplicand is
taken from general register R± + 1. The contents
of general register R± are ignored. The product is
a 64-bit signed binary integer, which replaces the
contents of the even-odd pair of general registers
designated by R±. An overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of M only)
 � Specification

Programming Notes:

1. An example of the use of the MULTIPLY
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. The significant part of the product usually
occupies 62 bit positions or fewer. Only when
two maximum negative numbers are multiplied
are 63 significant product bits formed.

 MULTIPLY HALFWORD

MH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4C' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

 MULTIPLY HALFWORD
IMMEDIATE

MHI R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'C' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

The first operand (multiplicand) is multiplied by the
second operand (multiplier), and the rightmost 32
bits of the product are placed at the first-operand
location. The second operand is two bytes in
length and is treated as a 16-bit signed binary
integer.

The multiplicand is treated as a 32-bit signed
binary integer and is replaced by the rightmost 32
bits of the signed-binary-integer product. The bits
to the left of the 32 rightmost bits of the product
are not tested for significance; no overflow indi-
cation is given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (fetch, operand 2 of MH only)
� Operation (MHI if the immediate-and-relative-

instruction facility is not installed)

Programming Notes:

1. An example of the use of the MULTIPLY
HALFWORD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. The significant part of the product usually
occupies 46 bit positions or fewer. Only when
two maximum negative numbers are multiplied
are 47 significant product bits formed. Since
the rightmost 32 bits of the product are placed
unchanged at the first-operand location,
ignoring all bits to the left, the sign bit of the
result may differ from the true sign of the
product in the case of overflow. For a nega-
tive product, the 32 bits placed in register R±

are the rightmost part of the product in two's-
complement notation.

 MULTIPLY SINGLE

MSR R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B252' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

MS R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '71' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand (multiplicand) is multiplied by the
second operand (multiplier), and the rightmost 32
bits of the product are placed at the first-operand
location.

For MSR, bits 16-23 of the instruction are ignored.

Both the multiplicand and multiplier are treated as
32-bit signed binary integers. The multiplicand is
taken from general register R± and is replaced by
the rightmost 32 bits of the signed-binary-integer
product. The bits to the left of the 32 rightmost
bits of the product are not tested for significance;
no overflow indication is given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of MS only)
� Operation (if the immediate-and-relative-

instruction facility is not installed)

 OR

OR R±,R² [RR]

┌────────┬────┬────┐

│ '16' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

O R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '56' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

OI D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '96' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

OC D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'D6' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The OR of the first and second operands is placed
at the first-operand location.

The connective OR is applied to the operands bit
by bit. The contents of a bit position in the result
are set to one if the corresponding bit position in
one or both operands contains a one; otherwise,
the result bit is set to zero.

For OR (OC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.
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For OR (OI), the first operand is one byte in
length, and only one byte is stored.

Resulting Condition Code:  

0 Result zero
1 Result not zero
2 --
3 --

 Program Exceptions: 

� Access (fetch, operand 2, O and OC; fetch
and store, operand 1, OI and OC)

Programming Notes:

1. Examples of the use of the OR instruction are
given in Appendix A, “Number Representation
and Instruction-Use Examples.”

2. OR may be used to set a bit to one.

3. Accesses to the first operand of OR (OI) and
OR (OC) consist in fetching a first-operand
byte from storage and subsequently storing
the updated value. These fetch and store
accesses to a particular byte do not neces-
sarily occur one immediately after the other.
Thus, OR cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel program may also
be updating the location. An example of this
effect is shown in “Multiprogramming and
Multiprocessing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

 PACK

PACK D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'F2' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The format of the second operand is changed
from zoned to packed, and the result is placed at
the first-operand location. The zoned and packed
formats are described in Chapter 8, “Decimal
Instructions.”

The second operand is treated as though it had
the zoned format. The numeric bits of each byte
are treated as a digit. The zone bits are ignored,

except the zone bits in the rightmost byte, which
are treated as a sign.

The sign and digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit posi-
tions of the rightmost byte of the result field, and
the digits are placed adjacent to the sign and to
each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first operand is too short
to contain all digits of the second operand, the
remaining leftmost portion of the second operand
is ignored. Access exceptions for the unused
portion of the second operand may or may not be
indicated.

When the operands overlap, the result is obtained
as if each result byte were stored immediately
after fetching the necessary operand bytes. Two
second-operand bytes are needed for each result
byte, except for the rightmost byte of the result
field, which requires only the rightmost second-
operand byte.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)

Programming Notes:

1. An example of the use of the PACK instruc-
tion is given in Appendix A, “Number Repre-
sentation and Instruction-Use Examples.”

2. PACK may be used to interchange the two
hexadecimal digits in one byte by specifying a
zero in the L± and L² fields and the same
address for both operands.

3. To remove the zone bits of all bytes of a field,
including the rightmost byte, both operands
must be extended on the right with a dummy
byte, which subsequently is ignored in the
result field.

4. The storage-operand references for PACK
may be multiple-access references. (See
“Storage-Operand Consistency” on
page 5-83.)
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PERFORM LOCKED OPERATION

PLO R±,D²(B²),R³,D´(B´) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'EE' │ R± │ R³ │ B² │ D² │ B´ │ D´ │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

After the lock specified in general register 1 has
been obtained, the operation specified by the
function code in general register 0 is performed,
and then the lock is released. However, as
observed by other CPUs: (1) storage operands,
including fields in a parameter list that may be
used, may be fetched and tested for store-type
access exceptions before the lock is obtained, and
(2) operands may be stored in the parameter list
after the lock has been released. If an operand
not in the parameter list is fetched before the lock
is obtained, it is fetched again after the lock has
been obtained.

The function code can specify any of six opera-
tions: compare and load, compare and swap,
double compare and swap, compare and swap
and store, compare and swap and double store, or
compare and swap and triple store.

A test bit in general register 0 specifies, when
one, that a lock is not to be obtained and none of
the six operations is to be performed but, instead,
the validity of the function code is to be tested.
This will be useful if additional function codes for
additional operations are assigned in the future.
This definition is written as if the test bit is zero
except when stated otherwise.

If compare and load is specified, the first-operand
comparison value and the second operand are
compared. If they are equal, the fourth operand is
placed in the third-operand location. If the com-
parison indicates inequality, the second operand is
placed in the first-operand-comparison-value
location as a new first-operand comparison value.

If compare and swap is specified, the first-operand
comparison value and the second operand are
compared. If they are equal, the first-operand
replacement value is stored at the second-
operand location. If the comparison indicates ine-
quality, the second operand is placed in the

first-operand-comparison-value location as a new
first-operand comparison value.

If double compare and swap is specified, the first-
operand comparison value and the second
operand are compared. If they are equal, the
third-operand comparison value and the fourth
operand are compared. If both comparisons indi-
cate equality, the first-operand and third-operand
replacement values are stored at the second-
operand location and fourth-operand location,
respectively. If the first comparison indicates ine-
quality, the second operand is placed in the first-
operand-comparison-value location as a new
first-operand comparison value. If the first com-
parison indicates equality but the second does
not, the fourth operand is placed in the third-
operand-comparison-value location as a new third-
operand comparison value.

If compare and swap and store, double store, or
triple store is specified, the first-operand compar-
ison value and the second operand are compared.
If they are equal, the first-operand replacement
value is stored at the second-operand location,
and the third operand is stored at the fourth-
operand location. Then, if the operation is the
double-store or triple-store operation, the fifth
operand is stored at the sixth-operand location,
and, if it is the triple-store operation, the seventh
operand is stored at the eighth-operand location.
If the first-operand comparison indicates ine-
quality, the second operand is placed in the first-
operand-comparison-value location as a new
first-operand comparison value.

After any of the six operations, the result of the
comparison or comparisons is indicated in the
condition code.

The function code (FC) is in bit positions 24-31 of
general register 0. The function code specifies
not only the operation to be performed but also
the length of the operands. A function code that
is a multiple of 4 specifies a 32-bit length, and a
function code that is one more than a multiple of 4
specifies a 64-bit length. Figure 7-13 on
page 7-69 shows the function codes, operation
names, and operand lengths, and also symbols
that may be used to refer to the operations in dis-
cussions. For example, PLO.DCS may be used to
mean PERFORM LOCKED OPERATION with
function code 8. In the symbols, the letter “G”
indicates a 64-bit operand length.
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Figure 7-13. PERFORM LOCKED OPERATION Func-
tion Codes and Operations

When bit 23 of the register is one, this is the only
exception that can be recognized.

The lock to be used is represented by a program
lock token (PLT) whose logical address is speci-
fied in general register 1. In the 24-bit addressing
mode, the PLT address is bits 8-31 of general reg-
ister 1, and bits 0-7 of the register are ignored. In
the 31-bit addressing mode, the PLT address is
bits 1-31 of the register, and bit 0 of the register is
ignored.

The contents of general registers 0 and 1
described above are as follows:

GR ð

┌───────────────────────┬─┬────────┐

│ððððððððððððððððððððððð│T│ FC │

└───────────────────────┴─┴────────┘

ð 24 31

GR 1 in 24-Bit Addressing Mode

┌────────┬─────────────────────────┐

│////////│ PLT Address │

└────────┴─────────────────────────┘

ð 8 31

GR 1 in 31-Bit Addressing Mode

┌─┬────────────────────────────────┐

│/│ PLT Address │

└─┴────────────────────────────────┘

ð 1 31

For function codes 0, 4, 8, 12, 16, and 20, the
first-operand comparison value is in general reg-
ister R±. For function codes 4, 8, 12, 16, and 20,
the first-operand replacement value is in general
register R± + 1, and R± designates an even-odd
pair of registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized. For function code 0, R±

can be even or odd.

For function codes 0 and 12, the third operand is
in general register R³, and R³ can be even or
odd.

For function code 8, the third-operand comparison
value is in general register R³, the third-operand
replacement value is in general register R³ + 1,
and R³ designates an even-odd pair of registers
and must designate an even-numbered register;
otherwise, a specification exception is recognized.

Func-
tion
Code Operation

Operand
Length
(Bits)

Func-
tion
Symbol

0 Compare and load 32 CL

1 Compare and load 64 CLG

4 Compare and swap 32 CS

5 Compare and swap 64 CSG

8 Double compare and
swap

32 DCS

9 Double compare and
swap

64 DCSG

12 Compare and swap and
store

32 CSST

13 Compare and swap and
store

64 CSSTG

16 Compare and swap and
double store

32 CSDST

17 Compare and swap and
double store

64 CSDSTG

20 Compare and swap and
triple store

32 CSTST

21 Compare and swap and
triple store

64 CSTSTG

The CPU can perform all of the operations speci-
fied by the function codes listed in Figure 7-13 on
page 7-69. Function codes specifying operations
that the CPU can perform are called valid. Func-
tion codes that have not been assigned to opera-
tions or that specify operations that the CPU
cannot perform because the operations are not
implemented (installed) are called invalid.

Bit 23 of general register 0 is the test bit (T).
When bit 23 is zero, the function code in general
register 0 must be valid; otherwise, a specification
exception is recognized. When bit 23 is one, the
condition code is set to 0 if the function code is
valid or to 3 if the function code is invalid, and no
other operation is performed.

Bits 0-22 of general register 0 must be all zeros;
otherwise, a specification exception is recognized.
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For all function codes, the B² and D² fields of the
instruction specify the second-operand address.

For function codes 0, 8, and 12, the B´ and D´

fields of the instruction specify the fourth-operand
address.

For function codes 1, 5, 9, 13, 16, 17, 20, and 21,
the B´ and D´ fields of the instruction specify the
address of a parameter list that is used by the
instruction, and this address is not called the
fourth-operand address. The parameter list con-
tains odd-numbered operands, including compar-
ison and replacement values, and addresses of
even-numbered operands other than the second
operand. In the access-register mode, the param-
eter list also contains access-list-entry tokens
(ALETs) associated with the even-numbered-
operand addresses.

In the access-register mode, for function codes
that cause use of a parameter list containing an
ALET, R³ must not be zero; otherwise, a specifi-
cation exception is recognized.

The rules about R± and R³, and the use of the
address specified by B´ and D´, are summarized
in Figure 7-14.

┌──────────────────────────────────────────────┐

│Func- │

│tion │

│Code Operation R± R³ D´(B´)│

│ │

│ ð Compare and load EO EO Op4a │

│ 1 Compare and load - NZ PLa │

│ 4 Compare and swap E - - │

│ 5 Compare and swap - - PLa │

│ 8 Double compare and swap E E Op4a │

│ 9 Double compare and swap - NZ PLa │

│ 12 Compare and swap and E EO Op4a │

│ store │

│ 13 Compare and swap and - NZ PLa │

│ store │

│ 16 Compare and swap and E NZ PLa │

│ double store │

│ 17 Compare and swap and - NZ PLa │

│ double store │

│ 2ð Compare and swap and E NZ PLa │

│ triple store │

│ 21 Compare and swap and - NZ PLa │

│ triple store │

├──────────────────────────────────────────────┤

│Explanation: │

│ │

│ - Ignored. │

│ E Must be even. │

│ EO Can be even or odd. │

│ NZ Must be nonzero in the access-register │

│ mode. Ignored otherwise. │

│ Op4a D´(B´) is operand-4 address. │

│ PLa D´(B´) is parameter-list address. │

└──────────────────────────────────────────────┘

Figure 7-14. Register Rules and D´(B´) Usage for
PERFORM LOCKED OPERATION

Figure 7-15 on page 7-71 shows the locations of
the operands (including operand comparison and
replacement values), operand addresses, and
parameter-list address used by the instruction.

Operand addresses in a parameter list, if used,
are in words in the list. In the 24-bit addressing
mode, an operand address is bits 8-31 of a word,
and bits 0-7 of the word are ignored. In the 31-bit
addressing mode, an operand address is bits 1-31
of a word, and bit 0 of the word is ignored.

In the access-register mode, access register 1
specifies the address space containing the
program lock token (PLT), access register B²
specifies the address space containing the second
operand, and access register B´ specifies the
address space containing a fourth operand or a
parameter list as shown in Figure 7-15 on
page 7-71. Also, for an operand whose address
is in the parameter list, an access-list-entry token
(ALET) is in the list along with the address and is
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┌────────────────────────────────┬────────────────────┬────────────┬────────┬────────────────────┐

│Func- │ │ Op3 │ │ Op5 Op7 │

│tion │ │ or │ │ and and │

│Code Operation │ Op1c Op1r Op2a │ Op3c Op3r │ Op4a │ Op6a Op8a PLa │

├────────────────────────────────┼────────────────────┼────────────┼────────┼────────────────────┤

│ ð Compare and load │ R± - D²(B²) │ R³ │ D´(B´) │ - - - │

│ │ │ │ │ │

│ 1 Compare and load │ PL - D²(B²) │ PL │ PL │ - - D´(B´) │

│ │ │ │ │ │

│ 4 Compare and swap │ R± R±+1 D²(B²) │ - │ - │ - - - │

│ │ │ │ │ │

│ 5 Compare and swap │ PL PL D²(B²) │ - │ - │ - - D´(B´) │

│ │ │ │ │ │

│ 8 Double compare and swap │ R± R±+1 D²(B²) │ R³ R³+1 │ D´(B´) │ - - - │

│ │ │ │ │ │

│ 9 Double compare and swap │ PL PL D²(B²) │ PL PL │ PL │ - - D´(B´) │

│ │ │ │ │ │

│ 12 Compare and swap and store│ R± R±+1 D²(B²) │ R³ │ D´(B´) │ - - - │

│ │ │ │ │ │

│ 13 Compare and swap and store│ PL PL D²(B²) │ PL │ PL │ - - D´(B´) │

│ │ │ │ │ │

│ 16 Compare and swap and │ R± R±+1 D²(B²) │ PL │ PL │ PL - D´(B´) │

│ double store │ │ │ │ │

│ │ │ │ │ │

│ 17 Compare and swap and │ PL PL D²(B²) │ PL │ PL │ PL - D´(B´) │

│ double store │ │ │ │ │

│ │ │ │ │ │

│ 2ð Compare and swap and │ R± R±+1 D²(B²) │ PL │ PL │ PL PL D´(B´) │

│ triple store │ │ │ │ │

│ │ │ │ │ │

│ 21 Compare and swap and │ PL PL D²(B²) │ PL │ PL │ PL PL D´(B´) │

│ triple store │ │ │ │ │

├────────────────────────────────┴────────────────────┴────────────┴────────┴────────────────────┤

│Explanation: │

│ │

│ - Operand, value, or address is not used in the operation. │

│ OpNc Operand-N comparison value. │

│ OpNr Operand-N replacement value. │

│ OpNa Operand-N address. │

│ PL Operand, value, or address is in the parameter list. │

│ PLa Parameter-list address. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 7-15. Operand and Address Locations for PERFORM LOCKED OPERATION

used in the access-register mode to specify the
address space containing the operand.

In the access-register mode, if an access excep-
tion or PER storage-alteration event is recognized
for an operand whose address is in the parameter
list, the associated ALET in the parameter list is
loaded into access register R³ when the exception
or event is recognized. Then, during the resulting
program interruption, if a value is due to be stored
as the exception access identification at real
location 160 or the PER access identification at
real location 161, R³ is stored. If the instruction
execution is completed without the recognition of
an exception or event, the contents of access reg-
ister R³ are unpredictable. When not in the

access-register mode, or when a parameter list
containing an ALET is not used, the contents of
access register R³ remain unchanged.

The even-numbered (2, 4, 6, and 8) storage oper-
ands must be designated on an integral boundary,
which is a word boundary for function codes that
are a multiple of 4 or a doubleword boundary for
function codes that are one more than a multiple
of 4. A parameter list, if used, must be desig-
nated on a doubleword boundary. Otherwise, a
specification exception is recognized. The
program-lock-token (PLT) address in general reg-
ister 1 does not have a boundary-alignment
requirement.
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All unused fields in a parameter list, including bits
0-7 of a word containing an address in the 24-bit
addressing mode or bit 0 of a word containing an
address in the 31-bit addressing mode, should
contain all zeros; otherwise, the program may not
operate compatibly in the future.

A serialization operation is performed immediately
after the lock is obtained and again immediately
before it is released. However, values fetched
from the parameter list before the lock is obtained
are not necessarily refetched. A serialization
operation is not performed if the test bit, bit 23 of
general register 0, is one.

In the following figures showing the parameter lists
for the different function codes, the offsets shown
on the left are byte values.

Function Codes 0 and 1 (Compare and Load)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 1 has
the following format:

Parameter List for Function Code 1

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ Operand 3 │

 ├─────────────────────────────────┤

 48 │ │

 ├─────────────────────────────────┤

 56 │ │

 ├────────────────┬────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 └────────────────┴────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand

comparison value is equal to the second operand,
the third operand is replaced by the fourth
operand, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Function Codes 4 and 5 (Compare and Swap)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 5 has
the following format:

Parameter List for Function Code 5

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ Operand-1 Replacement Value │

 └─────────────────────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, and condition code 0
is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

Function Codes 8 and 9 (Double Compare and
Swap)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 9 has
the following format:

7-72 ESA/390 Principles of Operation  



  General Instructions
 

Parameter List for Function Code 9

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ Operand-1 Replacement Value │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ Operand-3 Comparison Value │

 ├─────────────────────────────────┤

 48 │ │

 ├─────────────────────────────────┤

 56 │ Operand-3 Replacement Value │

 ├────────────────┬────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 └────────────────┴────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the third-operand comparison value is compared
to the fourth operand. When the third-operand
comparison value is equal to the fourth operand
(after the first-operand comparison value has been
found equal to the second operand), the first-
operand replacement value is stored at the
second-operand location, the third-operand
replacement value is stored at the fourth-operand
location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.

When the third-operand comparison value is not
equal to the fourth operand (after the first-operand
comparison value has been found equal to the
second operand), the third-operand comparison
value is replaced by the fourth operand, and con-
dition code 2 is set.

Function Codes 12 and 13 (Compare and Swap
and Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 13 has
the following format:

Parameter List for Function Code 13

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ Operand-1 Replacement Value │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ │

 ├─────────────────────────────────┤

 48 │ │

 ├─────────────────────────────────┤

 56 │ Operand 3 │

 ├────────────────┬────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 └────────────────┴────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, and condi-
tion code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.
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Function Codes 16 and 17 (Compare and Swap
and Double Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 16 has
the following format:

Parameter List for Function Code 16

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

 8 │ │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ │

 ├─────────────────────────────────┤

 48 │ │

 ├────────────────┬────────────────┤

 56 │ │ Operand 3 │

 ├────────────────┼────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 ├────────────────┴────────────────┤

 8ð │ │

 ├────────────────┬────────────────┤

 88 │ │ Operand 5 │

 ├────────────────┼────────────────┤

 96 │ │ Operand-6 ALET │

 ├────────────────┼────────────────┤

1ð4 │ │ Operand-6 Adr. │

 └────────────────┴────────────────┘

The parameter list used for function code 17 has
the following format:

Parameter List for Function Code 17

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ Operand-1 Replacement Value │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ │

 ├─────────────────────────────────┤

 48 │ │

 ├─────────────────────────────────┤

 56 │ Operand 3 │

 ├────────────────┬────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 ├────────────────┴────────────────┤

 8ð │ │

 ├─────────────────────────────────┤

 88 │ Operand 5 │

 ├────────────────┬────────────────┤

 96 │ │ Operand-6 ALET │

 ├────────────────┼────────────────┤

1ð4 │ │ Operand-6 Adr. │

 └────────────────┴────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, the fifth
operand is stored at the sixth-operand location,
and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.
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Function Codes 20 and 21 (Compare and Swap
and Triple Store)

The locations of the operands and addresses
used by the instruction are as shown in
Figure 7-15 on page 7-71.

The parameter list used for function code 20 has
the following format:

Parameter List for Function Code 2ð

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

 8 │ │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ │

 ├─────────────────────────────────┤

 48 │ │

 ├────────────────┬────────────────┤

 56 │ │ Operand 3 │

 ├────────────────┼────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 ├────────────────┴────────────────┤

 8ð │ │

 ├────────────────┬────────────────┤

 88 │ │ Operand 5 │

 ├────────────────┼────────────────┤

 96 │ │ Operand-6 ALET │

 ├────────────────┼────────────────┤

1ð4 │ │ Operand-6 Adr. │

 ├────────────────┴────────────────┤

112 │ │

 ├────────────────┬────────────────┤

12ð │ │ Operand 7 │

 ├────────────────┼────────────────┤

128 │ │ Operand-8 ALET │

 ├────────────────┼────────────────┤

136 │ │ Operand-8 Adr. │

 └────────────────┴────────────────┘

The parameter list used for function code 21 has
the following format:

Parameter List for Function Code 21

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

8 │ Operand-1 Comparison Value │

 ├─────────────────────────────────┤

 16 │ │

 ├─────────────────────────────────┤

 24 │ Operand-1 Replacement Value │

 ├─────────────────────────────────┤

 32 │ │

 ├─────────────────────────────────┤

 4ð │ │

 ├─────────────────────────────────┤

 48 │ │

 ├─────────────────────────────────┤

 56 │ Operand 3 │

 ├────────────────┬────────────────┤

 64 │ │ Operand-4 ALET │

 ├────────────────┼────────────────┤

 72 │ │ Operand-4 Adr. │

 ├────────────────┴────────────────┤

 8ð │ │

 ├─────────────────────────────────┤

 88 │ Operand 5 │

 ├────────────────┬────────────────┤

 96 │ │ Operand-6 ALET │

 ├────────────────┼────────────────┤

1ð4 │ │ Operand-6 Adr. │

 ├────────────────┴────────────────┤

112 │ │

 ├─────────────────────────────────┤

12ð │ Operand 7 │

 ├────────────────┬────────────────┤

128 │ │ Operand-8 ALET │

 ├────────────────┼────────────────┤

136 │ │ Operand-8 Adr. │

 └────────────────┴────────────────┘

The first-operand comparison value is compared
to the second operand. When the first-operand
comparison value is equal to the second operand,
the first-operand replacement value is stored at
the second-operand location, the third operand is
stored at the fourth-operand location, the fifth
operand is stored at the sixth-operand location,
the seventh operand is stored at the eighth-
operand location, and condition code 0 is set.

When the first-operand comparison value is not
equal to the second operand, the first-operand
comparison value is replaced by the second
operand, and condition code 1 is set.
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Locking

A lock is obtained at the beginning of the opera-
tion and released at the end of the operation. The
lock obtained is represented by a program lock
token (PLT) whose logical address is specified in
general register 1 as already described.

A PLT is a value produced by a model-dependent
transformation of the PLT logical address.
Depending on the model, the PLT may be derived
directly from the PLT logical address or, when
DAT is on, from the real address that results from
transformation of the PLT logical address by DAT.
If DAT is used, access-register translation (ART)
precedes DAT in the access-register mode.

A PLT selects one of a model-dependent number
of locks within the configuration. Programs being
executed by different CPUs can be assured of
specifying the same lock only by specifying PLT
logical addresses that are the same and that can
be transformed to the same real address by the
different CPUs.

Since a model may or may not use ART and DAT
when forming a PLT, access-exception conditions
that can be encountered during ART and DAT
may or may not be recognized as exceptions.
There is no accessing of a location designated by
a PLT, but an addressing exception may be
recognized for the location. A protection excep-
tion is not recognized for any reason during proc-
essing of a PLT logical address.

The CPU can hold one lock at a time.

When PERFORM LOCKED OPERATION is exe-
cuted by this CPU and is to use a lock that is
already held by another CPU due to the execution
of a PERFORM LOCKED OPERATION instruction
by the other CPU, the execution by this CPU is
delayed until the lock is no longer held. An exces-
sive delay can be caused only by a machine mal-
function and is a machine-check condition.

The order in which multiple requests for the same
lock are satisfied is undefined.

A nonrecoverable failure of a CPU while holding a
lock may result in a machine check, entry into the
check-stop state, or system check stop. The
machine check is processing backup if all oper-

ands are undamaged or processing damage if
register operands are damaged. If a machine
check or the check-stop state is the result, either
no storage operands have been changed or else
all storage operands that were due to be changed
have been correctly changed, and, in either case,
the lock has been released. If the storage oper-
ands are not in either their correct original or final
state, the result is system check stop.

Storage-Operand References

The accesses to the even-numbered storage oper-
ands are block concurrent, which is word concur-
rent for function codes that are a multiple of 4 or
doubleword concurrent for function codes that are
one more than a multiple of 4. The accesses to
the doublewords in the parameter list are
doubleword concurrent regardless of the function
code.

As observed by other CPUs, all storage operands
may be tested for access exceptions before a lock
is obtained. (A channel program cannot observe
a lock.)

As observed by other CPUs, in all operations
except the compare-and-swap operation (which
does not have a fourth operand), the fourth
operand is accessed while the lock is held only if
a comparison of the first-operand comparison
value to the second operand while the lock is held
has indicated equality. In these operations, the
fourth operand is accessed before the lock is held
only if a comparison of the first-operand compar-
ison value to the second operand has indicated
equality and only if, when DAT is on, an INVALI-
DATE PAGE TABLE ENTRY instruction executed
by another CPU after the fetch of the second
operand will not be the cause of a page-
translation exception recognized for the fourth
operand, which it will if it sets to one the page-
invalid bit in the page-table entry for the fourth
operand when this CPU does not have a TLB
entry corresponding to that page-table entry. In
the compare-and-swap-and-double-store and
compare-and-swap-and-triple-store operations, the
sixth operand, and also the eighth operand in the
triple-store operation, are treated the same as the
fourth operand described above. The reason for
this specification about INVALIDATE PAGE
TABLE ENTRY is given in programming note 6 on
page 7-78.
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When a comparison is made between an operand
comparison value and an operand before the lock
is obtained and indicates inequality, the lock still is
obtained. The condition code is set only as a
result of a comparison made while the lock is
held. When condition code 1 or 2 is set, the first-
operand comparison value or third-operand com-
parison value is replaced only by means of a fetch
of the second operand or fourth operand, respec-
tively, made while the lock is held, as observed by
other CPUs.

In those cases when a store is performed to the
second-operand location and one or more of the
fourth-, sixth-, and eighth-operand locations, the
store to the second-operand location is always
performed last, as observed by other CPUs and
by channel programs.

Stores into the parameter list may be performed
while the lock is held or after it has been released.

A serialization operation is performed immediately
after the lock is obtained and again immediately
before it is released. However, values fetched
from the parameter list before the lock is obtained
are not necessarily refetched. A serialization
operation is not performed if the test bit, bit 23 of
general register 0, is one.

Access exceptions may be recognized for
parameter-list locations even when the locations
are not required in the operation. The locations
are those beginning at offset 0 and extending up
through the last location defined for the function
code used.

For the compare-and-load and compare-and-swap
operations, the operation is suppressed on all
addressing and protection exceptions.

When a nonrecoverable failure of a CPU while
holding a lock results in a machine check or entry
into the check-stop state, either no storage oper-
ands have been changed or else all storage oper-
ands that were due to be changed have been
correctly changed. The latter may be accom-
plished by repeating stores that were performed
successfully before the failure. Therefore, there
may be two single-access store references (pos-
sibly the store part of an update reference and
then a store reference) to the store-type operands,
with the first value stored equal to the second
value stored.

Resulting Condition Code:  

When test bit is zero:

0 All comparisons equal; replacement value or
values stored or loaded

1 First-operand comparison not equal; first-
operand comparison value replaced

2 -- (all operations except double compare and
swap)

2 First-operand comparison equal but third-
operand comparison not equal; third-operand
comparison value replaced (double compare
and swap)

3 --

When test bit is one:

0 Function code valid
1 --
2 --
3 Function code invalid

 Program Exceptions:

� Access (for all function codes, fetch, except
addressing and protection for PLT location,
program lock token, model dependent; for all
function codes, fetch and store, operand 2; for
function codes 1, 5, 9, 13, 17, and 21, fetch
and store, parameter list; for function codes
16 and 20, fetch, parameter list; for function
codes 0 and 1, fetch, operand 4; for function
codes 8 and 9, fetch and store, operand 4; for
function codes 12, 13, 16, 17, 20, and 21,
store, operand 4; for function codes 16, 17,
20, and 21, store, operand 6; for function
codes 20 and 21, store, operand 8)

� Operation (if the perform-locked-operation
facility is not installed)

 � Specification

Programming Notes:

1. An example of the use of the PERFORM
LOCKED OPERATION instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. When the contents of storage locations are
changed by PERFORM LOCKED OPERA-
TION instructions that are executed concur-
rently by different CPUs and that use the
same lock, the changes to operands not in the
parameter list will be completed by one of the
CPUs before they are begun by the other
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CPU, depending on which CPU first obtains
the lock.

3. The compare-and-swap functions of
PERFORM LOCKED OPERATION are not
performed by means of interlocked-update ref-
erences. Concurrent store references by
another CPU to the storage operands, even if
they are interlocked-update references, will
interfere unpredictably, in terms of the
resulting register and storage contents, with
the intended operation of PERFORM
LOCKED OPERATION. All changes to the
contents of the storage locations must be
made by PERFORM LOCKED OPERATION
instructions that use the same lock, if predict-
able storage results are to be obtained.

4. Because a nonrecoverable failure of a CPU
while executing PERFORM LOCKED OPERA-
TION may cause two stores of the same value
to a store-type operand, a concurrent store
made by another CPU to the same operand
but not by executing PERFORM LOCKED
OPERATION may be lost.

5. When programs in different address spaces
are using the same lock when DAT is on, the
programs must ensure that they are using
PLT logical addresses that are the same and
that will be translated to the same real
address regardless of the address space in
which a translation occurs. Otherwise, the
programs may in fact use different locks.

6. The section “Storage-Operand References” on
page 7-76 contains a specification concerning
the INVALIDATE PAGE TABLE ENTRY
(IPTE) instruction. The need for the specifica-
tion is shown by the following example that is
possible without the specification.

a. CPU 1 begins to execute a PERFORM
LOCKED OPERATION instruction with
function code 8, which is referred to as
PLO.DCS. Operand 2 is a location, Qtail,
containing the address (the first-operand
comparison value) of the last element,
element X, on a queue, and operand 4 is
a location in that element containing the
address (0, the third-operand comparison
value) of the next (nonexisting) element
on the queue. The purpose of the PLO
instruction is to enqueue an element by
placing the address of the element (the
first-operand and third-operand replace-

ment values) in both operand 2 and
operand 4. With the lock not held, the
PLO instruction fetches operand 2 and
compares it, with an equal result, to the
first-operand comparison value.

b. CPU 2 completely executes a PLO.DCS
instruction to dequeue element X, which is
the only element on the queue, from the
queue. The PLO instruction stores 0 in
Qtail and also in Qhead, which is a
location containing the address of the first
element on the queue. The program on
CPU 2 processes the dequeued element
and then invokes the freemain service of
the control program to deallocate the
storage containing the element. The
freemain service uses IPTE to set the
page-invalid bit to one in the page-table
entry for the page containing element X.
The IPTE instruction immediately sets the
page-invalid bit to one, and then it waits
for the signal that all other CPUs have
cleared their TLBs of entries corre-
sponding to the page.

c. CPU 1 attempts to fetch operand 4. CPU
1 does not have a TLB entry for the
operand-4 page. CPU 1 signals CPU 2
that the CPU 2 IPTE instruction may
proceed.

d. CPU 2 completes its IPTE instruction.
The program on CPU 2 sets a software bit
in the page-table entry to one to indicate
that the page has been freemained and
that, therefore, a reference to the page
should result in presentation by the control
program of an addressing exception to the
program making the reference.

e. CPU 1 attempts to do DAT for operand 4
and sees that the page-invalid bit is one.
CPU 1 performs a program interruption
indicating a page-translation exception.
The exception handler sees that the soft-
ware bit indicating freemained is one, and
it presents an addressing exception to the
CPU 1 program, which causes an abend
of the program.

If CPU 1 had had a TLB entry for the page, its
PLO instruction would not have been inter-
rupted, and the comparison of the first-
operand comparison value to the second
operand while the lock was held would indi-
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cate that CPU 2 had changed the second
operand. The PLO instruction would set con-
dition code 1. If CPU 1 did not have a TLB
entry but IPTE could not set the page-invalid
bit to one while CPU 1 was executing an
instruction, CPU 1 could successfully translate
the operand-4 address and, again, discover

while the lock was held that operand 2 had
changed. The case when operand 2 points to
element X but the freemained bit for the
element-X page is one is a programming
error.

7. Figure 7-16 summarizes the results of the
operation.

┌────────┬────────┬────┬───────────────────────────────────────────────┐

│ │ │Cond│ │

│Op1c=Op2│Op3c=Op4│Code│ Action │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes ð and 1 (Compare and Load) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ - │ ð │ Op4 ──5 Op3 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes 4 and 5 (Compare and Swap) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ - │ ð │ Op1r ──5 Op2 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes 8 and 9 (Double Compare and Swap) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ No │ 2 │ Op4 ──5 Op3c │

│ Yes │ Yes │ ð │ Op1r ──5 Op2 Op3r ──5 Op4 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes 12 and 13 (Compare and Swap and Store) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ - │ ð │ Op1r ──5 Op2 Op3 ──5 Op4 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes 16 and 17 (Compare and Swap and Double Store) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ - │ ð │ Op1r ──5 Op2 Op3 ──5 Op4 │

│ │ │ │ Op5 ──5 Op6 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│ Function Codes 2ð and 21 (Compare and Swap and Triple Store) │

│ │

│ No │ - │ 1 │ Op2 ──5 Op1c │

│ Yes │ - │ ð │ Op1r ──5 Op2 Op3 ──5 Op4 │

│ │ │ │ Op5 ──5 Op6 │

│ │ │ │ Op7 ──5 Op8 │

├────────┴────────┴────┴───────────────────────────────────────────────┤

│Explanation: │

│ │

│ - Not applicable. │

│ OpNc Operand-N comparison value. │

│ OpNr Operand-N replacement value. │

└──────────────────────────────────────────────────────────────────────┘

Figure 7-16. Summary of PERFORM LOCKED OPERATION Results

 SEARCH STRING SRST R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B25E' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31
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The second operand is searched until a specified
character is found, the end of the second operand
is reached, or a CPU-determined number of bytes
have been searched, whichever occurs first. The
CPU-determined number is at least 256. The
result is indicated in the condition code.

Bits 16-23 of the instruction are ignored.

The location of the leftmost byte of the second
operand is designated by the contents of general
register R². The location of the first byte after the
second operand is designated by the contents of
general register R±.

The handling of the addresses in general registers
R± and R² is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers R± and R² con-
stitute the address, and the contents of bit posi-
tions 0-7 are ignored. In the 31-bit addressing
mode, the contents of bit positions 1-31 of general
register R± and R² constitute the address, and the
contents of bit position 0 are ignored.

In the access-register mode, the address space
containing the second operand is specified only by
means of access register R². The contents of
access register R± are ignored.

The character for which the search occurs is spec-
ified in bit positions 24-31 of general register 0.
Bit positions 0-23 of general register 0 are
reserved for possible future extensions and must
contain all zeros; otherwise, a specification excep-
tion is recognized.

The operation proceeds left to right and ends as
soon as the specified character has been found in
the second operand, the address of the next
second-operand byte to be examined equals the
address in general register R±, or a
CPU-determined number of second-operand bytes
have been examined, whichever occurs first. The
CPU-determined number is at least 256. When
the specified character is found, condition code 1
is set. When the address of the next second-
operand byte to be examined equals the address
in general register R±, condition code 2 is set.
When a CPU-determined number of second-
operand bytes have been examined, condition

code 3 is set. When the CPU-determined number
of second-operand bytes have been examined
and the address of the next second-operand byte
is in general register R±, it is unpredictable
whether condition code 2 or 3 is set.

When condition code 1 is set, the address of the
specified character found in the second operand is
placed in general register R±, and the contents of
general register R² remain unchanged. When
condition code 3 is set, the address of the next
byte to be processed in the second operand is
placed in general register R², and the contents of
general register R± remain unchanged. When
condition code 2 is set, the contents of general
registers R± and R² remain unchanged. When-
ever an address is placed in a general register,
bits 0-7 of the register, in the 24-bit mode, or bit 0,
in the 31-bit mode, are set to zeros.

The amount of processing that results in the
setting of condition code 3 is determined by the
CPU on the basis of improving system perform-
ance, and it may be a different amount each time
the instruction is executed.

Access exceptions for the second operand are
recognized only for that portion of the operand
that is necessarily examined.

The storage-operand-consistency rules are the
same as for the COMPARE LOGICAL LONG
instruction.

Resulting Condition Code:  

0 --
1 Specified character found; general register R±

updated with address of character; general
register R² unchanged

2 Specified character not found in entire second
operand; general registers R± and R²

unchanged
3 CPU-determined number of bytes searched;

general register R± unchanged; general reg-
ister R² updated with address of next byte

 Program Exceptions: 

� Access (fetch, operand 2)
� Operation (if the string-instruction facility is not

installed)
 � Specification
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Programming Notes:

1. Examples of the use of the SEARCH STRING
instruction are given in Appendix A, “Number
Representation and Instruction-Use Examples”

2. When condition code 3 is set, the program
can simply branch back to the instruction to
continue the search. The program need not
determine the number of bytes that were
searched.

3. When the address in general register R±

equals the address in general register R²,
condition code 2 is set immediately, and
access exceptions are not recognized. When
the address in general register R± is less than
the address in general register R², condition
code 2 can be set only if the operand wraps
around from the top of storage to location 0.

4. R± or R² may be zero, in which case general
register 0 is treated as containing an address
and also the specified character.

5. When it is desired to search a string of
unknown length for its ending character, and
assuming that (1) the string does not start
below location 256 (or below location 1 if the
ending character is 00 hex), (2) the string
does not wrap around to location 0, and (3)
the specified character in general register 0
need not be preserved, then R± can be zero
in order to have SEARCH STRING use only
two general registers instead of three.

 SET ACCESS

SAR R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24E' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of general register R² are placed in
access register R±.

Bits 16-23 of the instruction are ignored.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

SET PROGRAM MASK

SPM R± [RR]

┌────────┬────┬────┐

│ 'ð4' │ R± │////│

└────────┴────┴────┘

ð 8 12 15

The first operand is used to set the condition code
and the program mask of the current PSW.

Bits 12-15 of the instruction are ignored.

Bits 2 and 3 of general register R± replace the
condition code, and bits 4-7 replace the program
mask. Bits 0, 1, and 8-31 of general register R±

are ignored.

Condition Code:  The code is set as specified by
bits 2 and 3 of general register R±.

 Program Exceptions: None.

Programming Notes:

1. Bits 2-7 of the general register may have been
loaded from the PSW by execution of
BRANCH AND LINK in the 24-bit addressing
mode or by execution of INSERT PROGRAM
MASK in either the 24-bit or 31-bit addressing
mode.

2. SET PROGRAM MASK permits setting of the
condition code and the mask bits in either the
problem state or the supervisor state.

3. The program should take into consideration
that the setting of the program mask can have
a significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding inter-
ruptions occur, but the exponent-underflow
and significance masks also determine the
result which is obtained.

SHIFT LEFT DOUBLE

SLDA R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8F' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31
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The 63-bit numeric part of the signed first operand
is shifted left the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location.

Bits 12-15 of the instruction are ignored.

The R± field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even-
numbered register remains unchanged. The left-
most bit position of the odd-numbered register
contains a numeric bit, which participates in the
shift in the same manner as the other numeric
bits. Zeros are supplied to the vacated bit posi-
tions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even-numbered register,
an overflow occurs, and condition code 3 is set. If
the fixed-point-overflow mask bit is one, a program
interruption for fixed-point overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

 � Fixed-point overflow
 � Specification

Programming Notes:

1. An example of the use of the SHIFT LEFT
DOUBLE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The eight shift instructions provide the fol-
lowing three pairs of alternatives: left or right,
single or double, and signed or logical. The

signed shifts differ from the logical shifts in
that, in the signed shifts, overflow is recog-
nized, the condition code is set, and the left-
most bit participates as a sign.

3. A zero shift amount in the two signed double-
shift operations provides a double-length sign
and magnitude test.

4. The base register participating in the gener-
ation of the second-operand address permits
indirect specification of the shift amount by
means of placement of the shift amount in the
base register. A zero in the B² field indicates
the absence of indirect shift specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8D' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 64-bit first operand is shifted left the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location.

Bits 12-15 of the instruction are ignored.

The R± field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 of the even-
numbered register are not inspected and are lost.
Zeros are supplied to the vacated bit positions on
the right.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Specification
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SHIFT LEFT SINGLE

SLA R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8B' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 31-bit numeric part of the signed first operand
is shifted left the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are
supplied to the vacated bit positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs, and con-
dition code 3 is set. If the fixed-point-overflow
mask bit is one, a program interruption for fixed-
point overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

 � Fixed-point overflow

Programming Notes:

1. An example of the use of the SHIFT LEFT
SINGLE instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. For numbers with a value greater than or
equal to -2óð and less than 2óð, a left shift of
one bit position is equivalent to multiplying the
number by 2.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

SHIFT LEFT SINGLE LOGICAL

SLL R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '89' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 32-bit first operand is shifted left the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 are not
inspected and are lost. Zeros are supplied to the
vacated bit positions on the right.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

SHIFT RIGHT DOUBLE

SRDA R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8E' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 63-bit numeric part of the signed first operand
is shifted right the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location.

Bits 12-15 of the instruction are ignored.

The R± field designates an even-odd pair of
general registers and must designate an even-
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numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even-
numbered register remains unchanged. The left-
most bit position of the odd-numbered register
contains a numeric bit, which participates in the
shift in the same manner as the other numeric
bits. Bits shifted out of bit position 31 of the odd-
numbered register are not inspected and are lost.
Bits equal to the sign are supplied to the vacated
bit positions on the left.

Resulting Condition Code:  

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: 

 � Specification

SHIFT RIGHT DOUBLE LOGICAL

SRDL R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8C' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 64-bit first operand is shifted right the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location.

Bits 12-15 of the instruction are ignored.

The R± field designates an even-odd pair of
general registers and must designate an even-
numbered register; otherwise, a specification
exception is recognized.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the odd-
numbered register are not inspected and are lost.
Zeros are supplied to the vacated bit positions on
the left.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Specification

SHIFT RIGHT SINGLE

SRA R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '8A' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 31-bit numeric part of the signed first operand
is shifted right the number of bits specified by the
second-operand address, and the result is placed
at the first-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated bit positions on the left.

Resulting Condition Code:  

0 Result zero
1 Result less than zero
2 Result greater than zero
3 --
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 Program Exceptions: None.

Programming Notes:

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When
an even number is shifted right one position,
the result is equivalent to dividing the number
by 2. When an odd number is shifted right
one position, the result is equivalent to
dividing the next lower number by 2. For
example, +5 shifted right by one bit position
yields +2, whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -1 or zero, depending on
whether or not the initial contents were nega-
tive.

SHIFT RIGHT SINGLE LOGICAL

SRL R±,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '88' │ R± │////│ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The 32-bit first operand is shifted right the number
of bits specified by the second-operand address,
and the result is placed at the first-operand
location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its rightmost six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated bit positions on the left.

Condition Code:  The code remains unchanged.

 Program Exceptions: None.

 STORE

ST R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5ð' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The first operand is placed unchanged at the
second-operand location.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)

STORE ACCESS MULTIPLE

STAM R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '9B' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The contents of the set of access registers starting
with access register R± and ending with access
register R³ are stored at the locations designated
by the second-operand address.

The storage area where the contents of the
access registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of access registers specified. The con-
tents of the access registers are stored in
ascending order of their register numbers, starting
with access register R± and continuing up to and
including access register R³, with access register
0 following access register 15. The contents of
the access registers remain unchanged.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Specification
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 STORE CHARACTER

STC R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '42' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Bits 24-31 of general register R± are placed
unchanged at the second-operand location. The
second operand is one byte in length.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)

STORE CHARACTERS UNDER
MASK

STCM R±,M³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'BE' │ R± │ M³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Bytes selected from general register R± under
control of a mask are placed at contiguous byte
locations beginning at the second-operand
address.

The contents of the M³ field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general
register R±. The bytes corresponding to ones in
the mask are placed in the same order at succes-
sive and contiguous storage locations beginning at
the second-operand address. When the mask is
not zero, the length of the second operand is
equal to the number of ones in the mask. The
contents of the general register remain
unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized
only for the number of bytes specified by the
mask.

When the mask is zero, the single byte designated
by the second-operand address remains
unchanged; however, on some models, the value
may be fetched and subsequently stored back
unchanged at the same storage location. This
update appears to be an interlocked-update refer-
ence as observed by other CPUs.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)

Programming Notes:

1. An example of the use of the STORE CHAR-
ACTERS UNDER MASK instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. STORE CHARACTERS UNDER MASK with a
mask of 0111 may be used to store a three-
byte address, for example, in modifying the
address in a CCW.

3. STORE CHARACTERS UNDER MASK with a
mask of 1111, 0011, or 0001 performs the
same function as STORE, STORE
HALFWORD, or STORE CHARACTER,
respectively. However, on most models, the
performance of STORE CHARACTERS
UNDER MASK is slower.

4. Using STORE CHARACTERS UNDER MASK
with a zero mask should be avoided since this
instruction, depending on the model, may
perform a fetch and store of the single byte
designated by the second-operand address.
This reference is not interlocked against
accesses by channel programs. In addition, it
may cause any of the following to occur for
the byte designated by the second-operand
address: a PER storage-alteration event may
be recognized; access exceptions may be
recognized; and, provided no access
exceptions exist, the change bit may be set to
one. Because the contents of storage remain
unchanged, the change bit may or may not be
one when a PER storage-alteration event is
recognized.
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 STORE CLOCK

STCK D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð5' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

| The current value of bits 0-63 of the TOD clock is
stored in the eight-byte field designated by the
second-operand address, provided the clock is in
the set, stopped, or not-set state.

| When the clock is stopped, zeros are stored in
| positions to the right of the rightmost bit position
| that is incremented when the clock is running.
| When the value of a running clock is stored,
| nonzero values may be stored in positions to the
| right of the rightmost incremented bit; this is to
| ensure that a unique value is stored.

Zeros are stored at the operand location when the
clock is in the error state or the not-operational
state.

The quality of the clock value stored by the
instruction is indicated by the resultant condition-
code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage.

Resulting Condition Code:  

0 Clock in set state
1 Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

 Program Exceptions: 

� Access (store, operand 2)

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; hence, for timing
applications involving human responses, the
leftmost clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in

elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock
was turned on. In this case, the value may be
used in elapsed-time measurements but is not
a valid time-of-day indication. Condition
codes 2 and 3 mean that the value provided
by STORE CLOCK cannot be used for time
measurement or indication.

3. If a problem program written for ESA/390 is to
be executed also on a system in the
System/370 mode, then the program should
take into account that, in the System/370
mode, the value stored when the condition
code is 2 is not necessarily zero.

| STORE CLOCK EXTENDED

| STCKE D²(B²) [S]

| ┌────────────────┬────┬────────────┐

| │ 'B278' │ B² │ D² │

| └────────────────┴────┴────────────┘

| ð 16 2ð 31

| The current value of bits 0-103 of the TOD clock
| is stored in byte positions 1-13 of the sixteen-byte
| field designated by the second-operand address,
| provided the clock is in the set, stopped, or not-set
| state. Zeros are stored in byte position 0. The
| TOD programmable field, bits 16-31 of the TOD
| programmable register, is stored in byte positions
| 14 and 15.

| The operand just described has the following
| format:

| ┌─────┬─────────────────────────────┬──────────┐

| │ │ │Programm- │

| │Zeros│ TOD Clock │able Field│

| └─────┴─────────────────────────────┴──────────┘

| ð 8 112 127

| When the clock is stopped, zeros are stored in the
| clock value in positions to the right of the right-
| most bit position that is incremented when the
| clock is running. The programmable field still is
| stored.

| When the value of a running clock is stored, the
| value in bit positions 64-103 of the clock (bit posi-
| tions 72-111 of the storage operand) is always
| nonzero; this ensures that values stored by
| STORE CLOCK EXTENDED are unique when
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| compared with values stored by STORE CLOCK
| and extended with zeros.

| Zeros are stored at the operand location when the
| clock is in the error state or the not-operational
| state.

| The quality of the clock value stored by the
| instruction is indicated by the resultant condition-
| code setting.

| A serialization function is performed before the
| value of the clock is fetched and again after the
| value is placed in storage.

| Resulting Condition Code:  

| 0 Clock in set state
| 1 Clock in not-set state
| 2 Clock in error state
| 3 Clock in stopped state or not-operational state

|  Program Exceptions: 

| � Access (store, operand 2)
| � Operation (if the extended-TOD-clock facility is
| not installed)

| Programming Notes:

| 1. Condition code 0 normally indicates that the
| clock has been set by the control program.
| Accordingly, the value may be used in
| elapsed-time measurements and as a valid
| time-of-day and calendar indication. Condition
| code 1 indicates that the clock value is the
| elapsed time since the power for the clock
| was turned on. In this case, the value may be
| used in elapsed-time measurements but is not
| a valid time-of-day indication. Condition
| codes 2 and 3 mean that the value provided
| by STORE CLOCK EXTENDED cannot be
| used for time measurement or indication.

| 2. Programming notes beginning on page 4-30
| show hex values related to the TOD clock as

| it is stored by the STORE CLOCK instruction.
| Notes 3-5, below, are repetitions of those
| notes except with the text and hex values
| adjusted so they apply to bits 0-71 of the
| value stored by STORE CLOCK EXTENDED.

| 3. The following chart shows the time interval
| between instants at which various bits of the
| TOD-clock value stored by STORE CLOCK
| EXTENDED are stepped. This time value
| may also be considered as the weighted time
| value that the bit, when one, represents. The
| bit numbers are those of the STORE CLOCK
| EXTENDED operand.

| ┌──────┬──────────────────────────┐

| │ │ Stepping Interval │

| │STCKE ├────┬─────┬────┬──────────┤

| │ Bit │Days│Hours│Min.│ Seconds │

| ├──────┼────┴─────┴────┴──────────┤

| │ 59 │ ð.ððð ðð1│

| │ 55 │ ð.ððð ð16│

| │ 51 │ ð.ððð 256│

| │ │ │

| │ 47 │ ð.ðð4 ð96│

| │ 43 │ ð.ð65 536│

| │ 39 │ 1.ð48 576│

| │ │ │

| │ 35 │ 16.777 216│

| │ 31 │ 4 28.435 456│

| │ 27 │ 1 11 34.967 296│

| │ │ │

| │ 23 │ 19 5 19.476 736│

| │ 19 │ 12 17 25 11.627 776│

| │ 15 │ 2ð3 14 43 6.ð44 416│

| │ 11 │3257 19 29 36.71ð 656│

| └──────┴──────────────────────────┘

| 4. The following chart shows the setting of bits
| 0-63 of the STORE CLOCK EXTENDED
| operand for 00:00:00 (0 am), UTC time, for
| several dates: January 1, 1900, January 1,
| 1972, and for that instant in time just after
| each of the 22 leap seconds that have
| occurred through January, 1999. Each of
| these leap seconds was inserted in the UTC
| time scale beginning at 23:59:60 UTC of the
| day previous to the one listed and ending at
| 00:00:00 UTC of the day listed.
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| ┌──────┬───┬───┬────┬─────────────────────┐

| │ │ │ │Leap│ STCKE Value (Hex) │

| │ Year │Mth│Day│Sec │ Bits ð-63 │

| ├──────┼───┼───┼────┼─────────────────────┤

| │ 19ðð │ 1 │ 1 │ │ ðððð ðððð ðððð ðððð │

| │ 1972 │ 1 │ 1 │ │ ðð81 26D6 ðE46 ðððð │

| │ 1972 │ 7 │ 1 │ 1 │ ðð82 ðBA9 811E 24ðð │

| │ 1973 │ 1 │ 1 │ 2 │ ðð82 F3ðð AEE2 48ðð │

| │ 1974 │ 1 │ 1 │ 3 │ ðð84 BDE9 7114 6Cðð │

| │ 1975 │ 1 │ 1 │ 4 │ ðð86 88D2 3346 9ððð │

| │ 1976 │ 1 │ 1 │ 5 │ ðð88 53BA F578 B4ðð │

| │ 1977 │ 1 │ 1 │ 6 │ ðð8A 1FE5 952ð D8ðð │

| │ 1978 │ 1 │ 1 │ 7 │ ðð8B EACE 5752 FCðð │

| │ 1979 │ 1 │ 1 │ 8 │ ðð8D B5B7 1985 2ððð │

| │ 198ð │ 1 │ 1 │ 9 │ ðð8F 8ð9F DBB7 44ðð │

| │ 1981 │ 7 │ 1 │ 1ð │ ðð92 3ð5C ðFCD 68ðð │

| │ 1982 │ 7 │ 1 │ 11 │ ðð93 FB44 D1FF 8Cðð │

| │ 1983 │ 7 │ 1 │ 12 │ ðð95 C62D 9431 Bððð │

| │ 1985 │ 7 │ 1 │ 13 │ ðð99 5D4ð F517 D4ðð │

| │ 1988 │ 1 │ 1 │ 14 │ ðð9D DA69 A557 F8ðð │

| │ 199ð │ 1 │ 1 │ 15 │ ððA1 717D ð63E 1Cðð │

| │ 1991 │ 1 │ 1 │ 16 │ ððA3 3C65 C87ð 4ððð │

| │ 1992 │ 7 │ 1 │ 17 │ ððA5 EC21 FC86 64ðð │

| │ 1993 │ 7 │ 1 │ 18 │ ððA7 B7ðA BEB8 88ðð │

| │ 1994 │ 7 │ 1 │ 19 │ ððA9 81F3 8ðEA ACðð │

| │ 1996 │ 1 │ 1 │ 2ð │ ððAC 3433 6FEC Dððð │

| │ 1997 │ 7 │ 1 │ 21 │ ððAE E3EF A4ð2 F4ðð │

| │ 1999 │ 1 │ 1 │ 22 │ ððB1 962F 93ð5 18ðð │

| └──────┴───┴───┴────┴─────────────────────┘

| 5. The stepping value of TOD-clock bit position
| 63, if implemented, is 2-ñò microseconds, or
| approximately 244 picoseconds. This value is
| called a clock unit.

| The following chart shows various time inter-
| vals in clock units expressed in hexadecimal
| notation. The chart shows the values stored
| in bit positions 0-71 of the STORE CLOCK
| EXTENDED operand. Bit 71 of the operand
| represents a clock unit.

| ┌─────────────┬──────────────────────┐

| │ │ Clock Units (Hex) │

| │ Interval │ Bits ð-71 │

| ├─────────────┼──────────────────────┤

| │1 microsecond│ ðð1ð ðð│

| │1 millisecond│ 3E8ð ðð│

| │1 second │ ððF4 24ðð ðð│

| │1 minute │ 3938 7ððð ðð│

| │1 hour │ ðððD 693A 4ððð ðð│

| │1 day │ ð141 DD76 ðððð ðð│

| │365 days │ððð1 CAE8 C13E ðððð ðð│

| │366 days │ððð1 CC2A 9EB4 ðððð ðð│

| │1,461 days\ │ððð7 2CE4 E26E ðððð ðð│

| ├─────────────┴──────────────────────┤

| │\ Number of days in four years, │

| │ including a leap year. Note that │

| │ the year 19ðð was not a leap year.│

| │ Thus, the four-year span starting │

| │ in 19ðð has only 1,46ð days. │

| └────────────────────────────────────┘

 STORE HALFWORD

STH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4ð' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Bits 16-31 of general register R± are placed
unchanged at the second-operand location. The
second operand is two bytes in length.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)

 STORE MULTIPLE

STM R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '9ð' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The contents of the set of general registers
starting with general register R± and ending with
general register R³ are placed in the storage area
beginning at the location designated by the
second-operand address and continuing through
as many locations as needed.

The general registers are stored in the ascending
order of register numbers, starting with general
register R± and continuing up to and including
general register R³, with general register 0 fol-
lowing general register 15.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)

Programming Note:  An example of the use of
the STORE MULTIPLE instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”
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 SUBTRACT

SR R±,R² [RR]

┌────────┬────┬────┐

│ '1B' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

S R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5B' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location. The operands and the differ-
ence are treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2 of S only)
 � Fixed-point overflow

Programming Notes:

1. When, in the RR format, R± and R² designate
the same register, subtracting is equivalent to
clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a
zero result and no overflow.

 SUBTRACT HALFWORD

SH R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '4B' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location. The second operand is two
bytes in length and is treated as a 16-bit signed
binary integer. The first operand and the differ-
ence are treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained
by allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2)
 � Fixed-point overflow

Programming Note:  The function of a SUB-
TRACT HALFWORD IMMEDIATE instruction,
which is an instruction not provided, can be
obtained by using an ADD HALFWORD IMME-
DIATE instruction with a negative I² field.

 SUBTRACT LOGICAL

SLR R±,R² [RR]

┌────────┬────┬────┐

│ '1F' │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

SL R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ '5F' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31
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The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location. The operands and the differ-
ence are treated as 32-bit unsigned binary
integers.

Resulting Condition Code:  

0 --
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

 Program Exceptions: 

� Access (fetch, operand 2 of SL only)

Programming Notes:

1. Logical subtraction is performed by adding the
one's complement of the second operand and
a value of one to the first operand. The use
of the one's complement and the value of one
instead of the two's complement of the second
operand results in a carry when the second
operand is zero.

2. SUBTRACT LOGICAL differs from SUB-
TRACT only in the meaning of the condition
code and in the absence of the interruption for
overflow.

3. A zero difference is always accompanied by a
carry out of bit position 0.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating

| the presence or absence of a borrow, as
follows:

1 Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

 SUPERVISOR CALL

SVC I [RR]

┌────────┬────────┐

│ 'ðA' │ I │

└────────┴────────┘

ð 8 15

The instruction causes a supervisor-call inter-
ruption, with the I field of the instruction providing
the rightmost byte of the interruption code.

Bits 8-15 of the instruction, with eight zeros
appended on the left, are placed in the supervisor-
call interruption code that is stored in the course
of the interruption. See “Supervisor-Call
Interruption” on page 6-45.

A serialization and checkpoint-synchronization
function is performed.

Condition Code:  The code remains unchanged
and is saved as part of the old PSW. A new con-
dition code is loaded as part of the supervisor-call
interruption.

 Program Exceptions: None.

TEST AND SET

TS D²(B²) [S]

┌────────┬────────┬────┬────────────┐

│ '93' │////////│ B² │ D² │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

The leftmost bit (bit 0) of the byte located at the
second-operand address is used to set the condi-
tion code, and then the byte is set to all ones.

Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit 0. This update
appears to be an interlocked-update reference as
observed by other CPUs.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones.

Resulting Condition Code:  

0 Leftmost bit zero
1 Leftmost bit one
2 --
3 --

 Program Exceptions: 

� Access (fetch and store, operand 2)
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Programming Notes:

1. TEST AND SET may be used for controlled
sharing of a common storage area by pro-
grams operating on different CPUs. This
instruction is provided primarily for compat-
ibility with programs written for System/360.
The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP provide
functions which are more suitable for sharing
among programs on a single CPU or for pro-
grams that may be interrupted. See the
description of these instructions and the asso-
ciated programming notes for details.

2. TEST AND SET does not interlock against
storage accesses by channel programs.
Therefore, the instruction should not be used
to update a location into which a channel
program may store, since the channel-
program data may be lost.

TEST UNDER MASK

TM D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ '91' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

The byte of immediate data, I², is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit is
to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set. Condi-
tion code 0 is also set when the mask is all zeros.
When the selected bits are all ones, condition
code 3 is set; otherwise, condition code 1 is set.

Access exceptions associated with the storage
operand are recognized for one byte even when
the mask is all zeros.

Resulting Condition Code:  

0 Selected bits all zeros; or mask bits all zeros
1 Selected bits mixed zeros and ones

2 --
3 Selected bits all ones

 Program Exceptions: 

� Access (fetch, operand 1)

Programming Note:  An example of the use of
the TEST UNDER MASK instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

TEST UNDER MASK HIGH

TMH R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'ð' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

TEST UNDER MASK LOW

TML R±,I² [RI]

┌────────┬────┬────┬────────────────┐

│ 'A7' │ R± │'1' │ I² │

└────────┴────┴────┴────────────────┘

ð 8 12 16 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

The contents of the I² field are used as a 16-bit
mask. The bits of the mask are made to corre-
spond one for one with 16 bits of the first operand.
For TEST UNDER MASK HIGH, the mask is
made to correspond with bits 0-15 of the first
operand. For TEST UNDER MASK LOW, the
mask is made to correspond with bits 16-31 of the
first operand.

A mask bit of one indicates that the first-operand
bit is to be tested. When the mask bit is zero, the
first-operand bit is ignored. When all first-operand
bits thus selected are zero, condition code 0 is
set. Condition code 0 is also set when the mask
is all zeros. When the selected bits are mixed
zeros and ones, condition code 1 is set if the left-
most selected bit is zero, or condition code 2 is
set if the leftmost selected bit is one. When the
selected bits are all ones, condition code 3 is set.

Resulting Condition Code:  

0 Selected bits all zeros; or mask bits all zeros

7-92 ESA/390 Principles of Operation  



  General Instructions
 

1 Selected bits mixed zeros and ones, and left-
most is zero

2 Selected bits mixed zeros and ones, and left-
most is one

3 Selected bits all ones

 Program Exceptions: 

� Operation (if the immediate-and-relative-
instruction facility is not installed)

Programming Note:  When the mask selects
exactly two bits, the two selected bits effectively
are loaded into the condition code.

 TRANSLATE

TR D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'DC' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The bytes of the first operand are used as
eight-bit arguments to reference a list designated
by the second-operand address. Each function
byte selected from the list replaces the corre-
sponding argument in the first operand.

The L field specifies the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial second-
operand address. The addition is performed fol-
lowing the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with zeros on the left.
The sum is used as the address of the function
byte, which then replaces the original argument
byte.

The operation proceeds until the first-operand field
is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is obtained
as if each result byte were stored immediately
after fetching the corresponding function byte.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the TRANSLATE
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. TRANSLATE may be used to convert data
from one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of TRANS-
LATE, and by designating the data that is to
be rearranged as the second operand. Each
byte of the pattern contains an eight-bit
number specifying the byte destined for this
position. Thus, when the instruction is exe-
cuted, the pattern selects the bytes of the
second operand in the desired order.

4. Because each eight-bit argument byte is
added to the initial second-operand address to
obtain the address of a function byte, the list
may contain 256 bytes. In cases where it is
known that not all eight-bit argument values
will occur, it is possible to reduce the size of
the list.

5. Significant performance degradation is pos-
sible when, with DAT on, the second-operand
address of TRANSLATE designates a location
that is less than 256 bytes to the left of a
4K-byte boundary. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary.

6. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a
channel program may also be updating the
location. An example of this effect is shown
for OR (OI) in “Multiprogramming and Multi-
processing Examples” in Appendix A,
“Number Representation and Instruction-Use
Examples” on page A-1.
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7. The storage-operand references of TRANS-
LATE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-83.)

TRANSLATE AND TEST

TRT D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'DD' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The bytes of the first operand are used as
eight-bit arguments to select function bytes from a
list designated by the second-operand address.
The first nonzero function byte is inserted in
general register 2, and the related argument
address in general register 1.

The L field specifies the length of only the first
operand.

The bytes of the first operand are selected one by
one for translation, proceeding from left to right.
The first operand remains unchanged in storage.
Calculation of the address of the function byte is
performed as in the TRANSLATE instruction. The
function byte retrieved from the list is inspected for
a value of zero.

When the function byte is zero, the operation pro-
ceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the opera-
tion is completed by setting condition code 0. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the operation
is completed by inserting the function byte in
general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 24-31 of general register 2, and
bits 0-23 of this register remain unchanged. In the
24-bit addressing mode, the address replaces bits
8-31 of general register 1, and bits 0-7 of this reg-
ister remain unchanged. In the 31-bit addressing
mode, the address replaces bits 1-31 of general
register 1, and bit 0 of this register is set to zero.

When the function byte is nonzero, either condi-
tion code 1 or 2 is set, depending on whether the
argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condi-
tion code 2 is set if no more argument bytes
remain.

The contents of access register 1 always remain
unchanged.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized
for those bytes in the first operand which are to
the right of the first byte for which a nonzero func-
tion byte is obtained.

Resulting Condition Code:  

0 All function bytes zero
1 Nonzero function byte; first-operand field not

exhausted
2 Nonzero function byte; first-operand field

exhausted
3 --

 Program Exceptions: 

� Access (fetch, operands 1 and 2)

Programming Notes:

1. An example of the use of the TRANSLATE
AND TEST instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. TRANSLATE AND TEST may be used to
scan the first operand for characters with
special meaning. The second operand, or list,
is set up with all-zero function bytes for those
characters to be skipped over and with
nonzero function bytes for the characters to
be detected.

|  TRANSLATE EXTENDED

| TRE R±,R² [RRE]

| ┌────────────────┬────────┬────┬────┐

| │ 'B2A5' │////////│ R± │ R² │

| └────────────────┴────────┴────┴────┘

| ð 16 24 28 31

| The bytes of the first operand are compared to a
| test byte in general register 0 and, unless an
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| equal comparison occurs, are used as eight-bit
| arguments to reference a 256-byte translation
| table designated by the second-operand address.
| Each function byte selected from the second
| operand replaces the corresponding argument in
| the first operand. The operation proceeds until a
| first-operand byte equal to the test byte is
| encountered, the end of the first operand is
| reached, or a CPU-determined number of bytes
| have been processed, whichever occurs first. The
| result is indicated in the condition code.

| Bits 16-23 of the instruction are ignored.

| The R± field designates an even-odd pair of
| general registers and must designate an even-
| numbered register; otherwise, a specification
| exception is recognized.

| The location of the leftmost byte of the first
| operand and the second operand is designated by
| the contents of general registers R± and R²,
| respectively. The number of bytes in the first
| operand location is specified by bits 0-31 of
| general register R± + 1. The contents of general
| register R± + 1 are treated as a 32-bit unsigned
| binary integer.

| The handling of the addresses in general registers
| R± and R² is dependent on the addressing mode.

| In the 24-bit addressing mode, the contents of bit
| positions 8-31 of general registers R± and R² con-
| stitute the address, and the contents of bit posi-
| tions 0-7 are ignored. In the 31-bit addressing
| mode, the contents of bit positions 1-31 of the reg-
| isters constitute the address, and the contents of
| bit position 0 are ignored.

| The test byte is in bit positions 24-31 of general
| register 0, and the contents of bit positions 0-23 of
| this register are ignored.

| The contents of the registers just described are
| shown in Figure 7-17 on page 7-96.

| The bytes of the first operand are selected one by
| one for translation, proceeding left to right. Each
| argument byte is first compared to the test byte in
| general register 0. If the result is an equal com-
| parison, the operation is completed. If the argu-
| ment byte is not equal to the test byte, the
| argument byte is added to the initial second-
| operand address. The addition is performed fol-

| lowing the rules for address arithmetic, with the
| argument byte treated as an eight-bit unsigned
| binary integer and extended with zeros on the left.
| The sum is used as the address of the function
| byte, which then replaces the original argument
| byte. The second operand is not altered unless
| an overlap occurs.

| The operation proceeds until a first-operand byte
| equal to the test byte is encountered, the first-
| operand location is exhausted, or a
| CPU-determined number of first-operand bytes
| have been processed.

| When a first-operand byte equal to the test byte is
| encountered, condition code 1 is set. When the
| first-operand location is exhausted without finding
| a byte equal to the test byte, condition code 0 is
| set. When a CPU-determined number of bytes
| have been processed, condition code 3 is set.
| Condition code 3 may be set even when the next
| byte to be processed is equal to the test byte or
| when the first-operand location is exhausted. In
| these cases, condition code 1 or 0, respectively,
| will be set when the instruction is executed again.

| If the operation is completed with condition code
| 0, the contents of general registers R± are incre-
| mented by the contents of general register R± + 1
| and then general register R± + 1 is set to zero. If
| the operation is completed with condition code 1,
| the contents of general register R± + 1 are decre-
| mented by the number of bytes processed before
| the first-operand byte equal to the test byte was
| encountered, and the contents of general register
| R± are incremented by the same number, so that
| general register R± contains the address of the
| equal byte. If the operation is completed with con-
| dition code 3, the contents of general register
| R± + 1 are decremented by the number of bytes
| processed, and the contents of general register R±

| are incremented by the same number, so that the
| instruction, when reexecuted, resumes at the next
| byte to be processed. When general register R±

| is updated, the bits in it that are not part of the
| address may be set to zeros or may remain
| unchanged.

| The amount of processing that results in the
| setting of condition code 3 is determined by the
| CPU on the basis of improving system perform-
| ance, and it may be a different amount each time
| the instruction is executed.
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| ┌─────────────────────────────────────────────────────────────────────────────────┐

| │ │

| │ 24-Bit Addressing Mode 31-Bit Addressing Mode │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R± │////////│ First-Operand Address │ │/│ First-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌────────────────────────────────┐ ┌────────────────────────────────┐ │

| │ R± + 1 │ First-Operand Length │ │ First-Operand Length │ │

| │ └────────────────────────────────┘ └────────────────────────────────┘ │

| │ ð 31 ð 31 │

| │ │

| │ ┌────────┬───────────────────────┐ ┌─┬──────────────────────────────┐ │

| │ R² │////////│ Second-Operand Address│ │/│ Second-Operand Address │ │

| │ └────────┴───────────────────────┘ └─┴──────────────────────────────┘ │

| │ ð 8 31 ð 1 31 │

| │ │

| │ ┌───────────────────────┬────────┐ ┌───────────────────────┬────────┐ │

| │ GRð │///////////////////////│ Test │ │///////////////////////│ Test │ │

| │ └───────────────────────┴────────┘ └───────────────────────┴────────┘ │

| │ ð 24 31 ð 24 31 │

| └─────────────────────────────────────────────────────────────────────────────────┘

| Figure 7-17. Register Contents for TRANSLATE EXTENDED

| When the R± register is the same register as the
| R² register, the results are unpredictable.

| When the R± register or the R² register is zero,
| the results are unpredictable.

| When the second operand overlaps the first
| operand, the results are unpredictable.

| Access exceptions for the portion of the first
| operand to the right of the last byte processed
| may or may not be recognized. For an operand
| longer than 4K bytes, access exceptions are not
| recognized for locations more than 4K bytes
| beyond the last byte processed.

| Access exceptions for all 256 bytes of the second
| operand may be be recognized, even if not all
| bytes are used.

| Access exceptions are not recognized if the R±

| field is odd. When the length of the first operand
| is zero, no access exceptions for the first operand
| are recognized.

| Resulting Condition Code:  

| 0 Entire first operand processed without finding
| a byte equal to the test byte

| 1 First-operand byte is equal to the test byte
| 2 --
| 3 CPU-determined number of bytes processed

|  Program Exceptions: 

| � Access (fetch, operand 2; store, operand 1)
| � Operation (if the extended-translation facility is
| not installed)
|  � Specification

| Programming Notes:

| 1. When condition code 3 is set, the program
| can simply branch back to the instruction to
| continue the translation. The program need
| not determine the number of bytes that were
| translated.

| 2. The instruction can improve performance by
| being used in place of a TRANSLATE AND
| TEST instruction that locates an escape char-
| acter, followed by a TRANSLATE instruction
| that translates the bytes preceding the escape
| character.

| 3. The storage operand references of TRANS-
| LATE EXTENDED may be multiple-access
| references. (See “Storage-Operand
| Consistency” on page 5-83.)
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 UNPACK

UNPK D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'F3' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The format of the second operand is changed
from packed to zoned, and the result is placed at
the first-operand location. The packed and zoned
formats are described in Chapter 8, “Decimal
Instructions.”

The second operand is treated as though it had
the packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zone bits with coding of 1111 are
supplied for all bytes except the rightmost byte,
the zone of which receives the sign of the second
operand. The sign and digits are not checked for
valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the
second operand is considered to be extended on
the left with zeros. If the first-operand field is too
short to contain all digits of the second operand,
the remaining leftmost portion of the second
operand is ignored. Access exceptions for the
unused portion of the second operand may or may
not be indicated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and as if the first result byte were stored
immediately after fetching the first operand byte.
The entire rightmost second-operand byte is used
in forming the first result byte. For the remainder
of the field, information for two result bytes is
obtained from a single second-operand byte, and
execution proceeds as if the leftmost four bits of
the byte were to remain available for the next
result byte and need not be refetched. Thus, the
result is as if two result bytes were to be stored
immediately after fetching a single operand byte.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)

Programming Notes:

1. An example of the use of the UNPACK
instruction is given in Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. A field that is to be unpacked can be
destroyed by improper overlapping. To save
storage space for unpacking by overlapping
the operands, the rightmost byte of the first
operand must be to the right of the rightmost
byte of the second operand by the number of
bytes in the second operand minus 2. If only
one or two bytes are to be unpacked, the
rightmost bytes of the two operands may coin-
cide.

3. The storage-operand references of UNPACK
may be multiple-access references. (See
“Storage-Operand Consistency” on
page 5-83.)

 UPDATE TREE

UPT [E]

┌────────────────┐

│ 'ð1ð2' │

└────────────────┘

ð 15

The doubleword nodes of a tree in storage are
examined successively on a path toward the base
of the tree, and the contents of general-register
pair 0-1 are conditionally interchanged with the
contents of the nodes so as to give a unique
maximum logical value in general register 0.

General register 4 contains the base address of
the tree, and general register 5 contains the index
of a node whose parent node will be examined
first. The base address is eight less than the
address of the root node of the tree. The initial
contents of general registers 4 and 5 must be a
multiple of 8; otherwise, a specification exception
is recognized.

In the access-register mode, access register 4
specifies the address space containing the tree.

This instruction may be interrupted between units
of operation. The condition code is unpredictable
if the instruction is interrupted.
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A unit of operation begins by shifting the contents
of general register 5 right logically one position
and then setting bit 29 to zero. However, general
register 5 remains unchanged if the execution of a
unit of operation is nullified or suppressed. If after
shifting and setting bit 29 to zero, the contents of
general register 5 are zero, the instruction is com-
pleted, and condition code 1 is set; otherwise, the
unit of operation continues.

Bit 0 of general register 0 is tested. If bit 0 of reg-
ister 0 is one, the instruction is completed, and
condition code 3 is set.

If bit 0 of general register 0 is zero, the sum of the
contents of general registers 4 and 5 is used as
the intermediate value for normal operand address
generation. The generated address is the address
of a node in storage.

The contents of general register 0 are logically
compared with the contents of the first word of the
currently addressed node. If the register operand
is low, the contents of general-register pair 0-1 are
interchanged with those of the node, and a unit of
operation is completed. If the register operand is
high, no additional action is taken, and the unit of
operation is completed. If the compare values are
equal, general-register pair 2-3 is loaded from the
currently addressed node, the instruction is com-
pleted, and condition code 0 is set.

In those cases when the value in the first word of
the node is less than or equal to the value in the
register, the contents of the node remain
unchanged. However, in some models, these
contents may be fetched and subsequently stored
back.

Access exceptions are recognized only for one
doubleword node at a time. Access exceptions,
change-bit action, and PER storage alteration do
not occur for subsequent nodes until the previous
node has been successfully compared and
updated.

Access exceptions, change-bit action, and PER
storage alteration do not occur if a specification
exception exists.

Resulting Condition Code:  

0 Equal compare values at currently addressed
node

1 No equal compare values found on path, or
no comparison made

2 --
3 General register 5 nonzero and general reg-

ister 0 negative

 Program Exceptions: 

� Access (fetch and store, nodes of tree)
 � Specification

Programming Notes:

1. An example of the use of UPDATE TREE is
given in “Sorting Instructions” in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. For use in sorting, when equal compare
values have been found, the contents of
general registers 1 and 3 can be appropriate
(depending on the contents of the tree) for the
subsequent execution of COMPARE AND
FORM CODEWORD. The contents of general
register 2, shifted right 16 bit positions, can be
similarly appropriate, and they can provide for
minimal recomparison of partially equal keys.
Refer to “Sorting Instructions” on page A-51
for a discussion of trees and their use in
sorting.

3. The program should avoid placing a nonzero
value in bit positions 0-6 of general register 5
when in the 24-bit addressing mode. If any bit
in bit positions 0-6 is a one, the nodes of the
tree will not be examined successively.

4. When general register 0 is negative, and pro-
vided that the tree has been updated properly
previously, the node represented by the
general-register pair 0-1 either is the node or
is equal to the node (equal keys) that would
be selected if the unit of operation continued.
In this case, ending the unit of operation and
setting condition code 3 is a faster means of
selecting an appropriate node because it does
not require further examination and updating
of the tree.

5. Setting condition code 3 provides improved
performance when the replacement record is
equal to the old winner and, more importantly
(since the first case can be detected by
means of the condition code of CFC), when
the update path contains a negative
codeword, indicating equality with the old
winner.
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6. The storage-operand references for UPDATE
TREE may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-83.)

7. In those cases when the value in the first
word of the node is less than or equal to the
value in the register, depending on the model,
the contents of the node may be fetched and
subsequently stored back. As a result, any of
the following may occur for the storage
location containing the node: a PER storage-
alteration event may be recognized; a pro-
tection exception for storing may be
recognized; and, provided no access
exceptions exist, the change bit may be set to

one. Because the contents of storage remain
unchanged, the change bit may or may not be
one when a PER storage-alteration event is
recognized.

8. Special precautions should be taken when
UPDATE TREE is made the target of
EXECUTE. See the programming note con-
cerning interruptible instructions under
EXECUTE.

9. Further programming notes concerning inter-
ruptible instructions are included in “Interrup-
tible Instructions” on page 5-16.

10. Figure 7-18 on page 7-100 is a summary of
the operation of UPDATE TREE.
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 ┌───────────────────────────────────┐ No

│Bits 29-31 of GR4 and GR5 all zeros├──────5 Specification Exception

 └─────────────────┬─────────────────┘

┌─────────┐ │ Yes

│Unit-of- │ │

│operation├─────────────────────5│

│boundary │ │

└─────────┘ 6

 & ┌────────────────────────────────────────────┐

│ │GR5 shifted right one position ──5 TEMPWORD1│

 │ │ │

│ │ð ──5 Bit 29 of TEMPWORD1 │

 │ └─────────────────────┬──────────────────────┘

 │ │

 │ 6

 │ ┌─────────────┐ Yes ┌───────────────┐

│ │TEMPWORD1 = ð├─────────────────5│ð ──5 GR5 ├────┐

 │ └──────┬──────┘ │ │ │

│ │ No │1 ──5 Cond Code│ │

 │ │ └───────────────┘ │

 │ 6 │

 │ ┌────────────────┐ Yes │

│ │Bit ð of GRð one├────────────────────────┐ │

 │ └───────┬────────┘ │ │

 │ │ No 6 │

 │ │ ┌──────────────────┐ │

│ │ │TEMPWORD1 ──5 GR5 │ │

 │ │ │ │ │

│ 6 │3 ──5 Cond Code │ │

 │ ┌───────────────────────────────┐ └───────┬──────────┘ │

│ │GR4 + TEMPWORD1 ──5 TEMPADDRESS│ │ │

 │ └───────────────┬───────────────┘ │%───────────┘

 │ │ 6

│ 6 End operation

 │ ┌──────────────────────────────────┐

│ │Fetch doubleword from location in │

│ │storage designated by TEMPADDRESS;│

 │ │ │

 │ │Bits ð-31 ──5 TEMPWORD2 │

 │ │ │

│ │Bits 32-64 ──5 TEMPWORD3 │

 │ └────────────────┬─────────────────┘

 │ │

 │ 6

 │ ┌─────────────────┐

│ │TEMPWORD1 ──5 GR5│

 │ └────────┬────────┘

 │ │

 │ 6

│ GRð high ┌─────────────────────────┐ GRð equal

│%──────────────┤Compare GRð and TEMPWORD2├─────────────────────┐

 & └────────────┬────────────┘ │

│ │ GRð low │

 │ │ 6

 │ 6 ┌─────────────────┐

│ ┌────────────────────────────────────┐ │TEMPWORD2 ──5 GR2│

│ │Store contents of GRð and GR1 in │ │ │

│ │doubleword designated by TEMPADDRESS│ │TEMPWORD3 ──5 GR3│

 │ └──────────────────┬─────────────────┘ │ │

│ │ │ð ──5 Cond Code │

 │ 6 └────────┬────────┘

 │ ┌─────────────────┐ │

│ │TEMPWORD2 ──5 GRð│ 6

 │ │ │ End operation

│ │TEMPWORD3 ──5 GR1│

 │ └────────┬────────┘

 │ │

 └────────────────────────────┘

Figure 7-18. Execution of UPDATE TREE
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The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are pro-
vided by several of the instructions in Chapter 7,
“General Instructions.” Decimal operands always
reside in storage, and all decimal instructions use
the SS instruction format. Decimal operands
occupy storage fields that can start on any byte
boundary.

 Decimal-Number Formats
Decimal numbers may be represented in either
the zoned or packed format. Both decimal-
number formats are of variable length; the
instructions used to operate on decimal data each
specify the length of their operands and results.
Each byte of either format consists of a pair of
four-bit codes; the four-bit codes include decimal-
digit codes, sign codes, and a zone code.

 Zoned Format
┌───┬───┬───┬───┬─/─┬───┬───┬───┬───┐

│ Z │ N │ Z │ N │ │ Z │ N │Z/S│ N │

└───┴───┴───┴───┴─/─┴───┴───┴───┴───┘

In the zoned format, the rightmost four bits of a
byte are called the numeric bits (N) and normally
consist of a code representing a decimal digit.
The leftmost four bits of a byte are called the zone
bits (Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either
as a zone or as a sign (S).

Decimal digits in the zoned format may be part of
a larger character set, which includes also alpha-
betic and special characters. The zoned format is,
therefore, suitable for input, editing, and output of
numeric data in human-readable form. There are
no decimal-arithmetic instructions which operate
directly on decimal numbers in the zoned format;
such numbers must first be converted to the
packed format.

The editing instructions produce a result of up to
256 bytes; each byte may be a decimal digit in the
zoned format, a message byte, or a fill byte.

 Packed Format
┌───┬───┬───┬───┬─/─┬───┬───┬───┬───┐

│ D │ D │ D │ D │ │ D │ D │ D │ S │

└───┴───┴───┴───┴─/─┴───┴───┴───┴───┘

In the packed format, each byte contains two
decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with oper-
ands in the packed format and generates results
in the packed format.

The packed-format operands and results of
decimal-arithmetic instructions may be up to 16
bytes (31 digits and sign), except that the
maximum length of a multiplier or divisor is eight
bytes (15 digits and sign). In division, the sum of
the lengths of the quotient and remainder may be
from two to 16 bytes. The editing instructions can
fetch as many as 256 decimal digits from one or
more decimal numbers of variable length, each in
the packed format.
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 Decimal Codes
The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and
1101 for minus. These are the sign codes gener-
ated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
in the sign position: 1010, 1110, and 1111 are
alternate codes for plus, and 1011 is an alternate
code for minus. Alternate sign codes are
accepted for any decimal source operand, but are
not generated in the completed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL. This is true even when an operand
remains otherwise unchanged, such as when
adding zero to a number. An alternate sign code
is, however, left unchanged by MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK.

When an invalid sign or digit code is detected, a
data exception is recognized. For the decimal-
arithmetic instructions and CONVERT TO
BINARY, the action taken for a data exception
depends on whether a sign code is invalid. When
a sign code is invalid, the operation is suppressed
regardless of whether any other condition causing
a data exception exists. When an invalid digit
code is detected but no sign code is invalid, the
operation is terminated on some models and sup-
pressed on others.

For the editing instructions EDIT and EDIT AND
MARK, an invalid sign code is not recognized.
The operation is terminated for a data exception
due to an invalid digit code. No validity checking
is performed by MOVE NUMERICS, MOVE WITH
OFFSET, MOVE ZONES, PACK, and UNPACK.

The zone code 1111 is generated in the left four
bit positions of each byte representing a zone and
a decimal digit in zoned-format results. Zoned-
format results are produced by EDIT, EDIT AND
MARK, and UNPACK. For EDIT and EDIT AND
MARK, each result byte representing a zoned-
format decimal digit contains the zone code 1111
in the left four bit positions and the decimal-digit
code in the right four bit positions. For UNPACK,
zone bits with a coding of 1111 are supplied for all

bytes except the rightmost byte, the zone of which
receives the sign.

The meaning of the decimal codes is summarized
in Figure 8-1.

┌────────┬─────────────────────────────┐

│ │ Recognized As │

│ Code ├─────────┬───────────────────┤

│(Binary)│ Digit │ Sign │

├────────┼─────────┼───────────────────┤

│ ðððð │ ð │ Invalid │

│ ððð1 │ 1 │ Invalid │

│ ðð1ð │ 2 │ Invalid │

│ ðð11 │ 3 │ Invalid │

│ ð1ðð │ 4 │ Invalid │

│ ð1ð1 │ 5 │ Invalid │

│ ð11ð │ 6 │ Invalid │

│ ð111 │ 7 │ Invalid │

│ 1ððð │ 8 │ Invalid │

│ 1ðð1 │ 9 │ Invalid │

│ 1ð1ð │ Invalid │ Plus │

│ 1ð11 │ Invalid │ Minus │

│ 11ðð │ Invalid │ Plus (preferred) │

│ 11ð1 │ Invalid │ Minus (preferred) │

│ 111ð │ Invalid │ Plus │

│ 1111 │ Invalid │ Plus (zone) │

└────────┴─────────┴───────────────────┘

Figure 8-1. Summary of Digit and Sign Codes

Programming Note:  Since 1111 is both the
zone code and an alternate code for plus,
unsigned (positive) decimal numbers may be
represented in the zoned format with 1111 zone
codes in all byte positions. The result of the
PACK instruction converting such a number to the
packed format may be used directly as an
operand for decimal instructions.

 Decimal Operations
The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions
and the editing instructions.

 Decimal-Arithmetic Instructions
The decimal-arithmetic instructions perform addi-
tion, subtraction, multiplication, division, compar-
ison, and shifting.

Operands of the decimal-arithmetic instructions
are in the packed format and are treated as
signed decimal integers. A decimal integer is
represented in true form as an absolute value with
a separate plus or minus sign. It contains an odd
number of decimal digits, from one to 31, and the
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sign; this corresponds to an operand length of one
to 16 bytes.

A decimal zero normally has a plus sign, but multi-
plication, division, and overflow may produce a
zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to
a positive zero by COMPARE DECIMAL.

The lengths of the two operands specified in the
instruction need not be the same. If necessary,
the shorter operand is considered to be extended
with zeros on the left. Results, however, cannot
exceed the first-operand length as specified in the
instruction.

When a carry or leftmost nonzero digits of the
result are lost because the first-operand field is
too short, the result is obtained by ignoring the
overflow digits, condition code 3 is set, and, if the
decimal-overflow mask bit is one, a program inter-
ruption for decimal overflow occurs. The operand
lengths alone are not an indication of overflow;
nonzero digits must have been lost during the
operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the oper-
ands may also overlap in such a manner that the
rightmost byte of the first operand (which becomes
the result) is to the right of the rightmost byte of
the second operand. For these cases of proper
overlap, the result is obtained as if operands were
processed right to left. Because the codes for
digits and signs are verified during the perform-
ance of the arithmetic, improperly overlapping
operands are recognized as data exceptions.
However, in ZERO AND ADD when the rightmost
byte of the first operand is to the left of the right-
most byte of the second operand, the entire
second operand may be fetched, depending on
the model, before any storing occurs, which will
cause a data exception not to be recognized. See
“Interlocks within a Single Instruction” on
page 5-77 for how overlap is detected in the
access-register mode.

Programming Note:  A packed decimal number
in storage may be designated as both the first and
second operand of ADD DECIMAL, COMPARE
DECIMAL, DIVIDE DECIMAL, MULTIPLY
DECIMAL, SUBTRACT DECIMAL, or ZERO AND
ADD. Thus, a decimal number may be added to
itself, compared with itself, and so forth; SUB-

TRACT DECIMAL may be used to set a decimal
field in storage to zero; and, for MULTIPLY
DECIMAL, a decimal number may be squared in
place. In these cases, the lengths of the two
operands are not necessarily equal and may,
depending on the instruction, be prohibited from
being equal.

 Editing Instructions
The editing instructions are EDIT and EDIT AND
MARK. For these instructions, only the first
operand (the pattern) has an explicitly specified
length. The second operand (the source) is con-
sidered to have as many digits as necessary for
the completion of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions
During the execution of a decimal instruction, all
bytes of the operands are not necessarily
accessed concurrently, and the fetch and store
accesses to a single location do not necessarily
occur one immediately after the other. Further-
more, for decimal instructions, data in source
fields may be accessed more than once, and
intermediate values may be placed in the result
field that may differ from the original operand and
final result values. (See “Storage-Operand
Consistency” on page 5-83.) Thus, in a multiproc-
essing configuration, an instruction such as ADD
DECIMAL cannot be safely used to update a
shared storage location when the possibility exists
that another CPU may also be updating that
location.

Other Instructions for Decimal
Operands
In addition to the decimal instructions in this
chapter, MOVE NUMERICS and MOVE ZONES
are provided for operating on data of lengths up to
256 bytes in the zoned format. Two instructions
are provided for converting data between the
zoned and packed formats: PACK transforms
zoned data of lengths up to 16 bytes into packed
data, and UNPACK performs the reverse transfor-
mation. MOVE WITH OFFSET can operate on
packed data of lengths up to 16 bytes. Two
instructions are provided for conversion between
the packed-decimal and signed-binary-integer
formats. CONVERT TO BINARY converts packed
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decimal to binary, and CONVERT TO DECIMAL
converts binary to packed decimal; the length of
the packed decimal operand of these instructions
is eight bytes (15 digits and sign). These seven
instructions are not considered to be decimal
instructions and are described in Chapter 7,
“General Instructions.” The editing instructions in
this chapter may also be used to change data
from the packed to the zoned format.

Decimal-Operand Data Exception
A decimal-operand data exception is recognized
when any of the following is true:

1. The sign or digit codes of operands in the
decimal instructions or in CONVERT TO
BINARY (described in Chapter 7, “General
Instructions”) are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL,
MULTIPLY DECIMAL, and SUBTRACT
DECIMAL overlap in a way other than with
coincident rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand. On
some models, the improper overlap of oper-
ands for ZERO AND ADD is not recognized
as a decimal-operand data exception; instead,
the operation is performed as if the entire
second operand were fetched before any byte
of the result is stored.

3. The multiplicand in MULTIPLY DECIMAL has
an insufficient number of leftmost zeros.

The action taken for a decimal-operand data
exception depends on whether a sign code is
invalid. The operation is suppressed when a sign
code is invalid, regardless of whether any other
condition causing the exception exists; when no
sign code is invalid, the operation is terminated on
some models and suppressed on others.

For all instructions other than EDIT and EDIT AND
MARK, when the operation is terminated, the con-
tents of the sign position in the rightmost byte of
the result field either remain unchanged or are set
to the preferred sign code; the contents of the
remainder of the result field are unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code cannot occur; the operation is

terminated on a decimal-operand data exception
for an invalid digit code.

Programming Notes:

1. The definition for decimal-operand data excep-
tion permits termination when digit codes are
invalid but no sign code is invalid. On some
models, valid digit codes may be placed in the
result field even if the original contents were
invalid. Thus it is possible, after a decimal-
operand data exception occurs, for all fields to
contain valid codes.

2. An invalid sign code for the rightmost byte of
the result field is not generated when the
operation is terminated. However, an invalid
second-operand sign code is not necessarily
preserved when it is located in the numeric
portion of the result field.

3. When, after a program interruption for
decimal-operand data exception, a sign code
is found to be invalid, the operation has been
suppressed if both of the following conditions
are met:

a. The invalid sign of the source field is not
located in the numeric portion of the result
field.

b. The invalid sign code is in a position spec-
ified by the instruction to be checked for a
valid sign. (This condition excludes the

| first operand of ZERO AND ADD and both
| operands of EDIT and EDIT AND MARK.)

 Instructions
The decimal instructions and their mnemonics,
formats, and operation codes are listed in
Figure 8-2 on page 8-5. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler
language are shown with each instruction. For
ADD DECIMAL, for example, AP is the mnemonic
and D±(L±,B±),D²(L²,B²) the operand designation.
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B± B²│FA │

│COMPARE DECIMAL │CP │SS C │ A │Dd │ │B± B²│F9 │

│DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B± B²│FD │

│EDIT │ED │SS C │ A │Dd │ ST│B± B²│DE │

│EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ R ST│B± B²│DF │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B± B²│FC │

│SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B± │Fð │

│SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B± B²│FB │

│ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B± B²│F8 │

├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤

│Explanation: │

│ │

│ A Access exceptions for logical addresses. │

│ B± B± field designates an access register in the access-register mode. │

│ B² B² field designates an access register in the access-register mode. │

│ C Condition code is set. │

│ Dd Decimal-operand data exception. │

│ DF Decimal-overflow exception. │

│ DK Decimal-divide exception. │

│ G1 Instruction execution includes the implied use of general register 1. │

│ R PER general-register-alteration event. │

│ SP Specification exception. │

│ SS SS instruction format. │

│ ST PER storage-alteration event. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 8-2. Summary of Decimal Instructions

 ADD DECIMAL

AP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'FA' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The second operand is added to the first operand,
and the resulting sum is placed at the first-
operand location. The operands and result are in
the packed format.

Addition is algebraic, taking into account the signs
and all digits of both operands. All sign and digit
codes are checked for validity.

If the first operand is too short to contain all left-
most nonzero digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow digits, and con-
dition code 3 is set. If the decimal-overflow mask
is one, a program interruption for decimal overflow
occurs.

The sign of the sum is determined by the rules of
algebra. In the absence of overflow, the sign of a
zero result is made positive. If overflow occurs, a
zero result is given either a positive or negative
sign, as determined by what the sign of the
correct sum would have been.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal overflow

Programming Note:  An example of the use of
the ADD DECIMAL instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”
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 COMPARE DECIMAL

CP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'F9' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condi-
tion code. The operands are in the packed
format.

Comparison is algebraic and follows the procedure
for decimal subtraction, except that both operands
remain unchanged. When the difference is zero,
the operands are equal. When a nonzero differ-
ence is positive or negative, the first operand is
high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operands 1 and 2)
 � Data

Programming Notes:

1. An example of the use of the COMPARE
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The preferred and alternate sign codes for a
particular sign are treated as equivalent for
comparison purposes.

3. A negative zero and a positive zero compare
equal.

 DIVIDE DECIMAL

DP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'FD' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting quo-
tient and remainder are placed at the first-operand
location. The operands and results are in the
packed format.

The quotient is placed leftmost in the first-operand
location. The number of bytes in the quotient field
is equal to the difference between the dividend
and divisor lengths (L± - L²). The remainder is
placed rightmost in the first-operand location and
has a length equal to the divisor length. Together,
the quotient and remainder fields occupy the
entire first operand; therefore, the address of the
quotient is the address of the first operand.

The divisor length cannot exceed 15 digits and
sign (L² not greater than seven) and must be less
than the dividend length (L² less than L±); other-
wise, a specification exception is recognized.

The dividend, divisor, quotient, and remainder are
each signed decimal integers in the packed format
and are right-aligned in their fields. All sign and
digit codes of the dividend and divisor are
checked for validity.

The sign of the quotient is determined by the rules
of algebra from the dividend and divisor signs.
The sign of the remainder has the same value as
the dividend sign. These rules hold even when
the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or the
quotient is too large to be represented by the
number of digits specified, a decimal-divide excep-
tion is recognized. This includes the case of divi-
sion of zero by zero. The decimal-divide
exception is indicated only if the sign codes of
both the dividend and divisor are valid, and only if
the digit or digits used in establishing the excep-
tion are valid.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal divide
 � Specification

Programming Notes:

1. An example of the use of the DIVIDE
DECIMAL instruction is given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The dividend cannot exceed 31 digits and
sign. Since the remainder cannot be shorter
than one digit and sign, the quotient cannot
exceed 29 digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial comparison. The
leftmost digit of the divisor is aligned one digit

| to the right of the leftmost dividend digit, with
| rightmost zeros appended up to the length of
| the dividend. When the divisor, so aligned, is

less than or equal to the dividend, ignoring
signs, a divide exception is indicated.

4. If a data exception does not exist, a decimal-
divide exception occurs when the leftmost divi-
dend digit is not zero.

 EDIT

ED D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'DE' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format
and modified under the control of the first operand
(the pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source normally consists of one or more
decimal numbers, each in the packed format. The
leftmost four bits of each source byte must specify

a decimal-digit code (0000-1001); a sign code
(1010-1111) is recognized as a data exception.
The rightmost four bits may specify either a sign
code or a decimal-digit code. Access and data
exceptions are recognized only for those bytes in
the second operand which are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time. Over-
lapping pattern and source fields give unpredict-
able results.

During the editing process, each byte of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to
the zoned format.

3. It is replaced by the first byte in the pattern,
called the fill byte.

Which of the three actions takes place is deter-
mined by one or more of the following: the type of
the pattern byte, the state of the significance indi-
cator, and whether the source digit examined is
zero.

Pattern Bytes:  There are four types of pattern
bytes: digit selector, significance starter, field sep-
arator, and message byte. Their coding is as
follows:

┌──────────────────────┬───────────┐

│ │ Code │

│ Name │ (Binary) │

├──────────────────────┼───────────┤

│ Digit selector │ ðð1ð ðððð │

│ Significance starter │ ðð1ð ððð1 │

│ Field separator │ ðð1ð ðð1ð │

│ Message byte │ Any other │

└──────────────────────┴───────────┘

The detection of either a digit selector or a signif-
icance starter in the pattern causes an examina-
tion to be made of the significance indicator and of
a source digit. As a result, either the expanded
source digit or the fill byte, as appropriate, is
selected to replace the pattern byte. Additionally,
encountering a digit selector or a significance
starter may cause the significance indicator to be
changed.

The field separator identifies individual fields in a
multiple-field editing operation. It is always
replaced in the result by the fill byte, and the sig-
nificance indicator is always off after the field sep-
arator is encountered.
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Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indi-
cator. They may thus be used for padding, punc-
tuation, or text in the significant portion of a field
or for the insertion of sign-dependent symbols.

Fill Byte:  The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits:  Each time a digit selector or sig-
nificance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disre-
garded, or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

Execution is as if the source digits were selected
one byte at a time and as if a source byte were
fetched for inspection only once during an editing
operation. Each source digit is examined only
once for a zero value. The leftmost four bits of
each byte are examined first, and the rightmost
four bits, when they represent a decimal-digit
code, remain available for the next pattern byte
that calls for a digit examination. When the left-
most four bits contain an invalid digit code, a data
exception is recognized, and the operation is ter-
minated.

At the time the left digit of a source byte is exam-
ined, the rightmost four bits are checked for the
existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or sig-
nificance starter, no source bytes are fetched and
examined.

Significance Indicator:  The significance indi-
cator is turned on or off to indicate the significance
or nonsignificance, respectively, of subsequent
source digits or message bytes. Significant
source digits replace their corresponding digit
selectors or significance starters in the result. Sig-

nificant message bytes remain unchanged in the
result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is
used as one factor in the setting of the condition
code.

The significance indicator is set to off at the start
of the editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit posi-
tions.

The significance indicator is set to on when a sig-
nificance starter is encountered whose source digit
is a valid decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the significance indicator is
not changed. A minus sign code has no effect on
the significance indicator.

Result Bytes:  The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the sig-
nificance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance indi-
cator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered signif-
icant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code:  The sign and magnitude of the
last field edited are used to set the condition code.
The term “last field” refers to those source digits, if
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any, in the second operand selected by digit
selectors or significance starters after the last field
separator; if the pattern contains no field sepa-
rator, there is only one field, which is considered
to be the last field. If no such source digits are
selected, the last field is considered to be of zero
length.

Condition code 0 is set when the last field edited
is zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on.
(This indicates a result less than zero if the last
source byte examined contained a sign code in
the rightmost four bits.)

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off.
(This indicates a result greater than zero if the last
source byte examined contained a sign code in
the rightmost four bits.)

Figure 8-3 on page 8-10 summarizes the func-
tions of the EDIT and EDIT AND MARK opera-
tions. The leftmost four columns list all the
significant combinations of the four conditions that
can be encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case -- the type of byte
placed in the result field and the new setting of the
significance indicator.

Resulting Condition Code:  

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data

Programming Notes:

1. Examples of the use of the EDIT instruction
are given in Appendix A, “Number Represen-
tation and Instruction-Use Examples.”

2. Editing includes sign and punctuation control,
and the suppression and protection of leading
zeros by replacing them with blanks or aster-
isks. It also facilitates programmed blanking
of all-zero fields. Several fields may be edited
in one operation, and numeric information may
be combined with text.

3. In most cases, the source is shorter than the
pattern because each four-bit source digit
produces an eight-bit byte in the result.

4. The total number of digit selectors and signif-
icance starters in the pattern always equals
the number of source digits edited.

5. If the fill byte is a blank, if no significance
starter exists in the pattern, and if the source
digit examined for each digit selector is zero,
the editing operation blanks the result field.

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the right-
most four bits. For multiple-field editing oper-
ations, the condition code reflects the sign and
value only of the field following the last field
separator.

7. Significant performance degradation is pos-
sible when, with DAT on, the second-operand
address of an EDIT instruction designates a
location that is closer to the left of a 4K-byte
boundary than the length of the first operand
of that instruction. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary. The second
operand of EDIT, while normally shorter than
the first operand, can in the extreme case
have the same length as the first.
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┌──────────────────────────────────────────────────────┬──────────────────────────┐

│ │ Results │

│ Conditions ├─────────────┬────────────┤

├────────────────────┬────────────┬──────┬─────────────┤ │State of │

│ │Previous │ │ │ │Significance│

│ │State of │ │Right Four │ │Indicator at│

│ │Significance│Source│Source Bits │ │End of Digit│

│ Pattern Byte │Indicator │Digit │Are Plus Code│ Result Byte │Examination │

├────────────────────┼────────────┼──────┼─────────────┼─────────────┼────────────┤

│Digit selector │ Off │ ð │ \ │Fill byte │ Off │

│ │ │ 1-9 │ No │Source digit#│ On │

│ │ │ 1-9 │ Yes │Source digit#│ Off │

│ │ On │ ð-9 │ No │Source digit │ On │

│ │ │ ð-9 │ Yes │Source digit │ Off │

│ │ │ │ │ │ │

│Significance starter│ Off │ ð │ No │Fill byte │ On │

│ │ │ ð │ Yes │Fill byte │ Off │

│ │ │ 1-9 │ No │Source digit#│ On │

│ │ │ 1-9 │ Yes │Source digit#│ Off │

│ │ On │ ð-9 │ No │Source digit │ On │

│ │ │ ð-9 │ Yes │Source digit │ Off │

│ │ │ │ │ │ │

│Field separator │ \ │ \\ │ \\ │Fill byte │ Off │

│ │ │ │ │ │ │

│Message byte │ Off │ \\ │ \\ │Fill byte │ Off │

│ │ On │ \\ │ \\ │Message byte │ On │

├────────────────────┴────────────┴──────┴─────────────┴─────────────┴────────────┤

│Explanation: │

│ │

│ \ No effect on result byte or on new state of significance indicator. │

│ \\ Not applicable because source is not examined. │

│ # For EDIT AND MARK only, the address of the rightmost such result byte is │

│ placed in general register 1. │

└─────────────────────────────────────────────────────────────────────────────────┘

Figure 8-3. Summary of Editing Functions
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EDIT AND MARK

EDMK D±(L,B±),D²(B²) [SS]

┌────────┬────────┬────┬─/──┬────┬─/──┐

│ 'DF' │ L │ B± │ D± │ B² │ D² │

└────────┴────────┴────┴─/──┴────┴─/──┘

ð 8 16 2ð 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format
and modified under the control of the first operand
(the pattern). The address of the first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

EDIT AND MARK is identical to EDIT, except for
the additional function of inserting the address of
the result byte in general register 1 if the result
byte is a zoned source digit and the significance
indicator was off before the examination. If no
result byte meets the criteria, general register 1
remains unchanged; if more than one result byte
meets the criteria, the address of the rightmost
such result byte is inserted.

In the 24-bit addressing mode, the address
replaces bits 8-31 of general register 1, and bits
0-7 of the register are not changed. In the 31-bit
addressing mode, the address replaces bits 1-31
of general register 1, and bit 0 of the register is
set to zero.

The contents of access register 1 remain
unchanged.

See Figure 8-3 on page 8-10 for a summary of
the EDIT and EDIT AND MARK operations.

Resulting Condition Code:  

0 Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data

Programming Notes:

1. Examples of the use of the EDIT AND MARK
instruction are given Appendix A, “Number
Representation and Instruction-Use
Examples.”

2. EDIT AND MARK facilitates the programming
of floating currency-symbol insertion. Using
appropriate source and pattern data, the
address inserted in general register 1 is one
greater than the address where a floating
currency-sign would be inserted. BRANCH
ON COUNT (BCTR), with zero in the R² field,
may be used to reduce the inserted address
by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To
ensure that general register 1 contains a
proper address when this occurs, the address
of the pattern byte that immediately follows
the appropriate significance starter could be
placed in the register beforehand.

4. When multiple fields are edited with one exe-
cution of the EDIT AND MARK instruction, the
address, if any, inserted in general register 1
applies to the rightmost field edited for which
the criteria were met.

5. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

 MULTIPLY DECIMAL

MP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'FC' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed
at the first-operand location. The operands and
result are in the packed format.

The multiplier length cannot exceed 15 digits and
sign (L² not greater than seven) and must be less
than the multiplicand length (L² less than L±); oth-
erwise, a specification exception is recognized.
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The multiplicand must have at least as many
bytes of leftmost zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized. This restriction ensures that no
product overflow occurs.

The multiplicand, multiplier, and product are each
signed decimal integers in the packed format and
are right-aligned in their fields. All sign and digit
codes of the multiplicand and multiplier are
checked for validity. The sign of the product is
determined by the rules of algebra from the multi-
plier and multiplicand signs, even if one or both
operands are zeros.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Specification

Programming Notes:

1. An example of the use of the MULTIPLY
DECIMAL instruction is given Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always
zero.

SHIFT AND ROUND DECIMAL

SRP D±(L±,B±),D²(B²),I³ [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'Fð' │ L± │ I³ │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, I³. The
first operand and the result are in the packed
format.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in
the shifting. Zeros are supplied for the vacated

digit positions. The result replaces the first
operand. Nothing is stored outside of the speci-
fied first-operand location.

The second-operand address, specified by the B²
and D² fields, is not used to address data; bits
26-31 of that address are the shift value, and the
leftmost bits of the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of decimal-
digit positions to be shifted. Positive shift values
specify shifting to the left. Negative shift values,
which are represented in two's complement nota-
tion, specify shifting to the right. The following are
examples of the interpretation of shift values:

┌─────────────┬────────────────────────┐

│ Shift Value │ │

│ (Binary) │ Amount and Direction │

├─────────────┼────────────────────────┤

│ ð11111 │ 31 digits to the left │

│ ððððð1 │ One digit to the left │

│ ðððððð │ No shift │

│ 111111 │ One digit to the right │

│ 1ððððð │ 32 digits to the right │

└─────────────┴────────────────────────┘

For a right shift, the I³ field, bits 12-15 of the
instruction, is used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding
the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted
right. Except for validity checking and the partic-
ipation in rounding, the digits shifted out of the
rightmost decimal-digit position are ignored and
are lost.

If one or more nonzero digits are shifted out
during a left shift, decimal overflow occurs. The
operation is completed. The result is obtained by
ignoring the overflow digits, and condition code 3
is set. If the decimal-overflow mask is one, a
program interruption for decimal overflow occurs.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero
result is made positive. If overflow occurs, the
sign of the result is the same as the original sign
but with the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes
or when the rounding digit is not a valid digit code.
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The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no addi-
tion for rounding takes place.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch and store, operand 1)
 � Data
 � Decimal overflow

Programming Notes:

1. Examples of the use of the SHIFT AND
ROUND DECIMAL instruction are given in
Appendix A, “Number Representation and
Instruction-Use Examples.”

2. SHIFT AND ROUND DECIMAL can be used
for shifting up to 31 digit positions left and up
to 32 digit positions right. This is sufficient to
clear all digits of any decimal number even
with rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit 0 specifies truncation without
rounding.

4. When the B² field is zero, the six-bit shift
value is obtained directly from bits 42-47 of
the instruction.

 SUBTRACT DECIMAL

SP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'FB' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The second operand is subtracted from the first
operand, and the resulting difference is placed at
the first-operand location. The operands and
result are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in

storage. The second operand in storage remains
unchanged.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2; fetch and store,
operand 1)

 � Data
 � Decimal overflow

ZERO AND ADD

ZAP D±(L±,B±),D²(L²,B²) [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'F8' │ L± │ L² │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The second operand is placed at the first-operand
location. The operation is equivalent to an addi-
tion to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid sign
and digit codes. Extra zeros are supplied on the
left for the shorter operand if needed.

If the first operand is too short to contain all left-
most nonzero digits of the second operand,
decimal overflow occurs. The operation is com-
pleted. The result is obtained by ignoring the
overflow digits, and condition code 3 is set. If the
decimal-overflow mask is one, a program inter-
ruption for decimal overflow occurs.

In the absence of overflow, the sign of a zero
result is made positive. If overflow occurs, a zero
result is given the sign of the second operand but
with the preferred sign code.

The two operands may overlap, provided the right-
most byte of the first operand is coincident with or
to the right of the rightmost byte of the second
operand. In this case, the result is obtained as if
the operands were processed right to left. When
the operands overlap and the rightmost byte of the
first operand is to the left of the rightmost byte of
the second operand, then, depending on the
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model, either a data exception is recognized or
the result is obtained as if the entire second
operand were fetched before any byte of the result
is stored.

Resulting Condition Code:  

0 Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
 � Data
 � Decimal overflow

Programming Note:  An example of the use of
the ZERO AND ADD instruction is given in
Appendix A, “Number Representation and
Instruction-Use Examples.”
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Floating-point instructions are used to perform cal-
culations on operands having a wide range of
magnitude and to obtain results scaled to preserve
precision.

Floating-point operands have formats based on
either the radix 16 or, when the binary-floating-
point facility is installed, the radix 2. The radix
values 16 and 2 lead to the terminology
“hexadecimal” and “binary” floating point (HFP and
BFP). The formats are also based on three
operand lengths: short (32 bits), long (64 bits),
and extended (128 bits). Short operands require
less storage than long or extended operands. On
the other hand, long and extended operands
permit greater precision in computation.

A floating-point operand may be numeric or, for
BFP only, nonnumeric (a not-a-number, or NaN).
A numeric operand, called a floating-point number,
has three components: a sign bit, a signed binary
exponent, and a significand. The significand con-
sists of an implicit unit digit to the left of an implied
radix point and an explicit fraction field to the right.
The significand digits are based on the radix, 2 or
16. The magnitude (an unsigned value) of the
number is the product of the significand and the
radix raised to the power of the exponent. The
number is positive or negative depending on
whether the sign bit is zero or one, respectively.
A nonnumeric BFP operand also has a sign bit,
signed exponent, and fraction field.

Hexadecimal-floating-point (HFP) operands have
formats which provide for exponents that specify
powers of the radix 16 and significands that are

hexadecimal numbers. The exponent range is the
same for the short, long, and extended formats.
The results of most operations on HFP data are
truncated to fit into the target format, but there are
instructions available to round the result when
converting to a narrower format. For HFP oper-
ands, the implicit unit digit of the significand is
always zero. Since the value of the significand
and fraction are the same, HFP operations are
described in terms of the fraction, and the term
significand is not used.

Binary-floating-point (BFP) operands have formats
which provide for exponents that specify powers of
the radix 2 and significands that are binary
numbers. The exponent range differs for different
formats, the range being greater for the longer
formats. In the long and extended formats, the
exponent range is significantly greater for BFP
data than for HFP data. The results of operations
performed on BFP data are rounded automatically
to fit into the target format; the manner of rounding
is determined by a program-settable rounding
mode.

Either normalized or unnormalized numbers may
be used as operands for any HFP operation,
where a normalized number is one having a
nonzero leftmost fraction digit. Most HFP
instructions generate normalized results for
greatest precision. HFP add and subtract
instructions that generate unnormalized results are
also available.

There are no unnormalized operands for BFP
operations. For normalized BFP numbers, the
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implicit unit digit of the significand is one. For
values too small in magnitude to be represented in
normalized form, the implicit unit digit is zero.
These numbers are called “denormalized”
numbers. Unlike the HFP format, where the same
value can have multiple representations in a given
format because of the possibility of unnormalized
numbers, the BFP format does not allow such
redundancy.

Both BFP and HFP data formats appear in
storage in the same left-to-right sequence as all
other data formats. Bits of a data format that are
numbered 0-7 constitute the byte in the leftmost
(lowest-numbered) byte location in storage, bits
8-15 form the byte in the next sequential location,
and so on. (See also the section “Storage
Addressing” on page 3-2.)

Most of the floating-point instructions are defined
in detail in this publication in Chapter 18,
“Hexadecimal-Floating-Point Instructions,” and
Chapter 19, “Binary-Floating-Point Instructions.”
This chapter, Chapter 9, defines in detail
instructions called floating-point-support (FPS)
instructions. The FPS instructions either have
operands that may be in either the BFP or the
HFP format or have the function of converting
between the two formats. This chapter also pro-
vides summary information about all of the
floating-point instructions.

Registers And Controls

 Floating-Point Registers

All floating-point instructions (FPS, BFP, and HFP)
use the same floating-point registers. When the
basic-floating-point-extensions facility is installed,
the CPU has 16 floating-point registers. The
floating-point registers are identified by the
numbers 0-15 and are designated by a four-bit R
field in floating-point instructions. Each floating-
point register is 64 bits long and can contain either
a short (32-bit) or a long (64-bit) floating-point
operand.

A short floating-point number requires only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when the register is the source of an
operand in the short format, and, unless otherwise

specified, they remain unchanged when a short
result is placed in the register.

A number in the extended (128-bit) format occu-
pies a register pair. Register pairs are formed by
coupling the 16 registers as follows: 0 and 2, 4
and 6, 8 and 10, 12 and 14, 1 and 3, 5 and 7,
9 and 11, and 13 and 15.

Each of the eight pairs is referred to by the
number of the lower-numbered register of the pair.

Additional Floating-Point (AFP)
Registers
Floating-point registers 0, 2, 4, and 6, are avail-
able on all ESA/390 models. The remaining 12
floating-point registers (1, 3, 5, and 7-15) are
referred to as the additional floating-point (AFP)
registers. The AFP registers are installed in the
CPU when the basic-floating-point-extensions
facility is installed and can be used only if bit 13 of
control register 0, the AFP-register-control bit, is
one. Attempting to use an AFP register when the
basic-floating-point-extensions facility is not
installed results in a specification exception.
Attempting to use an AFP register when the basic-
floating-point-extensions facility is installed and the
AFP-register-control bit is zero results in an
AFP-register data exception (DXC 1).

 Valid Floating-Point-Register
Designations
Any installed register may be designated by an
instruction to specify the register location of a
short or long floating-point operand.

An instruction specifying a floating-point operand
in the extended format must designate register 0
or 4, if only registers 0, 2, 4, and 6 are installed,
or register 0, 1, 4, 5, 8, 9, 12, or 13 if all registers
are installed; otherwise, a specification exception
is recognized.

 Floating-Point-Control (FPC)
Register

The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data
exception code, and rounding-mode bits. The
FPC register is installed when the binary-floating-
point facility is installed and is described in the
section “Floating-Point-Control (FPC) Register” on
page 19-2.
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 AFP-Register-Control Bit
Bit 13 of control register 0 is the
AFP-register-control bit. The AFP registers and
the BFP instructions can be used only when the
AFP-register-control bit is one. Attempting to use
one of the 12 additional floating-point registers
when the AFP-register-control bit is zero results in
an AFP-register data exception (DXC 1).
Attempting to execute any BFP instruction when
the AFP-register-control bit is zero results in a
BFP-instruction data exception (DXC 2). If the
conditions for both DXC 1 and DXC 2 exist, DXC
1 is reported. If the conditions for both a data
exception and a specification exception exist, it is
unpredictable which exception is reported.

The initial value of the AFP-register-control bit is
zero.

Explicit Rounding Methods

The floating-point-support instruction CONVERT
HFP TO BFP includes an M³ modifier field which
can specify any of five rounding methods. One
HFP instruction (CONVERT TO FIXED) and three
BFP instructions (CONVERT TO FIXED, DIVIDE
TO INTEGER, and LOAD FP INTEGER) also
include either an M³ modifier field or a similar M´

modifier field. The five rounding methods are as
follows:

M³ 
or 
M´ Rounding Method

1 Biased round to nearest:

Round the intermediate result up or down to
the nearest representable value; that is, add,
ignoring the sign, a one to the bit just beyond
the last result bit to be retained, propagate
the carry, and discard the bits beyond the last
one to be retained.

4 Round to nearest:

Round the intermediate result up or down to
the nearest representable value; that is, add,
ignoring the sign, a one to the bit just beyond
the last result bit to be retained, propagate
the carry, and discard the bits beyond the last
one to be retained. If the difference was
exactly one-half ulp (a one in the bit position
just beyond the last place, with all zeros
beyond that), the nearest even number is
chosen; that is, after the rounding addition,
the last result bit retained is set to zero.

5 Round toward 0:

Discard all bits to the right of the last
intermediate-result bit to be retained.

6 Round toward +∞:

If the intermediate result is positive and there
are any ones to the right of the last result bit
to be retained, add one to that bit. Then, for
either sign, discard the bits beyond the last
one to be retained.

7 Round toward −∞:

If the intermediate result is negative and there
are any ones to the right of the last result bit
to be retained, subtract one from that bit (that
is, add one to the magnitude). Then, for
either sign, discard the bits beyond the last
one to be retained.

The handling of an M³ or M´ value of zero
depends on the type of instruction. For BFP
instructions, an M³ or M´ value of zero causes
rounding to be performed according to the current
rounding mode specified in the FPC register. The
floating-point-support and HFP instructions treat
an M³ or M´ of zero the same as 5, that is, round
toward zero.

Summary of Rounding Action
Figure 9-1 on page 9-4 summarizes the rounding
action for floating-point-support (FPS), BFP, and
HFP instructions.
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Figure 9-1. Comparison of Rounding Action

Comparison of BFP and HFP
Number Representations

BFP and HFP Number Ranges
Figure 9-2 shows the range of numbers, in
decimal form, that can be represented in different
floating-point formats.

Figure 9-2. Number Ranges for BFP and HFP
Formats

Equivalent BFP and HFP Number
Representations
The exponent of an HFP number is represented in
the number as an unsigned seven-bit binary
integer called the characteristic. The character-
istic is obtained by adding 64 to the exponent
value (excess-64 notation). The range of the
characteristic is 0 to 127, which corresponds to an
exponent range of −64 to +63.

The exponent of a BFP number is represented in
the number as an unsigned binary integer called
the biased exponent. The biased exponent is
obtained by adding a bias to the exponent value.
The number of bit positions containing the biased
exponent, the value of the bias, and the exponent
range depend on the number format (short, long,
or extended) and are shown for the three formats
in Figure 19-7 on page 19-5. Biased exponents
are similar to the characteristics of the HFP

Instruction

Rounding Action
For

FPS
Inst.

HFP
Inst.

BFP
Inst.

ADD — — CRM

ADD NORMALIZED — GD —

ADD UNNORMALIZED — GD —

CONVERT BFP TO HFP E — —
Type Short Long Extended

CONVERT FROM FIXED — RTZ CRM
Nmax BFP ±3.4×10+38 ±1.8×10+308 ±1.2×10+4932

CONVERT HFP TO BFP M — — HFP ±7.2×10+75 ±7.2×10+75 ±7.2×10+75

CONVERT TO FIXED — M M Nmin BFP ±1.2×10−38 ±2.2×10−308 ±3.4×10−4932

DIVIDE — RTZ CRM HFP ±5.5×10−79 ±5.5×10−79 ±5.5×10−79

Dmin BFP ±1.4×10−45 ±4.9×10−324 ±6.5×10−4966DIVIDE TO INTEGER — — M

HFP ±5.2×10−85 ±1.2×10−94 ±1.7×10−111HALVE — RTZ —
Explanation: 

Dmin Smallest (in magnitude) representable
denormalized (BFP) or nonzero unnormal-
ized (HFP) number.

Nmax Largest (in magnitude) representable
number.

Nmin Smallest (in magnitude) representable nor-
malized number.

Values are decimal approximations.

LOAD FP INTEGER — M M

LOAD ROUNDED — BR CRM

MULTIPLY — RTZ CRM

MULTIPLY AND ADD — — CRM

MULTIPLY AND SUBTRACT — — CRM

SQUARE ROOT — BR CRM

SUBTRACT — — CRM

SUBTRACT NORMALIZED — GD —

SUBTRACT UNNORMAL-
IZED — GD —

Explanation: 

BR Biased round to nearest.
CRM Rounded according to current rounding

mode.
E Result is exact, no rounding is required.
GD Round using a guard digit; see the

instruction definition. This is almost, but
not quite, round toward 0.

M Rounding is specified by a modifier field
in the instruction.

RTZ Round toward 0.
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format, except that special meanings are attached
to biased exponents of all zeros and all ones,
which are discussed in the section “Classes of
BFP Data” on page 19-5.

In each of the three BFP or HFP formats, the
binary or hexadecimal point of a number, respec-
tively, is considered to be to the left of the leftmost
fraction digit. To the left of the point there is an
implied unit digit, which is considered to be zero
for HFP numbers or, for BFP numbers, one for
normalized numbers and zero for zeros and
denormalized numbers.

Figure 9-3 and Figure 9-4 on page 9-6 give
examples of the closest representation of the
same numbers in the BFP and HFP formats, with
BFP values being rounded to nearest and HFP
values being truncated.

The figures do not necessarily show the results of
BFP/HFP conversions exactly. Rounding errors
may make a small difference. Also, Figure 9-3
shows corresponding rounded short-format
numbers, not the long HFP results of conversion
from short BFP operands.

Value S BE or C Fraction

1.0 B 0 01111111
00000000000000000000000

H 0 1000001
000100000000000000000000

0.5 B 0 01111110
00000000000000000000000

H 0 1000000
100000000000000000000000

1/64 B 0 01111001
00000000000000000000000

H 0 0111111
010000000000000000000000

+0 B 0 00000000
00000000000000000000000

H 0 0000000
000000000000000000000000

−0 B 1 00000000
00000000000000000000000

H 1 0000000
000000000000000000000000

−15.0 B 1 10000010
11100000000000000000000

H 1 1000001
111100000000000000000000

20/7 B 0 10000000
01101101101101101101110

H 0 1000001
001011011011011011011011

2−126 B 0 00000001
00000000000000000000000

H 0 0100001
010000000000000000000000

2−149 B 0 00000000
00000000000000000000001

H 0 0011011
100000000000000000000000

2128×F
F=1−2−24

B 0 11111110
11111111111111111111111

H 0 1100000
111111111111111111111111

2−260 B Zero (number too small)

H 0 0000000
000100000000000000000000

2248×F
F=1−2−24

B Not representable

H 0 1111110
111111111111111111111111
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Figure 9-3. Examples of FP and HFP Numbers in
Short Format

Explanation: 

 B BFP.
BE or C Biased exponent of BFP number or charac-

teristic of HFP number.
 H HFP.
 S Sign.
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Value S BE or C Fraction

1.0 B 0 01111111111 00000000000000000000
00000000000000000000000000000000

H 0 1000001 000100000000000000000000
00000000000000000000000000000000

0.5 B 0 01111111110 00000000000000000000
00000000000000000000000000000000

H 0 1000000 100000000000000000000000
00000000000000000000000000000000

1/64 B 0 01111111001 00000000000000000000
00000000000000000000000000000000

H 0 0111111 010000000000000000000000
00000000000000000000000000000000

+0 B 0 00000000000 00000000000000000000
00000000000000000000000000000000

H 0 0000000 000000000000000000000000
00000000000000000000000000000000

−0 B 1 00000000000 00000000000000000000
00000000000000000000000000000000

H 1 0000000 000000000000000000000000
00000000000000000000000000000000

−15.0 B 1 10000000010 11100000000000000000
00000000000000000000000000000000

H 1 1000001 111100000000000000000000
00000000000000000000000000000000

20/7 B 0 10000000000 01101101101101101101
10110110110110110110110110110111

H 0 1000001 001011011011011011011011
01101101101101101101101101101101

2−1022 B 0 00000000001 00000000000000000000
00000000000000000000000000000000

H Zero (number too small)

2−1074 B 0 00000000000 00000000000000000000
00000000000000000000000000000001

H Zero (number too small)

21024×F
F=1−2−53

B 0 11111111110 11111111111111111111
11111111111111111111111111111111

H Not representable

2−260 B 0 01011111011 00000000000000000000
00000000000000000000000000000000

H 0 0000000 000100000000000000000000
00000000000000000000000000000000

2248×F
F=1−2−56

B 0 10011110111 00000000000000000000
00000000000000000000000000000000

H 0 1111110 111111111111111111111111
11111111111111111111111111111111
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Figure 9-4. Examples of BFP and HFP Numbers in Long Format

Explanation: 

 B BFP.
BE or C Biased exponent of BFP number or characteristic of HFP number.

 H HFP.
 S Sign.

 Instructions
The floating-point-support instructions and their
mnemonics and operation codes are listed in
Figure 9-5 on page 9-9. The figure indicates, in
the column labeled “Characteristics,” the instruc-
tion format, when the condition code is set, the
instruction fields that designate access registers,
and the exceptional conditions in operand desig-
nations, data, or results that cause a program
interruption.

All floating-point-support instructions are subject to
the AFP-register-control bit, bit 13 of control reg-
ister 0. The AFP registers can be used only when
the AFP-register-control bit is one; otherwise, an
AFP-register data exception, DXC 1, is recog-
nized. An operation exception is recognized when
the CPU attempts to execute an instruction which
is part of the floating-point-support extensions
facility when the facility is not installed.

Mnemonics for the floating-point instructions have
an R as the last letter when the instruction is in

the RR, RRE, or RRF format. Certain letters are
used for floating-point instructions to represent
operand-format length, as follows:

D Long
E Short
X Extended

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler
language are shown with each instruction. For a
register-to-register operation using LOAD (short),
for example, LER is the mnemonic and R±,R² the
operand designation.

Programming Note:  The following additional
floating-point-support instructions are available in
ESA/390 when the floating-point-support-
extensions facility is installed:

� CONVERT BFP TO HFP
� CONVERT HFP TO BFP

 � LOAD (LXR)
 � LOAD ZERO
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│CONVERT BFP TO HFP (long) │THDR │RRE C FX│ │Da │ │ │B359│

│CONVERT BFP TO HFP (short to long) │THDER│RRE C FX│ │Da │ │ │B358│

│CONVERT HFP TO BFP (long) │TBDR │RRF C FX│ SP│Da │ │ │B351│

│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C FX│ SP│Da │ │ │B35ð│

│LOAD (extended) │LXR │RRE FX│ SP│Da │ │ │B365│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD (long) │LDR │RR │ SP│Da │ │ │28 │

│LOAD (long) │LD │RX │ A SP│Da │ │ B²│68 │

│LOAD (short) │LER │RR │ SP│Da │ │ │38 │

│LOAD (short) │LE │RX │ A SP│Da │ │ B²│78 │

│LOAD ZERO (extended) │LZXR │RRE FX│ SP│Da │ │ │B376│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD ZERO (long) │LZDR │RRE FX│ │Da │ │ │B375│

│LOAD ZERO (short) │LZER │RRE FX│ │Da │ │ │B374│

│STORE (long) │STD │RX │ A SP│Da │ ST│ B²│6ð │

│STORE (short) │STE │RX │ A SP│Da │ ST│ B²│7ð │

├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤

│Explanation: │

│ │

│ A Access exceptions for logical addresses. │

│ B² B² field designates an access register in the access-register mode. │

│ C Condition code is set. │

│ Da AFP-register data exception. │

│ FX Floating-point-support extensions facility. │

│ RR RR instruction format. │

│ RRE RRE instruction format. │

│ RRF RRF instruction format. │

│ RX RX instruction format. │

│ SP Specification exception. │

│ ST PER storage-alteration event. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 9-5. Summary of Floating-Point-Support Instructions
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CONVERT BFP TO HFP
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
THDER 'B358' Short BFP operand,

long HFP result

THDR 'B359' Long BFP operand,

long HFP result

The second operand (the source operand) is con-
verted from the binary-floating-point (BFP) format
to the hexadecimal-floating-point (HFP) format,
and the normalized result is placed at the first-
operand location. The sign and magnitude of the
source operand are tested to determine the setting
of the condition code.

For numeric operands, the sign of the result is the
sign of the source operand. If the source operand
has a sign bit of one and all other operand bits
are zeros, the result also is a one followed by all
zeros.

When, for THDR, the characteristic of the result
would be negative, the result is made all zeros but
with the same sign as that of the source operand,
and condition code 1 or 2 is set to indicate the
sign of the source operand.

When, for THDR, the characteristic of the
hexadecimal intermediate result is too large to fit
into the target format, the result is set to all ones
(that is, the largest-in-magnitude representable
number) but with the same sign as that of the
source operand, and condition code 3 is set.

See Figure 9-6 for a detailed description of the
results of this instruction.

Resulting Condition Code:  

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the floating-point-support-

extensions facility is not installed)

Programming Notes:

1. The BFP-to-HFP conversion instructions are
summarized in Figure 9-7 on page 9-11.

2. CONVERT BFP TO HFP (THDER) converts
BFP operands in the short format to HFP
operands in the long format, rather than con-
verting short to short, to retain full precision.
Using this long HFP result subsequently as a
short operand requires no extra conversion
steps.

Figure 9-6. Results: CONVERT BFP TO HFP

Source Operand (a) Results

−∞ ≤ a < −Hmax T(−Hmax), cc3

−Hmax ≤ a ≤ −Hmin T(r), cc1

−Hmin < a < 0 T(−0)ñ, cc1

−0 T(−0), cc0

+0 T(+0), cc0

0 < a < +Hmin T(+0)ò, cc2

+Hmin ≤ a ≤ +Hmax T(r), cc2

+Hmax < a ≤ +∞ T(+Hmax), cc3

NaN T(+Hmax), cc3

Explanation: 

ñ Condition code 1 is set to indicate the
source was less than zero.

ò Condition code 2 is set to indicate the
source was greater than zero.

ccn Condition code is set to n.
r The value derived when the BFP source

value a is converted to the HFP format.
This result is always exact.

Hmax Largest (in magnitude) representable
number in the target HFP format.

Hmin Smallest (in magnitude) representable
normalized number in the target HFP
format.

T(x) The value x is placed at the target
operand location.
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Figure 9-7. Summary of BFP-to/from-HFP Conversion Instructions

Instruction
Mne-
monic

Source Target
Overflow,
Underflow
PossibleFormat

Significant
Bits Format

Significant
Bits Result

CONVERT BFP TO
HFP

THDER BFP short 24 HFP long 53-56 Exact No

THDR BFP long 53 HFP long 53-56 Exact Yes

CONVERT HFP TO
BFP

TBEDR HFP long 53-56 BFP short 24 Rounded Yes

TBDR HFP long 53-56 BFP long 53 Rounded No

CONVERT HFP TO BFP
Mnemonic R±,M³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ M³ │////│ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic Op Code Operands
TBEDR 'B35ð' Long HFP operand,

short BFP result

TBDR 'B351' Long HFP operand,

long BFP result

The second operand (the source operand) is con-
verted from the hexadecimal-floating-point (HFP)
format to the binary-floating-point (BFP) format,
and the result rounded according to the rounding
method specified by the M³ field is placed at the
first-operand location. The sign and magnitude of
the source operand are tested to determine the
setting of the condition code.

The M³ field contains a modifier specifying a
rounding method, as follows:

M³ Rounding Method
0 Round toward 0
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

The sign of the result is the sign of the second
operand. If the second operand has a sign bit of

one and all other operand bits are zeros, the
result also is a one followed by all zeros.

See Figure 9-8 on page  9-12 for a detailed
description of the results of this instruction.

The M³ field must designate a valid modifier; oth-
erwise, a specification exception is recognized.

Resulting Condition Code:  

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the floating-point-support-

extensions facility is not installed)
 � Specification

Programming Notes:

1. The HFP-to-BFP conversion instructions are
summarized in Figure 9-7.

2. Conversion to short BFP numbers requires
HFP operands in the long format; a short HFP
operand should be extended to long by
ensuring that the right half of the register is
cleared. Thus, the entire register should be
cleared before loading a short HFP operand
into it for conversion to BFP. This avoids
unrepeatable rounding errors in the BFP result
due to data left over from previous use.
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Figure 9-8 (Part 1 of 2). Results: CONVERT HFP to BFP

Source Operand (a) Results

a < −Nmax See Part 2 of this figure.

−Nmax ≤ a ≤ −Nmin T(r), cc1

−Nmin < a ≤ −Dmin T(d), cc1

−Dmin < a < 0 T(d)ñ, cc1

−0 T(−0), cc0

+0 T(+0), cc0

0 < a < +Dmin T(d)ò, cc2

+Dmin ≤ a < +Nmin T(d), cc2

+Nmin ≤ a ≤ +Nmax T(r), cc2

+Nmax < a See Part 2 of this figure.

Figure 9-8 (Part 2 of 2). Results: CONVERT HFP to BFP

Source
Operand (a)

Results for Rounding Method Specified in M³

Biased Round to
Nearest

Round to
Nearest Round toward 0

Round toward
+∞

Round toward
−∞

a < −Nmax T(−∞), cc3 T(−∞), cc3 T(−Nmax), cc3 T(−Nmax), cc3 T(−∞), cc3

+Nmax < a T(+∞), cc3 T(+∞), cc3 T(+Nmax), cc3 T(+∞), cc3 T(+Nmax), cc3

Explanation: 

ñ Condition code 1 is set for this case, even when the rounded result is zero.
ò Condition code 2 is set for this case, even when the rounded result is zero.
ccn Condition code is set to n.
d The denormalized value derived when the HFP source value a is rounded to the format of the

target using the rounding method specified in the M³ field.
r The value derived when the HFP source value a is rounded to the format of the target using the

rounding method specified in the M³ field.
Dmin Smallest (in magnitude) representable denormalized number in the target BFP format.
Nmax Largest (in magnitude) representable finite number in the target BFP format.
Nmin Smallest (in magnitude) representable normalized number in the target BFP format.
T(x) The value x is placed at the target operand location.

 LOAD
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LER '38' Short

LDR '28' Long

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LXR 'B365' Extended
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Mnemonic3 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic3 Op Code Operands
LE '78' Short

LD '68' Long

The second operand is placed unchanged at the
first-operand location.

The operation is performed without inspecting the
contents of the second operand; no arithmetic
exceptions are recognized.

For LXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional-floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of LE and LD only)
� Data with DXC 1, AFP register
� Operation (LXR if the floating-point-support-

extensions facility is not installed)
 � Specification

 LOAD ZERO
Mnemonic R± [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LZER 'B374' Short

LZDR 'B375' Long

LZXR 'B376' Extended

All bits of the first operand are set to zeros.

For LZXR, The R± field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the floating-point-support-

extensions facility is not installed)
� Specification (LZXR only)

Programming Note:  LOAD ZERO sets all bits of
a register to zeros, which produces a positive zero
value in both the HFP and BFP formats.

 STORE
Mnemonic R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic Op Code Operands
STE '7ð' Short

STD '6ð' Long

The first operand is placed unchanged in storage
at the second-operand location.

The R± field may designate the additional floating-
point registers only when the basic-floating-point-
extensions is installed; otherwise, a specification
exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
� Data with DXC 1, AFP register

 � Specification

Summary of All Floating-Point
Instructions
Figures 9-9 through 9-13 on following pages show
all floating-point instructions arranged in various
categories of operand format and type of opera-
tion (principally, register-and-register and register-
and-storage operations). Figure 9-9 on
page 9-14 shows the floating-point-support
instructions. Figure 9-10 on page 9-15 shows the
BFP and HFP instructions with all operands of the
same length. Figure 9-11 on page 9-16 shows
the BFP and HFP instructions in which the result
is longer than the source operand. Figure 9-12
on page 9-16 shows the BFP and HFP
instructions in which the result is shorter than the
source operand. Figure 9-13 on page 9-16
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shows the other BFP instructions, including those
instructions which operate on the FPC register.
Figure 9-14 on page  9-17 shows the numbers of
all floating-point instructions in the categories of
“basic” (those provided in ESA/390, before the
introduction of the new floating-point facilities);
“FX” (those provided as part of the floating-point-
support-extensions facility); “HX” (those provided

as part of the HFP-extensions facility); “BFP”
(those provided as part of the BFP facility); and
the totals. The instructions CONVERT FROM
FIXED and CONVERT TO FIXED convert
between fixed-point and floating-point formats. In
the figures, entries for these 32-bit fixed-point
operands are combined in the same column with
entries for 32-bit short operands.

Figure 9-9. Floating-Point-Support Instructions

Instruction Name

Short (32) Long (64) Ext. (128) 32 to 64 64 to 32

R-R R-S R-R R-S R-R R-R R-R

CONVERT BFP TO HFP THDRñ THDERñ

CONVERT HFP TO BFP TBDRñ TBEDRñ

LOAD LER LE LDR LD LXRñ

LOAD ZERO LZERñ LZDRñ LZXRñ

STORE STE STD

Explanation: 

ñ Operation code is part of floating-point-support-extensions facility.
 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .
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Figure 9-10. BFP and HFP Instructions with All Operands of Same Length

Instruction Name

HFP Instructions BFP Instructions

Short (32) Long (64)
Ext.

(128) Short (32) Long (64)
Ext.

(128)

R-R R-S R-R R-S R-R R-R R-S R-R R-S R-R

ADD AEBRó AEBó ADBRó ADBó AXBRó

ADD NORMALIZED AER AE ADR AD AXR

ADD UNNORMALIZED AUR AU AWR AW

COMPARE CER CE CDR CD CXRò CEBRó CEBó CDBRó CDBó CXBRó

COMPARE AND SIGNAL KEBRó KEBó KDBRó KDBó KXBRó

CONVERT FROM FIXEDñ CEFRò CEFBRó

CONVERT TO FIXEDñ CFERò CFEBRó

DIVIDE DER DE DDR DD DXR DEBRó DEBó DDBRó DDBó DXBRó

DIVIDE TO INTEGER DIEBRó DIDBRó

HALVE HER HDR

LOAD AND TEST LTER LTDR LTXRò LTEBRó LTDBRó LTXBRó

LOAD COMPLEMENT LCER LCDR LCXRò LCEBRó LCDBRó LCXBRó

LOAD FP INTEGER FIERò FIDRò FIXRò FIEBRó FIDBRó FIXBRó

LOAD NEGATIVE LNER LNDR LNXRò LNEBRó LNDBRó LNXBRó

LOAD POSITIVE LPER LPDR LPXRò LPEBRó LPDBRó LPXBRó

MULTIPLYñ MEERò MEEò MDR MD MXR MEEBRó MEEBó MDBRó MDBó MXBRó

MULTIPLY AND ADD MAEBRó MAEBó MADBRó MADBó

MULTIPLY AND SUBTRACT MSEBRó MSEBó MSDBRó MSDBó

SQUARE ROOT SQER SQEò SQDR SQDò SQXRò SQEBRó SQEBó SQDBRó SQDBó SQXBRó

SUBTRACT SEBRó SEBó SDBRó SDBó SXBRó

SUBTRACT NORMALIZED SER SE SDR SD SXR

SUBTRACT UNNORMALIZED SUR SU SWR SW

TEST DATA CLASS TCEBó TCDBó TCXBó

Explanation: 

ñ This instruction also has mixed-length operands.
ò Operation code is part of HFP-extensions facility.
ó Operation code is part of the BFP facility.

 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .
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Figure 9-11. BFP and HFP Instructions with Result Longer than Source

Instruction Name

HFP Instructions BFP Instructions

32 to 64 64 to 128 32 to 128 32 to 64 64 to 128 32 to 128

R-R R-S R-R R-S R-R R-S R-R R-S R-R R-S R-R R-S

CONVERT FROM
FIXED

CDFRò CXFRò CDFBRó CXFBRó

LOAD LENGTHENED LDERò LDEò LXDRò LXDò LXERò LXEò LDEBRó LDEBó LXDBRó LXDBó LXEBRó LXEBó

MULTIPLY MDER MDE MXDR MXD MDEBRó MDEBó MXDBRó MXDBó

Explanation: 

ò Operation code is part of the HFP-extensions facility.
ó Operation code is part of the BFP facility.

 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .

Figure 9-12. BFP and HFP Instructions with Result Shorter than Source

Instruction Name

HFP Instructions BFP Instructions

64 to 32 128 to 64 128 to 32 64 to 32 128 to 64 128 to 32

R-R R-R R-R R-R R-R R-R

CONVERT TO FIXED CFDRò CFXRò CFDBRó CFXBRó

LOAD ROUNDED LEDR LDXR LEXRò LEDBRó LDXBRó LEXBRó

Explanation: 

ò Operation code is part of the HFP-extensions facility.
ó Operation code is part of the BFP facility.

 R-R Register-and-register operation. .

Figure 9-13. Other BFP Instructions

Instruction Name Mnemonic

EXTRACT FPC EFPCó

LOAD FPC LFPCó

SET FPC SFPCó

SET ROUNDING MODE SRNMó

STORE FPC STFPCó

Explanation: 

ó Operation code is part of the BFP facility.
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Figure 9-14. Summary of All Floating-Point Instructions

Length of Operands (Bits)

Number of Operation Codes

Basic FX HX BFP Total

R-R R-S Total R-R R-R R-S Total R-R R-S Other Total R-R R-S Other Total

Short (32) 13 8 21 1 4 2 6 18 9 27 36 19 55

Long (64) 14 9 23 3 1 1 2 16 9 25 34 19 53

Extended (128) 4 4 2 7 7 13 13 26 26

Short to Long (32 to 64) 1 1 2 1 2 1 3 3 2 5 7 4 11

Long to Extended (64 to 128) 1 1 2 1 1 2 2 2 4 4 4 8

Short to Extended (32 to 128) 2 1 3 2 1 3 4 2 6

Long to Short (64 to 32) 1 1 1 1 1 2 2 5 5

Extended to Long (128 to 64) 1 1 1 1 2 2

Extended to Short (128 to 32) 2 2 2 2 4 4

Other 5 5 5 5

Totals 35 19 54 8 20 6 26 59 23 5 87 122 48 5 175

Explanation: 

 FX Floating-point-support-extensions facility.
 HF HFP-extensions facility.
 R-R Register-and-register operation. .
 R-S Register-and-storage operation. .
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 Chapter 10. Control Instructions
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This chapter includes all privileged and semiprivi-
leged instructions described in this publication,
except the input/output instructions, which are
described in Chapter 14, “I/O Instructions.”

Privileged instructions may be executed only when
the CPU is in the supervisor state. An attempt to
execute a privileged instruction in the problem
state generates a privileged-operation exception.

The semiprivileged instructions are those
instructions that can be executed in the problem
state when certain authority requirements are met.
An attempt to execute a semiprivileged instruction
in the problem state when the authority require-
ments are not met generates a privileged-
operation exception or some other

program-interruption condition depending on the
particular requirement which is violated. Those
requirements which cause a privileged-operation
exception to be generated in the problem state are
not enforced when execution is attempted in the
supervisor state.

The control instructions and their mnemonics,
formats, and operation codes are listed in
Figure 10-1 on page 10-3. The figure also indi-
cates when the condition code is set, the instruc-
tion fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

For those control instructions which have special
rules regarding the handling of exceptional situ-
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ations, a section called “Special Conditions” is
included. This section indicates the type of ending
(suppression, nullification, or completion) only for
those exceptions for which the ending may vary.

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler
language are shown with each instruction. For
LOAD PSW, for example, LPSW is the mnemonic
and D²(B²) the operand designation.

Programming Notes:

1. The following additional control instructions
are available in ESA/370 and ESA/390 as
compared to 370-XA:

� BRANCH AND STACK
� EXTRACT STACKED REGISTERS
� EXTRACT STACKED STATE
� LOAD USING REAL ADDRESS
� MODIFY STACKED STATE

 � MOVE PAGE
� MOVE WITH DESTINATION KEY
� MOVE WITH SOURCE KEY

 � PROGRAM RETURN

 � PURGE ALB
� STORE USING REAL ADDRESS

 � TEST ACCESS

The function of the MOVE PAGE instruction is
expanded in ESA/390 when the move-page
facility 2 is installed.

2. The control instruction BRANCH IN SUB-
SPACE GROUP is available in ESA/390 when
the subspace-group facility is installed.

3. The control instruction BRANCH AND SET
AUTHORITY is available in ESA/390 when the
branch-and-set-authority facility is installed.

4. The control instructions PROGRAM CALL
FAST, RESUME PROGRAM, and TRAP are
available in ESA/390 when the program-call-
fast, resume-program, and trap facilities,
respectively, are installed.

| 5. The control instructions SET CLOCK PRO-
| GRAMMABLE MODE, and STORE SYSTEM
| INFORMATION are available in ESA/390
| when the extended-TOD-clock and store-
| system-information facilities, respectively, are
| installed.
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│BRANCH AND SET AUTHORITY │BSA │RRE BS│Q Añ │SO T │B R │ │B25A│

│BRANCH AND STACK │BAKR │RRE │ Añ │SF T │B ST│ │B24ð│

│BRANCH IN SUBSPACE GROUP │BSG │RRE SG│ Añ │SO T │B R │ R²│B258│

│DIAGNOSE │ │ DM │P DM │ │ │ MD│83 │

│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ R │ │B226│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ R │ │B227│

│EXTRACT STACKED REGISTERS │EREG │RRE │ Añ │SE │ R │U± U²│B249│

│EXTRACT STACKED STATE │ESTA │RRE C │ Añ SP│SE │ R │ │B24A│

│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ R │ │B224│

│INSERT PSW KEY │IPK │S │Q │ G2 │ R │ │B2ðB│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P Añ │ │ │ │B229│

│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q Añ │SO │ R │ R²│B223│

│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P Añ │ $ │ │ │B221│

│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P Añ SP│AS │ │B± │E5ðð│

│LOAD CONTROL │LCTL │RS │P A SP│ │ │ B²│B7 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B²│82 │

│LOAD REAL ADDRESS │LRA │RX C │P Añ │AT │ R │ BP│B1 │

│LOAD USING REAL ADDRESS │LURA │RRE │P Añ SP│ │ R │ │B24B│

│MODIFY STACKED STATE │MSTA │RRE │ Añ SP│SE │ ST│ │B247│

│MOVE PAGE (facility 2) │MVPG │RRE C M2│Q Añ SP│ Gð │ ST│R± R²│B254│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │DA │

│MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │DB │

│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B± B²│E5ðF│

│MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B± B²│D9 │

│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B± B²│E5ðE│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│PROGRAM CALL │PC │S │Q Añ │Zñ T ¢ GM │B R ST│ │B218│

│PROGRAM CALL FAST │PCF │S PC│ Añ │Zõ ¢ G4 │B R ST│ │B218│

│PROGRAM RETURN │PR │E U │ Añ SP│Zô T ¢ò │B R ST│ │ð1ð1│

│PROGRAM TRANSFER │PT │RRE │Q Añ SP│Zò T ¢ │B │ │B228│

│PURGE ALB │PALB │RRE │P │ $ │ │ │B248│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│PURGE TLB │PTLB │S │P │ $ │ │ │B2ðD│

│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P Añ │ │ │ │B22A│

│RESUME PROGRAM │RP │S L RP│Q A SP│SW T │B R │ B²│B277│

│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │B219│

│SET ADDRESS SPACE CONTROL FAST │SACF │S SA│Q SP│SW │ │ │B279│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SET CLOCK │SCK │S C │P A SP│ │ │ B²│B2ð4│

│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B²│B2ð6│

| │SET CLOCK PROGRAMMABLE FIELD │SCKPF│E EK│P SP│ Gð │ │ │ð1ð7│

│SET CPU TIMER │SPT │S │P A SP│ │ │ B²│B2ð8│

│SET PREFIX │SPX │S │P A SP│ $ │ │ B²│B21ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │B2ðA│

│SET SECONDARY ASN │SSAR │RRE │ Añ │Zó T ¢ │ │ │B225│

│SET STORAGE KEY EXTENDED │SSKE │RRE │P Añ │ ¢ │ │ │B22B│

│SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B²│8ð │

│SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ R │ │AE │

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 10-1 (Part 1 of 3). Summary of Control Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B²│B2ð7│

│STORE CONTROL │STCTL│RS │P A SP│ │ ST│ B²│B6 │

│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B²│B212│

│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B²│B2ð2│

│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B²│B2ð9│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│STORE PREFIX │STPX │S │P A SP│ │ ST│ B²│B211│

| │STORE SYSTEM INFORMATION │STSI │S C SN│P A SP│ │ R ST│ B²│B27D│

│STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B± │AC │

│STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B± │AD │

│STORE USING REAL ADDRESS │STURA│RRE │P Añ SP│ │ SU│ │B246│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│TEST ACCESS │TAR │RRE C │ Añ │AS │ │U± │B24C│

│TEST BLOCK │TB │RRE C │P Añ │II $ Gð │ R │ │B22C│

│TEST PROTECTION │TPROT│SSE C │P Añ │ │ │B± │E5ð1│

│TRACE │TRACE│RS │P A SP│ T ¢ │ │ B²│99 │

│TRAP │TRAP2│E TR│ A │SO T GM │B R ST│ │ð1FF│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│TRAP │TRAP4│S TR│ A │SO T GM │B R ST│ │B2FF│

├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤

│Explanation: │

│ │

│ ¢ Causes serialization and checkpoint synchronization. │

│ ¢ò Causes serialization and checkpoint synchronization when the state entry to be unstacked │

│ is a program-call state entry. │

│ $ Causes serialization. │

│ A Access exceptions for logical addresses. │

│ Añ Access exceptions; not all access exceptions may occur; see instruction description for │

│ details. │

│ AS ASN-translation-specification and special-operation exceptions. │

│ AT ASN-translation-specification exception. │

│ B PER branch event. │

│ B± B± field designates an access register in the access-register mode. │

│ B² B² field designates an access register in the access-register mode. │

│ BP B² field designates an access register when PSW bits 16 and 17 have the value ð1. │

│ BS Branch-and-set-authority facility │

│ C Condition code is set. │

│ DM Depending on the model, DIAGNOSE may generate various program exceptions and may change │

│ the condition code. │

│ E E instruction format. │

│ Gð Instruction execution includes the implied use of general register ð. │

│ G2 Instruction execution includes the implied use of general register 2. │

│ G4 Instruction execution includes the implied use of general register 4. │

│ GM Instruction execution includes the implied use of multiple general registers: │

│ General registers ð and 1 for MOVE WITH DESTINATION KEY and MOVE WITH SOURCE KEY. │

│ General registers 3, 4, and 14 for PROGRAM CALL. │

│ General registers ð-15 for TRAP. │

│ II Interruptible instruction. │

│ L New condition code is loaded. │

│ MD Designation of access registers in the access-register mode is model-dependent. │

│ M2 Move-page facility 2. │

│ P Privileged-operation exception. │

│ PC Program-call-fast facility. │

│ Q Privileged-operation exception for semiprivileged instructions. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 10-1 (Part 2 of 3). Summary of Control Instructions
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┌────────────────────────────────────────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ │

│ R PER general-register-alteration event. │

│ R± R± field designates an access register in the access-register mode. │

│ R² R² field designates an access register in the access-register mode. │

│ RP Resume-program facility. │

│ RRE RRE instruction format. │

│ RS RS instruction format. │

│ RX RX instruction format. │

│ S S instruction format. │

│ SA Set-address-space-control-fast facility. │

│ SE Special-operation, stack-empty, stack-specification, and stack-type exceptions. │

│ SF Special-operation, stack-full, and stack-specification exceptions. │

│ SG Subspace-group facility. │

│ SI SI instruction format. │

| │ SN Store-system-information facility. │

│ SO Special-operation exception. │

│ SP Specification exception. │

│ SS SS instruction format. │

│ SSE SSE instruction format. │

│ ST PER storage-alteration event. │

│ SU PER store-using-real-address event. │

│ SW Special-operation exception and space-switch event. │

│ T Trace exceptions (which include trace table, addressing, and low-address protection). │

│ TR Trap facility │

│ U Condition code is unpredictable. │

│ U± R± field designates an access register unconditionally. │

│ U² R² field designates an access register unconditionally. │

│ Zñ Additional exceptions and events for PROGRAM CALL (which include AFX-translation, │

│ ASN-translation-specification, ASX-translation, EX-translation, LX-translation, │

│ PC-translation-specification, special-operation, stack-full, and stack-specification │

│ exceptions and space-switch event). │

│ Zò Additional exceptions and events for PROGRAM TRANSFER (which include AFX-translation, │

│ ASN-translation-specification, ASX-translation, primary-authority, and special-operation │

│ exceptions and space-switch event). │

│ Zó Additional exceptions for SET SECONDARY ASN (which include AFX translation, │

│ ASN-translation specification, ASX translation, secondary authority, and special │

│ operation). │

│ Zô Additional exceptions and events for PROGRAM RETURN (which include AFX-translation, │

│ ASN-translation-specification, ASX-translation, secondary-authority, special-operation, │

│ stack-empty, stack-operation, stack-specification, and stack-type exceptions and │

│ space-switch event). │

│ Zõ Additional exceptions and events for PROGRAM CALL FAST (which include EX-translation, │

│ special-operation, stack-full, and stack-specification exceptions and space-switch event).│

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 10-1 (Part 3 of 3). Summary of Control Instructions
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BRANCH AND SET AUTHORITY

BSA R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B25A' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

If the dispatchable unit is in the base-authority
state: bits 32-63 of the current PSW, including the
updated instruction address, are saved in the
dispatchable-unit control table (DUCT); the
PSW-key mask (PKM), PSW key, and problem-
state bit also are saved in the DUCT; the PKM
and PSW key are replaced using the contents of
general register R±; the problem-state bit is set to
one; bits 32-63 of the PSW are replaced using the
contents of general register R²; and the
dispatchable unit is placed in the reduced-
authority state.

If the dispatchable unit is in the reduced-authority
state: bits 32-63 of the current PSW, including the
updated instruction address, are saved in general
register R± if R± is not zero; bits 32-63 of the
PSW and the PKM, PSW key, and problem-state
bit are replaced by values saved in the DUCT;
and the dispatchable unit is placed in the base-
authority state.

Bits 16-23 of the instruction are ignored.

Words 8 and 9 of the DUCT are used by this
instruction. The contents of those words are as
follows:

 ┌─┬───────────────────────────────────┐

8 │ │ │

 │A│ Return Address │

 └─┴───────────────────────────────────┘

 ð 1 31

 ┌────────────────┬────────┬────┬─┬──┬─┐

9 │ │ │PSW │R│ │ │

 │ PSW Key Mask │ │Key │A│ │P│

 └────────────────┴────────┴────┴─┴──┴─┘

 ð 16 24 28 31

The fields in words 8 and 9 of the DUCT are allo-
cated as follows:

Addressing Mode (A):  Bit position 0 of word 8
contains the addressing-mode bit, bit 32 of the
PSW, saved by BRANCH AND SET AUTHORITY

executed in the base-authority state. The
addressing-mode bit is restored to the PSW from
the DUCT by BRANCH AND SET AUTHORITY
executed in the reduced-authority state.

Return Address:  Bit positions 1-31 of word 8
contain the updated instruction address, bits 33-63
of the PSW, saved by BRANCH AND SET
AUTHORITY executed in the base-authority state.
The return address is restored to the PSW (it is
treated as the branch address) by BRANCH AND
SET AUTHORITY executed in the reduced-
authority state.

PSW-Key Mask:  Bit positions 0-15 of word 9
contain the PSW-key mask (PKM), bits 0-15 of
control register 3, saved by BRANCH AND SET
AUTHORITY executed in the base-authority state.
The PKM is restored to control register 3 by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

PSW Key:  Bit positions 24-27 of word 9 contain
the PSW key, bits 8-11 of the PSW, saved by
BRANCH AND SET AUTHORITY executed in the
base-authority state. The PSW key is restored to
the PSW by BRANCH AND SET AUTHORITY
executed in the reduced-authority state.

Reduced Authority (RA):  Bit 28 of word 9 indi-
cates, when zero, that the dispatchable unit asso-
ciated with the DUCT is in the base-authority state
or, when one, that the dispatchable unit is in the
reduced-authority state. Bit 28 is set to one by
BRANCH AND SET AUTHORITY executed in the
base-authority state, and it is set to zero by
BRANCH AND SET AUTHORITY executed in the
reduced-authority state.

Problem State (P):  Bit position 31 of word 9
contains the problem-state bit, bit 15 of the PSW,
saved by BRANCH AND SET AUTHORITY exe-
cuted in the base-authority state. The problem-
state bit is restored to the PSW by BRANCH AND
SET AUTHORITY executed in the reduced-
authority state.

Bits 16-23, 29, and 30 of word 9 are set to zeros
when saving occurs in words 8 and 9 in the base-
authority state. Word 8 and bits 0-27 and 29-31
of word 9 remain unchanged when bit 28 of word
9 is set to zero in the reduced-authority state.
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Base-Authority Operation

When BRANCH AND SET AUTHORITY is exe-
cuted in the base-authority state, as indicated by
the reduced-authority (RA) bit in the DUCT being
zero, R² must be nonzero; otherwise, a special-
operation exception is recognized. R± may be
zero or nonzero.

The contents of general registers R± and R² when
the execution of the instruction begins in the base-
authority state are as follows:

 ┌────────────────┬────────┬────┬────┐

R± │ Key Mask │ │Key │ │

 └────────────────┴────────┴────┴────┘

 ð 16 24 28 31

 ┌─┬─────────────────────────────────┐

R² │A│ Branch Address │

 └─┴─────────────────────────────────┘

 ð 1 31

PSW bits 32-63, the PKM, the PSW key, and the
problem-state bit are saved in the DUCT, the RA

| bit in the DUCT is set to one, and bits 16-23, 29,
| and 30 of word 9 of the DUCT are set to zeros.

Bits 24-27 of general register R± are placed in bit
positions 8-11 of the PSW as the new PSW key.
In the problem state, the new PSW key must be
authorized by the PKM; otherwise, if the new PSW
key is not authorized, a privileged-operation
exception is recognized.

After the new PSW key has been placed in the
PSW, bits 0-15 of general register R± are ANDed
with the PKM in control register 3, and the result
replaces the PKM in control register 3.

The problem-state bit in the PSW is set to one.

Bit 0 of general register R² is placed in bit position
32 of the PSW as the new addressing-mode bit.
A branch address is generated from bits 1-31 of
general register R² under the control of the new
addressing mode, and the result is placed in bit
positions 33-63 of the PSW as the new instruction
address.

Bits 16-23 and 28-31 of general register R± may
be used for future extensions and should be
zeros; otherwise, the program may not operate
compatibly in the future.

Reduced-Authority Operation

When BRANCH AND SET AUTHORITY is exe-
cuted in the reduced-authority state, as indicated
by the reduced-authority (RA) bit in the DUCT
being one, R² must be zero; otherwise, a special-
operation exception is recognized. R± may be
zero or nonzero. The initial contents of general
registers R± and R² are ignored.

If R± is nonzero, bits 32-63 of the current PSW,
including the addressing-mode bit and the updated
instruction address, are placed in general register
R±. If R± is zero, general register 0 remains
unchanged.

PSW bits 32-63, the PKM, the PSW key, and the
problem-state bit are restored from the DUCT, and

| the RA bit in the DUCT is set to zero. There is no
test for whether the restored PSW key is author-
ized by the restored PKM.

Special Conditions

The instruction can be executed successfully only
when the address-space-function control, bit 15 of
control register 0, is one. In addition, R² must be
nonzero in the base-authority state and zero in the
reduced-authority state. If any of these rules is
violated, a special-operation exception is recog-
nized, and the operation is suppressed.

In the problem state, the execution of the instruc-
tion in the base-authority state is subject to control
by the PSW-key mask in control register 3. When
the bit in the PSW-key mask corresponding to the
PSW-key value to be set is one, the instruction is
executed successfully. When the selected bit in
the PSW-key mask is zero, a privileged-operation
exception is recognized. In the supervisor state,
any value for the PSW key is valid.

The fetch, store, and update references to the
DUCT are word-concurrent single-access refer-
ences. The words of the DUCT are accessed in
no particular order.

Key-controlled protection does not apply to any
access made during the operation. Low-address
protection does apply.

The contents of word 8 of the DUCT are not
checked for validity before they are loaded into the
PSW. However, after loading, a specification
exception is recognized, and a program inter-
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ruption occurs, when the newly loaded PSW con-
tains a zero in bit position 32 and the contents of
bit positions 33-39 are not all zeros. In this case,
the operation is completed, and the resulting
instruction-length code is 0. The specification
exception, which in this case is listed as a
program exception in this instruction, is described
in “Early Exception Recognition” on page 6-9. It
may be considered as occurring early in the
process of preparing to execute the following
instruction.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-2 on
page 10-9.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (dispatchable-unit control table)
� Operation (if the branch-and-set-authority

facility is not installed)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state, base-authority
operation only)

� Protection (low-address; dispatchable-unit
control table)

 � Special operation
 � Specification
 � Trace

Programming Notes:

1. BRANCH AND SET AUTHORITY can improve
performance by replacing to-current-primary
forms of PROGRAM TRANSFER (PT-cp) and
basic (nonstacking) PROGRAM CALL (PC-cp)
instructions. PT-cp and PC-cp are often used
(within a single address space) to reduce the
authority of the PSW-key mask (PKM) or
change from supervisor state to problem state
during a calling linkage made by PT-cp and
then to restore the PKM authority or super-
visor state during a return linkage made by
PC-cp. Also, the PSW-key-setting operations
of BRANCH AND SET AUTHORITY can be
substituted for SET PSW KEY FROM
ADDRESS instructions, and, since BRANCH
AND SET AUTHORITY combines branching
with PSW-key setting, it can be used to
change the PSW key when branching from or
to a fetch-protected program.

2. Only one base-authority state and one
reduced-authority state are available to a
dispatchable unit. Nested use of BRANCH
AND SET AUTHORITY, that is, use within dif-
ferent subroutine levels, is not possible. The
requirement that R² must be nonzero in the
base-authority state and zero in the reduced-
authority state provides detection of an
attempt to use BRANCH AND SET
AUTHORITY in the base-authority state when
the dispatchable unit is already in the
reduced-authority state because of a previous
use of the instruction in the base-authority
state.

3. The instruction may be referred to as BSA-ba
or BSA-ra depending on whether it is exe-
cuted in the base-authority state or the
reduced-authority state, respectively.
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┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B.1 Operation exception if the branch-and-set-authority facility │

│ is not installed. │

│ │

│ 7.B.2 Special-operation exception due to the address-space-function │

│ control, bit 15 of control register ð, being zero. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B Protection exception (low-address protection) for access to │

│ dispatchable-unit control table. │

│ │

│ 8.C.1 Addressing exception for access to dispatchable-unit control │

│ table. │

│ │

│ 8.C.2 Special-operation exception due to R² being zero in the base- │

│ authority state or R² being nonzero in the reduced-authority │

│ state. │

│ │

│ 8.C.3 Privileged-operation exception due to selected PSW-key-mask │

│ bit being zero (base-authority operation only). │

│ │

│ 9. Specification exception due to bit 32 of the newly loaded PSW │

│ zero when bits 33-39 are not all zeros (reduced-authority │

│ operation only). │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-2. Priority of Execution: BRANCH AND SET AUTHORITY

BRANCH AND STACK

BAKR R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24ð' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

A linkage-stack branch state entry is formed, and
the current PSW, except with an unpredictable
PER mask and an addressing-mode bit and
instruction address from the first operand substi-
tuted for bits 32-63, is placed in the state entry.
Subsequently, the updated instruction address in
the current PSW is replaced from the second
operand. The new value of PSW bits 32-63 and
the PSW-key mask, PASN, SASN, EAX, and con-
tents of general registers 0-15 and access regis-
ters 0-15 also are placed in the state entry. The
action associated with an operand is not per-
formed if the R field designating the operand is
zero.

Bits 16-23 of the instruction are ignored.

When the R± field is nonzero, the contents of
general register R± specify an address referred to
as the return address. The return address is gen-
erated from the contents of the register under the
control of the addressing mode specified by bit 0
of the register: 24-bit mode if bit 0 is zero, or
31-bit mode if bit 0 is one. Bit 0 of the register
and the return address are substituted for the
addressing-mode bit and the updated instruction
address, respectively, in the current PSW when
the contents of that PSW are placed in the state
entry. The contents of the current PSW are not
changed.

When the R± field is zero, there is no substitution
for the addressing-mode bit and instruction
address in the current PSW when that PSW is
placed in the state entry.

Subsequently, when the R² field is nonzero, the
instruction address in the current PSW is replaced
by the branch address. The branch address is
generated from the contents of general register R²

under the control of the current addressing mode.
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When the R² field is zero, the operation is per-
formed without branching.

The branch state entry is formed and information
is placed in it as described in “Stacking Process”
on page 5-70. The entry-type code in the state
entry is 0000100 binary.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address
and page protection do apply.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode, and the address-space-
function control, bit 15 of control register 0 must
be one; otherwise, a special-operation exception is
recognized.

A stack-full or stack-specification exception may
be recognized during the stacking process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-3 on
page 10-11.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch or store, except for key-
controlled protection, linkage-stack entry)

 � Special operation
 � Stack full
 � Stack specification
 � Trace
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┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off, the CPU │

│ being in secondary-space mode or home-space mode, or the │

│ address-space-function control, bit 15 of control register ð, │

│ being zero. │

│ │

│ 8.A Trace exceptions (only if R² is nonzero). │

│ │

│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current │

│ linkage-stack entry. │

│ │

│ Note: Exceptions 8.B.2-8.B.7 can occur only if there is not │

│ enough remaining free space in the current linkage-stack │

│ section. │

│ │

│ 8.B.2 Stack-specification exception due to remaining-free-space │

│ value in current linkage-stack entry not being a multiple of │

│ 8. │

│ │

│ 8.B.3 Access exceptions (fetch) for second word of the trailer │

│ entry of the current section. The entry is presumed to be a │

│ trailer entry; its entry-type field is not examined. │

│ │

│ 8.B.4 Stack-full exception due to forward-section validity bit in │

│ the trailer entry being zero. │

│ │

│ 8.B.5 Access exceptions (fetch) for entry descriptor of the header │

│ entry of the next section. This entry is presumed to be a │

│ header entry; its entry-type field is not examined. │

│ │

│ 8.B.6 Stack-specification exception due to not enough remaining │

│ free space in the next section. │

│ │

│ 8.B.7 Access exceptions (store) for second word of the header entry │

│ of the next section. If there is no exception, the header is │

│ now called the current entry. │

│ │

│ 8.B.8 Access exceptions (store) for entry descriptor of the current │

│ entry and for the new state entry. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-3. Priority of Execution: BRANCH AND STACK

Programming Notes:

1. Examples of the use of the BRANCH AND
STACK instruction are given in Appendix A,
“Number Representation and Instruction-Use
Examples.”

2. In no case does BRANCH AND STACK
change the current addressing mode.

3. The effect when the R± field is zero is that the
return address, which would otherwise be
specified by the R± general register, is the
address of the next sequential instruction. In
this case, BRANCH AND STACK provides a

program-linkage function that is comparable to
the function of BRANCH AND SAVE.

4. BRANCH AND STACK with a nonzero R±

field is intended for use at or near the entry
point of a called program. The program may
be called by means of BRANCH AND LINK
(BALR), BRANCH AND SAVE (BAS or
BASR), or BRANCH AND SAVE AND SET
MODE, or by means of a BRANCH AND SET
MODE instruction located in a “glue module.”
In all of these cases when the nonzero R±

field of the calling instruction is the same as
the R± field of BRANCH AND STACK, and
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even when the addressing mode was changed
during the calling linkage, BRANCH AND
STACK correctly saves the addressing mode
and 24-bit or 31-bit return address of the
calling program so that the subsequent exe-
cution of PROGRAM RETURN will return cor-
rectly to the calling program.

BRANCH IN SUBSPACE GROUP

BSG R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B258' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Provided that the current primary address space is
in the subspace group, if any, associated with the
current dispatchable unit, the access-list-entry
token (ALET) in access register R² is translated
by means of a special form of access-register
translation (ART) to locate a destination
ASN-second-table entry (DASTE). If the DASTE
specifies the base space of the subspace group,
the primary segment-table designation (PSTD) in
control register 1 is replaced by the STD in the
DASTE. If the DASTE specifies a subspace of
the group, bits 1-23 and 25-31 of the PSTD are
replaced by the same bits of the STD in the
DASTE. In either case, the following actions also
occur. Bits 32-63 of the current PSW, including
the updated instruction address, are saved in
general register R±. Subsequently, the
addressing-mode bit and instruction address in the
current PSW are replaced from general register
R²; the secondary STD (SSTD) in control register
7 is set equal to the new PSTD in control register
1; and the secondary ASN (SASN), bits 16-31 of
control register 3, is set equal to the primary ASN
(PASN), bits 16-31 of control register 4. General
register 0 remains unchanged if the R± field is
zero.

Bits 16-23 of the instruction are ignored.

The current primary address space is in the sub-
space group for the dispatchable unit if the current
primary-ASTE origin (PASTEO), bits 1-25 of
control register 5, designates the ASTE for the
base space of the group. The PASTEO desig-
nates the base-space ASTE if the PASTEO is
equal to the base-ASTE origin (BASTEO), bits
1-25 of word 0 of the dispatchable-unit control

table (DUCT). For determining whether the
PASTEO equals the BASTEO, either the PASTEO
may be compared to the BASTEO or the entire
contents of control register 5 may be compared to
the entire contents of word 0 of the DUCT.

Ordinary ART is described in “Access-Register-
Translation Process” on page 5-46. The special
ART performed by this instruction is contrasted to
ordinary ART as follows:

1. The special ART is performed regardless of
whether the CPU is in the access-register
mode.

2. If the ALET being translated is 00000000 hex,
called ALET 0, the DASTE is the ASTE for the
base space. Bit 0 of the DASTE is ignored.

3. If the ALET is 00000001 hex, called ALET 1,
the DASTE is the ASTE for the last subspace
entered by the dispatchable unit by means of
BRANCH IN SUBSPACE GROUP. That
ASTE is designated by the subspace-ASTE
origin (SSASTEO), bits 1-25 of word 1 of the
DUCT. A special-operation exception is
recognized if a subspace has not previously
been entered, as indicated by that the
SSASTEO is all zeros. An ASTE-validity
exception is recognized if bit 0 of the DASTE
is one. An ASTE-sequence exception is
recognized if the ASTE sequence number
(ASTESN) in the DASTE does not equal the
subspace ASTESN (SSASTESN) in word 3 of
the DUCT. The DASTE located because of
ALET 1 is considered to specify a subspace
even if, due to an error, the DASTE is the
ASTE for the base space. That is, there is no
comparison of the SSASTEO to the BASTEO.

4. If the ALET is other than ALET 0 and ALET 1,
an ASTE is located by obtaining its origin from
an access-list entry (ALE) in a way similar to
ordinary ART, and the DASTE is that located
ASTE. In this case, as in ordinary ART:

� An ALET-specification exception is recog-
nized if bits 0-6 of the ALET are not zeros.

� An ALEN-translation exception is recog-
nized if the ALE is outside the effective
access list or bit 0 of the ALE is one.

� An ASTE-validity exception is recognized
if bit 0 of the DASTE is one.

� An ASTE-sequence exception is recog-
nized if the ASTE sequence number
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(ASTESN) in the DASTE does not equal
the ASTESN in the ALE.

The operation differs from ordinary ART in
that the ALE sequence number (ALESN) in
the ALE is not compared to the ALESN in the
ALET, and the private bit in the ALE is treated
as zero. Thus, ALE-sequence and extended-
authority exceptions cannot occur.

The fetch-only bit in the ALE is ignored.

When the ALET is other than ALET 0 and ALET
1, the special ART may be performed by using the
ART-lookaside buffer (ALB).

The DASTE located due to an ALET other than
ALET 0 and ALET 1 may be the ASTE for the
base space of the subspace group associated with
the dispatchable unit. The DASTE is the base-
space ASTE if the DASTE origin (DASTEO)
obtained from an ALE by ART equals the
BASTEO in the DUCT. For determining whether
the DASTEO equals the BASTEO, either the
DASTEO may be compared to the BASTEO, or
the DASTEO with one leftmost and six rightmost
zeros appended may be compared to the entire
contents of word 0 of the DUCT. If the DASTE is
not the base-space ASTE, the DASTE is treated
as the ASTE for a subspace of the dispatchable
unit's subspace group provided that (1) the
subspace-group bit, bit 22, in the STD in the
DASTE is one, and (2) the DASTE does not
specify the base space of another subspace
group. The DASTE specifies the base space of
another subspace group if the base-space bit, bit
31 of word 0 of the DASTE, is one. A special-
operation exception is recognized if either of those
two provisions is not met.

If the DASTE specifies the base space of the sub-
space group, the PSTD in control register 1 is
replaced by the STD in the DASTE. If the DASTE
specifies a subspace, bits 1-23 and 25-31 of the
PSTD are replaced by the same bits of the STD in
the DASTE, and bit 0 of the PSTD, the space-
switch-event-control bit, and bit 24 of the PSTD,
the storage-alteration-event bit, remain
unchanged.

If R± is nonzero, bits 32-63 of the current PSW,
including the updated instruction address, are
placed in general register R±. If R± is zero,
general register 0 remains unchanged.

Whether R² is nonzero or zero, the contents of
general register R² specify the new addressing
mode and designate the branch address. Bit 0 of
the register specifies the new addressing mode
and replaces bit 32 of the current PSW, and the
branch address is generated from the contents of
the register under the control of the new
addressing mode. The new value for the PSW is
computed before general register R± is changed.

The secondary STD (SSTD) in control register 7 is
set equal to the new PSTD in control register 1.
The secondary ASN (SASN), bits 16-31 of control
register 3, is set equal to the primary ASN
(PASN), bits 16-31 of control register 4.

If the DASTE specifies the base space, the
subspace-active bit, bit 0 of word 1 of the DUCT,
is set to zero, and bits 1-31 of word 1 remain
unchanged. If the DASTE specifies a subspace
by means of ALET 1, then (1) the subspace-active
bit is set to one, (2) the SSASTEO in bit positions
1-25 of word 1 remains unchanged, and (3) bits
26-31 of word 1 either are set to zeros or remain
unchanged. If the DASTE specifies a subspace
by means of an ALET other than ALET 1, then (1)
the subspace-active bit is set to one, (2) the
DASTEO is stored in bit positions 1-25 of word 1
as the SSASTEO, (3) zeros are stored in bit posi-
tions 26-31 of word 1, and (4) the ASTESN in the
DASTE is stored in word 3 of the DUCT as the
SSASTESN.

The fetch, store, and update references to the
DUCT are word-concurrent single-access refer-
ences. The words of the DUCT are accessed in
no particular order.

The operation, since it changes a translation
parameter in control register 1, causes all copies
of prefetched instructions to be discarded, except
when in the home-space mode.

Special Conditions

The address-space-function control, bit 15 of
control register 0, must be one, and DAT must be
on; otherwise, a special-operation exception is
recognized. A special-operation exception is also
recognized if the current primary address space is
not in a subspace group associated with the
current dispatchable unit, if the ALET in access
register R² is ALET 1 but a subspace has not pre-
viously been entered by the dispatchable unit by
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means of BRANCH IN SUBSPACE GROUP, or if
the ALET used is other than ALET 0 and ALET 1
and the destination ASTE does not specify the
base space or a subspace of the subspace group.

The primary space-switch-event-control bit, bit 0 of
control register 1 either before or after the opera-
tion, does not cause a space-switch-event
program interruption to occur.

Key-controlled protection does not apply to any
access made during the operation. Low-address
protection does apply.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in the figure “Priority of
Execution: BRANCH IN SUBSPACE GROUP.”

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (dispatchable-unit control table,
effective access-list designation, access-list
entry, destination ASN-second-table entry)

 � ALET specification
 � ALEN translation
 � ASTE sequence
 � ASTE validity
� Operation (if the subspace-group facility is not

installed)
� Protection (low-address; dispatchable-unit

control table)
 � Special operation
 � Trace

┌──────────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B.1 Operation exception due to subspace-group facility not being │

│ installed. │

│ │

│ 7.B.2 Special-operation exception due to DAT being off or the │

│ address-space-function control, bit 15 of control register ð, │

│ being zero. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B Protection exception (low-address protection) for access to │

│ dispatchable-unit control table. │

│ │

│ 8.C.1 Addressing exception for access to dispatchable-unit control │

│ table. │

│ │

│ 8.C.2 Special-operation exception due to current primary address │

│ space not being in a subspace group associated with the │

│ current dispatchable unit (primary-ASTE origin in control │

│ register 5 not equal to base-ASTE origin in dispatchable-unit │

│ control table). │

│ │

│ Note: Exception 8.C.3.A can occur only if the access-list- │

│ entry token (ALET) in access register R² is ALET ð. │

│ │

│ 8.C.3.A Addressing exception for access to base ASTE (ASTE designated │

│ by base-ASTE origin in dispatchable-unit control table). │

└──────────────────────────────────────────────────────────────────────────┘

Figure 10-4 (Part 1 of 2). Priority of Execution: BRANCH IN SUBSPACE GROUP
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┌──────────────────────────────────────────────────────────────────────────┐

│ Note: Exceptions 8.C.3.B.1-8.C.3.B.4 can occur only if the │

│ access-list-entry token (ALET) in access register R² is │

│ ALET 1. │

│ │

│ 8.C.3.B.1 Special-operation exception due to subspace-ASTE origin in │

│ dispatchable-unit control table being zero. │

│ │

│ 8.C.3.B.2 Addressing exception for access to subspace ASTE. │

│ │

│ 8.C.3.B.3 ASTE-validity exception due to bit ð in subspace ASTE being │

│ one. │

│ │

│ 8.C.3.B.4 ASTE-sequence exception due to ASTE sequence number in │

│ subspace ASTE not being equal to subspace-ASTE sequence │

│ number in dispatchable-unit control table. │

│ │

│ Note: Exceptions 8.C.3.C.1-8.C.3.C.9 can occur only if the │

│ access-list-entry token (ALET) in access register R² is other │

│ than ALET ð and ALET 1. │

│ │

│ 8.C.3.C.1 ALET-specification exception due to bits ð-6 of ALET not being│

│ all zeros. │

│ │

│ 8.C.3.C.2 Addressing exception for access to effective access-list │

│ designation. │

│ │

│ 8.C.3.C.3 ALEN-translation exception due to access-list entry being │

│ outside the list. │

│ │

│ 8.C.3.C.4 Addressing exception for access to access-list entry. │

│ │

│ 8.C.3.C.5 ALEN-translation exception due to I bit in access-list entry │

│ being one. │

│ │

│ 8.C.3.C.6 Addressing exception for access to destination ASTE. │

│ │

│ 8.C.3.C.7 ASTE-validity exception due to bit ð in destination ASTE being│

│ one. │

│ │

│ 8.C.3.C.8 ASTE-sequence exception due to ASTE sequence number (ASTESN) │

│ in access-list entry not being equal to ASTESN in destination │

│ ASTE. │

│ │

│ 8.C.3.C.9 Special-operation exception due to destination-ASTE origin not│

│ equal to base-ASTE origin in dispatchable-unit control table │

│ and (1) subspace-group bit, bit 22 in segment-table designa- │

│ tion, in destination ASTE being zero or (2) base-space bit, │

│ bit 31, in destination ASTE being one. │

└──────────────────────────────────────────────────────────────────────────┘

Figure 10-4 (Part 2 of 2). Priority of Execution: BRANCH IN SUBSPACE GROUP

Programming Notes:

1. See the discussion of BRANCH IN SUB-
SPACE GROUP in “Subroutine Linkage
without the Linkage Stack” on page 5-9. It is
intended that there be a separate
ASN-second-table entry (ASTE) for each of
the base space and each subspace of a sub-
space group. The ASTEs for the subspaces
can be “pseudo” ASTEs as described in the

programming note in “Address-Space
Number” on page 3-17. A subspace can
contain a subset of the storage in the base
space by having the segment table for the
subspace point to a subset of the page tables
that are pointed to from the segment table for
the base space. A dispatchable unit has
access to a subspace if an access-list entry
designating the ASTE for the subspace is in
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the primary-space or dispatchable-unit access
list of the dispatchable unit.

2. BRANCH IN SUBSPACE GROUP can be
used to give control from the base space to a
subspace, from a subspace to another sub-
space, and from a subspace to the base
space. The instruction can also be used to
give control from the base space to the base
space or from a subspace to the same sub-
space.

3. Since BRANCH IN SUBSPACE GROUP sets
the secondary segment-table designation in
control register 7 equal to the new primary
segment-table designation in control register 1
(along with setting the secondary ASN in
control register 3 equal to the primary ASN in
control register 4), the program in an address
space given control by BRANCH IN SUB-
SPACE GROUP does not have access to the
calling program's address space by means of
that address space being the secondary
address space.

4. When a dispatchable unit has used BRANCH
IN SUBSPACE GROUP to enter a subspace
and has not subsequently used BRANCH IN
SUBSPACE GROUP to return to the base
space, the dispatchable unit is said to be
“subspace active.” When PROGRAM CALL,
PROGRAM TRANSFER, PROGRAM
RETURN, SET SECONDARY ASN, or LOAD
ADDRESS SPACE PARAMETERS places a
segment-table designation (STD) in control
register 1 as the primary STD or in control
register 7 as the secondary STD, and if (1)
the STD has the subspace-group bit, bit 22,
on in it, (2) the dispatchable unit is subspace
active, and (3) the STD was obtained from the
ASN-second-table entry (ASTE) for the base
space of the current dispatchable unit, then
the instruction (any of the five named
instructions) replaces bits 1-23 and 25-31 of
the STD in the control register with the corre-
sponding bits of the STD in the ASTE for the
subspace in which the dispatchable unit last
had control. Further details about the effects
of the subspace-group facility on the five
named instructions are given in “Subspace-
Replacement Operations” on page  5-56 and
in the definitions of the instructions.

5. The use of BRANCH IN SUBSPACE GROUP
(BSG) along with PROGRAM CALL (PC) and
either PROGRAM TRANSFER (PT) or

PROGRAM RETURN (PR) can produce
results that may be unexpected. Consider the
following sequence of operations:

a. Start in the base space

b. BSG to a subspace

c. PC (the first PC) to an address space that
is not in the subspace group.

d. PC (the second PC) to the base space.
Since the dispatchable unit is subspace
active, control is given to the subspace.

e. BSG back to the base space.

f. PT or PR (paired with the second PC)
back to the address space that is not in
the subspace group.

g. PT or PR (paired with the first PC) back to
the subspace group. Since the
dispatchable unit is no longer subspace
active, control is given to the base space
even though the first PC was issued in the
subspace.

6. BRANCH IN SUBSPACE GROUP does not
perform the serialization or checkpoint-
synchronization functions, but it does cause all
copies of prefetched instructions to be dis-
carded except when in the home-space mode.

7. When the R² field designates access register
0, the access register is treated as containing
ALET 0 regardless of the contents of the
access register.

 DIAGNOSE

┌────────┬───────────────────────┐

│ '83' │ │

└────────┴───────────────────────┘

ð 8 31

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper func-
tioning of equipment and to locate faulty compo-
nents. Other model-dependent functions may
include disabling of failing buffers, reconfiguration
of CPUs, storage, and channel paths, and modifi-
cation of control storage.

Bits 8-31 may be used as in the SI or RS formats,
or in some other way, to specify the particular
diagnostic function. The use depends on the
model.
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The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an I/O
operation. Some diagnostic functions may cause
the test indicator to be turned on.

| Resulting Condition Code:   The code is unpre-
dictable.

 Program Exceptions: 

 � Privileged operation
� Depending on the model, other exceptions

may be recognized.

Programming Notes:

1. Since the instruction is not intended for
problem-state-program or control-program
use, DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does
not follow the rule that programming errors are
distinguished from equipment errors.
Improper use of DIAGNOSE may result in
false machine-check indications or may cause
actual machine malfunctions to be ignored. It
may also alter other aspects of system opera-
tion, including instruction execution and
channel-program operation, to an extent that
the operation does not comply with that speci-
fied in this publication. As a result of the
improper use of DIAGNOSE, the system may
be left in such a condition that the power-on
reset or initial-microprogram-loading (IML)
function must be performed. Since the func-
tion performed by DIAGNOSE may differ from
model to model and between versions of a
model, the program should avoid issuing
DIAGNOSE unless the program recognizes
both the model number and version code
stored by STORE CPU ID.

EXTRACT PRIMARY ASN

EPAR R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B226' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The 16-bit PASN, bits 16-31 of control register 4,
is placed in bit positions 16-31 of general register

R±. Bits 0-15 of the general register are set to
zeros.

Bits 16-23 and 28-31 of the instruction are
ignored.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized. The special-operation exception is recog-
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-5.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B Special-operation exception due to │

│ DAT being off. │

│ │

│ 8. Privileged-operation exception due to │

│ extraction-authority control, bit 4 of│

│ control register ð, being zero in │

│ problem state. │

└──────────────────────────────────────────────┘

Figure 10-5. Priority of Execution: EXTRACT
PRIMARY ASN

EXTRACT SECONDARY ASN

ESAR R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B227' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31
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The 16-bit SASN, bits 16-31 of control register 3,
is placed in bit positions 16-31 of general register
R±. Bits 0-15 of the general register are set to
zeros.

Bits 16-23 and 28-31 of the instruction are
ignored.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized. The special-operation exception is recog-
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-6.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B Special-operation exception due to │

│ DAT being off. │

│ │

│ 8. Privileged-operation exception due to │

│ extraction-authority control bit 4 of │

│ control register ð, being zero in │

│ problem state. │

└──────────────────────────────────────────────┘

Figure 10-6. Priority of Execution: EXTRACT SEC-
ONDARY ASN

EXTRACT STACKED REGISTERS

EREG R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B249' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of a set of general registers and a
set of access registers that were saved in the last
state entry in the linkage stack are restored to the
registers. Each set of registers begins with reg-
ister R± and ends with register R².

For each of the general registers and the access
registers, the registers are loaded in ascending
order of their register numbers, starting with reg-
ister R± and continuing up to and including reg-
ister R², with register 0 following register 15.
Each register is loaded from the position in the
state entry where the contents of the register were
saved when the state entry was created. The
contents of the state entry remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-72. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Bits 16-23 of the instruction are ignored.

Special Conditions

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and
the address-space-function control, bit 15 of
control register 0, must be one; otherwise, a
special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-7 on
page 10-19.
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Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, except for protection, linkage-
stack entry)

 � Special operation
 � Stack empty
 � Stack specification
 � Stack type

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off, the CPU │

│ being in the secondary-space mode or the address-space- │

│ function control, bit 15 of control register ð, being zero. │

│ │

│ 8. Access exceptions (fetch) for entry descriptor of the current │

│ linkage-stack entry. │

│ │

│ 9. Stack-type exception due to current entry not being a state │

│ entry or header entry. │

│ │

│ Note: Exceptions 1ð-14 can occur only if the current entry │

│ is a header entry. │

│ │

│1ð. Access exceptions (fetch) for second word of the header entry.│

│ │

│11. Stack-empty exception due to backward stack-entry validity │

│ bit in the header entry being zero. │

│ │

│12. Access exceptions (fetch) for entry descriptor of preceding │

│ entry, which is the entry designated by the backward stack- │

│ entry address in the current (header) entry. │

│ │

│13. Stack-specification exception due to preceding entry being a │

│ header entry. │

│ │

│14. Stack-type exception due to preceding entry not being a state │

│ entry. │

│ │

│15. Access exceptions (fetch) for the selected contents of the │

│ state entry. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-7. Priority of Execution: EXTRACT STACKED REGISTERS
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EXTRACT STACKED STATE

ESTA R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24A' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of one of the four eight-byte fields
immediately preceding the entry descriptor of the
last state entry in the linkage stack are placed in
the pair of general registers designated by the R±

field. The condition code is set to indicate
whether the state entry is a branch state entry or
a program-call state entry.

The R± field designates the even-numbered reg-
ister of an even-odd pair of general registers.

Bits 24-31 of general register R² are an unsigned
binary integer that is used to select the state-entry
byte positions from which information is to be
extracted, as follows:

The format of byte positions 128-159 of the state
entry is as follows:

┌────────┬────────┬────────┬────────┐

│ PKM │ SASN │ EAX │ PASN │

└────────┴────────┴────────┴────────┘

128 13ð 132 134 135

┌───────────────────────────────────┐

│ PSW │

└───────────────────────────────────┘

136 143

In a Branch State Entry

┌─────────────────┬─┬───────────────┐

│ │A│Branch Address │

└─────────────────┴─┴───────────────┘

144 148 151

In a Program-Call State Entry

┌─────────────────┬─────────────────┐

│ Called-Space ID │ PC Number │

└─────────────────┴─────────────────┘

144 148 151

┌───────────────────────────────────┐

│ Modifiable Area │

└───────────────────────────────────┘

152 159

The contents of the state entry remain unchanged.

The last state entry is located as described in
“Unstacking Process” on page 5-72. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

When the entry-type code in the entry descriptor
of the state entry is 0000100 binary, indicating a
branch state entry, the condition code is set to 0.
When the entry-type code is 0000101 binary, indi-
cating a program-call state entry, the condition
code is set to 1.

Key-controlled protection does not apply to refer-
ences to the linkage stack.

Bits 16-23 of the instruction and bits 0-23 of
general register R² are ignored.

Special Conditions

A specification exception is recognized when R± is
odd or the value of bits 24-31 of general register
R² is greater than three.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and
the address-space-function control, bit 15 of
control register 0, must be one; otherwise, a
special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-8 on
page 10-21.

Value of Bits 24-31 of
Gen. Reg. R²

State-Entry Byte Posi-
tions Selected

0 128-135
1 136-143
2 144-151
3 152-159
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Resulting Condition Code:  

0 Branch state entry
1 Program-call state entry
2 --
3 --

 Program Exceptions: 

� Access (fetch, except for protection, linkage-
stack entry)

 � Special operation
 � Specification
 � Stack empty
 � Stack specification
 � Stack type

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off, the CPU │

│ being in the secondary-space mode or the address-space- │

│ function control, bit 15 of control register ð, being zero. │

│ │

│ 8.A Specification exception due to R± being odd or bits 24-31 of │

│ general register R² having a value greater than three. │

│ │

│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current │

│ linkage-stack entry. │

│ │

│ 8.B.2 Stack-type exception due to current entry not being a state │

│ entry or header entry. │

│ │

│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │

│ entry is a header entry. │

│ │

│ 8.B.3 Access exceptions (fetch) for second word of the header entry.│

│ │

│ 8.B.4 Stack-empty exception due to backward stack-entry validity │

│ bit in the header entry being zero. │

│ │

│ 8.B.5 Access exceptions (fetch) for entry descriptor of preceding │

│ entry, which is the entry designated by the backward stack- │

│ entry address in the current (header) entry. │

│ │

│ 8.B.6 Stack-specification exception due to preceding entry being a │

│ header entry. │

│ │

│ 8.B.7 Stack-type exception due to preceding entry not being a state │

│ entry. │

│ │

│ 8.B.8 Access exceptions (fetch) for the selected contents of the │

│ state entry. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-8. Priority of Execution: EXTRACT STACKED STATE

INSERT ADDRESS SPACE
CONTROL

IAC R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B224' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The address-space-control bits, bits 16 and 17 of
the current PSW, are placed in reversed order in
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bit positions 22 and 23 of general register R±; that
is, bit 16 is placed in bit position 23, and bit 17 is
placed in bit position 22. Bits 16-21 of the register
are set to zeros, and bits 0-15 and 24-31 of the
register remain unchanged. The address-space-
control bits are also used to set the condition
code.

Bits 16-23 and 28-31 of the instruction are
ignored.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized. The special-operation exception is recog-
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-9.

Resulting Condition Code:  

0 PSW bits 16 and 17 zeros (indicating primary-
space mode)

1 PSW bit 16 one and bit 17 zero (indicating
secondary-space mode)

2 PSW bit 16 zero and bit 17 one (indicating
access-register mode)

3 PSW bits 16 and 17 ones (indicating home-
space mode)

 Program Exceptions: 

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B Special-operation exception due to │

│ DAT being off. │

│ │

│ 8. Privileged-operation exception due to │

│ extraction-authority control, bit 4 of│

│ control register ð, being zero in │

│ problem state. │

└──────────────────────────────────────────────┘

Figure 10-9. Priority of Execution: INSERT ADDRESS
SPACE CONTROL

Programming Notes:

1. Bits 16-21 of general register R± are reserved
for expansion for use with possible future facil-
ities. The program should not depend on
these bits being set to zeros.

2. INSERT ADDRESS SPACE CONTROL and
SET ADDRESS SPACE CONTROL are
defined to operate on the third byte of a
general register so that the address-space-
control bits can be saved in the same general
register as the PSW key, which is placed in
the fourth byte of general register 2 by
INSERT PSW KEY.

INSERT PSW KEY

IPK [S]

┌────────────────┬────────────────┐

│ 'B2ðB' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The four-bit PSW-key, bits 8-11 of the current
PSW, is inserted in bit positions 24-27 of general
register 2, and bits 28-31 of that register are set to
zeros. Bits 0-23 of general register 2 remain
unchanged.

Bits 16-31 of the instruction are ignored.

Special Conditions

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is
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recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Privileged operation (extraction-authority
control is zero in the problem state)

INSERT STORAGE KEY
EXTENDED

ISKE R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B229' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The storage key for the block that is addressed by
the contents of general register R² is inserted in
general register R±.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R² designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R² designate a 4K-byte block
in real storage, and bits 0 and 20-31 of the reg-
ister are ignored.

The address designating the storage block, being
a real address, is not subject to dynamic address
translation. The reference to the storage key is
not subject to a protection exception.

The seven-bit storage key is inserted in bit posi-
tions 24-30 of general register R±, and bit 31 is
set to zero. The contents of bit positions 0-23 of
the register remain unchanged.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (address specified by general reg-
ister R²)

 � Privileged operation

INSERT VIRTUAL STORAGE KEY

IVSK R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B223' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The storage key for the location designated by the
virtual address in general register R² is inserted in
general register R±.

Bits 16-23 of the instruction are ignored.

Selected bits of general register R² are used as a
virtual address. In the 24-bit addressing mode,
the address is designated by bits 8-31 of the reg-
ister, and bits 0-7 are ignored. In the 31-bit
addressing mode, the address is designated by
bits 1-31, and bit 0 is ignored.

The address is a virtual address and is subject to
the address-space-control bits, bits 16 and 17 of
the current PSW. The address is treated as a
primary virtual address in the primary-space
mode, as a secondary virtual address in the
secondary-space mode, as an AR-specified virtual
address in the access-register mode, or as a
home virtual address in the home-space mode.
The reference to the storage key is not subject to
a protection exception.

Bits 0-4 of the storage key, which are the access-
control bits and the fetch-protection bit, are placed
in bit positions 24-28 of general register R±, with
bits 29-31 set to zeros. The contents of bit posi-
tions 0-23 of the register remain unchanged. The
change and reference bits in the storage key are
not inspected. The change bit is not affected by
the operation. The reference bit, depending on
the model, may or may not be set to one as a
result of the operation.

The following diagram shows the storage key and
the register positions just described.

  Chapter 10. Control Instructions 10-23



  
 

 Storage Key

 for the

 Location

 ┌────┬─┬─┬─┐

 │ACC │F│R│C│

 └────┴─┴─┴─┘

 └───┬──┘

 │

 │ Zeros

 6 │

 ┌──────┐ 6

 ┌─────────────────────┬────┬─┬───┐

R± │ │ACC │F│ððð│

 └─────────────────────┴────┴─┴───┘

ð 24 28 31

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog-
nized. The special-operation exception is recog-
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is
recognized. In the supervisor state, the
extraction-authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-10.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (except for protection, address speci-
fied by general register R²)

� Privileged operation (extraction-authority
control is zero in the problem state)

 � Special operation

┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B Special-operation exception due to DAT │

│ being off. │

│ │

│ 8. Privileged-operation exception due to │

│ extraction-authority control, bit 4 of │

│ control register ð, being zero. │

│ │

│ 9. Access exceptions (except for protec- │

│ tion) for address specified by general │

│ register R². │

└──────────────────────────────────────────────┘

Figure 10-10. Priority of Execution: INSERT VIRTUAL
STORAGE KEY

Programming Notes:

1. Since all bytes in a 4K-byte block are associ-
ated with the same page and the same
storage key, bits 20-31 of general register R²

essentially are ignored.

2. In the access-register mode, access register 0
designates the primary address space regard-
less of the contents of access register 0.

INVALIDATE PAGE TABLE
ENTRY

IPTE R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B221' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The designated page-table entry is invalidated,
and the translation-lookaside buffers (TLBs) in all
CPUs in the configuration are cleared of the asso-
ciated entries.

Bits 16-23 of the instruction are ignored.

The contents of general register R± have the
format of a segment-table entry with only the
page-table origin used. The contents of general
register R² have the format of a virtual address
with only the page index used. The contents of
fields that are not part of the page-table origin or
page index are ignored.
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The contents of the general registers just
described are as follows:

 ┌─┬─────────────────────────┬──────┐

R± │/│ Page-Table Origin │//////│

 └─┴─────────────────────────┴──────┘

 ð 1 26 31

 ┌────────────┬────────┬────────────┐

R² │////////////│ PX │////////////│

 └────────────┴────────┴────────────┘

 ð 12 2ð 31

The page-table origin and the page index desig-
nate a page-table entry, following the dynamic-
address-translation rules for page-table lookup.
The page-table origin is treated as a 31-bit
address, and the addition is performed by using
the rules for 31-bit address arithmetic, regardless
of the setting of the addressing mode, which is
specified by bit 32 of the current PSW. A carry
into bit position 0 as a result of the addition of the
page index and page-table origin is ignored. The
address formed from these two components is a
real address. The page-invalid bit of this page-
table entry is set to one. During this procedure,
no page-table-length check is made, and the
page-table entry is not inspected for availability of
the page or for format errors. Additionally, the
page-frame real address contained in the entry is
not checked for an addressing exception.

The entire page-table entry is fetched concurrently
from storage. Subsequently the byte containing
the page-invalid bit is stored. The fetch access to
the page-table entry is subject to key-controlled
protection, and the store access is subject to key-
controlled protection and low-address protection.

A serialization function is performed before the
operation begins and again after the operation is
completed. As is the case for all serialization
operations, this serialization applies only to this
CPU; other CPUs are not necessarily serialized.

If it is successful in setting the page-invalid bit to
one, this CPU clears selected entries from its TLB
and signals all CPUs in the configuration to clear
selected entries from their TLBs. Each TLB is
cleared of at least those entries that have been
formed using all of the following:

� The page-table origin designated by the first
operand

� The page index designated by the second
operand

� The page-frame real address contained in the
designated page-table entry

The execution of INVALIDATE PAGE TABLE
ENTRY is not completed on the CPU which exe-
cutes it until (1) all entries corresponding to the
specified parameters have been cleared from the
TLB on this CPU and (2) all other CPUs in the
configuration have completed any storage
accesses, including the updating of the change
and reference bits, by using TLB entries corre-
sponding to the specified parameters.

Special Conditions

When bit positions 8-12 of control register 0
contain an invalid code, a translation-specification
exception is recognized. The exception is recog-
nized regardless of whether DAT is on or off.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (page-table entry)
 � Privileged operation
� Protection (fetch and store, page-table entry,

key-controlled protection, and low-address
protection)

� Translation specification (bits 8-12 in control
register 0 only)

Programming Notes:

1. The selective clearing of entries may be
implemented in different ways, depending on
the model, and, in general, more entries may
be cleared than the minimum number
required. Some models may clear all entries
which contain the designated page-frame real
address. Others may clear all entries which
contain the designated page index, and some
implementations may clear precisely the
minimum number of entries required. There-
fore, in order for a program to operate on all
models, the program should not take advan-
tage of any properties obtained by a less
selective clearing on a particular model.

2. The clearing of TLB entries may make use of
the page-frame real address in the page-table
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entry. Therefore, if the page-table entry, when
in the attached state, ever contained a page-
frame real address that is different from the
current value, copies of the previous values
may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot be
safely used to update a shared location in
main storage if the possibility exists that
another CPU or a channel program may also
be updating the location.

4. The address of the page-table entry for
INVALIDATE PAGE TABLE ENTRY is a 31-bit
real address, and the address arithmetic is
performed by following the normal rules for
31-bit address arithmetic with wraparound at
2óñ - 1. Contrast this with implicit translation
and the translation for LOAD REAL
ADDRESS, both of which, depending on the
model, may treat addresses of DAT-table
entries as either real or absolute and may
result either in wraparound or in an
addressing exception when a carry occurs into
bit position 0. Accordingly, the DAT tables
should not be specified to wrap from
maximum storage locations to location 0 and
should not be placed at storage locations
whose real and absolute addresses are dif-
ferent.

LOAD ADDRESS SPACE
PARAMETERS

LASP D±(B±),D²(B²) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐

│ 'E5ðð' │ B± │ D± │ B² │ D² │

└────────────────┴────┴─/──┴────┴─/──┘

ð 16 2ð 32 36 47

The contents of the doubleword at the first-
operand location contain values to be loaded into
control registers 3 and 4, including a secondary
ASN and a primary ASN. Execution of the
instruction consists in performing four major steps:
PASN translation, SASN translation, SASN author-
ization, and control-register loading. Each of
these steps may or may not be performed,
depending on the outcome of certain tests and on
the setting of bits 29-31 of the second-operand
address. These steps, when successful, obtain
additional values, which are loaded into control

registers 1, 5, and 7. When the steps are not suc-
cessful, no control registers are changed, and the
reason is indicated in the condition code.

When the address-space-function (ASF) control,
bit 15 of control register 0, is zero, control register
5 contains the linkage-table designation (LTD),
and this instruction may place a new LTD in
control register 5. When the ASF control is one,
control register 5 contains the
primary-ASN-second-table-entry origin (PASTEO),
and this instruction may place a new PASTEO in
control register 5. For simplicity, this definition
sometimes first describes an operation as if the
ASF control were zero and then describes the dif-
ferent operation that occurs when the ASF control
is one.

The doubleword first operand contains a PSW-key
mask (PKM), a secondary ASN (SASN), an
authorization index (AX), and a primary ASN
(PASN). The primary ASN is translated by means
of the ASN-translation tables to obtain a primary
segment-table designation (PSTD), LTD or
PASTEO, and, optionally, an AX. The secondary
ASN is translated by means of the ASN-translation
tables to obtain an SSTD, and, optionally, an
authority check is made to ensure that the new AX
is authorized to establish the new SASN.

The doubleword at the first-operand location has
the following format:

┌─────────┬─────────┬────────┬─────────┐

│ PKM-d │ SASN-d │ AX-d │ PASN-d │

└─────────┴─────────┴────────┴─────────┘

ð 16 32 48 63

The “d” stands for designated doubleword and is
used to distinguish these fields from other fields
with similar names which are referred to in the
definition. The current contents of the corre-
sponding fields in the control registers are referred
to as PKM-old, SASN-old, etc. The updated con-
tents of the control registers are referred to as
PKM-new, SASN-new, etc.

The second-operand address is not used to
address data; instead, the rightmost three bits are
used to control portions of the operation. The
remainder of the second-operand address is
ignored. Bits 29-31 of the second-operand
address are used as follows:
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┌───┬─────────────────────────────────────────┐

│ │ Function Specified in │

│ │ Second-Operand Address │

│ ├────────────────────┬────────────────────┤

│Bit│When Bit Is Zero │When Bit Is One │

├───┼────────────────────┼────────────────────┤

│29 │ASN translation per-│ASN translation per-│

│ │formed only when new│formed.\ │

│ │ASN and old ASN are │ │

│ │different. │ │

├───┼────────────────────┼────────────────────┤

│3ð │AX associated with │AX from first oper- │

│ │PASN used. │and used. │

├───┼────────────────────┼────────────────────┤

│31 │SASN authorization │SASN authorization │

│ │performed.\ │not performed. │

├───┴────────────────────┴────────────────────┤

│ \ SASN translation and SASN authorization │

│ are performed only when SASN-d is not │

│ not equal to PASN-d. When SASN-d is equal│

│ to PASN-d, the SSTD is loaded from the │

│ PSTD, and no authorization is performed. │

└─────────────────────────────────────────────┘

The operation of LOAD ADDRESS SPACE
PARAMETERS is depicted in Figure 10-14 on
page 10-34.

PASN Translation

In the PASN-translation process, the PASN-d is
translated by means of the ASN first table and the
ASN second table. The STD and LTD fields, and
optionally the AX field, obtained from the
ASN-second-table entry (ASTE) are subsequently
used to update the corresponding control regis-
ters. However, when the ASF control is one, the
LTD is not obtained, and the PASTEO resulting
from PASN translation is used to update control
register 5.

When bit 29 of the second-operand address is
one, PASN translation is always performed.
When bit 29 is zero, PASN translation is per-
formed only when PASN-d is not equal to
PASN-old. When bit 29 is zero and PASN-d is
equal to PASN-old, the PSTD-old and the LTD-old
or PASTEO-old are left unchanged in the control
registers and become the PSTD-new and the
LTD-new or PASTEO-new, respectively. In this
case, if bit 30 is zero, then the AX-old is left
unchanged in the control register and becomes
the AX-new.

The PASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0
in the ASN-first-table entry and bit 0 in the ASTE,
when ones, do not result in an ASN-translation

exception, and the space-switch-event-control bit
in the ASTE, when one, does not result in a
space-switch event. When either of the invalid
bits is one, condition code 1 is set. When the
ASTE is valid and either the current primary
space-switch-event-control bit in control register 1
is one or the space-switch-event-control bit in the
ASTE is one, condition code 3 is set. When con-
dition code 1 or 3 is set, the control registers
remain unchanged.

The contents of the AX, STD, and LTD fields in
the ASTE which is accessed as a result of the
PASN translation are referred to as AX-p, STD-p,
and LTD-p, respectively. The origin of the ASTE
is referred to as PASTEO-p.

The description in this paragraph applies if the
subspace-group facility is installed, the ASF
control is one, and PASN translation is performed.
After STD-p has been obtained, if (1) the
subspace-group-control bit, bit 22, in STD-p is
one, (2) the dispatchable unit is subspace active,
and (3) PASTEO-p designates the ASTE for the
base space of the dispatchable unit, then a copy
of STD-p, called STD-rp, is made, and bits 1-23
and 25-31 of STD-rp are replaced by bits 1-23
and 25-31 of the STD in the ASTE for the sub-
space in which the dispatchable unit last had
control. Further details are in “Subspace-
Replacement Operations” on page 5-56. If bit 0
in the subspace ASTE is one, or if the ASTE
sequence number (ASTESN) in the subspace
ASTE does not equal the subspace ASTESN in
the dispatchable-unit control table, an exception is
not recognized; instead, condition code 1 is set,
and the control registers remain unchanged.

SASN Translation

In the SASN-translation process, the SASN-d is
translated by means of the ASN first table and the
ASN second table. The STD field obtained from
the ASTE is subsequently used to update the
secondary-segment-table designation (SSTD) in
control register 7. The ATO and ATL fields
obtained are used in the SASN authorization, if it
occurs.

SASN translation is performed only when SASN-d
is not equal to PASN-d. When SASN-d is equal
to PASN-d, the SSTD-new is set to the same
value as PSTD-new. When SASN-d is equal to
SASN-old, bit 29 (force ASN translation) is zero,
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and bit 31 (skip SASN authorization) is one, SASN
translation is not performed, and SSTD-old
becomes SSTD-new.

The SASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0
in the ASN-first-table entry and bit 0 in the ASTE,
when ones, do not result in an ASN-translation
exception. When either of the invalid bits is one,
condition code 2 is set, and the control registers
remain unchanged.

The contents of the STD, ATO, and ATL fields in
the ASTE which is accessed as a result of the
SASN translation are referred to as STD-s, ATO-s,
and ATL-s, respectively. The origin of the ASTE
is referred to as SASTEO-s.

The description in this paragraph applies if the
subspace-group facility is installed, the ASF
control is one, and SASN translation is performed.
After STD-s has been obtained, if (1) the
subspace-group-control bit, bit 22, in STD-s is
one, (2) the dispatchable unit is subspace active,
and (3) SASTEO-s designates the ASTE for the
base space of the dispatchable unit, then a copy
of STD-s, called STD-rs, is made, and bits 1-23
and 25-31 of STD-rs are replaced by bits 1-23 and
25-31 of the STD in the ASTE for the subspace in
which the dispatchable unit last had control.
Further details are in “Subspace-Replacement
Operations” on page 5-56. If bit 0 in the sub-
space ASTE is one, or if the ASTE sequence
number (ASTESN) in the subspace ASTE does
not equal the subspace ASTESN in the
dispatchable-unit control table, an exception is not
recognized; instead, condition code 2 is set, and
the control registers remain unchanged.

SASN Authorization

SASN authorization is performed when bit 31 of
the second-operand address is zero and SASN-d
is not equal to PASN-d. When SASN-d is equal
to PASN-d or when bit 31 of the second-operand
address is one, SASN authorization is not per-
formed.

SASN authorization is performed by using ATO-s,
ATL-s, and the intended value for AX-new. When
bit 30 of the second-operand address is zero and
PASN translation was performed, the intended
value for AX-new is AX-p. When bit 30 of that
address is zero and PASN translation was not

performed, the AX is not changed, and AX-new is
the same as AX-old. When bit 30 of that address
is one, the intended value for AX-new is AX-d.
SASN authorization follows the rules for sec-
ondary authorization as described in
“ASN-Authorization Process” on page 3-24. If the
SASN is not authorized (that is, the authority-table
length is exceeded, or the selected bit is zero),
condition code 2 is set, and none of the control
registers is updated.

Control-Register Loading

When the PASN-translation, SASN-translation,
and SASN-authorization functions and subspace-
replacement operations, if called for in the instruc-
tion execution, are performed without encountering
any exceptions or exception situations, the exe-
cution is completed by replacing the contents of
control registers 1, 3, 4, 5, and 7 with the new
values, and condition code 0 is set. The control
registers are loaded as follows.

The PSW-key-mask and SASN fields in control
register 3 are replaced by the PKM-d and SASN-d
fields from the first-operand location.

The PASN, bits 16-31 of control register 4, is
replaced by the PASN-d field from the first-
operand location.

The authorization index, bits 0-15 of control reg-
ister 4, is replaced as follows:

� When bit 30 of the second-operand address is
one, from AX-d.

� When bit 30 of the second-operand address is
zero and PASN translation is performed, from
AX-p.

� When bit 30 of the second-operand address is
zero and PASN translation is not performed,
the authorization index is not changed.

The primary segment-table designation in control
register 1 and the linkage-table designation or
primary-ASN-second-table-entry origin (PASTEO)
in control register 5 are replaced as follows:

� When PASN translation is performed, the
primary segment-table designation in control
register 1 is replaced from the STD-p field,
which is obtained during PASN translation,
except that it is replaced by STD-rp if a
subspace-replacement operation was per-
formed on STD-p. Also, the linkage-table des-
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ignation in control register 5 is replaced from
the LTD-p field if the ASF control is zero, or
the primary-ASTE origin (PASTEO) in control
register 5 is replaced by the PASTEO-p if the
ASF control is one. When the ASF control is
one, the PASTEO-p is placed in bit positions
1-25 of control register 5, and zeros are
placed in bit positions 0 and 26-31.

� When PASN translation is not performed, the
contents of control registers 1 and 5 remain
unchanged.

The secondary segment-table designation in
control register 7 is replaced as follows:

� When SASN-d equals PASN-d, by the new
contents of control register 1, the primary
segment-table designation. The new contents
may be PSTD-old, STD-p, or STD-rp.

� When SASN translation is performed, by the
contents of the STD-s or by STD-rs if a
subspace-replacement operation was per-
formed on STD-s.

When SASN-d does not equal PASN-d and SASN
translation is not performed, the secondary
segment-table designation remains unchanged.

Other Condition-Code Settings

When PASN translation is called for and cannot
be completed because bit 0 is one in either the
ASN-first-table entry or the ASTE, or if it can be
completed but a subspace-replacement-exception
condition exists due to bit 0 or the ASTE
sequence number in the subspace ASTE during a
subspace-replacement operation on the STD-p,
condition code 1 is set, and the control registers
are not changed.

When PASN translation is called for and com-
pleted and any required subspace-replacement
operation on the STD-p is also completed, and
then either (1) the current primary space-switch-
event-control bit, bit 0 of control register 1, is one
or (2) the space-switch-event-control bit in the
ASTE designated by PASTEO-p is one, condition
code 3 is set, and the control registers are not
changed.

When SASN translation is called for and the trans-
lation cannot be completed because (1) bit 0 is
one in either the ASN-first-table entry or the
ASTE, (2) SASN authorization is called for and
the SASN is not authorized, or (3) a subspace-
replacement-exception condition exists due to bit 0
or the ASTE sequence number in the subspace
ASTE during a subspace-replacement operation
on the STD-s, condition code 2 is set, and the
control registers are not changed.

Special Conditions

The instruction can be executed only when the
ASN-translation control, bit 12 of control register
14, is one. If the ASN-translation-control bit is
zero, a special-operation exception is recognized.

The first operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Figure 10-12 on page 10-31 and Figure 10-11 on
page  10-30 summarize the functions of the
instruction and the priority of recognition of
exceptions and condition codes.

Resulting Condition Code:  

0 Translation and authorization complete;
parameters loaded

1 Primary ASN or subspace not available;
parameters not loaded

2 Secondary ASN not available or not author-
ized, or secondary subspace not available;
parameters not loaded

3 Space-switch event specified; parameters not
loaded

 Program Exceptions: 

� Access (fetch, operand 1)
� Addressing (ASN-first-table entry, ASN-

second-table entry, authority-table entry,
dispatchable-unit control table)

 � ASN-translation specification
 � Privileged operation
 � Special operation
 � Specification
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┌───────────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second and third instruction halfwords. │

│ │

│ 7.B.1 Privileged-operation exception. │

│ │

│ 7.B.2 Special-operation exception due to the ASN-translation control, │

│ bit 12 of control register 14, being zero. │

│ │

│ 8. Specification exception. │

│ │

│ 9. Access exceptions for the first operand. │

│ │

│ 1ð. Execution of PASN translation (when performed). │

│ │

│ 1ð.1 Addressing exception for access to ASN-first-table entry. │

│ │

│ 1ð.2 Condition code 1 due to I bit (bit ð) in ASN-first-table entry │

│ being one. │

│ │

│ 1ð.3 ASN-translation-specification exception due to invalid ones (bits │

│ 28-31 or 26-31) in ASN-first-table entry (optional). │

│ │

│ 1ð.4 Addressing exception for access to ASN-second-table entry. │

│ │

│ 1ð.5 Condition code 1 due to I bit (bit ð) in ASN-second-table entry │

│ being one. │

│ │

│ 1ð.6 ASN-translation-specification exception due to invalid ones (bits │

│ 3ð, 31, 6ð-63) in ASN-second-table entry (optional). │

│ │

│ 1ð.7 Addressing exception for access to dispatchable-unit control │

│ table. │

│ │

│ 1ð.8 Addressing exception for access to subspace ASN-second-table │

│ entry. │

│ │

│ 1ð.9 Condition code 1 due to I bit (bit ð) in subspace ASN-second-table│

│ entry being one. │

│ │

│ 1ð.1ð Condition code 1 due to subspace ASN-second-table-entry sequence │

│ number (SSASTESN) in dispatchable-unit control table not being │

│ equal to ASTESN in subspace ASN-second-table entry. │

│ │

│ 1ð.11 Condition code 3 due to either the old or new space-switch-event- │

│ control bit being one. │

│ │

│ 11. Execution of SASN translation (when performed). │

│ │

│ 11.1 Addressing exception for access to ASN-first-table entry. │

│ │

│ 11.2 Condition code 2 due to I bit (bit ð) in ASN-first-table entry │

│ being one. │

│ │

│ 11.3 ASN-translation-specification exception due to invalid ones (bits │

│ 28-31 or 26-31) in ASN-first-table entry (optional). │

│ │

│ 11.4 Addressing exception for access to ASN-second-table entry. │

│ │

│ 11.5 Condition code 2 due to I bit (bit ð) in ASN-second-table entry │

│ being one. │

└───────────────────────────────────────────────────────────────────────────┘

Figure 10-11 (Part 1 of 2). Priority of Execution: LOAD ADDRESS SPACE PARAMETERS
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┌───────────────────────────────────────────────────────────────────────────┐

│ 11.6 ASN-translation-specification exception due to invalid ones (bits │

│ 3ð, 31, 6ð-63) in ASN-second-table entry (optional). │

│ │

│ 12.A Execution of secondary authorization (when performed). │

│ │

│ 12.A.1 Condition code 2 due to authority-table entry being outside table.│

│ │

│ 12.A.2 Addressing exception for access to authority-table entry. │

│ │

│ 12.A.3 Condition code 2 due to S bit in authority-table entry being zero.│

│ │

│ 12.B.1 Addressing exception for access to dispatchable-unit control │

│ table. │

│ │

│ 12.B.2 Addressing exception for access to subspace ASN-second-table │

│ entry. │

│ │

│ 12.B.3 Condition code 2 due to I bit (bit ð) in subspace ASN-second-table│

│ entry being one. │

│ │

│ 12.B.4 Condition code 2 due to subspace ASN-second-table-entry sequence │

│ number (SSASTESN) in dispatchable-unit control table not being │

│ equal to ASTESN in subspace ASN-second-table entry. │

└───────────────────────────────────────────────────────────────────────────┘

Figure 10-11 (Part 2 of 2). Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

┌────────┬───────────┬───────────┬──────────────────────────────────────────────────┐

│ │ Second- │ │ │

│ │ Operand- │ │ │

│ │ Address │ │ │

│PASN-d │ Bitsñ │ PASN │ Result Field │

│Equals ├─────┬─────┤Translation├────────┬──────┬────────┬───────┬────────┬────────┤

│PASN-old│ 29 │ 3ð │ Performed │PSTD-new│AX-new│CR5-newò│PKM-new│SASN-new│PASN-new│

├────────┼─────┼─────┼───────────┼────────┼──────┼────────┼───────┼────────┼────────┤

│ Yes │ ð │ ð │ No │PSTD-old│AX-old│CR5-old │PKM-d │SASN-d │PASN-d │

│ Yes │ ð │ 1 │ No │PSTD-old│AX-d │CR5-old │PKM-d │SASN-d │PASN-d │

│ Yes │ 1 │ ð │ Yes │STD-pó │AX-p │CR5-p │PKM-d │SASN-d │PASN-d │

│ Yes │ 1 │ 1 │ Yes │STD-pó │AX-d │CR5-p │PKM-d │SASN-d │PASN-d │

│ No │ - │ ð │ Yes │STD-pó │AX-p │CR5-p │PKM-d │SASN-d │PASN-d │

│ No │ - │ 1 │ Yes │STD-pó │AX-d │CR5-p │PKM-d │SASN-d │PASN-d │

└────────┴─────┴─────┴───────────┴────────┴──────┴────────┴───────┴────────┴────────┘

Figure 10-12 (Part 1 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS
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┌───────┬────────┬───────────────┬───────────┬─────────────┬────────────┐

│ │ │Second-Operand-│ │ │ │

│SASN-d │SASN-d │ Address Bitsñ │ SASN │ SASN │ │

│Equals │Equals ├───────┬───────┤Translation│Authorization│Result Field│

│PASN-d │SASN-old│ 29 │ 31 │ Performed │ Performedô │ SSTD-new │

├───────┼────────┼───────┼───────┼───────────┼─────────────┼────────────┤

│ Yes │ - │ - │ - │ No │ No │ PSTD-new │

│ No │ Yes │ ð │ 1 │ No │ No │ SSTD-old │

│ No │ Yes │ 1 │ 1 │ Yes │ No │ STD-sõ │

│ No │ Yes │ - │ ð │ Yes │ Yes │ STD-sõ │

│ No │ No │ - │ 1 │ Yes │ No │ STD-sõ │

│ No │ No │ - │ ð │ Yes │ Yes │ STD-sõ │

├───────┴────────┴───────┴───────┴───────────┴─────────────┴────────────┤

│Explanation: │

│ │

│ - Action in this case is the same regardless of the outcome of this │

│ comparison or of the setting of this bit. │

│ │

│ ñ Second-operand-address bits: │

│ 29 Force ASN translation. │

│ 3ð Use AX from first operand. │

│ 31 Skip secondary authority test. │

│ │

│ ò "CR5" stands for "LTD" if the ASF control, bit 15 of control │

│ register ð, is zero or for "PASTEO" if the ASF control is one. │

│ │

│ ó PSTD-new is STD-rp (a copy of STD-p except with bits 1-23 and 25-31 │

│ replaced from the STD in the subspace ASTE) if subspace replacement │

│ is performed. │

│ │

│ ô SASN authorization is performed using ATO-s, ATL-s, and AX-new. │

│ │

│ õ SSTD-new is STD-rs (a copy of STD-s except with bits 1-23 and 25-31 │

│ replaced from the STD in the subspace ASTE) if subspace replacement │

│ is performed. │

└───────────────────────────────────────────────────────────────────────┘

Figure 10-12 (Part 2 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS

Programming Notes:

1. Bits 29 and 31 in the second-operand address
are intended primarily to provide improved
performance for those cases where the asso-
ciated action is unnecessary.

When bit 29 is set to zero, the action of the
instruction is based on the assumption that
the current values for PSTD-old, LTD-old or
PASTEO-old, and AX-old are consistent with
PASN-old and that SSTD-old is consistent
with SASN-old. When this is not the case, bit
29 should be set to one.

Bit 31, when one, eliminates the
SASN-authorization test. The program may

be able to determine in certain cases that the
SASN is authorized, either because of prior
use or because the AX being loaded is
authorized to access all address spaces.

2. The SASN-translation and SASN-authorization
steps are not performed when SASN-d is
equal to PASN-d. This is consistent with the
action in SET SECONDARY ASN to current
primary (SSAR-cp), which does not perform
the translation or ASN authorization.

3. See Figure 10-13 on page 10-33 for a listing
of abbreviations used in this instruction
description.
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┌────────────────┬─────────────────────────────┐

│ │ Abbreviation for │

│ Control- ├──────────────┬──────────────┤

│ Register │ Previous │ Subsequent │

│ Number.Bit │ Contents │ Contents │

├────────────────┼──────────────┼──────────────┤

│ 1.ð-31 │ PSTD-old │ PSTD-new │

│ 3.ð-15 │ PKM-old │ PKM-new │

│ 3.16-31 │ SASN-old │ SASN-new │

│ 4.ð-15 │ AX-old │ AX-new │

│ 4.16-31 │ PASN-old │ PASN-new │

│ 5.ð-31 │ LTD-old │ LTD-new │

│ 5.1-25 │ PASTEO-old │ PASTEO-new │

│ 7.ð-31 │ SSTD-old │ SSTD-new │

└────────────────┴──────────────┴──────────────┘

┌───────────────────────┬──────────────────────┐

│ First-Operand │ │

│ Bit Positions │ Abbreviation │

├───────────────────────┼──────────────────────┤

│ ð-15 │ PKM-d │

│ 16-31 │ SASN-d │

│ 32-47 │ AX-d │

│ 48-63 │ PASN-d │

└───────────────────────┴──────────────────────┘

┌──────────────────┬───────────────────────────┐

│ │ Abbreviation Used for │

│ │ the Field When Accessed │

│ │ as Part of │

│ Field in ASN- ├─────────────┬─────────────┤

│ Second-Table │ PASN │ SASN │

│ Entry │ Translation │ Translation │

├──────────────────┼─────────────┼─────────────┤

│ 1-29 │ - │ ATO-s │

│ 32-47 │ AX-p │ - │

│ 48-59 │ - │ ATL-s │

│ 64-95 │ STD-pñ │ STD-sñ │

│ 96-127 │ LTD-pò │ - │

├──────────────────┴─────────────┴─────────────┤

│Explanation: │

│ │

│ - The field is not used in this case. │

│ │

│ ñ STD-rp is formed from STD-p, and STD-rs is│

│ formed from STD-s, by a subspace- │

│ replacement operation. │

│ │

│ ò LTD-p is accessed only when the ASF con- │

│ trol is zero. When the ASF control is │

│ one, PASTEO-p is used in the operation, │

│ and it is bits 1-25 of the address of the │

│ ASN-second-table entry. │

└──────────────────────────────────────────────┘

Figure 10-13. Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS
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┌─────────────────────┐ ┌────────────────┐

│Fetch op-1 doubleword│ ┌──────────5│PASN translation│

└──────────┬──────────┘ │ └────────┬───────┘

 │ │ │

 │ │ 6

 │ │ ┌───────────────┐ No ┌──────────────┐

│ │ │ASN available ?├───────5│1 ─5 Cond Code│

 6 │ └───────┬───────┘ └──────────────┘

┌─────────────────────┐ │ │ Yes

│ PASN-d = PASN-old │ │ 6

│ AND │ No │ ┌───────────────────┐

│Op-2-addr bit 29 = ð ├──────────┘ │Subspace available │ No ┌──────────────┐

│ ? │ │if required ? ├─────5│1 ─5 Cond Code│

└──────────┬──────────┘ └─────────┬─────────┘ └──────────────┘

 │ Yes │ Yes

 6 6

┌────────────────────┐ ┌───────────────────┐

│PSTD-old ─5 PSTD-tmp│ │Either old or new │ Yes ┌──────────────┐

│ LTD-old ─5 LTD-tmp │ Note │space-switch-event-├─────5│3 ─5 Cond Code│

│ AX-old ─5 AX-tmp │ │control bit = 1 ? │ └──────────────┘

└──────────┬─────────┘ └─────────┬─────────┘

 │ │ No

 │ 6

 └─────┬────────────────┐ ┌─────────────────┐

│ │ │STD-p ─5 PSTD-tmp│ \

6 │ │LTD-p ─5 LTD-tmp │ \\

Yes ┌─────────────────┐ │ │ AX-p ─5 AX-tmp │

┌───────┤SASN-d = PASN-d ?│ │ └────────┬────────┘

│ └────────┬────────┘ └───%───────────────┘

│ │ No

│ 6 ┌────────────────┐

│ ┌────────────────────┐ ┌─────5│SASN translation│

│ │ SASN-d = SASN-old │ │ └────────┬───────┘

│ │ AND │ │ │

│ │Op-2-addr bit 29 = ð│ No │ 6

│ │ AND ├─────────┘ ┌───────────────┐ No ┌──────────────┐

│ │Op-2-addr bit 31 = 1│ │ASN available ?├───────5│2 ─5 Cond Code│

│ │ ? │ └───────┬───────┘ └──────────────┘

│ └─────────┬──────────┘ │ Yes

│ │ Yes 6

└─────────┐ └──────────────┐ ┌───────────────────┐

│ │ │Subspace available │ No ┌──────────────┐

│ │ │if required ? ├─────5│2 ─5 Cond Code│

 │ │ └─────────┬─────────┘ └──────────────┘

│ │ │

6 6 6

┌───────────────────┐ ┌────────────────────┐ ┌─────────────────┐

│PSTD-tmp─5 SSTD-tmp│ │SSTD-old ─5 SSTD-tmp│ │STD-s ─5 SSTD-tmp│ \\\

└─────────┬─────────┘ └─────────┬──────────┘ └────────┬────────┘

│ │ │

│ 6 │

 │%──────────────────────────┐ 6

6 │ No ┌──────────────────────┐

┌──────────────────────┐ No │%───┤Op-2-addr bit 31 = ð ?│

│Op-2-addr bit 3ð = 1 ?├──┐ │ └──────────┬───────────┘

└──────────┬───────────┘ │ │ │ Yes

 │ Yes │ │ 6

 6 6 │ ┌──────────────────┐

┌──────────────┐ ┌────────────────┐ │ │SASN authorization│

│AX-d ─5 AX-new│ │AX-tmp ─5 AX-new│ │ └────────┬─────────┘

└───────┬──────┘ └────────┬───────┘ │ │

 │ │ │ 6

└────────────────5│ │ Yes ┌────────────┐ No ┌──────────────┐

│ └%────────┤Authorized ?├────────5│2 ─5 Cond Code│

 6 └────────────┘ └──────────────┘

 ┌────────────────────┐ ┌──────────────────┐

│PSTD-tmp ─5 PSTD-new│ │ PKM-d ─5 PKM-new│ ┌──────────────┐

Note │ LTD-tmp ─5 LTD-new ├───────5│SASN-d ─5 SASN-new├─────5│ð ─5 Cond Code│

│SSTD-tmp ─5 SSTD-new│ │PASN-d ─5 PASN-new│ └──────────────┘

 └────────────────────┘ └──────────────────┘

\: PSTD-tmp is STD-rp if subspace replacement occurred.

\\: Replace "LTD" with "PASTEO" when the ASF control is one.

 \\\: SSTD-tmp is STD-rs if subspace replacement occurred.

Figure 10-14. Execution of LOAD ADDRESS SPACE PARAMETERS

 LOAD CONTROL
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LCTL R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'B7' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The set of control registers starting with control
register R± and ending with control register R³ is
loaded from the locations designated by the
second-operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The control
registers are loaded in ascending order of their
register numbers, starting with control register R±

and continuing up to and including control register
R³, with control register 0 following control register
15. The second operand remains unchanged.

The information loaded into the control registers
becomes active when instruction execution has
ended.

Special Conditions

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register positions are defined,
only zeros should be loaded in unassigned
control-register positions.

2. Loading of control registers on some models
may require a significant amount of time. This
is particularly true for changes in significant
parameters.

For example, the TLB may be cleared of
entries as a result of changing or enabling the

program-event-recording parameters in control
registers 9-11. Where possible, the program
should avoid unnecessary loading of control
registers. In loading control registers 9-11,
most models attempt to optimize for the case
when the bits of control register 9 are zeros.

As another example, the translation format,
bits 8-12 of control register 0, is initialized to
all zeros by initial CPU reset. An all-zero
value is an invalid translation format, and, on
some models, results in purging the TLB even
though DAT may be off. Thus, the program
should avoid loading invalid values for this
field.

 LOAD PSW

LPSW D²(B²) [S]

┌────────┬────────┬────┬────────────┐

│ '82' │////////│ B² │ D² │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

The current PSW is replaced by the contents of
the doubleword at the location designated by the
second-operand address.

Bits 8-15 of the instruction are ignored.

A serialization and checkpoint-synchronization
function is performed before or after the operand
is fetched and again after the operation is com-
pleted.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The value which is to be loaded by the instruction
is not checked for validity before it is loaded.
However, immediately after loading, a specification
exception is recognized and a program inter-
ruption occurs when any of the following is true for
the newly loaded PSW:

� A one is introduced into an unassigned bit
position of the PSW (that is, any of bit posi-
tions 0, 2-4, or 24-31).

� A zero is introduced into bit position 32 of the
PSW, but bits 33-39 are not all zeros.
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� A zero is introduced into bit position 12 of the
PSW.

In these cases, the operation is completed, and
the resulting instruction-length code is zero.

The test for a specification exception after the
PSW is loaded is described in “Early Exception
Recognition” on page 6-9. It may be considered
as occurring early in the process of preparing to
execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code is set as specified in
the new PSW loaded.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

LOAD REAL ADDRESS

LRA R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│ 'B1' │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The real address corresponding to the second-
operand virtual address is placed in general reg-
ister R±.

The virtual address specified by the X², B², and
D² fields is translated by means of the dynamic-
address-translation facility, regardless of whether
DAT is on or off.

DAT is performed by using a segment-table desig-
nation that depends on the current value of the
address-space-control bits, bits 16 and 17 of the
PSW, as shown in the following table:

ART may be performed with the use of the
ART-lookaside buffer (ALB).

DAT is performed without the use of the
translation-lookaside buffer (TLB). A zero is
appended on the left of the resultant 31-bit real
address to produce a 32-bit result, which is then
placed in general register R±. The translated
address is not inspected for boundary alignment
or for addressing or protection exceptions.

The virtual-address computation is performed
according to the current addressing mode, speci-
fied by bit 32 of the current PSW.

The addresses of the segment-table entry and
page-table entry are treated as 31-bit addresses,
regardless of the current addressing mode speci-
fied by bit 32 of the current PSW. It is unpredict-
able whether the addresses of these entries are
treated as real or absolute addresses.

Condition code 0 is set when both ART, if appli-
cable, and DAT can be completed, that is, when a
segment-table designation can be obtained and
the entry in each DAT table lies within the speci-
fied table length and has a zero I bit.

When PSW bits 16 and 17 are 01 binary and a
segment-table designation cannot be obtained
because of a situation that would normally cause
one of the exceptions shown in the following table,
(1) the interruption code assigned to the exception
is placed in bit positions 16-31 of general register
R±, and bit 0 of this register is set to one and bits
1-15 are set to zeros, and (2) the instruction is
completed by setting condition code 3.

PSW
Bits 16
and 17

Segment-Table Designation
Used by DAT

00 Contents of control register 1

10 Contents of control register 7

01 The segment-table designation obtained
by applying the access-register-
translation (ART) process to the access
register designated by the B² field

11 Contents of control register 13
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When ART is completed normally, the operation is
continued through the performance of DAT.

When the I bit in the segment-table entry is one,
condition code 1 is set, and the real or absolute
address of the segment-table entry is placed in
general register R±. When the I bit in the page-
table entry is one, condition code 2 is set, and the
real or absolute address of the page-table entry is
placed in general register R±. When either the
segment-table entry or the page-table entry is
outside the table, condition code 3 is set, and
general register R± is loaded with the real or
absolute address of the entry that would have
been fetched if the length violation had not
occurred. In all these cases, the address placed
in general register R± is real or absolute in
accordance with the type of address that was
used during the attempted translation, a zero is
appended on the left of the resultant 31-bit
address to produce a 32-bit result, and the 32-bit
result is placed in the register.

Exception
Name Cause

Code
(in

Hex)

Special Conditions

An addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration. When it is nec-
essary to access the authority table -- when the
private bit is not zero and the ALEAX is not equal
to the EAX -- an ASN-translation-specification
exception may be recognized when bits 30, 31,
and 60-63 of the ASTE are not all zeros.

An addressing exception is recognized when the
address used to fetch the segment-table entry or
page-table entry designates a location which is not
available in the configuration. A translation-
specification exception is recognized when bits
8-12 of control register 0 contain an invalid code,
or the segment-table entry or page-table entry has
a zero I bit and a format error.

A carry into bit position 0 as a result of the addi-
tion done to compute the address of either the
segment-table entry or the page-table entry may
be ignored or may result in an addressing excep-
tion.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:  

0 Translation available
1 Segment-table entry invalid (I bit is one)
2 Page-table entry invalid (I bit is one)
3 Segment-table designation not available or

segment- or page-table length exceeded

 Program Exceptions: 

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, segment-table entry, or
page-table entry)

 � ASN-translation specification
 � Privileged operation
 � Translation specification

Programming Note:  Caution must be exercised
in the use of LOAD REAL ADDRESS in a multi-
processing configuration. Since INVALIDATE
PAGE TABLE ENTRY may set the I bit in storage
to one before causing the corresponding entries in
TLBs of other CPUs to be cleared, the simul-
taneous execution of LOAD REAL ADDRESS on

ALET specifi-
cation

Access-list-entry-token
(ALET) bits 0-6 not all
zeros

0028

ALEN trans-
lation

Access-list entry (ALE)
outside list or invalid (bit 0
is one)

0029

ALE
sequence

ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

002A

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is
one)

002B

ASTE
sequence

ASTE sequence number
(ASTESN) in ALE not
equal to ASTESN in ASTE

002C

Extended
authority

ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to
extended authorization
index (EAX), and sec-
ondary bit selected by EAX
either outside authority
table or zero

002D
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this CPU and INVALIDATE PAGE TABLE ENTRY
on another CPU may produce inconsistent results.
Because LOAD REAL ADDRESS accesses the
tables in storage, the page-table entry may appear
to be invalid (condition code 2) even though the
corresponding TLB entry has not yet been
cleared, and the TLB entry may remain in the TLB
until the completion of INVALIDATE PAGE TABLE
ENTRY on the other CPU. There is no guaran-
teed limit to the number of instructions which may
be executed between the completion of LOAD
REAL ADDRESS and the TLB being cleared of
the entry.

LOAD USING REAL ADDRESS

LURA R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24B' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The word at the real-storage location addressed
by the contents of general register R² is placed in
general register R±.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-31 of general
register R² designate a real-storage location on a
word boundary, and bits 0-7 of the register are
ignored. In the 31-bit addressing mode, bits 1-31
of general register R² designate a real-storage
location on a word boundary, and bit 0 of the reg-
ister is ignored.

Because it is a real address, the address desig-
nating the storage word is not subject to dynamic
address translation.

Special Conditions

The contents of general register R² must desig-
nate a location on a word boundary; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (address specified by general reg-
ister R²)

 � Privileged operation

� Protection (fetch, operand 2, key-controlled
protection)

 � Specification

MODIFY STACKED STATE

MSTA R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B247' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of the pair of general registers desig-
nated by the R± field are placed in the modifiable
area, byte positions 152-159, of the last state
entry in the linkage stack.

The R± field designates the even-numbered reg-
ister of an even-odd pair of general registers.

The last state entry is located as described in
“Unstacking Process” on page 5-72. The state
entry remains in the linkage stack, and the
linkage-stack-entry address in control register 15
remains unchanged.

Key-controlled protection does not apply to the ref-
erences to the linkage stack, but low-address and
page protection do apply.

Bits 16-23 and 28-31 of the instruction are
ignored.

Special Conditions

A specification exception is recognized when R± is
odd.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and
the address-space-function control, bit 15 of
control register 0, must be one; otherwise, a
special-operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the
unstacking process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-15 on
page 10-39.
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Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch and store, except for key-
controlled protection, linkage-stack entry)

 � Special operation
 � Specification
 � Stack empty
 � Stack specification
 � Stack type

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to the CPU being in the real │

│ mode or secondary-space mode or the address-space-function │

│ control, bit 15 of control register ð, being zero. │

│ │

│ 8.A Specification exception due to R± being odd. │

│ │

│ 8.B.1 Access exceptions for entry descriptor of the current linkage-│

│ stack entry. │

│ │

│ 8.B.2 Stack-type exception due to current entry not being a state │

│ entry or header entry. │

│ │

│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │

│ entry is a header entry. │

│ │

│ 8.B.3 Access exceptions for second word of the header entry. │

│ │

│ 8.B.4 Stack-empty exception due to backward stack-entry validity │

│ bit in the header entry being zero. │

│ │

│ 8.B.5 Access exceptions for entry descriptor of preceding entry, │

│ which is the entry designated by the backward stack-entry │

│ address in the current (header) entry. │

│ │

│ 8.B.6 Stack-specification exception due to preceding entry being a │

│ header entry. │

│ │

│ 8.B.7 Stack-type exception due to preceding entry not being a state │

│ entry. │

│ │

│ 8.B.8 Access exceptions for the modifiable area of the state entry. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-15. Priority of Execution: MODIFY STACKED STATE
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MOVE PAGE (Facility 2)

MVPG R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B254' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

This definition applies if move-page facility 2 is
installed. The MOVE PAGE instruction of move-
page facility 1 is defined in Chapter 7, “General
Instructions.”

The first operand is replaced by the second
operand. The first and second operands both are
4K bytes on 4K-byte boundaries. The results are
indicated in the condition code. The accesses to
the first-operand location or the second-operand
location, but not to both locations, may be per-
formed by using the key specified in general reg-
ister 0; otherwise, the accesses to an operand
location are performed by using the PSW key.

Bits 16-23 of the instruction are ignored.

The location of the leftmost byte of the first
operand and second operand is designated by the

contents of general registers R± and R², respec-
tively.

The handling of the addresses in general registers
R± and R² depends on the addressing mode. In
the 24-bit addressing mode, the contents of bit
positions 8-19 of a general register, with 12 right-
most zeros appended, are the address, and bits
0-7 and 20-31 in the register are ignored. In the
31-bit addressing mode, the contents of bit posi-
tions 1-19 of a general register, with 12 rightmost
zeros appended, are the address, and bits 0 and
20-31 in the register are ignored.

Bits 24-27 of general register 0 are used as the
specified access key. Bit 20 of general register 0,
when one, specifies that the specified access key
is to be used for accessing the first operand, and
bit 21 specifies the same for the second operand.
A specification exception is recognized if bits 20
and 21 are both ones. Bit 22 of general register 0
is a destination-reference-intention bit, and bit 23
is a condition-code-option bit. Bits 16-19 of
general register 0 must be zeros; otherwise, a
specification exception is recognized. Bits 0-15
and 28-31 of general register 0 are ignored.

The contents of the registers just described are
shown in Figure 10-16 on page  10-41
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┌────────────────────────────────────────────────────────────────────────────────────────┐

│ │

│ ┌─────────────┬────┬─┬─┬─┬─┬────┬────┐ │

│ │ │ │ │ │D│C│ │ │ │

│ GRð │ │ │ │ │R│C│ │ │ │

│ │/////////////│ðððð│F│S│I│O│Key │////│ │

│ └─────────────┴────┴─┴─┴─┴─┴────┴────┘ │

│ ð 16 2ð 22 24 28 31 │

│ │

│ 24-Bit Addressing Mode │

│ │

│ ┌────────┬────────────┬────────────┐ ┌────────┬────────────┬────────────┐ │

│ R± │////////│Op1 Address │////////////│ R² │////////│Op2 Address │////////////│ │

│ └────────┴────────────┴────────────┘ └────────┴────────────┴────────────┘ │

│ ð 8 2ð 31 ð 8 2ð 31 │

│ │

│ 31-Bit Addressing Mode │

│ │

│ ┌─┬───────────────────┬────────────┐ ┌─┬───────────────────┬────────────┐ │

│ R± │/│ Op1 Address │////////////│ R² │/│ Op2 Address │////////////│ │

│ └─┴───────────────────┴────────────┘ └─┴───────────────────┴────────────┘ │

│ ð 1 2ð 31 ð 1 2ð 31 │

│ │

├────────────────────────────────────────────────────────────────────────────────────────┤

│Explanation: │

│ │

│ CCO Condition-code-option bit. │

│ DRI Destination-reference-intention bit. │

│ F When one, specified access key applies to first operand. A specification │

│ exception is recognized if F and S are both ones. │

│ Key Specified access key. │

│ S When one, specified access key applies to second operand. A specification │

│ exception is recognized if F and S are both ones. │

└────────────────────────────────────────────────────────────────────────────────────────┘

Figure 10-16. Register Contents for MOVE PAGE of Move-Page Facility 2

When bit 20 of general register 0 is one, the fetch
accesses to the second-operand location are per-
formed by using the PSW key, and the store
accesses to the first-operand location are per-
formed by using the key specified in general reg-
ister 0. When bit 21 of general register 0 is one,
the fetch accesses to the second-operand location
are performed by using the key specified in
general register 0, and the store accesses to the
first-operand location are performed by using the
PSW key. When bits 20 and 21 are both zeros,
the PSW key is used for accessing both operands.

When DAT is on and the page-invalid bit is one in
the page-table entry for an operand, additional
address translation is performed to determine
whether the operand is valid in expanded storage.
As a result, the replacement of the first operand
by the second operand may be performed by
moving data from main storage to main storage,
from main storage to expanded storage, or from
expanded storage to main storage, depending on
whether and where the operands are valid. When

4K bytes have been moved, condition code 0 is
set.

Data movement is prevented if a page-translation-
exception condition exists. A page-translation-
exception condition exists (1) for an operand if
either the page-table entry for the operand is
outside the page table or the operand is invalid in
both main storage and expanded storage; (2) for
the first operand if both operands are valid in
expanded storage; (3) for the first operand if the
first operand is valid in expanded storage, the
second operand is valid in main storage, and the
destination-reference-intention bit, bit 22 in general
register 0, is one; and (4) for an operand if the
operand is valid in expanded storage, but the
translation path for the expanded-storage operand
is locked or the expanded-storage block con-
taining that operand either is not available or
causes an expanded-storage data error. provided
that both operands are not valid in expanded
storage. When both operands are invalid in both
main storage and expanded storage, a page-
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translation-exception condition exists for the
second operand. When a page-translation-
exception condition exists because of an
expanded-storage data error, the contents of the
first-operand location are unpredictable, and the
instruction ending is not true nullification in this
case.

When a page-translation-exception condition
exists as described in the preceding paragraph,
except when the condition is that the page-table
entry is outside the page table, the exception is
not recognized if the condition-code-option bit, bit
23 in general register 0, is one; instead, condition
code 1 or 2 is set. Condition code 1 is set in all
cases, except that condition code 2 is set if the
second operand is invalid in both main storage
and expanded storage, regardless of the validity of
the first operand.

When an access exception can be recognized for
both operands, it is unpredictable for which
operand an exception is recognized. If one of the
exceptions is a page-translation exception that
would cause condition code 1 or 2 to be set, it is
unpredictable whether the access exception for
the other operand is recognized or condition code
1 or 2 is set.

When data is moved to or from expanded storage,
access-list-controlled, page, and key-controlled
protection apply, and it is unpredictable whether
low-address protection applies. The protection
mechanisms apply to main storage in the normal
way.

When the first operand is valid in main storage
and the second operand is valid in expanded
storage, but the expanded-storage block con-
taining the second operand is unavailable, a
storage-alteration PER event may be recognized,
and the change bit may be set, for the first
operand even though the first-operand location
remains unchanged.

Operation in a Multiple-CPU Configuration

The references to main storage and to expanded
storage are not necessarily single-access refer-
ences and are not necessarily performed in a left-
to-right direction, as observed by other CPUs and
by channel programs.

If two or more CPUs move data to or from
expanded storage at approximately the same
instant, depending on the model, the operations
may be performed one at a time, or the operations
may be performed concurrently. Concurrent oper-
ation may occur even if the instructions address
the same expanded-storage block.

When two or more CPUs move data to the same
expanded-storage block concurrently, the resulting
values in the expanded-storage block for each
group of bytes transferred may be from any of the
instructions being executed simultaneously. The
number of bytes transferred as a group is unpre-
dictable.

Similarly, for concurrent movement to and from
the same expanded-storage block, the resulting
values for each group of bytes moved from
expanded storage may be either the old or the
new values from the expanded-storage block.

When data movement is due to occur between
main storage and expanded storage, the trans-
lation path being used for the expanded-storage
operand is set to the locked state. When this data
movement is completed successfully, or when a
page-translation exception is due to be recognized
or condition code 1 is due to be set because the
movement cannot be completed successfully, the
translation path is set to the unlocked state.

Special Conditions

In the problem state, when either bit 20 or bit 21
in general register 0 is one, the operation is per-
formed only if the access key specified in general
register 0 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid. When bits 20
and 21 are both zeros, the access key in general
register 0 is not tested for validity.

In the problem state, when bits 20 and 21 in
general register 0 are both ones and the access
key in general register 0 is not permitted by the
PSW-key mask, it is unpredictable whether a
specification exception or a privileged-operation
exception is recognized.

Resulting Condition Code:  

0 Data moved
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1 Condition-code-option bit one and (1) first
operand invalid and second operand valid;
(2) both operands valid in expanded storage;
(3) first operand valid in expanded storage,
second operand valid in main storage, and
destination-reference-intention bit one;
(4) translation path locked; (5) expanded-
storage block unavailable, or (6) expanded-
storage data error

2 Condition-code-option bit one and second
operand invalid

3 --

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1,
except low-address protection for operand in
expanded storage is unpredictable)

� Privileged operation (access key specified,
and selected PSW-key-mask bit is zero in the
problem state)

 � Specification

Programming Notes:

1. MOVE PAGE, or a loop of MOVE PAGE
instructions that moves multiple pages, may
provide, on most models, better performance
than a MOVE LONG instruction or a loop of
MOVE (MVC) instructions that performs the
same function. Whether MOVE PAGE pro-
vides better performance depends on control-
program specifications and the method by
which the control program handles page-
translation exceptions.

2. The destination-reference-intention bit should
be set to one when there is an intention to ref-
erence the first operand by means of an
instruction other than MOVE PAGE. The
effect when the bit is one is to allow the
control program to assign a page frame of real
storage to the first operand, without a move-
ment of data having first been performed to
the first-operand location in expanded storage.

3. The condition-code-option bit provides com-
patibility with the MOVE PAGE instruction of
move-page facility 1. The bit is for use by the
MVS/ESA HSPSERV macro expansion.

4. The condition code set by the instruction
normally need not be examined if the
condition-code-option bit is zero.

5. Since an expanded-storage location may be
accessed by means of more than one trans-

lation path or even without translation, the
locked state of a translation path does not
necessarily prevent concurrent accesses to
the location by different processes. To ensure
predictable results when data is in either main
storage or expanded storage, the program
must use a programmed lock to prevent dif-
ferent processes from performing concurrent
store accesses or concurrent fetch and store
accesses to the same location.

6. Monitoring for PER storage-alteration events
is done using logical addresses. Thus, it
applies to the operands of MOVE PAGE
regardless of whether the operands are in
main storage or expanded storage.

MOVE TO PRIMARY

MVCP D±(R±,B±),D²(B²),R³ [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'DA' │ R± │ R³ │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

MOVE TO SECONDARY

MVCS D±(R±,B±),D²(B²),R³ [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'DB' │ R± │ R³ │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The first operand is replaced by the second
operand. One operand is in the primary address
space, and the other is in the secondary address
space. The accesses to the operand in the
primary space are performed by using the PSW
key; the accesses to the operand in the secondary
space are performed by using the key specified by
the third operand.

The addresses of the first and second operands
are virtual, one operand address being translated
by means of the primary segment-table desig-
nation and the other by means of the secondary
segment-table designation. Operand-address
translation is performed in the same way when the
address-space-control bits in the current PSW
specify either the primary-space mode or the
secondary-space mode.

  Chapter 10. Control Instructions 10-43



  
 

For MOVE TO PRIMARY, movement is to the
primary space from the secondary space. The
first-operand address is translated by using the
primary segment table, and the second-operand
address is translated by using the secondary
segment table.

For MOVE TO SECONDARY, movement is to the
secondary space from the primary space. The
first-operand address is translated by using the
secondary segment table, and the second-
operand address is translated by using the
primary segment table.

Bit positions 24-27 of general register R³ are used
as the secondary-space access key. Bit positions
0-23 and 28-31 of the register are ignored.

The contents of general register R± are a 32-bit
unsigned value called the true length.

The contents of the general registers just
described are as follows:

 ┌──────────────────────────────────┐

R± │ True Length │

 └──────────────────────────────────┘

 ð 31

 ┌────────────────────────┬────┬────┐

R³ │////////////////////////│Key │////│

 └────────────────────────┴────┴────┘

 ð 24 28 31

The first and second operands are the same
length, called the effective length. The effective
length is equal to the true length or 256, which-
ever is less. Access exceptions for the first and
second operands are recognized only for that
portion of the operand within the effective length.
When the effective length is zero, no access
exceptions are recognized for the first and second
operands, and no movement takes place.

Each storage operand is processed left to right.
The storage-operand-consistency rules are the
same as for MOVE (MVC), except that when the
operands overlap in real storage, the use of the
common real-storage locations is not necessarily
recognized.

As part of the execution of the instruction, the
value of the true length is used to set the condi-
tion code. If the true length is 256 or less,

including zero, the true length and effective length
are equal, and condition code 0 is set. If the true
length is greater than 256, the effective length is
256, and condition code 3 is set.

For both MOVE TO PRIMARY and MOVE TO
SECONDARY, a serialization and checkpoint-
synchronization function is performed before the
operation begins and again after the operation is
completed.

Special Conditions

Since the secondary space is accessed, the oper-
ation is performed only when the secondary-space
control, bit 5 of control register 0, is one and DAT
is on. When either the secondary-space control is
zero or DAT is off, a special-operation exception is
recognized. A special-operation exception is also
recognized when the address-space-control bits in
the current PSW specify the access-register or
home-space mode. The special-operation
exceptions are recognized in both the problem
and supervisor states.

In the problem state, the operation is performed
only if the secondary-space access key is valid,
that is, if the corresponding PSW-key-mask bit in
control register 3 is one. Otherwise, a privileged-
operation exception is recognized. In the super-
visor state, any value for the secondary-space
access key is valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-17 on
page 10-45.

Resulting Condition Code:  

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

 Program Exceptions: 

� Access (fetch, primary virtual address,
operand 2, MVCS; fetch, secondary virtual
address, operand 2, MVCP; store, secondary
virtual address, operand 1, MVCS; store,
primary virtual address, operand 1, MVCP)

� Privileged operation (selected PSW-key-mask
bit is zero in the problem state)

 � Special operation
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┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second and third │

│ instruction halfwords. │

│ │

│ 7.B Special-operation exception due to the │

│ secondary-space control, bit 5 of con- │

│ trol register ð, being zero, to DAT │

│ being off, or to the CPU being in the │

│ access-register or home-space mode. │

│ │

│ 8. Privileged-operation exception due to │

│ selected PSW-key-mask bit being zero │

│ in the problem state. │

│ │

│ 9. Completion due to length zero. │

│ │

│1ð. Access exceptions for operands. │

└──────────────────────────────────────────────┘

Figure 10-17. Priority of Execution: MOVE TO
PRIMARY and MOVE TO SECONDARY

Programming Notes:

1. MOVE TO PRIMARY and MOVE TO SEC-
ONDARY can be used in a loop to move a
variable number of bytes of any length. See
the programming note under MOVE WITH
KEY.

2. MOVE TO PRIMARY and MOVE TO SEC-
ONDARY should be used only when move-
ment is between different address spaces.
The performance of these instructions on most
models may be significantly slower than that
of MOVE WITH KEY, MOVE (MVC), or MOVE
LONG. In addition, the definition of overlap-
ping operands for MOVE TO PRIMARY and
MOVE TO SECONDARY is not compatible
with the more precise definitions for MOVE
(MVC), MOVE WITH KEY, and MOVE LONG.

MOVE WITH DESTINATION KEY

MVCDK D±(B±),D²(B²) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐

│ 'E5ðF' │ B± │ D± │ B² │ D² │

└────────────────┴────┴─/──┴────┴─/──┘

ð 16 2ð 32 36 47

The first operand is replaced by the second
operand. The accesses to the destination-
operand location are performed by using the key
specified in general register 1, and the accesses

to the source-operand location are performed by
using the PSW key.

The first and second operands are of the same
length, which is specified by bits 24-31 of general
register 0. Bits 0-23 of general register 0 are
ignored.

Bits 24-27 of general register 1 are used as the
specified access key. Bits 0-23 and 28-31 of
general register 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

 ┌─────────────────────────┬─────────┐

GRð │/////////////////////////│ L │

 └─────────────────────────┴─────────┘

 ð 24 31

 ┌─────────────────────────┬────┬────┐

GR1 │/////////////////////////│Key │////│

 └─────────────────────────┴────┴────┘

 ð 24 28 31

L specifies the number of bytes to the right of the
first byte of each operand. Therefore, the length
in bytes of each operand is 1-256, corresponding
to a length code in L of 0-255.

The fetch accesses to the second-operand
location are performed by using the PSW key, and
the store accesses to the first-operand location
are performed by using the key specified in
general register 1.

Each of the operands is processed left to right.
When the operands overlap destructively in real
storage, the results in the first-operand location
are unpredictable. Except for this unpredictability
in the case of destructive overlap, the storage-
operand-consistency rules are the same as for the
MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register
1 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)

Programming Note:  See the programming notes
for the MOVE WITH SOURCE KEY instruction.

MOVE WITH KEY

MVCK D±(R±,B±),D²(B²),R³ [SS]

┌────────┬────┬────┬────┬─/──┬────┬─/──┐

│ 'D9' │ R± │ R³ │ B± │ D± │ B² │ D² │

└────────┴────┴────┴────┴─/──┴────┴─/──┘

ð 8 12 16 2ð 32 36 47

The first operand is replaced by the second
operand. The fetch accesses to the second-
operand location are performed by using the key
specified in the third operand, and the store
accesses to the first-operand location are per-
formed by using the PSW key.

Bit positions 24-27 of general register R³ are used
as the source access key. Bit positions 0-23 and
28-31 of the register are ignored.

The contents of general register R± are a 32-bit
unsigned value called the true length.

The contents of the general registers just
described are as follows:

 ┌──────────────────────────────────┐

R± │ True Length │

 └──────────────────────────────────┘

 ð 31

 ┌────────────────────────┬────┬────┐

R³ │////////////////////////│Key │////│

 └────────────────────────┴────┴────┘

 ð 24 28 31

The first and second operands are of the same
length, called the effective length. The effective
length is equal to the true length or 256, which-

ever is less. Access exceptions for the first and
second operands are recognized only for that
portion of the operand within the effective length.
When the effective length is zero, no access
exceptions are recognized for the first and second
operands, and no movement takes place.

Each storage operand is processed left to right.
When the storage operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte was
fetched. The storage-operand-consistency rules
are the same as for the MOVE (MVC) instruction.

As part of the execution of the instruction, the
value of the true length is used to set the condi-
tion code. If the true length is 256 or less,
including zero, the true length and effective length
are equal, and condition code 0 is set. If the true
length is greater than 256, the effective length is
256, and condition code 3 is set.

Special Conditions

In the problem state, the operation is performed
only if the source access key is valid, that is, if the
corresponding PSW-key-mask bit in control reg-
ister 3 is one. Otherwise, a privileged-operation
exception is recognized. In the supervisor state,
any value for the source access key is valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-18 on
page 10-47.

Resulting Condition Code:  

0 True length less than or equal to 256
1 --
2 --
3 True length greater than 256

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)
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┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second and third │

│ instruction halfwords. │

│ │

│ 8. Privileged-operation exception due to │

│ selected PSW-key-mask bit being zero │

│ in the problem state. │

│ │

│ 9. Completion due to length zero. │

│ │

│1ð. Access exceptions for operands. │

└──────────────────────────────────────────────┘

Figure 10-18. Priority of Execution: MOVE WITH KEY

Programming Notes:

1. MOVE WITH KEY can be used in a loop to
move a variable number of bytes of any
length, as follows:

 LA RW,256

 LOOP MVCK D±(R±,B±),D²(B²),R³

 BC 8,END

 AR B±,RW

 AR B²,RW

 SR R±,RW

 B LOOP

 END [Any instruction]

2. The performance of MOVE WITH KEY on
most models may be significantly slower than
that of the MOVE (MVC) and MOVE LONG
instructions. Therefore, MOVE WITH KEY
should not be used if the keys of the source
and the target are the same.

MOVE WITH SOURCE KEY

MVCSK D±(B±),D²(B²) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐

│ 'E5ðE' │ B± │ D± │ B² │ D² │

└────────────────┴────┴─/──┴────┴─/──┘

ð 16 2ð 32 36 47

The first operand is replaced by the second
operand. The accesses to the source-operand
location are performed by using the key specified
in general register 1, and the accesses to the
destination-operand location are performed by
using the PSW key.

The first and second operands are of the same
length, which is specified by bits 24-31 of general

register 0. Bits 0-23 of general register 0 are
ignored.

Bits 24-27 of general register 1 are used as the
specified access key. Bits 0-23 and 28-31 of
general register 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

 ┌─────────────────────────┬─────────┐

GRð │/////////////////////////│ L │

 └─────────────────────────┴─────────┘

 ð 24 31

 ┌─────────────────────────┬────┬────┐

GR1 │/////////////////////////│Key │////│

 └─────────────────────────┴────┴────┘

 ð 24 28 31

L specifies the number of bytes to the right of the
first byte of each operand. Therefore, the length
in bytes of each operand is 1-256, corresponding
to a length code in L of 0-255.

The fetch accesses to the second-operand
location are performed by using the key specified
in general register 1, and the store accesses to
the first-operand location are performed by using
the PSW key.

Each of the operands is processed left to right.
When the operands overlap destructively in real
storage, the results in the first-operand location
are unpredictable. Except for this unpredictability
in the case of destructive overlap, the storage-
operand-consistency rules are the same as for the
MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register
1 is valid, that is, if the corresponding
PSW-key-mask bit in control register 3 is one.
Otherwise, a privileged-operation exception is
recognized. In the supervisor state, any value for
the specified access key is valid.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2; store, operand 1)
� Privileged operation (selected PSW-key-mask

bit is zero in the problem state)
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Programming Notes:

1. When data is to be moved alternately in both
directions between two storage areas that are
fetch protected by means of different keys,
then MOVE WITH SOURCE KEY and MOVE
WITH DESTINATION KEY can be used while
leaving the PSW key unchanged; and this
may be, on most models, significantly faster
than using MOVE WITH KEY along with SET
PSW KEY FROM ADDRESS to change the
PSW key.

2. MOVE WITH SOURCE KEY and MOVE WITH
DESTINATION KEY should be used only
when movement is between storage areas
having different keys. The performance of
these instructions on most models may be sig-
nificantly slower than that of the MOVE (MVC)
instruction.

3. MOVE WITH SOURCE KEY or MOVE WITH
DESTINATION KEY can be used in a loop to
move a variable number of bytes as shown in
the following example. In the example, the
specified access key, the first-operand
address, the second-operand address, and
the length of each operand are assumed to be
in general registers 1-4, respectively, at the
beginning of the example. The length of each
operand is treated as a 32-bit signed value,
and a negative value is treated as zero.

 LTR 4,4

 BC 12,END

 S 4,=F'256'

 BC 12,LAST

 LA ð,255

LOOP MVCSK ð(2),ð(3)

 LA 2,256(2)

 LA 3,256(3)

 S 4,=F'256'

 BC 2,LOOP

LAST LA ð,255(4)

 MVCSK ð(2),ð(3)

END [Any instruction]

 PROGRAM CALL

PC D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B218' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

When the program-call-fast facility is installed, the
program-call-fast control, bit 28 of control register
0, is one, and the linkage-index (LX) part of the
second-operand address has the value 31 (01F
hex), it is unpredictable whether this definition or
the PROGRAM CALL FAST definition applies.
When any of those conditions is not true, this defi-
nition applies.

A program-call number specified by the second-
operand address is used in a two-level lookup to
locate an entry-table entry (ETE). When the
address-space-function (ASF) control, bit 15 of
control register 0, is zero, a 16-byte ETE is
located; otherwise, when the ASF control is one, a
32-byte ETE is located.

The program is authorized to use the ETE when
the AND of the PSW-key mask in control register
3 and the authorization key mask in the ETE is
nonzero or when the CPU is in the supervisor
state.

When a 16-byte ETE is located, or when a
32-byte ETE is located but the PC-type bit, bit 128
of the ETE, is zero, an operation called basic
PROGRAM CALL is performed. When a 32-byte
ETE is located and the PC-type bit is one, an
operation called stacking PROGRAM CALL is per-
formed.

Basic PROGRAM CALL loads the addressing-
mode bit, updated instruction address, and
problem-state bit from the PSW into general reg-
ister 14, and it places the PSW-key mask and
PASN in general register 3.

Stacking PROGRAM CALL places the entire PSW
contents, except with an unpredictable PER mask,
and also the PSW-key mask, PASN, SASN, and
EAX in a linkage-stack program-call state entry
that it forms. A called-space identification, the
program-call number, and the contents of general
registers 0-15 and access registers 0-15 also are
placed in the state entry.

Basic and stacking PROGRAM CALL both replace
the addressing-mode bit, instruction address, and
problem-state bit in the PSW from the ETE, and
both load the entry parameter from the ETE into
general register 4.

Basic PROGRAM CALL ORs the entry key mask
from the ETE into the PSW-key mask in control
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register 3. Stacking PROGRAM CALL does the
same, or it replaces the PSW-key mask with the
entry key mask, as determined by the
PSW-key-mask control in the ETE.

Stacking PROGRAM CALL optionally replaces the
PSW key in the PSW and the EAX in control reg-
ister 8 from the ETE, and it sets the address-
space-control bits in the PSW, as determined by
control bits in the ETE.

The ETE causes a space-switching operation to
occur if it contains a nonzero ASN. When the
ETE contains a zero ASN, the operation is called
PROGRAM CALL to current primary (PC-cp);
when the ETE contains a nonzero ASN, the oper-
ation is called PROGRAM CALL with space
switching (PC-ss). When space switching is spec-
ified, the new PASN is loaded into control register
4 from the ETE and is used in a two-level lookup
to locate an ASN-second-table entry (ASTE).
However, when the ASF control is one, the
address of the ASTE may be obtained directly
from the ETE. From this ASTE, a new PSTD and
AX are loaded into control registers 1 and 4,
respectively. When the ASF control is zero, a
new LTD is loaded into control register 5 from the
ASTE. When the ASF control is one, bits 1-25 of
the address of the ASTE are loaded into control
register 5 as the new primary-ASTE origin.

In both PC-cp and PC-ss, the SASN and SSTD
are set equal to the original PASN and PSTD,
respectively. However, the space-switching
stacking PROGRAM CALL operation may instead
set the SASN and SSTD equal to the new PASN
and PSTD, respectively, as determined by a
control bit in the ETE.

In a PC-ss to the base space of the dispatchable
unit when the dispatchable unit is subspace
active, bits 1-23 and 25-31 of the new PSTD are
replaced by the same bits of the STD for the sub-
space. This occurs before the possible setting of
the SSTD equal to the PSTD.

PROGRAM CALL PC-Number Translation

The second-operand address is not used to
address data; instead, the rightmost 20 bits of the
address are used as a PC number and have the
following format:

Second-Operand Address

 ┌──────PC Number──────┐

┌────────────┬────────────┬────────┐

│////////////│ LX │ EX │

└────────────┴────────────┴────────┘

ð 12 24 31

Linkage Index (LX):  Bits 12-23 of the second-
operand address are the linkage index and are
used to select an entry from the linkage table des-
ignated by the linkage-table designation. When
the ASF control, bit 15 of control register 0, is
zero, the linkage-table designation is in control
register 5. When the ASF control is one, the
linkage-table designation is in the primary
ASN-second-table entry (primary ASTE), and the
primary-ASTE origin is in control register 5.

Entry Index (EX):  Bits 24-31 of the second-
operand address are the entry index and are used
to select an entry from the entry table designated
by the linkage-table entry.

Bits 0-11 of the second-operand address are
ignored.

The linkage-table and entry-table lookup process
is depicted in part 1 of Figure 10-20 on
page 10-55. The detailed definition of this table-
lookup process is in “PC-Number Translation” on
page 5-25. The 16-byte entry-table entry (ETE) is
identical to the first 16 bytes of the 32-byte ETE.
The 32-byte ETE has the following format:

┌────────┬────────┬─┬─────────────┬─┐

│ AKM │ ASN │A│ EIA │P│

└────────┴────────┴─┴─────────────┴─┘

ð 16 32 63

┌─────────────────┬────────┬────────┐

│ Entry Parameter │ EKM │ │

└─────────────────┴────────┴────────┘

64 96 112 127

┌────────┬────────┬─┬────────┬──────┐

│Cntrl/EK│ EEAX │ │ASTE Adr│ │

└────────┴────────┴─┴────────┴──────┘

128 144 16ð 186 191

┌───────────────────────────────────┐

│ │

└───────────────────────────────────┘

192 255
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Bits 128-143 of the ETE have the following
detailed format:

┌─┬──┬─┬─┬─┬─┬─┬────┬────┐

│T│ │K│M│E│C│S│ EK │ │

└─┴──┴─┴─┴─┴─┴─┴────┴────┘

128 131 136 143

When bit 32 of the ETE is zero (24-bit addressing
mode), then bits 33-39 of the ETE must be zeros;
otherwise, a PC-translation-specification exception
is recognized.

After the ETE has been fetched, if the current
PSW specifies the problem state, the current
PSW-key mask in control register 3 is tested
against the AKM field in the ETE to determine
whether the program is authorized to access this
entry. The AKM and PSW-key mask are ANDed,
and, if the result is zero, a privileged-operation
exception is recognized. The PSW-key mask in
control register 3 remains unchanged. When
PROGRAM CALL is executed in the supervisor
state, the AKM field is ignored.

If the result of the AND of the AKM and the
PSW-key mask is not zero, or if the CPU is in the
supervisor state, the execution of the instruction
continues.

If a 16-byte ETE has been fetched, or if a 32-byte
ETE has been fetched but bit 128 of the ETE (T)
is zero, the basic PROGRAM CALL operation is
specified. If a 32-byte ETE has been fetched and
bit 128 of the ETE is one, the stacking PROGRAM
CALL operation is specified.

Basic PROGRAM CALL

The following operations are performed when
basic PROGRAM CALL is specified.

Bits 32-62 of the current PSW (the addressing-
mode bit and the updated instruction address) are
placed in bit positions 0-30 of general register 14.
Bit 15 of the PSW (the problem-state bit) is placed
in bit position 31 of general register 14.

Bits 32-62 of the ETE (A and the EIA), with a zero
appended on the right, are placed in PSW bit
positions 32-63 (the addressing-mode bit and the
instruction address). Bit 63 of the ETE (P) is
placed in PSW bit position 15 (the problem-state
bit).

The PSW-key mask, bits 0-15 of control register 3,
is placed in bit positions 0-15 of general register 3,
and the current PASN, bits 16-31 of control reg-
ister 4, is placed in bit positions 16-31 of general
register 3.

Bits 96-111 of the ETE (the EKM) are ORed with
the PSW-key mask, bits 0-15 of control register 3,
and the result replaces the PSW-key mask in
control register 3.

Bits 64-95 of the ETE (the entry parameter) are
loaded into general register 4.

Stacking PROGRAM CALL

The following operations are performed when
stacking PROGRAM CALL is specified.

The stacking process is performed to form a
linkage-stack program-call state entry and place
the following information in the state entry:
current PSW (with an unpredictable PER mask),
PSW-key mask, PASN, SASN, EAX, called-space
identification, program-call number, contents of
general registers 0-15, and contents of access
registers 0-15. This is described in “Stacking
Process” on page 5-70. The entry-type code in
the state entry is 0000101 binary.

Bits 32-62 of the ETE (A and the EIA), with a zero
appended on the right, are placed in PSW bit
positions 32-63 (the addressing-mode bit and the
instruction address). Bit 63 of the ETE (P) is
placed in PSW bit position 15 (the problem-state
bit).

When bit 131 of the ETE (K) is zero, bits 8-11 of
the PSW (the PSW key) remain unchanged.
When bit 131 of the ETE is one, bits 136-139 of
the ETE (the EK) replace the PSW key in the
PSW.

When bit 132 of the ETE (M) is zero, bits 96-111
of the ETE (the EKM) are ORed with the PSW-key
mask, bits 0-15 of control register 3, and the result
replaces the PSW-key mask in control register 3.
When bit 132 of the ETE is one, bits 96-111 of the
ETE replace the PSW-key mask in control register
3.

When bit 133 of the ETE (E) is zero, the EAX, bits
0-15 of control register 8, remains unchanged.
When bit 133 of the ETE is one, bits 144-159 of
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the ETE (the EEAX) replace the EAX in control
register 8.

When bit 134 of the ETE (C) is zero, bits 16 and
17 of the PSW (the address-space-control bits)
are set to 00 binary (primary-space mode). When
bit 134 of the ETE is one, the address-space-
control bits in the PSW are set to 01 binary
(access-register mode).

Bits 64-95 of the ETE (the entry parameter) are
loaded into general register 4.

Key-controlled protection does not apply to refer-
ences to the linkage stack, but low-address and
page protection do apply.

PROGRAM CALL to Current Primary (PC-cp)

If bits 16-31 of the ETE (the ASN) are zeros,
PROGRAM CALL to current primary (PC-cp) is
specified, and the execution of the instruction is
completed after the operations described in
“PROGRAM CALL PC-Number Translation” and
either “Basic PROGRAM CALL” or “Stacking
PROGRAM CALL” have been performed and the
following operations have been performed.

The current PASN, bits 16-31 of control register 4,
is placed in bit positions 16-31 of control register 3
to become the current SASN.

The current PSTD, bits 0-31 of control register 1,
is placed in control register 7 to become the
current SSTD.

The basic PC-cp operation is depicted in parts 1
and 2 of Figure 10-20 on page 10-55. The
stacking PC-cp operation is depicted in parts 1
and 3 of the figure.

PROGRAM CALL with Space Switching (PC-ss)

If the ASN in the ETE is nonzero, PROGRAM
CALL with space switching (PC-ss) is specified,
and the execution of the instruction is completed
after the operations described in “PROGRAM
CALL PC-Number Translation” and either “Basic
PROGRAM CALL” or “Stacking PROGRAM CALL”
have been performed and the following operations
have been performed.

When the ASF control is zero, the ASN in the ETE
is translated by means of a two-level table lookup
to locate an ASN-second-table entry (ASTE). Oth-

erwise, when the ASF control is one, the ASTE
may be located either by means of ASN trans-
lation or by means of obtaining its address directly
from the ETE, and which of these occurs is unpre-
dictable.

When ASN translation occurs, bits 16-25 of the
ETE are used as a 10-bit AFX to index into the
ASN first table, and bits 26-31 are used as a 6-bit
ASX to index into the ASN second table specified
by the AFX. The ASN table-lookup process is
described in “ASN Translation” on page 3-18.
The exceptions associated with ASN translation
are collectively called ASN-translation exceptions.
These exceptions and their priority are described
in Chapter 6, “Interruptions.”

When ASN translation does not occur, bits
161-185 of the ETE, with six zeros appended on
the right, are used as the real address of the
ASTE. An ASX-translation exception is recog-
nized if bit 0 of the ASTE is one, and an
ASN-translation-specification exception may be
recognized if any of bits 30, 31, and 60-63 of the
ASTE is one. (These exceptions are a subset of
the ASN-translation exceptions.)

Bits 16-31 of the ETE (the ASN) are placed in bit
positions 16-31 of control register 4 as the new
PASN.

Bits 64-95 of the ASTE (the STD) are placed in
control register 1 as the new PSTD.

Bits 32-47 of the ASTE (the AX) are placed in bit
positions 0-15 of control register 4 as the new
authorization index.

When the ASF control is zero, bits 96-127 of the
ASTE (the LTD) are placed in control register 5 as
the new linkage-table designation. When the ASF
control is one, bits 1-25 of the ASTE address are
placed in bit positions 1-25 of control register 5 as
the new primary-ASTE origin, and zeros are
placed in bit positions 0 and 26-31.

In basic PROGRAM CALL, or in stacking
PROGRAM CALL when bit 135 of the ETE (S) is
zero, the PASN existing before the PASN is
replaced from the ETE is placed in bit positions
16-31 of control register 3 to become the current
SASN, and the PSTD existing before the PSTD is
replaced from the ASTE is placed in control reg-
ister 7 to become the current SSTD. (The SASN
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and SSTD are set equal to the old PASN and
PSTD, respectively.)

In stacking PROGRAM CALL when bit 135 of the
ETE (S) is one, the SASN is replaced by the
PASN after the PASN is replaced from the ETE,
and the SSTD is replaced by the PSTD after the
PSTD is replaced from the ASTE. (The SASN
and SSTD are set equal to the new PASN and
PSTD, respectively.)

The description in this paragraph applies if the
subspace-group facility is installed and the ASF
control is one. After the new PSTD has been
placed in control register 1 and the new
primary-ASTE origin has been placed in control
register 5, if (1) the subspace-group-control bit, bit
22, in the PSTD is one, (2) the dispatchable unit is
subspace active, and (3) the primary-ASTE origin
designates the ASTE for the base space of the
dispatchable unit, then bits 1-23 and 25-31 of the
PSTD in control register 1 are replaced by bits
1-23 and 25-31 of the STD in the ASTE for the
subspace in which the dispatchable unit last had
control. This replacement occurs before a
replacement of the SSTD in control register 7 by
the PSTD. Further details are in “Subspace-
Replacement Operations” on page 5-56.

The PC-ss operation is depicted in parts 1, 2, 3,
and 4 of Figure 10-20 on page 10-55.

PROGRAM CALL Serialization

For both the PC-cp and PC-ss operations, a
serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

Special Conditions

The basic PROGRAM CALL operation can be per-
formed successfully only when the CPU is in the
primary-space mode at the beginning of the oper-
ation and the subsystem-linkage control, bit 0 of
the linkage-table designation, is one. Stacking
PROGRAM CALL can be performed successfully
only when the CPU is in the primary-space mode
or access-register mode at the beginning of the
operation and the subsystem-linkage control is
one. In addition, PC-ss can be performed suc-
cessfully only when the ASN-translation control, bit
12 of control register 14, is one. If any of these

rules is violated, a special-operation exception is
recognized in both the problem and supervisor
states.

A stack-full or stack-specification exception may
be recognized during the stacking process.

When, for PC-ss, the primary space-switch-event-
control bit, bit 0 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch-
event program interruption also occurs after the
completion of a PC-ss operation if a PER event is
reported.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-19 on
page 10-53.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch or store, except for key-
controlled protection, linkage-stack entry)

� Addressing (linkage-table designation in
primary ASN-second-table entry, only when
address-space-function control is one; linkage-
table entry; entry-table entry; ASN-first-table
entry, PC-ss only, and only when ASN trans-
lation occurs; ASN-second-table entry, PC-ss
only)

� AFX translation (PC-ss only, and only when
ASN translation occurs)

� ASN-translation specification (PC-ss only)
� ASX translation (PC-ss only)

 � EX translation
 � LX translation
 � PC-translation specification
� Privileged operation (AND of AKM and

PSW-key mask is zero in the problem state)
� Space-switch event (PC-ss only)

 � Special operation
� Stack full (stacking PC only)
� Stack specification (stacking PC only)
� Subspace replacement (PC-ss only, and only

when subspace-group facility is installed and
address-space-function control is one)

 � Trace

10-52 ESA/390 Principles of Operation  



  
 

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program-│

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off or the CPU │

│ being in secondary-space mode or home-space mode. │

│ │

│ 7.C Special-operation exception due to the CPU being in access- │

│ register mode (only when address-space-function control is │

│ zero, and may be recognized instead at 8.B.8). │

│ │

│ 7.D Special-operation exception due to subsystem-linkage control │

│ in linkage-table designation in control register 5 being zero│

│ (only when address-space-function control is zero). │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 Addressing exception for access to linkage-table designation │

│ in primary ASN-second-table entry (only when address-space- │

│ function control is one). │

│ │

│ 8.B.2 Special-operation exception due to subsystem-linkage control │

│ in linkage-table designation in primary ASN-second-table │

│ entry being zero (only when address-space-function control is│

│ one). │

│ │

│ 8.B.3 LX-translation exception due to linkage-table entry being │

│ outside table. │

│ │

│ 8.B.4 Addressing exception for access to linkage-table entry. │

│ │

│ 8.B.5 LX-translation exception due to I bit (bit ð) in linkage- │

│ table entry being one. │

│ │

│ 8.B.6 EX-translation exception due to entry-table entry being │

│ outside table. │

│ │

│ 8.B.7 Addressing exception for access to entry-table entry. │

│ │

│ 8.B.8 Special-operation exception due to the CPU being in access- │

│ register mode (basic PC only, and may be recognized at 7.C if│

│ address-space-function control is zero). │

│ │

│ 8.B.9 PC-translation-specification exception due to invalid │

│ combination (bit 32 is zero and bits 33-39 not zeros) in │

│ entry-table entry. │

│ │

│ 8.B.1ð Privileged-operation exception due to zero result from ANDing│

│ PSW-key mask and AKM in the problem state. │

│ │

│ 8.B.11 Special-operation exception due to ASN-translation control, │

│ bit 12 of control register 14, being zero (PC-ss only). │

│ │

│ 8.B.12 Addressing exception for access to ASN-first-table entry │

│ (PC-ss only, and only when ASN translation occurs). │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-19 (Part 1 of 2). Priority of Execution: PROGRAM CALL
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┌──────────────────────────────────────────────────────────────────────┐

│ 8.B.13 AFX-translation exception due to I bit (bit ð) in ASN-first- │

│ table entry being one (PC-ss only, and only when ASN │

│ translation occurs). │

│ │

│ 8.B.14 ASN-translation-specification exception due to invalid ones │

│ (bits 28-31 or 26-31, depending on address-space-function │

│ control) in ASN-first-table entry (PC-ss only). │

│ │

│ 8.B.15 Addressing exception for access to ASN-second-table entry │

│ (PC-ss only). │

│ │

│ 8.B.16 ASX-translation exception due to I bit (bit ð) in ASN-second-│

│ table entry being one (PC-ss only). │

│ │

│ 8.B.17 ASN-translation-specification exception due to invalid ones │

│ (bits 3ð, 31, 6ð-63) in ASN-second-table entry (PC-ss only │

│ and optional). │

│ │

│ Note: Subspace-replacement exceptions, which are not shown │

│ in detail in this figure, can occur with any priority after │

│ 8.B.17 and before 9. │

│ │

│ 8.B.18 Access exceptions (fetch) for entry descriptor of the current│

│ linkage-stack entry (stacking PC only). │

│ │

│ Note: Exceptions 8.B.19-8.B.24 can occur only if there is │

│ not enough remaining free space in the current linkage-stack │

│ section. │

│ │

│ 8.B.19 Stack-specification exception due to remaining-free-space │

│ value in current linkage-stack entry not being a multiple of │

│ 8. │

│ │

│ 8.B.2ð Access exceptions (fetch) for second word of the trailer │

│ entry of the current section. The entry is presumed to be a │

│ trailer entry; its entry-type field is not examined (stacking│

│ PC only). │

│ │

│ 8.B.21 Stack-full exception due to forward-section validity bit in │

│ the trailer entry being zero (stacking PC only). │

│ │

│ 8.B.22 Access exceptions (fetch) for entry descriptor of the header │

│ entry of the next section (stacking PC only). This entry is │

│ presumed to be a header entry; its entry-type field is not │

│ examined. │

│ │

│ 8.B.23 Stack-specification exception due to not enough remaining │

│ free space in the next section (stacking PC only). │

│ │

│ 8.B.24 Access exceptions (store) for second word of the header entry│

│ of the next section. If there is no exception, the header is│

│ now called the current entry. │

│ │

│ 8.B.25 Access exceptions (store) for entry descriptor of the current│

│ entry and for the new state entry (stacking PC only). │

│ │

│ 9. Space-switch event (PC-ss only). │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-19 (Part 2 of 2). Priority of Execution: PROGRAM CALL
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PC-Number Translation
PROGRAM CALL Instruction

 ┌────────┬──┬──────┐

CR5 if CRð.15 = ð │ 'B218' │B²│ D² │

 └────────┴──┴──────┘

Primary-ASTE bits 96-127 └───┬─────┘

if CRð.15 = 1 │

 ┌─┬───────────┬───┐ │ Operand-2

 │V│ LTO │LTL│ 6 Address

 └─┴──────┬────┴───┘ ┌──────────────────┐

 │(x128) ┌──────┬──────┬────┐

┌────────────┘ │//////│ LX │ EX │\

│ └──────┴───┬──┴───┬┘

│ │(x4) │(x16 if CRð.15 = ð)

│ ┌─────────────────────────────────────┘ │

│ │ │(x32 if CRð.15 = 1)

│ 6 │

│ ┌─┐ Linkage Table │

└───5│+│ ┌──────────────────┐ │

 └┬┘ │ │ │

 │ │ │ │

 │ │ │ │

 └─5├─┬────────────┬───┤ │

 R │I│ ETO │ETL│ │

 ├─┴─────┬──────┴───┤ │

 │ │(x64) │ │

 │ │ │ │

 └───────┼──────────┘ │

 │ │

┌────────────────┘ │

│ │

│ ┌────────────────────────────────────────────┘

│ │

│ 6

│ ┌─┐ Entry Table

└───5│+│ ┌───────────────────────────────────────────────────────────────────────┐

 └┬┘ │ │

 │ │ │

 └─5├────────┬────────┬─┬──────────────┬─┬────────────────┬────────┬────────┤

R │ AKM │ ASN │A│ EIA │P│ EP │ EKM │ │

 ├─┬─┬─┬─┬┴┬─┬──┬─┬┴─┴─┬────────────┴─┼────────────────┴────────┴────────┤

 │T│K│M│E│C│S│EK│ │EEAX│ ASTE Adr. │ │\\

 ├─┴─┴─┴─┴─┴─┴──┴─┴────┴──────────────┴──────────────────────────────────┤

 │ │

 │ │

 └───────────────────────────────────────────────────────────────────────┘

R: Address is real

\: In stacking PC, PC number is placed in linkage stack

\\: Second 16 bytes of ETE exist only if CRð.15 = 1

Figure 10-20 (Part 1 of 4). Execution of PROGRAM CALL
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Basic PC-cp and PC-ss
 Entry-Table Entry

 ┌──────┬──────┬─┬──────────┬─┬──────────┬──────┬──────┬─┬─/─┬─────────┬─/─┤

│ AKM │ ASN │A│ EIA │P│ EP │ EKM │ │T│ │ASTE Adr.│ │

 └──┬───┴──┬───┴┬┴────┬─────┴┬┴─────┬────┴───┬──┴──────┴─┴─/─┴─────────┴─/─┤

┌───────────┘ │ │ │ │ │ │ T=ð

│ │ │ │ │ │ │

 │ └────┼─────┼──────┼──────┼────────┼───────────────┐

│ │ │ │ │ │ │

 │ ┌───────┼─────┼──────┘ │ │ │

 │ │ │ │ │ │ │

│ │ │ │ ð │ │ │

│ │ │ │ │ │ │ │

│ 6 6 6 6 │ │ │

 │ PSW ┌──/──┬─┬──/──┬─┬──────────┬─┐ │ │ │

│ after│ │P│ │A│ IA │ð│ │ │ │

 │ └──/──┴─┴──/──┴─┴──────────┴─┘ │ │ │

 │ 6 │ │

 │ GR4 ┌────────────┐ │ │

6 after│ EP │ │ │

┌───┐ └────────────┘ │ │

│AND├──5Priv Op │ │

└───┘ if zero in │ │

 & problem state ┌──────────────────────────┘ │

 │ │ 6

│ CR3 ┌──────┬──────┐ │ CR4 ┌──────┬──────┐ / \

│ before│ PKM │ SASN │ │ before│ AX │ PASN │ / \

│ └──┬───┴──────┘ │ └──────┴──┬───┘ Yes / \ No

 │ │ │ │ ┌───────┤ ASN ├───────┐

 �%─────────� │ │ │ \ =ð / │

│ │ │ │ 6 \ / 6

│ │ │ │ PC-cp \_/ PC-ss

 │ 6 │ │ instruction ASN trans-

 │ ┌──┐ │ │ complete lation

 │ │OR│%───────────┘ │

 │ └┬─┘ │

 │ │ ┌─────────�──────────────────┘

 │ 6 6 │

 │ CR3 ┌──────┬──────┐ │ CR1 ┌──────────────┐

 │ after│ PKM │ SASN │ │ before│ PSTD │

 │ └──────┴──────┘ │ └───────┬──────┘

 │ │ │

 └──────────┐ ┌─────────┘ │

 │ │ │

 6 6 6

 GR3 ┌──────┬──────┐ CR7 ┌──────────────┐

after│ PKM │ PASN │ after│ SSTD │

 └──────┴──────┘ └──────────────┘

 PSW ┌──────┬─┬──────┬─┬──────────┬─┐

before│ │P│ │A│ IA │ð│

 └──────┴┬┴──────┴┬┴─────┬────┴─┘

 │ │ │

 └────────┼──────┼─────┐

 │ │ │

 6 6 6

 GR14 ┌─┬──────────┬─┐

after│A│ IA │P│

 └─┴──────────┴─┘

Figure 10-20 (Part 2 of 4). Execution of PROGRAM CALL
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Stacking PC-cp and PC-ss
 Entry-Table Entry

 ┌──────┬──────┬─┬──────────┬─┬──────────┬──────┬──────┬─┬─┬─┬─┬─┬─┬──┬────┬─────────┬/┐

│ AKM │ ASN │A│ EIA │P│ EP │ EKM │ │T│K│M│E│C│S│EK│EEAX│ASTE Adr.│ │

 └──┬───┴──┬───┴┬┴────┬─────┴┬┴─────┬────┴───┬──┴──────┴─┴─┴─┴─┴┬┴─┴┬─┴─┬──┴─────────┴/┘

┌───────────┘ │ │ │ │ │ │ T=1 │ │ │

│ │ │ │ │ │ │ │ │ │

 │ ┌─────┼────┼─────┼──────┼──────┼────────┼──────────────────┼───┘ │

│ │ │ │ │ │ │ │ │ │E=1

 │ │ └────┼─────┼──────┼──────┼────────┼───────────────┐ │ │

│ K=1│ │ │ │ │ │ │ │ ┌──┘

 │ │ ┌───────┼─────┼──────┘ │ │ │ │ │

 │ │ │ ┌───┼─────┼─────────────┼────────┼───────────────┼──┘ │

│ │ │ │ │ │ ð │ │ │ 6

│ │ │ │ │ │ │ │ │ │ ┌─────┬─────┐

│ 6 6 6 6 6 6 │ │ │ │ EAX │ │

 │ PSW ┌─/─┬───┬─┬─┬─┬/┬─┬──────────┬─┐ │ │ │ └─────┴─────┘

│ after│ │Key│P│ð│C│ │A│ IA │ð│ │ │ │ CR8 after

 │ └─/─┴───┴─┴─┴─┴/┴─┴──────────┴─┘ │ │ │

 │ │ │ │ ┌─5LS

 │ 6 │ │ ┌──┴──┬─────┐

│ GR4 ┌────────────┐ │ │ │ EAX │ │

6 after│ EP │ │ │ └─────┴─────┘

┌───┐ LS └────────────┘ │ │ CR8 before

│AND├──5Priv Op & │ │

└───┘ if zero in │ │ │

 & problem state │ ┌──────────────────────────┘ │

 │ │ │ 6

│ CR3 ┌──────┬─────┴┐ │ CR4 ┌──────┬──────┐ / \

│ before│ PKM │ SASN │ │ before│ AX │ PASN ├───5LS / \

│ └──┬───┴──────┘ │ └──────┴──┬───┘ Yes / \ No

 │ │ │ │ ┌───────┤ ASN ├───────┐

 └%─────────�───5LS │ │ │ \ =ð / │

│ │ │ 6 \ / 6

│ │ │ PC-cp \_/ PC-ss

 6 │ │ instruction ASN trans-

 ┌──┐ │ │ complete lation

 │OR│%───────────� │

 └┬─┘ │ │

M=ð │ M=1 │ PC-cp, or Stkg. │

│ ┌───────────┘ PC-ss and S=ð \ │

 │ │ ┌────────────────────────────┘

 6 6 6

 CR3 ┌──────┬──────┐ CR1 ┌──────────────┐

after│ PKM │ SASN │ before│ PSTD │

 └──────┴──────┘ └───────┬──────┘

│PC-cp, or Stkg.

PSW ┌─────────────┐ │PC-ss and S=ð \

before│ PSW ├───5LS │

 └─────────────┘ 6

 CR7 ┌──────────────┐

after│ SSTD │

 └──────────────┘

\: If stacking PC-ss and S=1, SASN is replaced by new PASN, and SSTD is

replaced by new PSTD

Figure 10-20 (Part 3 of 4). Execution of PROGRAM CALL
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ASN Translation for PC-ss
 Entry-Table Entry

 ┌────────┬────────┬─┬──────────────┬─┬────────────────┬────────┬/┬─────────┬/┐

│ AKM │ ASN │A│ EIA │P│ EP │ EKM │ │ASTE Adr.│ │

 └────────┴───┬────┴─┴──────────────┴─┴────────────────┴────────┴/┴─────────┴/┘

 │

 └───────────────5�──5───────────────────────────────────────────────┐

 │ │

 6 │

 ┌────┬─┬─────────┐ ┌─────┬───┐ │

CR14 │ │T│ AFTO │ │ AFX │ASX│ │

 └────┴─┴────┬────┘ └──┬──┴─┬─┘ │

(x4ð96)│ (x4)│ │(x16 if CRð.15 = ð) │

 │ │ │ │

┌────────────────┘ │ │(x64 if CRð.15 = 1) │

│ │ │ │

│ ┌───────────────────────┘ │ │

│ │ │ │

│ 6 │ │

│ ┌─┐ ASN First Table │ │

└────5│+│ ┌─────────────────┐ │ │

 └┬┘ │ │ │ │

 │ │ │ │ │

 │ │ │ │ │

 └─5├─┬─────────────┬─┤ │ │

 R │I│ ASTO │ð│ │ 6

 ├─┴──────┬──────┴─┤ │ │

│ │\ │ │ │

│ │ │ │ │

 └────────┼────────┘ │ │

 │ │ │

┌──────────────────┘ │ │

│ │ │

│ ┌────────────────────────────┘ │

│ │ │

│ 6 │

│ ┌─┐ ASN Second Table │

└────5│+│ ┌─────────────────────────────────────────────────────────────────────┐ │

 └┬┘ │ │ │

 \│ │ │ │

 │ │ │ │

 R�─5├─┬────────────┬──┬────────┬──────┬─┬────────────────┬────────────────┤ │

│ │I│ ATO │ðB│ AX │ ATL │ð│ STD │ LTD │\\ │

 │ ├─┴────────────┴──┴────┬───┴──────┴─┴───────┬────────┴───────┬────────┤ │

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

 │ └──────────────────────┼────────────────────┼────────────────┼────────┘ │

 │ │ │ │ │

 │ │ │ ┌──────────┘ ┌───┘

 │ │ │ │ │

 │ └────────────────────┼─────┼────────────┐ │

 │ │ │ │ │

 │ ┌────────────┘ │ │ │

 │ 6 │ 6 6

│ CR1 ┌────────────────┐ │ CR4 ┌────────┬────────┐

│ after│ PSTD │ │ after│ AX │ PASN │

 │ \\\ └────────────────┘ │ └────────┴────────┘

 │ │

│ │ CRð.15 = ð

 │ └────────────────┐

 │ CR5 6

│ CRð.15 = 1 after┌─────────────────┐

└───────────────────────────────────────────────────────────5│ LTD or PASTEO │

 └─────────────────┘

R: Address is real

\: If CRð.15 = 1, ASTE address may be obtained by ASN translation or directly from ETE

\\: ASTE is 64 bytes if CRð.15 = 1; last 48 bytes are not shown

 \\\: If subspace-group facility installed and CRð.15 = 1, bits 1-23 and 25-31 of PSTD

may be replaced from subspace STD

Figure 10-20 (Part 4 of 4). Execution of PROGRAM CALL

Programming Note:  To ensure predictable oper-
ation of PC-ss when the address-space-function
control is one, the ASN-second-table-entry

address in the entry-table entry must be the same
as the one that would result from ASN translation
of the ASN in the entry-table entry.
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PROGRAM CALL FAST

PCF D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B218' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

When the program-call-fast facility is installed, the
program-call-fast control, bit 28 of control register
0, is one, and bits 12-23 of the second-operand
address have the value 31 (01F hex), it is unpre-
dictable whether this definition or the PROGRAM
CALL definition applies. When any of those con-
ditions is not true, the PROGRAM CALL definition
applies.

| An entry index (EX, which is only bits 1-7 of the
| EX used by PROGRAM CALL) specified by the

second-operand address is used in conjunction
with the PCF-entry-table origin to select an entry
in the PCF entry table. The second-operand
address has the following format:

 ┌─────5PC Number%──────┐

┌────────────┬────────────┬─┬───────┐

│////////////│ððððððð11111│/│ EX │

└────────────┴────────────┴─┴───────┘

ð 12 25 31

The PCF-entry-table origin is specified at real
locations 196-199 (C4-C7 hex) and has the fol-
lowing format:

Real locations 196-199

┌─┬───────────────────┬────────────┐

│ │ PCF-Entry-Table │ │

│/│ Origin │////////////│

└─┴───────────────────┴────────────┘

ð 2ð 31

The PCF entry table resides in real storage, is
8K-bytes long on a 4K-byte boundary, and con-
tains 128 64-byte entries.

The 31-bit real address of the PCF-entry-table
entry is obtained by appending 12 zeros on the
right to the PCF-entry-table origin and adding the
EX, with 6 rightmost and 18 leftmost zeros

| appended. When a carry into bit position 0 occurs
| during the addition, an addressing exception may
| be recognized, or the carry may be ignored,
| causing the table to wrap from 2óñ - 1 to zero.

All 31 bits of the address are used, regardless of
whether the current PSW specifies the 24-bit or
31-bit addressing mode.

Key-controlled protection does not apply to
accesses to the PCF-entry-table origin or the PCF
entry table.

The PCF-entry-table entry has the following
format:

┌───────────────────────────────────────────────┐

│ PSW │

└───────────────────────────────────────────────┘

ð 63

┌───────────────────────────────────────────────┐

│ │

└───────────────────────────────────────────────┘

64 127

| ┌─────────────────────────┬───────────────┬─────┐

| │ │ ASTEO │ │

| └─────────────────────────┴───────────────┴─────┘

| 128 161 186 191

┌───────────────────────┬───────────────────────┐

│ Reserved │ STD │

└───────────────────────┴───────────────────────┘

192 224 255

┌───────────┬───────────┬───────────┬───────────┐

│ AX │ ASN │ PKM │ Flags │

└───────────┴───────────┴───────────┴───────────┘

256 272 288 3ð4 319

┌───────────────────────────────────────────────┐

│ │

└───────────────────────────────────────────────┘

32ð 383

┌───────────────────────────────────────────────┐

│ │

└───────────────────────────────────────────────┘

384 447

┌───────────────────────┬───────────────────────┐

│ │ Entry Parameter │

└───────────────────────┴───────────────────────┘

448 48ð 511

Bits 64-160, 186-223, and 320-479 in the
PCF-entry-table entry are reserved for future
extensions and should be zeros; otherwise, the
program may not operate compatibly in the future.
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The PCF-entry-table entry causes a space-
switching operation to occur if it contains a
nonzero ASN. When the PCF-entry-table entry
contains a zero ASN, the operation is called
PROGRAM CALL FAST to current primary
(PCF-cp); when the PCF-entry-table entry contains
a nonzero ASN, the operation is called
PROGRAM CALL FAST with space switching
(PCF-ss).

PROGRAM CALL FAST to Current Primary
(PCF-cp)

If the ASN in the PCF-entry-table entry is zero,
PROGRAM CALL FAST to current primary is
specified, and the execution of the instruction is
completed after the following operations have
been performed.

A stacking process is performed to form a linkage-
stack program-call state entry and place the fol-
lowing information in the state entry: current PSW
(with an unpredictable PER mask), PSW-key
mask, PASN, SASN, EAX, called-space identifica-
tion, program-call number, contents of general
registers 0-15, and contents of access registers
0-15. This is described in “Stacking Process” on
page 5-70. The entry-type code in the state entry
is 0000101 binary. The called-space identification
in a program-call state entry formed by either
PCF-cp or PCF-ss is always all zeros.

Bits 8-63 of the PCF-entry-table entry are placed
in PSW bit positions 8-63.

Bits 480-511 of the PCF-entry-table entry (the
entry parameter) are loaded into general register
4.

Key-controlled protection does not apply to refer-
ences to the linkage stack, but low-address and
page protection do apply.

PROGRAM CALL FAST with Space Switching
(PCF-ss) Operations

If the ASN in the PCF-entry-table entry is nonzero,
PROGRAM CALL FAST with space switching
(PCF-ss) is specified, and the execution of the
instruction is completed after the operations speci-
fied in “PROGRAM CALL FAST to current primary
(PCF-cp)” have been performed and the following
operations have been performed.

Bits 272-287 of the PCF-entry-table entry (the
ASN) are placed in bit positions 16-31 of control
register 4 as the new PASN.

Bits 224-255 of the PCF-entry-table entry (the
STD) are placed in control register 1 as the new
PSTD. The subspace-group control, bit 22, in the
new PSTD is ignored.

Bits 256-271 of the PCF-entry-table entry (the AX)
are placed in bit positions 0-15 of control register
4 as the new authorization index.

Bits 161-185 of the PCF-entry-table entry (the
ASTEO) are placed in bit positions 1-25 of control
register 5 as the new primary-ASTE origin, and
zeros are placed in bit positions 0 and 26-31.

The PASN existing before the PASN is replaced
from the PCF-entry-table entry is placed in bit
positions 16-31 of control register 3 to become the
current SASN, and the PSTD existing before the
PSTD is replaced from the PCF-entry-table entry
is placed in control register 7 to become the
current SSTD. (The SASN and SSTD are set
equal to the old PASN and PSTD, respectively.)

Bits 288-303 of the PCF-entry-table entry (the
PKM) replace the PSW-key mask in bit positions
0-15 of control register 3.

PROGRAM CALL FAST Serialization

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Special Conditions

The operation can be performed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the oper-
ation and the address-space-function control, bit
15 of control register 0, is one. If either of these
rules is violated, a special-operation exception is
recognized in both the problem and supervisor
states.

Bits 304-319 (flags) of the PCF-entry-table entry
are available to control the operation. If any of
bits 304-319 is a one, an EX-translation exception
is recognized in both the problem and supervisor
states. The program-call number is stored in bit
positions 12-31 of the word at real location 144,
bits 0-10 of the word are set to zeros, and bit 11
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of the word is set to one to indicate that the
exception was recognized by PROGRAM CALL
FAST.

A stack-full or stack-specification exception may
be recognized during the stacking process.

When, for PCF-ss, the primary space-switch-
event-control bit, bit 0 of control register 1, is one
either before or after the execution of the instruc-
tion, a space-switch-event program interruption
occurs after the operation is completed. A space-
switch-event program interruption also occurs after
the completion of a PCF-ss operation if a PER
event is indicated.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-21 on
page 10-62.

The PSW fields which are to be loaded are not
checked for validity before they are loaded.
However, after loading, a specification exception is
recognized, and a program interruption occurs,
when any of the following is true for the newly
loaded fields: a zero is in bit position 12, bits
24-31 are not all zeros, or a zero is in bit position
32 and bits 33-39 are not all zeros. In these
cases, the operation is completed, and the
resulting instruction-length code is 0. The specifi-
cation exception, which in this case is listed as a
program exception in this instruction, is described
in “Early Exception Recognition” on page 6-9. It
may be considered as occurring early in the
process of preparing to execute the following
instruction.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch or store, except for key-
controlled protection, linkage-stack entry)

� Addressing (PCF-entry-table entry)
 � EX translation
� Space-switch event (PCF-ss only)

 � Special operation
 � Specification
 � Stack full
 � Stack specification

Programming Notes:

1. PROGRAM CALL FAST is contrasted to
PROGRAM CALL as follows. PROGRAM
CALL FAST does not perform the following
operations:

 � ASN tracing
 � ASN translation
 � ASN-translation-control checking
 � Authorization-key-mask checking
 � Extended-authorization-index change
 � PC-number translation
 � PSW-validity checking
� SASN and SSTD change (not performed

for PCF-cp only)
 � Subspace replacement
 � Subsystem-linkage-control checking

| � Translation-mode checking (checking that
| the final translation mode is the primary-
| space or access-register mode)

2. Because it is unpredictable whether the
PROGRAM CALL FAST definition or the
PROGRAM CALL definition applies when the
conditions for execution of PROGRAM CALL
FAST are met, linkage-table entry 31 must
designate an entry table containing entries
that will produce the same results as the
program-call-fast entry-table entries, in order
for a predictable operation to occur. The
operation is not entirely predictable since
PC-cp sets the SASN and SSTD equal to the
PASN and PSTD while PCF-cp leaves the
SASN and SSTD unchanged.

  Chapter 10. Control Instructions 10-61



  
 

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off, the CPU │

│ being in secondary-space mode or home-space mode, or the │

│ address-space-function control being zero. │

│ │

│ 7.C.1 Addressing exception for access to the PCF-entry-table entry. │

│ │

│ 7.C.2 EX-translation exception due to nonzero flags in the PCF- │

│ entry-table entry. │

│ │

│ 8. Access exceptions (fetch) for entry descriptor of the current │

│ linkage-stack entry. │

│ │

│ Note: Exceptions 9.-14. can occur only if there is not │

│ enough remaining free space in the current linkage-stack │

│ section. │

│ │

│ 9. Stack-specification exception due to remaining-free-space │

│ value in current linkage-stack entry not being a multiple of │

│ 8. │

│ │

│ 1ð. Access exceptions (fetch) for second word of the trailer entry│

│ of the current section. The entry is presumed to be a trailer│

│ entry; its entry-type field is not examined. │

│ │

│ 11. Stack-full exception due to forward-section validity bit in │

│ the trailer entry being zero. │

│ │

│ 12. Access exceptions (fetch) for entry descriptor of the header │

│ entry of the next section. This entry is presumed to be a │

│ header entry; its entry-type field is not examined. │

│ │

│ 13. Stack-specification exception due to not enough remaining free│

│ space in the next section. │

│ │

│ 14. Access exceptions (store) for second word of the header entry │

│ of the next section. If there is no exception, the header is │

│ now called the current entry. │

│ │

│ 15. Access exceptions (store) for entry descriptor of the current │

│ entry and for the new state entry. │

│ │

│ 16. Space-switch event (PCF-ss only). │

│ │

│ 17. Specification exception due to any PSW error of the type that │

│ causes an immediate interruption. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-21. Priority of Execution: PROGRAM CALL FAST
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 PROGRAM RETURN

PR [E]

┌────────────────┐

│ 'ð1ð1' │

└────────────────┘

ð 15

The PSW, except for the PER-mask bit and the
condition code, saved in the last linkage-stack
state entry is restored as the current PSW. The
PER mask in the current PSW remains
unchanged. The resulting value of the condition
code in the current PSW is unpredictable. The
contents of general registers 2-14 and access reg-
isters 2-14 also are restored from the state entry.
When the entry-type code in the entry descriptor
of the state entry is 0000101 binary, indicating a
program-call state entry, the primary ASN (PASN),
secondary ASN (SASN), PSW-key mask (PKM),
and extended authorization index (EAX) in the
control registers also are restored from the state
entry. When the entry-type code is 0000100
binary, indicating a branch state entry, the current
PASN, SASN, PKM, and EAX remain unchanged.

The last state entry is located, and information in it
is restored, as described in “Unstacking Process”
on page 5-72. The state entry is logically deleted
from the linkage stack, and the linkage-stack-entry
address in control register 15 is replaced by the
address of the next preceding state or header
entry. This also is described in “Unstacking
Process.”

When the state entry is a program-call state entry,
it causes a space-switching operation to occur if it
contains a PASN that is not equal to the current
PASN. When the state entry contains a PASN
that is equal to the current PASN, the operation is
called PROGRAM RETURN to current primary
(PR-cp); when the state entry contains a PASN
that is not equal to the current PASN, the opera-
tion is called PROGRAM RETURN with space
switching (PR-ss). PASN translation occurs in
PR-ss. SASN translation and authorization may
occur in either PR-cp or PR-ss. The terms PR-cp
and PR-ss do not apply when the state entry is a
branch state entry.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address
and page protection do apply.

The sections “PASN Translation,” “SASN
Translation,” “SASN Authorization,” and
“PROGRAM RETURN Serialization” apply only
when the unstacked state entry is a program-call
state entry. The functions described in those
sections are not performed when the state entry is
a branch state entry.

PASN Translation

If the new PASN is equal to the old PASN in bit
positions 16-31 of control register 4, PASN trans-
lation is not performed, and the authorization
index (AX), PASN, PSTD, and primary-ASN-
second-table-entry (primary-ASTE) origin in the
control registers are not changed.

If the new PASN is not equal to the old PASN, the
new PASN is translated to locate a 64-byte ASTE.
The ASN table-lookup process is described in
“ASN Translation” on page 3-18. The exceptions
associated with ASN translation are collectively
called ASN-translation exceptions. These
exceptions and their priority are described in
Chapter 6, “Interruptions.”

Bits 64-95 of the ASTE are placed in control reg-
ister 1 as the new PSTD. Bits 32-47 of the ASTE
are placed in bit positions 0-15 of control register
4 as the new AX. Bits 1-25 of the ASTE address
are placed in bit positions 1-25 of control register
5 as the new primary-ASTE origin, and zeros are
placed in bit positions 0 and 26-31.

The description in this paragraph applies if the
subspace-group facility is installed and PASN
translation has occurred. If (1) the subspace-
group-control bit, bit 22, in the new PSTD is one,
(2) the dispatchable unit is subspace active, and
(3) the new primary-ASTE origin designates the
ASTE for the base space of the dispatchable unit,
then bits 1-23 and 25-31 of the new PSTD in
control register 1 are replaced by bits 1-23 and
25-31 of the STD in the ASTE for the subspace in
which the dispatchable unit last had control. This
replacement occurs, in the case when the new
SASN is equal to the new PASN, before the
SSTD is set equal to the PSTD. Further details
are in “Subspace-Replacement Operations” on
page 5-56.
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SASN Translation

If the new SASN is equal to the new PASN, the
SSTD in control register 7 is set equal to the new
PSTD in control register 1. If the new SASN is
not equal to the new PASN, the new SASN is
translated to locate a 64-byte ASTE. Bits 64-95 of
the ASTE are placed in bit positions 0-31 of
control register 7 as the new SSTD.

SASN Authorization

If the new SASN is not equal to the new PASN,
the authority-table origin (ATO) from the ASTE for
the new SASN is used as the base for a third
table lookup. The new authorization index, bits
0-15 of control register 4, is used, after it has
been checked against the authority-table length,
as the index to locate the entry in the authority
table. The authority-table lookup is described in
“ASN Authorization” on page 3-23.

The description in this paragraph applies if the
subspace-group facility is installed and SASN
translation and authorization have occurred. If (1)
the subspace-group-control bit, bit 22, in the new
SSTD is one, (2) the dispatchable unit is sub-
space active, and (3) the ASTE origin obtained by
SASN translation designates the ASTE for the
base space of the dispatchable unit, then bits
1-23 and 25-31 of the new SSTD in control reg-
ister 7 are replaced by bits 1-23 and 25-31 of the
STD in the ASTE for the subspace in which the
dispatchable unit last had control. Further details
are in “Subspace-Replacement Operations” on
page 5-56.

PROGRAM RETURN Serialization

When the unstacked state entry is a program-call
state entry, a serialization and checkpoint-
synchronization function is performed before the
operation begins and again after the operation is
completed.

Special Conditions

The instruction can be executed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the oper-
ation and the address-space-function control, bit
15 of control register 0, is one. In addition, the
ASN-translation process can be performed, for

either the PASN or the SASN, only when the
ASN-translation control, bit 12 of control register
14, is one. If any of these rules is violated, a
special-operation exception is recognized.

A stack-empty, stack-operation, stack-
specification, or stack-type exception may be
recognized during the unstacking process.

When, for PR-ss, the primary space-switch-event
control, bit 0 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch-
event program interruption also occurs after the
completion of a PR-ss operation if a PER event is
reported.

The PSW which is to be loaded by the instruction
is not checked for validity before it is loaded.
However, after loading, a specification exception is
recognized, and a program interruption occurs,
when the newly loaded PSW contains a zero in bit
position 12, when the contents of bit positions 0,
2-4, and 24-31 are not all zeros, or when bit posi-
tion 32 contains a zero and the contents of bit
positions 33-39 are not all zeros. In these cases,
the operation is completed, and the resulting
instruction-length code is 0. The specification
exception, which in this case is listed as a
program exception in this instruction, is described
in “Early Exception Recognition” on page 6-9. It
may be considered as occurring early in the
process of preparing to execute the following
instruction.

If a space-switch event is indicated and the PSW
that was loaded by the instruction is invalid
because of a reason described in the preceding
paragraph, it is unpredictable whether the resulting

| instruction-length code is 0 or 1, or 0 or 2 if
EXECUTE was used.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-22 on
page 10-65.

Resulting Condition Code:  The code is unpre-
dictable.
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 Program Exceptions: 

� Access (fetch and store, except key-controlled
protection, linkage-stack entry)

� Addressing (authority-table entry, if SASN
translation occurs)

� ASN translation (if PASN or SASN translation
occurs)

� Secondary authority (if SASN translation
occurs)

 � Space-switch event

 � Special operation
 � Specification
 � Stack empty
 � Stack operation
 � Stack specification
 � Stack type
� Subspace replacement (if subspace-group

facility is installed and PASN or SASN trans-
lation occurs)

 � Trace

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program-│

│ interruption conditions for the general case. │

│ │

│ 7. Special-operation exception due to DAT being off, the CPU │

│ being in secondary-space mode or home-space mode, or the │

│ address-space-function control, bit 15 of control register ð,│

│ being zero. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 Access exceptions (fetch) for entry descriptor of the current│

│ linkage-stack entry. │

│ │

│ 8.B.2 Stack-type exception due to current entry not being a state │

│ entry or header entry. │

│ │

│ Note: Exceptions 8.B.3-8.B.7 can occur only if the current │

│ entry is a header entry. │

│ │

│ 8.B.3 Stack-operation exception due to unstack-suppression bit │

│ in the header entry being one. │

│ │

│ 8.B.4 Access exceptions (fetch) for second word of the header │

│ entry. │

│ │

│ 8.B.5 Stack-empty exception due to backward stack-entry validity │

│ bit in the header entry being zero. │

│ │

│ 8.B.6 Access exceptions (fetch) for entry descriptor of preceding │

│ entry, which is the entry designated by the backward │

│ stack-entry address in the header entry. │

│ │

│ 8.B.7 Stack-specification exception due to preceding entry being a │

│ header entry. │

│ │

│ 8.B.8 Stack-type exception due to preceding entry not being a state│

│ entry. │

│ │

│ 8.B.9 Stack-operation exception due to unstack-suppression bit │

│ being one in the state entry. │

│ │

│ 8.B.1ð Access exceptions (fetch) for the state entry, and access │

│ exceptions (store) for entry descriptor of entry preceding │

│ the state entry. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-22 (Part 1 of 2). Priority of Execution: PROGRAM RETURN
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┌──────────────────────────────────────────────────────────────────────┐

│ Note: Exceptions 8.B.11-8.B.15 and the event 9 can occur │

│ only if the state entry is a program-call state entry. │

│ │

│ 8.B.11 Special-operation exception due to the ASN-translation con- │

│ trol, bit 12 of control register 14, being zero (if PASN or │

│ SASN translation occurs). │

│ │

│ 8.B.12 ASN-translation exceptions (if PASN or SASN translation │

│ occurs). │

│ │

│ Note: Subspace-replacement exceptions for replacement of │

│ bits in either the PSTD or the SSTD, which are not shown in │

│ detail in this figure, can occur with any priority after │

│ 8.B.12 and before 9. │

│ │

│ 8.B.13 Secondary-authority exception due to authority-table entry │

│ being outside table (if SASN translation occurs). │

│ │

│ 8.B.14 Addressing exception for access to authority-table entry (if │

│ SASN translation occurs). │

│ │

│ 8.B.15 Secondary-authority exception due to S bit in authority- │

│ table entry being zero (if SASN translation occurs). │

│ │

│ 9. Space-switch event (PR-ss only). │

│ │

│1ð. Specification exception due to any PSW error of the type that│

│ causes an immediate interruption. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-22 (Part 2 of 2). Priority of Execution: PROGRAM RETURN

Programming Note:  Because PROGRAM CALL
cannot be executed successfully in the secondary-
space or home-space mode, PROGRAM
RETURN is not intended to load a PSW specifying
one of these translation modes. PROGRAM
RETURN, unlike SET ADDRESS SPACE
CONTROL, does not recognize a space-switch
event because of loading a PSW that specifies the
home-space mode.

 PROGRAM TRANSFER

PT R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B228' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of general register R± are used as
the new values for the PSW-key mask, the PASN,
and the SASN. The contents of general register
R² are used as the new values for the problem-
state bit, addressing-mode bit, and instruction
address in the current PSW.

Bits 16-23 of the instruction are ignored.

General registers R± and R² have the following
format:

 ┌────────────────┬────────────────┐

R± │ PSW-Key Mask │ ASN │

 └────────────────┴────────────────┘

 ð 16 31

 ┌─┬─────────────────────────────┬─┐

R² │A│ Instruction Address │P│

 └─┴─────────────────────────────┴─┘

 ð 1 31

When the contents of bit positions 16-31 of
general register R± are equal to the current PASN,
the operation is called PROGRAM TRANSFER to
current primary (PT-cp); when the fields are not
equal, the operation is called PROGRAM
TRANSFER with space switching (PT-ss).

The contents of general register R² are used to
update the problem-state bit, the addressing-mode
bit, and the instruction address in the current
PSW. Bit 31 of general register R² is placed in
the problem-state bit position, PSW bit position 15,
unless the operation would cause PSW bit 15 to
change from one to zero (problem state to super-
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visor state). If such a change would occur, a
privileged-operation exception is recognized. Bits
0-30 of general register R² replace the
addressing-mode bit and the instruction address,
bits 32-62, in the current PSW. Bit 63 of the PSW
is set to zero.

Bits 0-15 of general register R± are ANDed with
the PSW-key mask, bits 0-15 of control register 3,
and the result replaces the PSW-key mask.

In both the PT-ss and PT-cp instructions, the ASN
specified by bits 16-31 of general register R±

replaces the SASN in control register 3, and the
SSTD in control register 7 is replaced by the final
contents of control register 1.

PROGRAM TRANSFER to Current Primary
(PT-cp)

The PROGRAM TRANSFER to current primary
(PT-cp) operation is depicted in part 1 of
Figure 10-24 on page 10-70. The PT-cp opera-
tion is completed when the common portion of the
PROGRAM TRANSFER operation, described
above, is completed. The authorization index,
PASN, primary STD, and contents of control reg-
ister 5 (linkage-table designation or
primary-ASN-second-table-entry origin) are not
changed by PT-cp.

PROGRAM TRANSFER with Space Switching
(PT-ss)

If the ASN in bit positions 16-31 of general reg-
ister R± is not equal to the current PASN, a
PROGRAM TRANSFER with space switching
(PT-ss) operation is specified, and the ASN is
translated by means of a two-level table lookup.

The PT-ss operation is depicted in parts 1 and 2
of Figure 10-24 on page 10-70. The PT-ss oper-
ation is completed as follows.

For a PT-ss, the contents of bit positions 16-31 of
general register R± are used as an ASN, which is
translated by means of a two-level table lookup.

Bits 16-25 of general register R± are a 10-bit AFX
which is used to select an entry from the ASN first
table. Bits 26-31 are a six-bit ASX which is used
to select an entry from the ASN second table.
The ASN table-lookup process is described in
“ASN Translation” on page 3-18. The exceptions
associated with ASN translation are collectively

called “ASN-translation exceptions.” These
exceptions and their priority are described in
Chapter 6, “Interruptions.”

The authority-table origin from the
ASN-second-table entry (ASTE) is used as the
base for a third table lookup. The current authori-
zation index, bits 0-15 of control register 4, is
used, after it has been checked against the
authority-table length, as the index to locate the
entry in the authority table. The authority-table
lookup is described in “ASN Authorization” on
page 3-23.

The PT-ss operation is completed by placing bits
64-95 of the ASTE in both the PSTD and SSTD
positions, bit positions 0-31 of control registers 1
and 7, respectively. The contents of bit positions
32-47 of the ASTE replace the authorization index
in bit positions 0-15 of control register 4. When
the address-space-function (ASF) control, bit 15 of
control register 0, is zero, the contents of bit posi-
tions 96-127 of the ASTE replace the LTD in bit
positions 0-31 of control register 5. When the
ASF control is one, bits 1-25 of the ASTE address
are placed in bit positions 1-25 of control register
5 as the new primary-ASTE origin, and zeros are
placed in bit positions 0 and 26-31. The ASN, bits
16-31 of general register R±, replaces the SASN
and PASN in bit positions 16-31 of control regis-
ters 3 and 4.

The description in this paragraph applies if the
subspace-group facility is installed and the ASF
control is one. After the new PSTD has been
placed in control register 1 and the new
primary-ASTE origin has been placed in control
register 5, if (1) the subspace-group-control bit, bit
22, in the PSTD is one, (2) the dispatchable unit is
subspace active, and (3) the primary-ASTE origin
designates the ASTE for the base space of the
dispatchable unit, then bits 1-23 and 25-31 of the
PSTD in control register 1 are replaced by bits
1-23 and 25-31 of the STD in the ASTE for the
subspace in which the dispatchable unit last had
control. This replacement occurs before a
replacement of the SSTD in control register 7 by
the PSTD. Further details are in “Subspace-
Replacement Operations” on page 5-56.

PROGRAM TRANSFER Serialization

For both the PT-cp and PT-ss operations, a serial-
ization and checkpoint-synchronization function is
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performed before the operation begins and again
after the operation is completed.

Special Conditions

The instruction can be executed only when the
CPU is in the primary-space mode and the
subsystem-linkage control, bit 0 of the linkage-
table designation, is one. If the CPU is in the real
mode, secondary-space mode, access-register
mode, or home-space mode, or if the subsystem-
linkage control is zero, a special-operation excep-
tion is recognized.

Bit 31 of general register R² is placed in the
problem-state bit position, PSW bit position 15,
unless the operation would cause PSW bit 15 to
change from one to zero (problem state to super-
visor state). If such a change would occur, a
privileged-operation exception is recognized.

The instruction is completed only if bits 0-7 of
general register R² specify a valid combination of
PSW bits 32-39. If bit 0 of general register R² is
zero and bits 1-7 are not all zeros, a specification
exception is recognized.

In addition to the above requirements, when a
PT-ss instruction is specified, the ASN-translation
control, bit 12 of control register 14, must be one;
otherwise, a special-operation exception is recog-
nized.

| When, for PT-ss, the primary space-switch-event-
control bit, bit 0 of control register 1, is one either

before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch-
event program interruption also occurs after the
completion of a PT-ss operation if a PER event is
reported.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-23 on
page 10-69.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (linkage-table designation in
primary ASN-second-table entry, only when
address-space-function control is one;
authority-table entry, PT-ss only)

� ASN translation (PT-ss only)
� Primary authority (PT-ss only)
� Privileged operation (attempt to set the super-

visor state when in the problem state)
� Space-switch event (PT-ss only)

 � Special operation
 � Specification
� Subspace replacement (PT-ss only, and only

when subspace-group facility is installed and
address-space-function control is one)

 � Trace
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┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off or the CPU │

│ being in secondary-space mode, access-register mode, or home- │

│ space mode. │

│ │

│ 7.C Special-operation exception due to subsystem-linkage control │

│ in linkage-table designation in control register 5 being zero │

│ (only when address-space-function control is zero). │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 Addressing exception for access to linkage-table designation │

│ in primary ASN-second-table entry (only when address-space- │

│ function control is one). │

│ │

│ 8.B.2 Special-operation exception due to subsystem-linkage control │

│ in linkage-table designation in primary ASN-second-table entry│

│ being zero (only when address-space-function control is one). │

│ │

│ 8.B.3 Privileged-operation exception due to attempt to set the │

│ supervisor state when in the problem state. │

│ │

│ 8.B.4 Specification exception due to invalid value in bit positions │

│ ð-7 of general register R². │

│ │

│ 8.B.5 Special-operation exception due to the ASN-translation con- │

│ trol, bit 12 of control register 14, being zero (PT-ss only). │

│ │

│ 8.B.6 ASN-translation exceptions (PT-ss only). │

│ │

│ Note: Subspace-replacement exceptions, which are not shown │

│ in detail in this figure, can occur with any priority after │

│ 8.B.6 and before 9. │

│ │

│ 8.B.7 Primary-authority exception due to authority-table entry │

│ being outside table (PT-ss only). │

│ │

│ 8.B.8 Addressing exception for access to authority-table entry │

│ (PT-ss only). │

│ │

│ 8.B.9 Primary-authority exception due to P bit in authority-table │

│ entry being zero (PT-ss only). │

│ │

│ 9. Space-switch event (PT-ss only). │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-23. Priority of Execution: PROGRAM TRANSFER

Programming Notes:

1. The operation of PROGRAM TRANSFER (PT)
is such that it may be used to restore the CPU
to the state saved by a previous basic
PROGRAM CALL operation. This restoration
is accomplished by issuing PT 3,14. Though
general registers 3 and 14 are not restored to
their original values, the PASN, PSW-key
mask, problem-state bit, addressing mode,

and instruction address are restored, and the
authorization index, PSTD, and LTD or
primary-ASN-second-table-entry origin are
made consistent with the restored PASN.

2. With proper authority, and while executing in a
common area, PROGRAM TRANSFER may
be used to change the primary address space
to any desired space. The secondary address
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space is also changed to be the same as the
new primary address space.

3. Unlike the RR-format branch instructions, a
value of zero in the R² field for PROGRAM
TRANSFER designates general register 0,
and branching occurs.

PT-cp and PT-ss
 PROGRAM TRANSFER

 Instruction

 ┌────────┬────┬──┬──┐

│ 'B228' │////│R±│R²│

 └────────┴────┴─┬┴─┬┘

 │ │

 ┌──────────────────────────────┘ └─────────────┐

 │ │

 6 6

 ┌─────────────────┐ ┌──────────────────┐

 ┌────────┬────────┐ ┌─┬──────────────┬─┐

R± │ PKM │ ASN │ R² │A│ IA │P│

 └────┬───┴────┬───┘ └┬┴────────┬─────┴┬┘

 │ │ │ │ │

 │ │ ┌─────┼─────────┼──────┘

 ┌────────────┘ └────────┐ │ │ │

 │ │ │ │ │ ð

 │ │ │ │ │ │

 │ CR3 ┌────────┬────────┐ │ 6 6 6 6

│ before│ PKM │ SASN │ │ PSW ┌─/─┬─┬─/─┬─┬──────────────┬─┐

 │ └────┬───┴────────┘ │ after│ │P│ │A│ IA │ð│

 │ │ │ └─/─┴─┴─/─┴─┴──────────────┴─┘

 │ │ │

 │ 6 │

 │ ┌───┐ │

 └─────────5│AND│ 6

 └─┬─┘ ┌────────�

│ │ │

│ │ │ CR1 ┌────────────────┐

6 6 │ before│ PSTD │

 CR3 ┌────────┬────────┐ │ └────────┬───────┘

after │ PKM │ SASN │ │ │

└────────┴────────┘ │ │ (PT-cp only)

 │ │

 │ 6

 CR4 ┌────────┬────────┐ │ CR7 ┌────────────────┐

before│ AX │ PASN │ │ after│ SSTD │

 └────────┴────┬───┘ │ └────────────────┘

 │ │

 │ ┌──────┘

 6 6

 Yes┌───┐No

┌─────┤ = ├─────┐

│ └───┘ │

 6 6

 PT-cp PT-ss

 Instruction See following

 complete figure

Figure 10-24 (Part 1 of 2). Execution of PROGRAM TRANSFER

10-70 ESA/390 Principles of Operation  



  
 

PT-ss
 ┌────────────────────┐

 │ │

 6 │

 ┌────┬─┬─────────┐ ┌─────┬───┐ │

CR14 │ │T│ AFTO │ │ AFX │ASX│ │

 └────┴─┴─────┬───┘ └──┬──┴─┬─┘ │

 (x4ð96)│ (x4)│ │(x16 if │

│ │ │ CRð.15 = ð) │

┌─────────────────┘ │ │(x64 if │

│ │ │ CRð.15 = 1) │ ┌────────┬────────┐

│ ┌───────────────────────┘ │ │ R± │ PKM │ ASN │

│ │ │ │ └────────┴────┬───┘

│ 6 │ │ │

│ ┌─┐ ASN First Table │ │ 6

└────5│+│ ┌─────────────────┐ │ └────────────────%──�──5──────┐

 └┬┘ │ │ │ │

 │ │ │ │ │

 │ │ │ │ │

 └─5├─┬─────────────┬─┤ │ │

 R │I│ ASTO │ð│ │ │

 ├─┴──────┬──────┴─┤ │ │

 │ │(x16) │ │ │

│ │ │ │ │

 └────────┼────────┘ │ │

 │ │ │

┌──────────────────┘ │ │

│ │ │

│ ┌────────────────────────────┘ │

│ │ │

│ 6 │

│ ┌─┐ ASN Second Table │

└────5│+│ ┌─────────────────────────────────────────────────────────────────────┐ │

 └┬┘ │ │ │

 │ │ │ │

 │ │ │ │

 R�─5├─┬────────────┬──┬────────┬──────┬─┬────────────────┬────────────────┤ │

│ │I│ ATO │ðB│ AX │ ATL │ð│ STD │ LTD │\ │

 │ ├─┴──────┬─────┴──┴────┬───┴──────┴─┴────────┬───────┴───────┬────────┤ │

 │ │ │(x4) │ │ │ │ │

 │ │ │ │ │ │ │ │

 │ └────────┼─────────────┼─────────────────────┼───────────────┼────────┘ │

 │ ┌─────────┘ │ │ │ │

 │ │ │ │ ┌──────────┘ ┌───┘

 │ │ │ │ │ │

 │ │ └─────────────────────┼────┼────────────┐ │

 │ │ CR4 ┌────────┬────────┐ │ │ │ │

│ │ before│ AX │ PASN │ │ │ │ │

 │ │ └────┬───┴────────┘ │ │ │ │

 │ │ │(x1/4) │ │ │ │

 │ │ ┌──────────┘ │ │ │ │

 │ │ 6 6 │ │ │

│ │ ┌─┐ Authority Table ┌─────────────� │ │ │

│ └5│+│ ┌───┐ 6 │ │ 6 6

│ └┬┘ │ │ CR1 ┌────────────────┐ │ │ CR4 ┌────────┬────────┐

│ │ │ │ after│ PSTD │ │ │ after│ AX │ PASN │

│ │ │ │ \\ └────────────────┘ │ │ └────────┴────────┘

 │ └─5├─┬─┤ │ │

 │ R │P│S│ ┌─────────────┘ │

 │ ├┬┴─┤ 6 │

 │ ││ │ CR7 ┌────────────────┐ │

 │ ││ │ after│ SSTD │ │

 │ └┼──┘ \\ └────────────────┘ │ CRð.15 = ð

 │ │ └────────────────┐

│ └─5Primary-authority exception if P bit is │

│ zero or if table length is exceeded │

 │ CR5 6

│ CRð.15 = 1 after┌─────────────────┐

└───────────────────────────────────────────────────────────5│ LTD or PASTEO │

 └─────────────────┘

R: Address is real

\: ASTE is 64 bytes if CRð.15 = 1; last 48 bytes are not shown

\\: If subspace-group facility installed and CRð.15 = ð, bits 1-23 and 25-31 of PSTD and SSTD

may be replaced from subspace STD

Figure 10-24 (Part 2 of 2). Execution of PROGRAM TRANSFER
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 PURGE ALB

PALB [RRE]

┌────────────────┬────────────────┐

│ 'B248' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The ART-lookaside buffer (ALB) of this CPU is
cleared of entries. No change is made to the con-
tents of addressable storage or registers.

Bits 16-31 of the instruction are ignored.

The ALB appears cleared of its original contents
beginning with the execution of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Privileged operation

 PURGE TLB

PTLB [S]

┌────────────────┬────────────────┐

│ 'B2ðD' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The translation-lookaside buffer (TLB) of this CPU
is cleared of entries. No change is made to the
contents of addressable storage or registers.

Bits 16-31 of the instruction are ignored.

The TLB appears cleared of its original contents
beginning with the fetching of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Privileged operation

RESET REFERENCE BIT
EXTENDED

RRBE R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B22A' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The reference bit in the storage key for the
4K-byte block that is addressed by the contents of
general register R² is set to zero. The contents of
general register R± are ignored.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R² designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R² designate a 4K-byte block
in real storage, and bits 0 and 20-31 of the reg-
ister are ignored.

Because it is a real address, the address desig-
nating the storage block is not subject to dynamic
address translation. The reference to the storage
key is not subject to a protection exception.

The remaining bits of the storage key, including
the change bit, are not affected.

The condition code is set to reflect the state of the
reference and change bits before the reference bit
is set to zero.

Resulting Condition Code:  

0 Reference bit zero; change bit zero
1 Reference bit zero; change bit one
2 Reference bit one; change bit zero
3 Reference bit one; change bit one

 Program Exceptions: 

� Addressing (address specified by general reg-
ister R²)

 � Privileged operation
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 RESUME PROGRAM

RP D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B277' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

Certain fields in the current PSW and the contents
of access register and general register B² are
replaced from fields in the second operand. The
offsets of the fields in the second operand are
specified in a parameter list that immediately
follows the instruction in the instruction address
space.

The parameter list has the following format:

┌────────────────┬────────────────┐

│ðððððððððððððððð│Ofst of PSW Fld │

└────────────────┴────────────────┘

ð 16 31

┌────────────────┬────────────────┐

│ Ofst of AR Fld │ Ofst of GR Fld │

└────────────────┴────────────────┘

32 48 63

Bits 16-31 of the parameter list are an unsigned
binary integer that is the offset in bytes from the
beginning of the second operand to a field that
has the format of a PSW and from which fields in
the current PSW will be replaced. Bits 32-47 and
48-63 similarly are offsets to four-byte fields from
which the contents of access register B² and
general register B², respectively, will be replaced.
Bits 0-15 must be zeros; otherwise, a specification
exception is recognized.

A PSW has the following format:

┌─┬─┬─────┬─┬─┬─┬─────┬─┬─┬─┬─┬───┬───┬──────┬───────────────┐

│ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │

│ð│R│ð ð ð│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │ð ð ð ð ð ð ð ð│

└─┴─┴─────┴─┴─┴─┴─────┴─┴─┴─┴─┴───┴───┴──────┴───────────────┘

ð 5 8 12 16 18 2ð 24 31

┌─┬──────────────────────────────────────────────────────────┐

│ │ │

│A│ Instruction Address │

└─┴──────────────────────────────────────────────────────────┘

32 63

Fields in the current PSW are replaced from the
corresponding fields in the PSW field in the
second operand. Those fields are as follows:

┌───────────┬────────────────────────────┐

│ PSW Bits │ Field Name │

├───────────┼────────────────────────────┤

│ 16 and 17 │ Address-space control (AS) │

│ 18 and 19 │ Condition code (CC) │

│ 2ð-23 │ Program mask │

│ 32 │ Addressing mode (A) │

│ 33-63 │ Instruction address │

└───────────┴────────────────────────────┘

The remaining fields in the PSW field in the
second operand are ignored.

The fields in the second operand are fetched
before the contents of access register B² and
general register B² are changed.

When RESUME PROGRAM is the target of an
EXECUTE instruction, the parameter list imme-
diately follows the RESUME PROGRAM instruc-
tion, not the EXECUTE instruction.

The references to the parameter list are storage-
operand fetches, not instruction fetches.

Special Conditions

The instruction is completed only if bits 32-63 of
the PSW field in the second operand are valid for
placement in the current PSW. If bit 32 is zero
and bits 33-39 are not all zeros, or if bit 63 is one,
a specification exception is recognized.

When DAT is on, the address-space-function
control, bit 15 of control register 0, must be one
when the operation is to set the access-register
mode; otherwise, a special-operation exception is
recognized. Also, the CPU must be in the super-
visor state when the operation is to set the home-
space mode; otherwise, a privileged-operation
exception is recognized. When DAT is off, the
values of bits 16 and 17 of the PSW field in the

| second operand are not tested.

When the CPU is in the home-space mode either
before or after the operation, but not both before
and after the operation, a space-switch-event
program interruption occurs after the operation is
completed if any of the following is true: (1) the
primary space-switch-event control, bit 0 of control
register 1, is one; (2) the home space-switch-
event control, bit 0 of control register 13, is one; or
(3) a PER event is to be indicated.

  Chapter 10. Control Instructions 10-73



  
 

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-25.

Condition Code:  The code is set as specified by
the new condition code loaded.

 Program Exceptions: 

� Access (fetch, parameter list and operand 2)
� Operation (if the resume-program facility is not

installed)
� Privileged operation (attempt to set the home-

space mode when in the problem state)
 � Space-switch event
 � Special operation
 � Specification

 � Trace

| Programming Note:   As described in “Instruction
| Fetching” on page 5-79, the bytes of an instruc-

tion may be fetched piecemeal, and the instruction
may be fetched multiple times for a single exe-
cution. Therefore, the results are unpredictable
when instructions are fetched for execution from
storage that is being changed by another CPU or
a channel program. This warning is particularly
applicable when RESUME PROGRAM is the
target of EXECUTE since the EXECUTE instruc-
tion may be refetched in order to generate, from
its B, X, and D fields, the address of the param-
eter list used by RESUME PROGRAM. If
EXECUTE is refetched, there is not necessarily a
test for whether storage still contains either the
EXECUTE instruction or the RESUME PROGRAM
instruction.

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Operation exception if the resume-program facility is not │

│ installed. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 Access exceptions for parameter list. │

│ │

│ 8.B.2 Specification exception due to bits ð-15 of parameter list not│

│ being all zeros. │

│ │

│ 8.B.3 Access exceptions for second operand. │

│ │

│ 8.B.4 Special-operation exception due to attempt to set the │

│ access-register mode when the address-space-function control, │

│ bit 15 of control register ð, is zero. │

│ │

│ 8.B.5 Privileged-operation exception due to attempt to set the │

│ home-space mode when in the problem state. │

│ │

│ 8.B.6 Specification exception due to invalid values in bit positions│

│ 32-39 and 63 of PSW in second operand. │

│ │

│ 9. Space-switch event. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-25. Priority of Execution: RESUME PROGRAM
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SET ADDRESS SPACE CONTROL

SAC D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B219' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

SET ADDRESS SPACE CONTROL
FAST

SACF D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B279' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

Bits 20-23 of the second-operand address are
used as a code to set the address-space-control
bits in the PSW. The second-operand address is
not used to address data; instead, bits 20-23 form
the code. Bits 0-19 and 24-31 of the second-
operand address are ignored. Bits 20 and 21 of
the second-operand address must be zeros; other-
wise, a specification exception is recognized.

The following figure summarizes the operation of
SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST:

┌──────────────────────────────────────────────┐

│ Second-Operand Address │

│ │

│ ┌────────────────────┬────┬────────┐ │

│ │////////////////////│Code│////////│ │

│ └────────────────────┴────┴────────┘ │

│ ð 2ð 24 31 │

│ │

│ Result in │

│ PSW Bits │

│ Code Name of Mode 16 and 17 │

│ │

│ ðððð Primary space ðð │

│ ððð1 Secondary space 1ð │

│ ðð1ð Access register ð1 │

│ ðð11 Home space 11 │

│ All others Invalid Unchanged │

└──────────────────────────────────────────────┘

The address-space-function control, bit 15 of
control register 0, must be one when the operation
is to set the access-register mode; otherwise, a
special-operation exception is recognized. Also,

the CPU must be in the supervisor state when the
operation is to set the home-space mode; other-
wise, a privileged-operation exception is recog-
nized.

For SET ADDRESS SPACE CONTROL, a serial-
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed. This function is
not performed for SET ADDRESS SPACE
CONTROL FAST.

Special Conditions

For SET ADDRESS SPACE CONTROL, the oper-
ation is performed only when the secondary-space
control, bit 5 of control register 0, is one and DAT
is on. When either the secondary-space control is
zero or DAT is off, a special-operation exception is
recognized. The special-operation exception is
recognized in both the problem and supervisor
states. The same rules apply also to SET
ADDRESS SPACE CONTROL FAST, except that
whether the secondary-space control is tested is
unpredictable.

When the CPU is in the home-space mode either
before or after the operation, but not both before
and after the operation, a space-switch-event
program interruption occurs after the operation is
completed if any of the following is true: (1) the
primary space-switch-event control, bit 0 of control
register 1, is one; (2) the home space-switch-
event control, bit 0 of control register 13, is one; or
(3) a PER event is to be indicated.

The priority of recognition of program exceptions
for the instructions is shown in Figure 10-26 on
page 10-76.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Operation (if the set-address-space-control-
fast facility is not installed, SACF only)

� Privileged operation (attempt to set the home-
space mode in the problem state)

 � Space-switch event
 � Special operation
 � Specification

  Chapter 10. Control Instructions 10-75



  
 

┌──────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B.1 Operation exception if the set- │

│ address-space-control-fast facility is│

│ not installed (SACF only). │

│ │

│ 7.B.2 Special-operation exception due to │

│ DAT being off. │

│ │

│ 7.C Special-operation exception due to │

│ the secondary-space control, bit 5 of │

│ control register ð, being zero. May │

│ be omitted for SET ADDRESS SPACE │

│ CONTROL FAST. │

│ │

│ 8. Privileged-operation exception due to │

│ attempt to set home-space mode when │

│ in problem state. │

│ │

│ 9. Special-operation exception due to │

│ the address-space-function control, │

│ bit 15 of control register ð, being │

│ zero on an attempt to set access- │

│ register mode. │

│ │

│1ð. Specification exception due to non- │

│ zero value in bit positions 2ð and 21 │

│ of second-operand address. │

│ │

│11. Space-switch event. │

└──────────────────────────────────────────────┘

Figure 10-26. Priority of Execution: SET ADDRESS
SPACE CONTROL and SET ADDRESS SPACE
CONTROL FAST

Programming Notes:

1. SET ADDRESS SPACE CONTROL and SET
ADDRESS SPACE CONTROL FAST are
defined in such a way that the mode to be set
can be placed directly in the displacement
field of the instruction or can be specified from
the same bit positions of a general register as
those in which the mode is saved by INSERT
ADDRESS SPACE CONTROL.

2. SET ADDRESS SPACE CONTROL FAST
may provide better performance than SET
ADDRESS SPACE CONTROL, depending on
the model.

3. Because SET ADDRESS SPACE CONTROL
FAST does not perform the serialization func-
tion, it does not cause copies of prefetched
instructions to be discarded. To ensure pre-

dictable results after SET ADDRESS SPACE
CONTROL FAST is used to switch to or from
the home-space mode, the program must
cause prefetched instructions to be discarded
before an instruction is executed in a location
that does not contain the same instruction in
both the primary and home address spaces.
The operations that cause prefetched
instructions to be discarded are described in
“Instruction Fetching” on page 5-79.

4. If a program stores into the instruction stream
at a location following a subsequent SET
ADDRESS SPACE CONTROL FAST instruc-
tion, and the SET ADDRESS SPACE
CONTROL FAST instruction changes the
translation mode either from or to either the
access-register mode or the home-space
mode, a copy of a prefetched instruction may
be executed instead of the value that was
stored. To avoid this situation, either SET
ADDRESS SPACE CONTROL must be used
instead of SET ADDRESS SPACE CONTROL
FAST or some other means must be used to
cause prefetched instructions to be discarded
after the conceptual store occurs.

 SET CLOCK

SCK D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð4' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The current value of the TOD clock is replaced by
the contents of the doubleword designated by the
second-operand address, and the clock enters the
stopped state.

The doubleword operand replaces the contents of
the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in
the clock that correspond to the bit positions which
are updated by the clock; the contents of the
remaining rightmost bit positions of the operand
are ignored and are not preserved in the clock. In
some models, starting at or to the right of bit posi-
tion 52, the rightmost bits of the second operand
are ignored, and the corresponding positions of
the clock which are implemented are set to zeros.

| When the extended-TOD-clock facility is installed,
| zeros are also placed in positions to the right of bit
| position 63 of the clock.
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After the clock value is set, the clock enters the
stopped state. The clock leaves the stopped state
to enter the set state and resume incrementing
under control of the TOD-clock-sync control, bit 2
of control register 0. When the bit is zero, the
clock enters the set state at the completion of the
instruction. When the bit is one, the clock remains

| in the stopped state until the bit is set to zero, until
| another CPU executes a SET CLOCK instruction
| affecting the clock, or until any other running TOD

clock in the configuration is incremented to a
| value of all zeros in bit positions 32 through the
| rightmost bit position that is incremented when the
| clock is running. If an external time reference
| (ETR) is installed, a signal from the ETR may be
| used to set the set state from the stopped state.

The value of the clock is changed and the clock is
placed in the stopped state only if the manual
TOD-clock control of any CPU in the configuration

| is set to the enable-set position or the
| TOD-clock-control-override control, bit 10 of
| control register 14, is one. The
| TOD-clock-control-override control is available if
| the TOD-clock-control-override facility it installed.
| If the TOD-clock control of all CPUs is set to the
| secure position and the
| TOD-clock-control-override facility is not installed
| or the TOD-clock-control-override control is zero,

the value and state of the clock are not changed.
| Whether the clock is set or remains unchanged is

distinguished by condition codes 0 and 1, respec-
tively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of

| the settings of the TOD-clock control and the
| TOD-clock-control-override control, and condition

code 3 is set.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:  

0 Clock value set
1 Clock value secure
2 --

3 Clock in not-operational state

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

Programming Note:  In an installation with more
than one CPU, each CPU may have a separate
TOD clock, or more than one CPU may share a
TOD clock, depending on the model. When mul-
tiple TOD clocks exist, special procedures are
required to synchronize the clocks. See
“TOD-Clock Synchronization” on page 4-31.

SET CLOCK COMPARATOR

SCKC D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð6' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The current value of the clock comparator is
replaced by the contents of the doubleword desig-
nated by the second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit positions to
be compared with the TOD clock; the contents of
the remaining rightmost bit positions of the
operand are ignored and are not preserved in the
clock comparator.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification
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| SET CLOCK PROGRAMMABLE
| FIELD

| SCKPF [E]

| ┌────────────────┐

| │ 'ð1ð7' │

| └────────────────┘

| ð 15

| Bits 16-31 of general register 0 are placed in the
| corresponding bit positions of the TOD program-
| mable register. Zeros are placed in bit positions
| 0-15 of the TOD programmable register.

| Special Conditions

| Bits 0-15 of general register 0 must be zeros; oth-
| erwise, a specification exception is recognized.

| Condition Code: The code remains unchanged.

|  Program Exceptions: 

|  � Privileged operation
| � Operation (if the extended-TOD-clock facility is
| not installed)
|  � Specification

| Programming Note:  Each CPU has a TOD pro-
| grammable register. The values in the TOD pro-
| grammable registers should be unique within a
| multiple-configuration system.

SET CPU TIMER

SPT D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð8' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the CPU
timer that correspond to the bit positions to be
updated; the contents of the remaining rightmost
bit positions of the operand are ignored and are
not preserved in the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification

 SET PREFIX

SPX D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B21ð' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The contents of the prefix register are replaced by
the contents of bit positions 1-19 of the word at
the location designated by the second-operand
address. The ART-lookaside buffer (ALB) and
translation-lookaside buffer (TLB) of this CPU are
cleared of entries.

After the second operand is fetched, the value is
tested for validity before it is used to replace the
contents of the prefix register. Bits 1-19 of the
operand with 12 rightmost zeros appended are
used as an absolute address of the 4K-byte new
prefix area in storage. The prefix value is treated
as a 31-bit address, regardless of the addressing
mode specified by bit 32 of the current PSW. The
4K-byte block within the new prefix area is
accessed; if it is not available in the configuration,
an addressing exception is recognized, and the
operation is suppressed. The access to the block
is not subject to protection; however, the access
may cause the reference bit to be set to one.

If the operation is completed, the new prefix is
used for any interruptions following the execution
of the instruction and for the execution of subse-
quent instructions. The contents of bit positions 0
and 20-31 of the second operand are ignored.
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The ART-lookaside buffer (ALB) and translation-
lookaside buffer (TLB) are cleared of entries. The
ALB and TLB appear cleared of their original con-
tents, beginning with the fetching of the next
sequential instruction.

A serialization function is performed before or after
the second operand is fetched and again after the
operation is completed.

Special Conditions

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
� Addressing (new prefix area)

 � Privileged operation
 � Specification

SET PSW KEY FROM ADDRESS

SPKA D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ðA' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The four-bit PSW key, bits 8-11 of the current
PSW, is replaced by bits 24-27 of the second-
operand address.

The second-operand address is not used to
address data; instead, bits 24-27 of the address
form the new PSW key. Bits 0-23 and 28-31 of
the second-operand address are ignored.

Special Conditions

In the problem state, the execution of the instruc-
tion is subject to control by the PSW-key mask in
control register 3. When the bit in the PSW-key
mask corresponding to the PSW-key value to be
set is one, the instruction is executed successfully.
When the selected bit in the PSW-key mask is
zero, a privileged-operation exception is recog-

nized. In the supervisor state, any value for the
PSW key is valid.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Privileged operation (selected PSW-key-mask
bit is zero in the problem state)

Programming Notes:

1. The format of SET PSW KEY FROM
ADDRESS permits the program to set the
PSW key either from the general register des-
ignated by the B² field or from the D² field in
the instruction itself.

2. When one program requests another program
to access a location designated by the
requesting program, SET PSW KEY FROM
ADDRESS can be used by the called program
to verify that the requesting program is author-
ized to make this access, provided the storage
location of the called program is not protected
against fetching. The called program can
perform the verification by replacing the PSW
key with the requesting-program PSW key
before making the access and subsequently
restoring the called-program PSW key to its
original value. Caution must be exercised,
however, in handling any resulting protection
exceptions since such exceptions may cause
the operation to be terminated. See TEST
PROTECTION and the associated program-
ming notes for an alternative approach to the
testing of addresses passed by a calling
program.

SET SECONDARY ASN

SSAR R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B225' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The ASN specified in bit positions 16-31 of
general register R± replaces the secondary ASN
in control register 3, and the segment-table desig-
nation corresponding to that ASN replaces the
SSTD in control register 7.

Bits 16-23 and 28-31 of the instruction are
ignored.
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The contents of bit positions 16-31 of general reg-
ister R± are called the new ASN. The contents of
bit positions 0-15 of the register are ignored.

First the new ASN is compared with the current
PASN. If the new ASN is equal to the PASN, the
operation is called SET SECONDARY ASN to
current primary (SSAR-cp). If the new ASN is not
equal to the current PASN, the operation is called
SET SECONDARY ASN with space switching
(SSAR-ss). The SSAR-cp and SSAR-ss opera-
tions are depicted in Figure 10-28 on page 10-82.

SET SECONDARY ASN to Current Primary
(SSAR-cp)

The new ASN replaces the SASN, bits 16-31 of
control register 3; the PSTD, bits 0-31 of control
register 1, replaces the SSTD, bits 0-31 of control
register 7; and the operation is completed.

SET SECONDARY ASN with Space Switching
(SSAR-ss)

The new ASN is translated by means of the ASN
translation tables, and then the current AX, bits
0-15 of control register 4, is used to test whether
the program is authorized to access the specified
ASN.

The new ASN is translated by means of a two-
level table lookup. Bits 0-9 of the new ASN (bits
16-25 of the register) are a 10-bit AFX which is
used to select an entry from the ASN first table.
Bits 10-15 of the new ASN (bits 26-31 of the reg-
ister) are a six-bit ASX which is used to select an
entry from the ASN second table. The two-level
lookup is described in “ASN Translation” on
page 3-18. The exceptions associated with ASN
translation are collectively called “ASN-translation
exceptions.” These exceptions and their priority
are described in Chapter 6, “Interruptions.”

The ASN-second-table entry (ASTE) obtained as a
result of the second lookup contains the segment-
table designation and the authority-table origin and
length associated with the ASN.

The authority-table origin from the ASTE is used
as a base for a third table lookup. The current
authorization index, bits 0-15 of control register 4,
is used, after it has been checked against the
authority-table length, as the index to locate the
entry in the authority table. The authority-table

lookup is described in “ASN Authorization” on
page 3-23.

The new ASN, bits 16-31 of general register R±,
replaces the SASN, bits 16-31 of control register
3. The segment-table designation, bits 64-95 of
the ASTE, replaces the SSTD, bits 0-31 of control
register 7.

The description in this paragraph applies if the
subspace-group facility is installed and the
address-space-function control, bit 15 of control
register 0, is one. After the new SSTD has been
placed in control register 7, if (1) the subspace-
group-control bit, bit 22, in the SSTD is one, (2)
the dispatchable unit is subspace active, and (3)
the ASTE obtained by ASN translation is the
ASTE for the base space of the dispatchable unit,
then bits 1-23 and 25-31 of the SSTD in control
register 7 are replaced by bits 1-23 and 25-31 of
the STD in the ASTE for the subspace in which
the dispatchable unit last had control. Further
details are in “Subspace-Replacement Operations”
on page 5-56.

SET SECONDARY ASN Serialization

For both the SSAR-cp and SSAR-ss operations, a
serialization and checkpoint-synchronization func-
tion is performed before the operation begins and
again after the operation is completed.

Special Conditions

The operation is performed only when the
ASN-translation control, bit 12 of control register
14, is one and DAT is on. When either the
ASN-translation-control bit is zero or DAT is off, a
special-operation exception is recognized. The
special-operation exception is recognized in both
the problem and supervisor states.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-27 on
page 10-81.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (authority-table entry, SSAR-ss
only)

� ASN translation (SSAR-ss only)
� Secondary authority (SSAR-ss only)

 � Special operation
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� Subspace replacement (SSAR-ss only, and
only when subspace-group facility is installed
and address-space-function control is one)

 � Trace

┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to DAT being off, or the ASN- │

│ translation control, bit 12 of control register 14, being │

│ zero. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 ASN-translation exceptions (SSAR-ss only). │

│ │

│ Note: Subspace-replacement exceptions, which are not shown │

│ in detail in this figure, can occur with any priority after │

│ 8.B.1. │

│ │

│ 8.B.2 Secondary-authority exception due to authority-table entry │

│ being outside table (SSAR-ss only). │

│ │

│ 8.B.3 Addressing exception for access to authority-table entry │

│ (SSAR-ss only). │

│ │

│ 8.B.4 Secondary-authority exception due to S bit in authority- │

│ table entry being zero (SSAR-ss only). │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-27. Priority of Execution: SET SECONDARY ASN
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 ┌───────────────────┐

 │ │

 ASN 6 │

┌────┬─┬─────────┐ ┌─────┬───┐ │ SET SECONDARY ASN

CR14 │ │T│ AFTO │ │ AFX │ASX│ │ Instruction

 └────┴─┴─────┬───┘ └──┬──┴─┬─┘ │ ┌────────┬────┬──┬──┐

(x4ð96)│ (x4)│ │(x16 if │ │ 'B225' │////│R±│//│

│ │ │ CRð.15 = ð) │ └────────┴────┴─┬┴──┘

┌─────────────────┘ │ │(x64 if │ │

│ │ │ CRð.15 = 1) │ 6

│ ┌──────────────────────┘ │ │ ┌─────────────────┐

│ │ ASN First Table │ │ ┌────────┬────────┐

│ 6 (accessed for │ │ R± │ │ ASN │

│ ┌─┐ SSAR-ss only) │ │ └────────┴────┬───┘

└────5│+│ ┌─────────────────┐ │ │ │

 └┬┘ │ │ │ │ 6

 │ │ │ │ └────────────────%──�──5────────┐

 │ │ │ │ │ │

 └─5├─┬─────────────┬─┤ │ 6 │

 R │I│ ASTO │ð│ │ │ │

 ├─┴──────┬──────┴─┤ │ CR4 ┌────────┬────────┐ │ │

│ │(x16) │ │ before│ AX │ PASN │ │ │

│ │ │ │ └────┬───┴────┬───┘ │ │

 └────────┼────────┘ │ │(x1/4) │ │ │

│ │ │ └──────────┐ │ │

┌──────────────────┘ │ │ 6 6 │

│ │ │ Yes┌───┐No │

│ ┌───────────────────────────┘ │ ┌───┤ = ├───┐ │

│ │ │ │ └───┘ │ │

│ ┌───┼──────────────────%────────────────────────┘ 6 6 │

│ │ │ SSAR-cp SSAR-ss │

│ │ 6 ASN Second Table │

│ │ ┌─┐ (accessed for SSAR-ss only) │

└──┼─5│+│ ┌─────────────────────────────────────────────────────────────────────┐ │

 │ └┬┘ │ │ │

 │ │ │ │ │

 │ │ │ │ │

 │ └─5├─┬────────────┬──┬────────┬──────┬─┬────────────────┬────────────────┤ │

 6 R │I│ ATO │ðB│ AX │ ATL │ð│ STD │ LTD │\ │

 │ ├─┴──────┬─────┴──┴────────┴──────┴─┴────┬───────────┴────────────────┤ │

 │ │ │(x4) │ │ │

 │ │ │ │ │ │

 │ └────────┼───────────────────────────────┼────────────────────────────┘ │

┌──┼───────────────┘ │ │

│ │ │ │

│ └──┐ │ │

│ │ Authority Table │ │

│ 6 (accessed for │ │

│ ┌─┐ SSAR-ss only) │ │

└───5│+│ ┌───┐ │ │

└┬┘ │ │ CR1 ┌────────────────┐ │ CR3 ┌────────┬────────┐ │

│ │ │ before│ PSTD │ │ before│ PKM │ SASN │ │

 │ │ │ └──────┬─────────┘ │ └────┬───┴────────┘ │

└─5├─┬─┤ │ │ │ │

 R │P│S│ │ ┌──────────┘ │ ┌───────┘

 ├─┴┬┤ (SSAR-cp only)│ │ (SSAR-ss only) │ │

 │ ││ 6 6 6 6

 │ ││ CR7 ┌────────────────┐ CR3 ┌────────┬────────┐

│ ││ after│ SSTD │ after│ PKM │ SASN │

 └──┼┘ \\ └────────────────┘ └────────┴────────┘

 │

└───5Secondary-authority exception if S bit is

zero or if table length is exceeded

 (SSAR-ss only)

 .

R: Address is real

\: ASTE is 64 bytes if CRð.15 = 1; last 48 bytes are not shown

\\: For SSAR-ss only, if subspace-group facility installed and CRð.15 = 1, bits 1-23 and

25-31 of SSTD may be replaced from subspace STD

Figure 10-28. Execution of SET SECONDARY ASN
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SET STORAGE KEY EXTENDED

SSKE R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B22B' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The storage key for the 4K-byte block that is
addressed by the contents of general register R²

is replaced by bits from general register R±.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R² designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R² designate a 4K-byte block
in real storage, and bits 0 and 20-31 of the reg-
ister are ignored.

Because it is a real address, the address desig-
nating the storage block is not subject to dynamic
address translation. The reference to the storage
key is not subject to a protection exception.

The new seven-bit storage-key value is obtained
from bit positions 24-30 of general register R±.
The contents of bit positions 0-23 and 31 of the
register are ignored.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (address specified by general reg-
ister R²)

 � Privileged operation

SET SYSTEM MASK

SSM D²(B²) [S]

┌────────┬────────┬────┬────────────┐

│ '8ð' │////////│ B² │ D² │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

Bits 0-7 of the current PSW are replaced by the
byte at the location designated by the second-
operand address.

Bits 8-15 of the instruction are ignored.

Special Conditions

When the SSM-suppression-control bit, bit 1 of
control register 0, is one and the CPU is in the
supervisor state, a special-operation exception is
recognized.

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification excep-
tion is recognized, and a program interruption
occurs, if the contents of bit positions 0 and 2-4 of
the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2. The specification exception,
which is listed as a program exception for this
instruction, is described in “Early Exception
Recognition” on page 6-9. This exception may be
considered as caused by execution of this instruc-
tion or as occurring early in the process of pre-
paring to execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Special operation
 � Specification

 SIGNAL PROCESSOR

SIGP R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'AE' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

An eight-bit order code and, if called for, a 32-bit
parameter are transmitted to the CPU designated
by the CPU address contained in the third
operand. The result is indicated by the condition
code and may be detailed by status assembled in
the first-operand location.
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The second-operand address is not used to
address data; instead, bits 24-31 of the address
contain the eight-bit order code. Bits 0-23 of the
second-operand address are ignored. The order
code specifies the function to be performed by the
addressed CPU. The assignment and definition of
order codes appear in “CPU Signaling and
Response” on page 4-41.

| The 16-bit unsigned binary integer contained in bit
positions 16-31 of general register R³ forms the
CPU address. Bits 0-15 of the register are
ignored.

The general register containing the 32-bit param-
eter is R± or R±+1, whichever is the odd-
numbered register. It depends on the order code
whether a parameter is provided and for what
purpose it is used.

The operands just described have the following
formats:

General register designated by R±:
┌────────────────────────────────┐

│ Status │

└────────────────────────────────┘

ð 31

General register designated by R± or R± + 1,
whichever is the odd-numbered register:
┌────────────────────────────────┐

│ Parameter │

└────────────────────────────────┘

ð 31

General register designated by R³:
┌────────────────┬────────────────┐

│////////////////│ CPU Address │

└────────────────┴────────────────┘

ð 16 31

Second-operand address:
┌────────────────────────┬────────┐

│ │ Order │

│////////////////////////│ Code │

└────────────────────────┴────────┘

ð 24 31

A serialization function is performed before the
operation begins and again after the operation is
completed.

When the order code is accepted and no nonzero
status is returned, condition code 0 is set. When

status information is generated by this CPU or
returned by the addressed CPU, the status is
placed in general register R±, and condition code
1 is set.

When the access path to the addressed CPU is
busy, or the addressed CPU is operational but in
a state where it cannot respond to the order code,
condition code 2 is set.

When the addressed CPU is not operational (that
is, it is not provided in the installation, it is not in
the configuration, it is in any of certain customer-
engineer test modes, or its power is off), condition
code 3 is set.

Resulting Condition Code:  

0 Order code accepted
1 Status stored
2 Busy
3 Not operational

 Program Exceptions: 

 � Privileged operation

Programming Notes:

1. A more detailed discussion of the condition-
code settings for SIGNAL PROCESSOR is
contained in “CPU Signaling and Response”
on page 4-41.

2. To ensure that presently written programs will
be executed properly when new facilities using
additional bits are installed, only zeros should
appear in the unused bit positions of the
second-operand address and in bit positions
0-15 of general register R³.

3. Certain SIGNAL PROCESSOR orders are
provided with the expectation that they will be
used primarily in special circumstances. Such
orders may be implemented with the aid of an
auxiliary maintenance or service processor,
and, thus, the execution time may take
several seconds. Unless all of the functions
provided by the order are required, combina-
tions of other orders, in conjunction with
appropriate programming support, can be
expected to provide a specific function more
rapidly. The emergency-signal, external-call,
and sense orders are the only orders which
are intended for frequent use. The following
orders are intended for infrequent use, and
performance therefore may be much slower
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than for frequently used orders: restart, set
prefix, store status at address, start, stop, stop
and store status, and all the reset orders. An
alternative to the set-prefix order, for faster
performance when the receiving CPU is not
already stopped, is the use of the emergency-
signal or external-call order, followed by the
execution of a SET PREFIX instruction on the
addressed CPU. Clearing the TLB of entries
is ordinarily accomplished more rapidly
through the use of the emergency-signal or
external-call order, followed by execution of
the PURGE TLB instruction on the addressed
CPU, than by use of the set-prefix order.

STORE CLOCK COMPARATOR

STCKC D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð7' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The current value of the clock comparator is
stored at the doubleword location designated by
the second-operand address.

Zeros are provided for the rightmost bit positions
of the clock comparator that are not compared
with the TOD clock.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

 STORE CONTROL

STCTL R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ 'B6' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

The set of control registers starting with control
register R± and ending with control register R³ is
stored at the locations designated by the second-
operand address.

The storage area where the contents of the
control registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The con-
tents of the control registers are stored in
ascending order of their register numbers, starting
with control register R± and continuing up to and
including control register R³, with control register 0
following control register 15. The contents of the
control registers remain unchanged.

Special Conditions

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

STORE CPU ADDRESS

STAP D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B212' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

| The 16-bit unsigned binary integer by which this
CPU is identified in a multiprocessing configura-
tion is stored at the halfword location designated
by the second-operand address.

Special Conditions

The operand must be designated on a halfword
boundary; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

STORE CPU ID

STIDP D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð2' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

Information identifying the CPU is stored at the
doubleword location designated by the second-
operand address.

The information stored has the following format:

┌────────┬────────────────────────┐

│Version │ CPU Identification │

│ Code │ Number │

└────────┴────────────────────────┘

ð 8 31

┌────────────────┬────────────────┐

│ Machine-Type │ │

│ Number │ðððððððððððððððð│

└────────────────┴────────────────┘

32 48 63

Bit positions 0-7 contain the version code. The
format and significance of the version code
depend on the model.

Bit positions 8-31 contain the CPU identification
number, consisting of six four-bit digits. Some or
all of these digits are selected from the physical
serial number stamped on the CPU. The contents
of the CPU-identification-number field, in conjunc-
tion with the machine-type number, permit unique
identification of the CPU.

Bit positions 32-47 contain the machine-type
number of the CPU. Bit positions 48-63 contain
zeros.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. The program should allow for the possibility
that the CPU identification number may
contain the digits A-F as well as the digits 0-9.

2. The CPU identification number, in conjunction
with the machine-type number, provides a
unique CPU identification that can be used in
associating results with an individual machine.

3. In versions of this publication prior to
SA22-7201-03, the machine-type-number field
was called the model-number field.

4. The version code is usually indicative of the
model number of the model and the number
of CPUs contained in the model. The version-
code values for a machine type are described
in the “Functional Characteristics” or “System
Overview” manual for the machine type.

5. For current machine types, the CPU identifica-
tion number has the hex format:

� “Annnnn” in the basic mode, or
| � “LPnnnn” in the LPAR (logically-
| partitioned) mode.

Where:

� A is the CPU address of the CPU.
� L is a logical CPU address.
� P is a logical-partition identifier.
� n is a digit derived from the serial number

of the CPU.

The terminology above that is not defined in
this publication is defined in the machine
manuals.

STORE CPU TIMER

STPT D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B2ð9' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The current value of the CPU timer is stored at
the doubleword location designated by the
second-operand address.
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Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

 STORE PREFIX

STPX D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B211' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The contents of the prefix register are stored at
the word location designated by the second-
operand address. Zeros are provided for bit posi-
tions 0 and 20-31.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

| STORE SYSTEM INFORMATION

| STSI D²(B²) [S]

| ┌────────────────┬────┬────────────┐

| │ 'B27D' │ B² │ D² │

| └────────────────┴────┴────────────┘

| ð 16 2ð 31

| Depending on a function code in general register
| 0, either an identification of the level of the config-
| uration executing the program is placed in general

| register 0 or information about a component or
| components of a configuration is stored in a
| system-information block (SYSIB). When informa-
| tion about a component or components is
| requested, the information is specified by further
| contents of general register 0 and by contents of
| general register 1. The SYSIB, if any, is desig-
| nated by the second-operand address.

| The machine is considered to provide one, two, or
| three levels of configuration. The levels are:

| 1. The basic machine, which is the machine as if
| it were operating in the basic mode.

| 2. A logical partition, which is provided if the
| machine is operating in the LPAR, or logically-
| partitioned, mode. A logical partition is pro-
| vided by the LPAR hypervisor, which is a part
| of the machine. A basic machine exists even
| when the machine is operating in the LPAR
| mode.

| 3. A virtual machine, which is provided by a
| virtual-machine (VM) control program that is
| executed either by the basic machine or in a
| logical partition. A virtual machine may itself
| execute a VM control program that provides a
| higher-level (more removed from the basic
| machine) virtual machine, which also is con-
| sidered a level-3 configuration.

| The terms basic mode, LPAR mode, logical parti-
| tion, hypervisor, and virtual machine, and any
| other terms related specifically to those terms, are
| not defined in this publication; they are defined in
| the machine manuals.

| A program being executed by a level-1 configura-
| tion (the basic machine) can request information
| about that configuration. A program being exe-
| cuted by a level-2 configuration (in a logical parti-
| tion) can request information about the logical
| partition and about the underlying basic machine.
| A program being executed by a level-3 configura-
| tion (a virtual machine) can request information
| about the virtual machine and about the one or
| two underlying levels; a basic machine is always
| underlying, and a logical partition may or may not
| be between the basic machine and the virtual
| machine. When information about a virtual
| machine is requested, information is provided
| about the configuration executing the program and
| about any underlying level or levels of virtual
| machine. In any of these cases, information is
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| provided about a level only if the level implements
| the instruction.

| The function code determining the operation is an
| unsigned binary integer in bit positions 0-3 of
| general register 0 and is as follows:

| Invalid Function Code

| The level of the configuration executing the
| program is called the current level. The configura-
| tion level specified by a nonzero function code is
| called the specified level. When the specified
| level is higher numbered than the current level,
| then the function code is called invalid, the condi-
| tion code is set to 3, and no other action
| (including checking) is performed.

| Valid Function Code

| When the function code is equal to or less than
| the number of the current level, it is called valid.
| In this case, bits 4-23 of general register 0 and
| bits 0-15 of general register 1 must be zero; other-
| wise, a specification exception is recognized.

| When the function code is 0, an unsigned binary
| integer identifying the current configuration level (1
| for basic machine, 2 for logical partition, or 3 for
| virtual machine) is placed in bit positions 0-3 of
| general register 0, the condition code is set to 0,
| and no further action is performed.

| When the function code is valid and nonzero,
| general registers 0 and 1 contain additional spec-
| ifications about the information requested, as
| follows:

| � Bit positions 24-31 of general register 0
| contain an unsigned binary integer, called
| selector 1, that specifies a component or com-
| ponents of the specified configuration.

| � Bit positions 16-31 of general register 1
| contain an unsigned binary integer, called
| selector 2, that specifies the type of informa-
| tion requested.

| The contents of general registers 0 and 1 are as
| follows:

| GR ð

| ┌────┬───────────────────┬─────────┐

| │ FC │ððððððððððððððððððð│Selector1│

| └────┴───────────────────┴─────────┘

| ð 4 24 31

| GR 1

| ┌────────────────┬─────────────────┐

| │ðððððððððððððððð│ Selector 2 │

| └────────────────┴─────────────────┘

| ð 16 31

| When the function code is valid and nonzero,
| information may be stored in a system-information
| block (SYSIB) beginning at the second-operand
| location. The SYSIB is 4K bytes and must begin
| at a 4K-byte boundary; otherwise, a specification
| exception may be recognized, depending on
| selector 1 and selector 2 and on whether access
| exceptions are recognized due to references to
| the SYSIB (see “Special Conditions”).

| Selector 1 can have values as follows:

| When selector 1 is 1, selector 2 can have values
| as follows:

| When selector 1 is 2, selector 2 can have values
| as follows:

| Func-
| tion
| Code| Information Requested

| 0| Current-configuration-level number
| 1| Information about level 1 (the basic
| machine)
| 2| Information about level 2 (a logical parti-
| tion)
| 3| Information about level 3 (a virtual
| machine)
| 4-15| None; codes are reserved

| Selec-
| tor 1| Information Requested

| 0| None; selector is reserved
| 1| Information about the specified configura-
| tion level
| 2| Information about one or more CPUs in
| the specified configuration level
| 3-255| None; selectors are reserved

| Selector
| 2 when
| Selector
| 1 Is 1| Information Requested

| 0| None; selector is reserved
| 1| Information about the specified config-
| uration level
| 2-65,535| None; selectors are reserved
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| Only certain combinations of the function code,
| selector 1, and selector 2 are valid, as shown in
| Figure 10-29.

| ┌─────┬──────┬──────┬────────────────────────┐

| │Func-│ │ │ │

| │tion │Selec-│Selec-│Information │

| │Code │tor 1 │tor 2 │Requested about │

| ├─────┼──────┼──────┼────────────────────────┤

| │ ð │ - │ - │Current-configuration- │

| │ │ │ │ level number │

| │ │ │ │ │

| │ 1 │ 1 │ 1 │Basic-machine configura-│

| │ │ │ │ tion │

| │ 1 │ 2 │ 1 │Basic-machine CPU │

| │ 1 │ 2 │ 2 │Basic-machine CPUs │

| │ │ │ │ │

| │ 2 │ 2 │ 1 │Logical-partition CPU │

| │ 2 │ 2 │ 2 │Logical-partition CPUs │

| │ │ │ │ │

| │ 3 │ 2 │ 2 │Virtual-machine CPUs │

| ├─────┴──────┴──────┴────────────────────────┤

| │Explanation: │

| │ │

| │ - Ignored. │

| └────────────────────────────────────────────┘

| Figure 10-29. Valid Function-Code, Selector-1, and
| Selector-2 Combinations for STORE SYSTEM INFOR-
| MATION

| When the specified function-code, selector-1, and
| selector-2 combination is invalid (is other than as
| shown in Figure 10-29), or if it is valid but the
| requested information is not available because the
| specified level does not implement or does not
| fully implement the instruction or because a nec-
| essary part of the level is uninstalled or not initial-
| ized, and provided that an exception is not
| recognized (see “Special Conditions”), the condi-
| tion code is set to 3. When the function code is
| nonzero, the combination is valid, the requested
| information is available, and there is no exception,
| the requested information is stored in a system-
| information block (SYSIB) at the second-operand
| address.

| Selector
| 2 when
| Selector
| 1 Is 2| Information Requested

| Some or all of the SYSIB may be fetched before it
| is stored.

| A SYSIB may be identified in references by
| means of “SYSIB fc.s1.s2,” where “fc,” “s1,” and
| “s2” are the values of a function code, selector 1,
| and selector 2, respectively.

| Following sections describe the defined SYSIBs
| by means of figures and related text. In the
| figures, the offsets shown on the left are word
| values. “The configuration” refers to the config-
| uration level specified by the function code (the
| configuration level about which information is
| requested).

| SYSIB 1.1.1 (Basic-Machine Configuration)

| SYSIB 1.1.1 has the following format:

|  SYSIB 1.1.1

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  7 │ │

|  ├───────────────────────────────────┤

|  8 │ │

|  / Manufacturer /

|  11 │ │

|  ├───────────────────────────────────┤

|  12 │ Type │

|  ├───────────────────────────────────┤

|  13 │ │

|  / Reserved /

|  15 │ │

|  ├───────────────────────────────────┤

|  16 │ │

| / Model /

|  19 │ │

|  ├───────────────────────────────────┤

|  2ð │ │

|  / Sequence Code /

|  23 │ │

|  ├───────────────────────────────────┤

| 24 │ Plant of Manufacture │

|  ├───────────────────────────────────┤

|  25 │ │

|  / Reserved /

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 31

| Reserved:  The contents of words 0-7, 13-15,
| and 25-63 are reserved and are stored as zeros.
| The contents of words 64-1023 are reserved and
| may be stored as zeros or may remain
| unchanged.

| 0| None; selector is reserved
| 1| Information about the CPU executing
| the program in the specified configura-
| tion level
| 2| Information about all CPUs in the spec-
| ified configuration level
| 3-65,535| None; selectors are reserved
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| Manufacturer:  Words 8-11 contain the
| 16-character (0-9 or uppercase A-Z) EBCDIC
| name of the manufacturer of the configuration.
| The name is left justified with trailing blanks if nec-
| essary.

| Type:  Word 12 contains the four-character (0-9)
| EBCDIC type number of the configuration. (This
| is called the machine-type number in the definition
| of STORE CPU ID.)

| Model:  Words 16-19 contain the 16-character
| (0-9 or uppercase A-Z) EBCDIC model identifica-
| tion of the configuration. The model identification
| is left justified with trailing blanks if necessary.
| (This is called the model number in a program-
| ming note of STORE CPU ID.)

| Sequence Code:  Words 20-23 contain the
| 16-character (0-9 or uppercase A-Z) EBCDIC
| sequence code of the configuration. The
| sequence code is right justified with leading
| EBCDIC zeros if necessary.

| Plant of Manufacture:  Word 24 contains the
| four-character (0-9 or uppercase A-Z) EBCDIC
| code that identifies the plant of manufacture for
| the configuration. The code is left justified with
| trailing blanks if necessary.

| Programming Note:  The fields of the SYSIB
| 1.1.1 are similar to those of the node descriptor
| described in the publication Common I/O-Device
| Commands and Self Description, SA22-7204.
| However, the contents of the SYSIB fields may
| not be identical to the contents of the corre-
| sponding node-descriptor fields because the
| SYSIB fields:

| � Allow more characters.

| � Are more flexible regarding the type of charac-
| ters allowed.

| � Provide information that is justified differently
| within the field.

| � May not use the same method to determine
| the contents of fields such as the sequence-
| code field.

| SYSIB 1.2.1 (Basic-Machine CPU)

| SYSIB 1.2.1 has the following format:

|  SYSIB 1.2.1

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  19 │ │

|  ├───────────────────────────────────┤

|  2ð │ │

|  / Sequence Code /

|  23 │ │

|  ├───────────────────────────────────┤

| 24 │ Plant of Manufacture │

|  ├─────────────────┬─────────────────┤

|  25 │ Reserved │ CPU Address │

|  ├─────────────────┴─────────────────┤

|  26 │ │

|  / Reserved /

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 16 31

| Reserved:  The contents of words 0-19, bytes 0
| and 1 of word 25, and words 26-63 are reserved
| and are stored as zeros. The contents of words
| 64-1023 are reserved and may be stored as zeros
| or may remain unchanged.

| Sequence Code:  Words 20-23 contain the
| 16-character (0-9 or uppercase A-Z) EBCDIC
| sequence code of the CPU. The code is right jus-
| tified with leading EBCDIC zeros if necessary.

| The sequence code is not equivalent to the CPU
| identification number stored by STORE CPU ID.
| The sequence code is the portion of the CPU
| serial number that remains when the plant-of-
| manufacture portion of the serial number is
| excluded.

| Plant of Manufacture:  Word 24 contains the
| four-character (0-9 or uppercase A-Z) EBCDIC
| code that identifies the plant of manufacture for
| the CPU. The code is left justified with trailing
| blanks if necessary.

| CPU Address:  Bytes 2 and 3 of word 25 contain
| the CPU address by which this CPU is identified
| in a multiprocessing configuration. The CPU
| address is a 16-bit unsigned binary integer.

| The CPU address is the same as is stored by
| STORE CPU ADDRESS when the program is
| executed by a machine operating in the basic
| mode.
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| Programming Note:  Multiple CPUs in the same
| configuration may have the same sequence code,
| and it may be necessary to use other information,
| such as the CPU address, to establish a unique
| CPU identity. In contrast, the CPU identification
| number stored by STORE CPU ID is derived from
| some undescribed portion of the serial number
| along with values which make the number unique
| for a CPU.

| SYSIB 1.2.2 (Basic-Machine CPUs)

| SYSIB 1.2.2 has the following format:

|  SYSIB 1.2.2

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  7 │ │

|  ├───────────────────────────────────┤

|  8 │ CPU Capability │

|  ├─────────────────┬─────────────────┤

| 9 │ Total CPU Count │ Conf. CPU Count │

|  ├─────────────────┼─────────────────┤

| 1ð │ SB CPU Count │ Resv. CPU Count │

|  ├─────────────────┴─────────────────┤

|  11 │ │

| │ Multiprocessing │

|  / CPU-Capability /

|  │ Adjustment Factors │

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 16 31

| Reserved:  The contents of words 0-7 and the
| portion of the SYSIB following the adjustment-
| factor list up to word 64 are reserved and are
| stored as zeros. The contents of words 64-1023
| are reserved and may be stored as zeros or may
| remain unchanged.

| CPU Capability:  Word 8 contains a 32-bit
| unsigned binary integer that specifies the capa-
| bility of one of the CPUs in the configuration.
| There is no formal description of the algorithm
| used to generate this integer. The integer is used
| as an indication of the capability of the CPU rela-
| tive to the capability of other CPU models.

| The capability value applies to each of the CPUs
| in the configuration. That is, all CPUs in the con-
| figuration have the same capability.

| Total CPU Count:  Bytes 0 and 1 of word 9
| contain a 16-bit unsigned binary integer that speci-
| fies the total number of CPUs in the configuration.
| This number includes all CPUs in the configured
| state, the standby state, or the reserved state.

| Configured CPU Count:  Bytes 2 and 3 of word
| 9 contain a 16-bit unsigned binary integer that
| specifies the number of CPUs that are in the con-
| figured state. A CPU is in the configured state
| when it is in the configuration and available to be
| used to execute programs.

| Standby CPU Count:  Bytes 0 and 1 of word 10
| contain a 16-bit unsigned binary integer that speci-
| fies the number of CPUs that are in the standby
| state. A CPU is in the standby state when it is in
| the configuration, is not available to be used to
| execute programs, and can be made available by
| issuing instructions to place it in the configured
| state.

| Reserved CPU Count:  Bytes 2 and 3 of word 10
| contain a 16-bit unsigned binary integer that speci-
| fies the number of CPUs that are in the reserved
| state. A CPU is in the reserved state when it is in
| the configuration, is not available to be used to
| execute programs, and cannot be made available
| by issuing instructions to place it in the configured
| state. (It may be possible to place a reserved
| CPU in the standby or configured state by means
| of manual actions.)

| Multiprocessing CPU-Capability Adjustment
| Factors:  Beginning with bytes 0 and 1 of word
| 11, the SYSIB contains a series of contiguous
| two-byte fields, each containing a 16-bit unsigned
| binary integer that is an adjustment factor (per-
| centage) for the value contained in the
| CPU-capability field.

| The number of adjustment-factor fields is one less
| than the number of CPUs specified in the
| total-CPU-count field. The adjustment-factor fields
| correspond to configurations with increasing
| numbers of CPUs in the configured state. The
| first adjustment-factor field corresponds to a con-
| figuration with two CPUs in the configured state.
| Each successive adjustment-factor field corre-
| sponds to a configuration with a number of CPUs
| in the configured state that is one more than that
| for the preceding field.
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| SYSIB 2.2.1 (Logical-Partition CPU)

| SYSIB 2.2.1 has the following format:

|  SYSIB 2.2.1

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  19 │ │

|  ├───────────────────────────────────┤

|  2ð │ │

|  / Logical-CPU Sequence Code /

|  23 │ │

|  ├───────────────────────────────────┤

| 24 │ Logical-CPU Plant of Manufacture │

|  ├─────────────────┬─────────────────┤

|  25 │ LCPU ID │ LCPU Address │

|  ├─────────────────┴─────────────────┤

|  26 │ │

|  / Reserved /

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 16 31

| Reserved:  The contents of words 0-19 and
| 26-63 are reserved and are stored as zeros. The
| contents of words 64-1023 are reserved and may
| be stored as zeros or may remain unchanged.

| Logical-CPU Sequence Code:  Words 20-23
| contain the 16-character (0-9 or uppercase A-Z)
| EBCDIC sequence code of the logical CPU. The
| code is right justified with leading EBCDIC zeros if
| necessary.

| The contents of the logical-CPU sequence-code
| field is not equivalent to the logical-CPU identifica-
| tion number stored by STORE CPU ID. The
| logical-CPU sequence code is the portion of the
| logical-CPU serial number that remains when the
| logical-CPU plant-of-manufacture portion of the
| serial number is excluded.

| Logical-CPU Plant of Manufacture:  Word 24
| contains the four-character (0-9 or uppercase A-Z)
| EBCDIC code that identifies the plant of manufac-
| ture for the logical CPU. The code is left justified
| with trailing blanks if necessary.

| Logical-CPU ID:  Bytes 0 and 1 of word 25
| contain a 16-bit unsigned binary integer that can
| be used in conjunction with the logical-CPU
| address to distinguish the logical CPU from the
| other logical CPUs provided by the same LPAR
| hypervisor.

| Logical-CPU Address:  Bytes 2 and 3 of word
| 25 contain the logical-CPU address by which this
| logical CPU is identified within the level-2 config-
| uration. The logical-CPU address is a 16-bit
| unsigned binary integer.

| The logical-CPU-address field contains the same
| information as is stored by STORE CPU
| ADDRESS when the machine is operating in the
| LPAR mode.

| Programming Note:  Multiple logical CPUs in the
| same level-2 configuration may have the same
| logical-CPU sequence code, and it may be neces-
| sary to use other information, such as the
| logical-CPU address, to establish a unique
| logical-CPU identity. In contrast, the logical-CPU
| identification number stored by STORE CPU ID is
| derived from some undescribed portion of the
| logical-CPU serial number along with values which
| make the number unique for a logical CPU.

| SYSIB 2.2.2 (Logical-Partition CPUs)

| SYSIB 2.2.2 has the following format:

|  SYSIB 2.2.2

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  7 │ │

|  ├─────────────────┬────────┬────────┤

| 8 │ LPAR Number │ Resv. │ LCPUC │

|  ├─────────────────┼────────┴────────┤

| 9 │ Total LCPU Count│ Conf. LCPU Count│

|  ├─────────────────┼─────────────────┤

| 1ð │ SB LCPU Count │ Resv. LCPU Count│

|  ├─────────────────┴─────────────────┤

|  11 │ │

|  │ Logical-Partition Name │

|  12 │ │

|  ├───────────────────────────────────┤

|  13 │ Logical-Partition CAF │

|  ├───────────────────────────────────┤

|  14 │ │

|  / Reserved /

|  17 │ │

|  ├─────────────────┬─────────────────┤

| 18 │ Ded. LCPU Count │ Shr. LCPU Count │

|  ├─────────────────┴─────────────────┤

|  19 │ │

|  / Reserved /

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 16 31

| Reserved:  The contents of words 0-7, byte 2 of
| word 8, words 14-17, and words 19-63 are
| reserved and are stored as zeros. The contents
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| of words 64-1023 are reserved and may be stored
| as zeros or may remain unchanged.

| Logical-Partition Number:  Bytes 0 and 1 of
| word 8 contain a 16-bit unsigned binary integer
| which is the number of the level-2 configuration.
| This number distinguishes the configuration from
| all other level-2 configurations provided by the
| same LPAR hypervisor.

| Logical-CPU Characteristics (LCPUC):  The
| contents of byte 3 of word 8 describe the charac-
| teristics of the logical CPUs that are provided for
| the level-2 configuration. The bits and their
| meanings are as follows:

| Bit Meaning

| 0 Dedicated: When one, bit 0 indicates that
| one or more of the logical CPUs for this
| level-2 configuration are provided using
| level-1 CPUs that are dedicated to this
| level-2 configuration and are not used to
| provide logical CPUs for any other level-2
| configuration. The number of logical CPUs
| that are provided using dedicated level-1
| CPUs is specified by the dedicated-LCPU-
| count value in bytes 0 and 1 of word 18.

| When zero, bit 0 indicates that none of the
| logical CPUs for this level-2 configuration are
| provided using level-1 CPUs that are dedi-
| cated to this level-2 configuration.

| 1 Shared: When one, bit 1 indicates that one or
| more of the logical CPUs for this level-2 con-
| figuration are provided using level-1 CPUs
| that can be used to provide logical CPUs for
| other level-2 configurations. The number of
| logical CPUs that are provided using shared
| level-1 CPUs is specified by the
| shared-LCPU-count value in bytes 2 and 3 of
| word 18.

| When zero, bit 1 indicates that none of the
| logical CPUs for this level-2 configuration are
| provided using shared level-1 CPUs.

| 2 Utilization Limit: When one, bit 2 indicates
| that the amount of use of the level-1 CPUs
| that are used to provide the logical CPUs for
| this level-2 configuration is limited.

| When zero, bit 2 indicates that the amount of
| use of the level-1 CPUs that are used to
| provide the logical CPUs for this level-2 con-
| figuration is unlimited.

| 3-7 Reserved.

| Total Logical-CPU Count:  Bytes 0 and 1 of
| word 9 contain a 16-bit unsigned binary integer
| that specifies the total number of logical CPUs
| that are provided for this level-2 configuration.
| This number includes all of the logical CPUs that
| are in the configured state, the standby state, or
| the reserved state.

| Configured Logical-CPU Count:  Bytes 2 and 3
| of word 9 contain a 16-bit unsigned binary integer
| that specifies the number of logical CPUs for this
| level-2 configuration that are in the configured
| state.

| A logical CPU is in the configured state when it is
| in the level-2 configuration and is available to be
| used to execute programs.

| Standby Logical-CPU Count:  Bytes 0 and 1 of
| word 10 contain a 16-bit unsigned binary integer
| that specifies the number of logical CPUs for this
| level-2 configuration that are in the standby state.

| A logical CPU is in the standby state when it is in
| the level-2 configuration, is not available to be
| used to execute programs, and can be made
| available by issuing instructions to place it in the
| configured state.

| Reserved Logical-CPU Count:  Bytes 2 and 3 of
| word 10 contain a 16-bit unsigned binary integer
| that specifies the number of CPUs for this level-2
| configuration that are in the reserved state.

| A logical CPU is in the reserved state when it is in
| the level-2 configuration, is not available to be
| used to execute programs, and cannot be made
| available by issuing instructions to place it in the
| configured state. (It may be possible to place the
| reserved CPU in the standby or configured state
| through manual actions.)

| Logical-Partition Name:  Words 11-12 contain
| the 8-character EBCDIC name of this level-2 con-
| figuration. The name is left justified with trailing
| blanks if necessary.

| Logical-Partition Capability Adjustment Factor
| (CAF):  Word 13 contains a 32-bit unsigned
| binary integer, called an adjustment factor, with a
| value of 1000 or less. The adjustment factor
| specifies the amount of the underlying

  Chapter 10. Control Instructions 10-93



  
 

| level-1-configuration capability that is allowed to
| be used for this level-2 configuration by the LPAR
| hypervisor. The fraction of level-1-configuration
| capability is determined by dividing the CAF value
| by 1000.

| Dedicated Logical-CPU Count:  Bytes 0 and 1
| of word 18 contain a 16-bit unsigned binary
| integer that specifies the number of configured-
| state logical CPUs for this level-2 configuration
| that are provided using dedicated level-1 CPUs.
| (See the description of bit 0 of the
| logical-CPU-characteristics field.)

| Shared Logical-CPU Count:  Bytes 2 and 3 of
| word 18 contain a 16-bit unsigned binary integer
| that specifies the number of configured-state
| logical CPUs for this level-2 configuration that are
| provided using shared level-1 CPUs. (See the
| description of bit 1 of the logical-CPU-
| characteristics field.)

| SYSIB 3.2.2 (Virtual-Machine CPUs)

| SYSIB 3.2.2 has the following format:

|  SYSIB 3.2.2

|  ┌───────────────────────────────────┐

|  ð │ │

|  / Reserved /

|  6 │ │

|  ├──────────────────────────────┬────┤

| 7 │ Reserved │DBCT│

|  ├──────────────────────────────┴────┤

|  8 │ │

| / Virtual-Machine Description Block /

|  23 │ │

|  ├───────────────────────────────────┤

| 24 │ . │

| / . /

|  135 │ . │

|  ├───────────────────────────────────┤

|  136 │ │

|  / Reserved /

| 1ð23 │ │

|  └───────────────────────────────────┘

|  ð 28 31

| Reserved:  The contents of words 0-6, bits 0-27
| of word 7, and words 136-1023 are reserved and
| are stored as zeros.

| Description-Block Count (DBCT):  Bits 28-31 of
| word 7 contain a four-bit unsigned binary integer
| that specifies the number (up to eight) of virtual-

| machine description blocks that are stored in the
| SYSIB beginning at word 8.

|  Virtual-Machine Description Blocks: Words
| 8-135 contain from one to eight 64-byte virtual-
| machine description blocks, depending on the
| number of nested level-3 configurations, if any,
| and their processing characteristics.

| When a level-3 configuration is provided by a
| virtual-machine control program and the control
| program is being executed by a level-3 configura-
| tion provided by another virtual-machine control
| program, the level-3 configurations are said to be
| “nested.” Level-3 configurations can be nested in
| this way for several levels.

| The collection of nested level-3 configurations that
| is in the path between a program being executed
| by a level-3 configuration and the basic machine
| is called a “level-3-configuration stack.” The
| level-3 configurations in a stack are consecutively
| numbered. The level-3 configuration provided by
| a virtual-machine control program being executed
| by either a level-2 configuration or a level-1 con-
| figuration is the lowest-numbered (0) level-3 con-
| figuration in the stack. The level-3 configuration
| that is executing the program containing this
| instruction is the highest numbered (N) level-3
| configuration in the stack.

| If more than one virtual-machine description block
| is stored in words 8-135 of the SYSIB, the blocks
| are stored according to the following rules:

| � The collection of level-3 configurations
| described is a contiguous subset of the total
| collection of level-3 configurations in the
| level-3-configuration stack. The subset
| always includes the highest-numbered level-3
| configuration in the stack. One or more
| level-3 configurations at the bottom of the
| stack may not be described because STORE
| SYSTEM INFORMATION is not implemented
| by the highest of those configurations or the
| limit of eight description blocks would be
| exceeded.

| � The highest-numbered level-3 configuration in
| the level-3-configuration stack is always
| described by the first description block in the
| SYSIB. The lowest-numbered level-3 config-
| uration in the stack, of those that are included
| in the subset that is described, is described by
| the last description block in the SYSIB.
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| The contents of the SYSIB subsequent to the
| virtual-machine description blocks and prior to
| word 136 are reserved and are stored as zeros.

| The virtual-machine description block has the fol-
| lowing format:

| Virtual-Machine Description Block

|  ┌───────────────────────────────────┐

|  ð │ Reserved │

|  ├─────────────────┬─────────────────┤

| 1 │Total LCPU Count │Conf. LCPU Count │

|  ├─────────────────┼─────────────────┤

| 2 │ SB LCPU Count │Resv. LCPU Count │

|  ├─────────────────┴─────────────────┤

|  3 │ │

|  │ Virtual-Machine Name │

|  4 │ │

|  ├───────────────────────────────────┤

|  5 │ Virtual-Machine CAF │

|  ├───────────────────────────────────┤

|  6 │ │

|  / Control-Program Identifier /

|  9 │ │

|  ┤───────────────────────────────────┤

|  1ð │ │

|  / Reserved /

|  15 │ │

|  └───────────────────────────────────┘

|  ð 31

| Reserved:  The contents of words 0 and 10-15
| are reserved and are stored as zeros.

| Total Logical-CPU Count:  Bytes 0 and 1 of
| word 1 contain a 16-bit unsigned binary integer
| that specifies the total number of logical CPUs
| that are provided for this level-3 configuration.
| This number includes all of the logical CPUs that
| are in the configured state, the standby state, and
| the reserved state.

| Configured Logical-CPU Count:  Bytes 2 and 3
| of word 1 contain a 16-bit unsigned binary integer
| that specifies the number of logical CPUs for this
| level-3 configuration that are in the configured
| state.

| A logical CPU is in the configured state when it is
| in the level-3 configuration and is available to be
| used to execute programs.

| Standby Logical-CPU Count:  Bytes 0 and 1 of
| word 2 contain a 16-bit unsigned binary integer
| that specifies the number of logical CPUs for this
| level-3 configuration that are in the standby state.

| A logical CPU is in the standby state when it is in
| the level-3 configuration, is not available to be
| used to execute programs, and can be made
| available by issuing instructions to place it in the
| configured state.

| Reserved Logical-CPU Count:  Bytes 2 and 3 of
| word 2 contain a 16-bit unsigned binary integer
| that specifies the number of CPUs for this level-3
| configuration that are in the reserved state.

| A logical CPU is in the reserved state when it is in
| the level-3 configuration, is not available to be
| used to execute programs, and cannot be made
| available by issuing instructions to place it in the
| configured state. (It may be possible to place the
| logical CPU in the standby or configured state
| through manual actions.)

| Virtual-Machine Name:  Words 3-4 contain the
| eight-character EBCDIC name of this level-3 con-
| figuration. The name is left justified with trailing
| blanks if necessary.

| Virtual-Machine Capability Adjustment Factor
| (CAF):  Word 5 contains a 32-bit unsigned binary
| integer, called an adjustment factor, with a value
| of 1000 or less. The adjustment factor specifies
| the amount of the underlying level-1-, level-2-, or
| level-3-configuration capability that is allowed to
| be used for this level-3 configuration by the virtual-
| machine control program. The fraction of the
| underlying capability is determined by dividing the
| CAF value by 1000.

| Control-Program Identifier:  Words 6-9 contain
| the 16-character EBCDIC identifier of the virtual-
| machine control program that provides this level-3
| configuration. This identifier may include qualifiers
| such as version number and release level. The
| identifier is left justified with trailing blanks if nec-
| essary.

| Special Conditions

| The condition code is set to 3 if the function code
| in bit positions 0-3 of general register 0 is greater
| than the current-level number.

| Bits 4-23 of general register 0 and 0-15 of general
| register 1 must be zero; otherwise, a specification
| exception is recognized.
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| ┌──────────────────────────────────────────────────────────────────────┐

| │ 1.-6. Exceptions with the same priority as the priority of program-│

| │ interruption conditions for the general case. │

| │ │

| │ 7.A Access exceptions for second instruction halfword. │

| │ │

| │ 7.B.1 Operation exception if the store-system-information facility │

| │ is not installed. │

| │ │

| │ 7.B.2 Privileged-operation exception for privileged instruction. │

| │ │

| │ 8. Condition code 3 due to function code greater than current- │

| │ level number. │

| │ │

| │ 9. Specification exception due to bits 4-23 of general register │

| │ ð or bits ð-15 of general register 1 not zero. │

| │ │

| │ 1ð. Condition code ð due to function code ð. │

| │ │

| │ 11.A Specification exception due to second-operand address not │

| │ designating a 4K-byte boundary. │

| │ │

| │ 11.B Condition code 3 due to invalid function-code, selector-1, │

| │ and selector-2 combination or requested information not │

| │ available. │

| │ │

| │ 12. Access exceptions (store) for system-information block. │

| │ │

| │ 13. Condition code ð due to information stored in system- │

| │ information block. │

| └──────────────────────────────────────────────────────────────────────┘

| Figure 10-30. Priority of Execution: STORE SYSTEM INFORMATION

| When the function code is valid and nonzero, the
| following special conditions apply in an unpredict-
| able order:

| � The second operand must be designated on a
| 4K-byte boundary; otherwise, a specification
| exception is recognized.

| � If the function-code, selector-1, and selector-2
| combination is invalid, or if it is valid but the
| requested information is not available, the
| condition code is set to 3.

| The priority of the recognition of exceptions and
| condition codes is shown in Figure 10-30.

| Resulting Condition Code:  

| 0 Requested configuration-level number placed
| in general register 0 or requested SYSIB
| information stored
| 1 --
| 2 --
| 3 Requested SYSIB information not available

|  Program Exceptions: 

| � Access (store, operand 2, only if function code
| nonzero)
| � Operation (if store-system-information facility
| not installed)
|  � Privileged operation
|  � Specification

STORE THEN AND SYSTEM
MASK

STNSM D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ 'AC' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit posi-
tions 0-7 of the current PSW are replaced by the
logical AND of their original contents and the
second operand.
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Special Conditions

The operation is suppressed on addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 1)
 � Privileged operation

Programming Note:  STORE THEN AND
SYSTEM MASK permits the program to set
selected bits in the system mask to zeros while
retaining the original contents for later restoration.
For example, it may be necessary that a program,
which has no record of the present status, disable
program-event recording for a few instructions.

STORE THEN OR SYSTEM MASK

STOSM D±(B±),I² [SI]

┌────────┬────────┬────┬────────────┐

│ 'AD' │ I² │ B± │ D± │

└────────┴────────┴────┴────────────┘

ð 8 16 2ð 31

Bits 0-7 of the current PSW are stored at the first-
operand location. Then the contents of bit posi-
tions 0-7 of the current PSW are replaced by the
logical OR of their original contents and the
second operand.

Special Conditions

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification excep-
tion is recognized, and a program interruption
occurs, if the contents of bit positions 0 and 2-4 of
the PSW are not all zeros. In this case, the
instruction is completed, and the instruction-length
code is set to 2. The specification exception,
which is listed as a program exception for this
instruction, is described in “Early Exception
Recognition” on page 6-9. This exception may be
considered as caused by execution of this instruc-
tion or as occurring early in the process of pre-
paring to execute the subsequent instruction.

The operation is suppressed on addressing and
protection exceptions.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 1)
 � Privileged operation
 � Specification

Programming Note:  STORE THEN OR
SYSTEM MASK permits the program to set
selected bits in the system mask to ones while
retaining the original contents for later restoration.
For example, the program may enable the CPU
for I/O interruptions without having available the
current status of the external-mask bit.

STORE USING REAL ADDRESS

STURA R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B246' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of general register R± are stored at
the real-storage location addressed by the con-
tents of general register R².

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-31 of general
register R² designate a real-storage location on a
word boundary, and bits 0-7 of the register are
ignored. In the 31-bit addressing mode, bits 1-31
of general register R² designate a real-storage
location on a word boundary, and bit 0 of the reg-
ister is ignored.

Because it is a real address, the address desig-
nating the storage word is not subject to dynamic
address translation.

Special Conditions

The contents of general register R² must desig-
nate a location on a word boundary; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Addressing (address specified by general reg-
ister R²)

 � Privileged operation
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� Protection (store, operand 2, key-controlled
protection and low-address protection)

 � Specification

 TEST ACCESS

TAR R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B24C' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The access-list-entry token (ALET) in access reg-
ister R± is tested for exceptions recognized during
access-register translation (ART). The extended
authorization index (EAX) used is bits 0-15 of
general register R². The ALET is also tested for
whether it designates the dispatchable-unit access
list or the primary-space access list and for
whether it is 00000000 or 00000001 hex.

When R± is 0, the actual contents of access reg-
ister 0 are used in ART, instead of the 00000000
hex that is usually used.

Bits 16-31 of general register R² are ignored. Bits
16-23 of the instruction are ignored.

The operation does not depend on the translation
mode—bits 5, 16, and 17 of the PSW are ignored.

When the ALET specified by means of the R± field
is other than 00000000 or 00000001 hex, the ART
process is applied to the ALET. The EAX speci-
fied by means of the R² field is called the effective
EAX, and it is the EAX which is used by ART.
When a condition exists that would normally cause
one of the exceptions shown in the following table,
the instruction is completed by setting condition
code 3.

Exception Name Cause

ALET specification ALET bits 0-6 not all zeros

ALEN translation Access-list entry (ALE)
outside list or invalid (bit 0 is
one)

ALE sequence ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not equal
to ASTESN in ASTE

Extended authority ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to effec-
tive EAX, and secondary bit
selected by effective EAX
either outside authority table
or zero

When ART is completed without one of the above
conditions being present, the instruction is com-
pleted by setting condition code 1 or 2, depending
on whether the effective access list is the
dispatchable-unit access list or the primary-space
access list, respectively. The effective access list
is the dispatchable-unit access list if bit 7 of the
ALET is zero, or it is the primary-space access list
if bit 7 is one. ART, including the obtaining of the
effective access-list designation, is described in
“Access-Register-Translation Process” on
page 5-46.

When the ALET is 00000000 hex, the instruction
is completed by setting condition code 0. When
the ALET is 00000001 hex, the instruction is com-
pleted by setting condition code 3.

Special Conditions

The operation is performed only when the
address-space-function control, bit 15 of control
register 0, is one. When the address-space-
function control is zero, a special-operation excep-
tion is recognized.

An addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration. When it is nec-
essary to access the authority table—when the
private bit in the ALE is not zero and the ALEAX
in the ALE is not equal to the effective EAX—an
ASN-translation-specification exception may be
recognized when bits 30, 31, and 60-63 of the
ASTE are not all zeros.

The operation is suppressed on all addressing
exceptions.
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The priority of recognition of program exceptions
for the instruction is shown in Figure 10-31 on
page 10-100.

Resulting Condition Code:  

0 Access-list-entry token (ALET) is 00000000
hex

1 ALET designates the dispatchable-unit access
list and does not cause exceptions in access-
register translation (ART)

2 ALET designates the primary-space access
list and does not cause exceptions in ART

3 ALET is 00000001 hex or causes exceptions
in ART

 Program Exceptions: 

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry, or
authority-table entry)

 � ASN-translation specification
 � Special operation
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┌──────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword. │

│ │

│ 7.B Special-operation exception due to address-space-function │

│ control, bit 15 of control register ð, being zero. │

│ │

│ 8. Condition code ð due to access-list-entry-token (ALET) being │

│ ðððððððð hex. │

│ │

│ 9. Condition code 3 due to ALET being ððððððð1 hex or ALET bits │

│ ð-6 not being all zeros. │

│ │

│1ð. Addressing exception for access to effective access-list des- │

│ ignation. │

│ │

│11. Condition code 3 due to access-list entry (ALE) being outside │

│ the list. │

│ │

│12. Addressing exception for access to ALE. │

│ │

│13. Condition code 3 due to ALE being invalid (bit ð is one) or │

│ access-list-entry sequence number (ALESN) in the ALET not │

│ being equal to the ALESN in the ALE. │

│ │

│14. Addressing exception for access to ASN-second-table entry │

│ (ASTE). │

│ │

│15. Condition code 3 due to ASTE being invalid (bit ð is one) or │

│ ASTE sequence number (ASTESN) in the ALE not being equal to │

│ the ASTESN in the ASTE. │

│ │

│16. ASN-translation-specification exception due to bits 3ð, 31, │

│ and 6ð-63 of ASTE not being all zeros (only if authority-table│

│ access is required). (Optional.) │

│ │

│17. Condition code 3 due to authority-table entry being outside │

│ table. │

│ │

│18. Addressing exception for access to authority-table entry. │

│ │

│19. Condition code 3 due to ALE private bit not being zero, ALE │

│ authorization index (ALEAX) not being equal to effective ex- │

│ tended authorization index (EAX), and secondary bit selected │

│ by effective EAX being zero. │

│ │

│2ð. Condition code 1 if ALET bit 7 is zero; otherwise, condition │

│ code 2. │

└──────────────────────────────────────────────────────────────────────┘

Figure 10-31. Priority of Execution: TEST ACCESS

Programming Notes:

1. TEST ACCESS permits a called program to
check whether an ALET passed from the
calling program is authorized for use by
means of the calling program's EAX. The
calling program's EAX can be obtained from
the last linkage-stack state entry by means of
EXTRACT STACKED STATE. The called

program can thus avoid performing an opera-
tion for the calling program, through the use of
the called program's EAX, which the calling
program is not authorized to perform by
means of its own EAX.

2. When an ALET equal to 00000000 hex is
passed during a program linkage performed
by PROGRAM CALL with space switching
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(PC-ss), and the ALET conceptually desig-
nates the calling program's primary address
space and the called program's secondary
address space, the ALET must be changed to
00000001 hex before it is used by the called
program. Condition code 0 of TEST ACCESS
indicates a 00000000 hex ALET so that the
ALET can be changed to 00000001 hex by
the called program.

3. PROGRAM CALL to current primary (PC-cp)
sets the secondary address space equal to
the primary address space. PC-ss sets the
secondary address space equal to the calling
program's primary address space, except that
stacking PC-ss sets it equal to the called pro-
gram's primary address space when the
secondary-ASN control in the entry-table entry
used is one. In all these cases, a passed
00000001 hex ALET that conceptually desig-
nates the calling program's secondary address
space is not usable by the called program,
even after any transformation (unless the
operation was PC-cp and the calling pro-
gram's PASN and SASN are equal). This is
why TEST ACCESS sets condition code 3
when the tested ALET is 00000001 hex.

4. After a PC-ss, a passed ALET that conceptu-
ally designates an entry in the primary-space
access list of the calling program is not usable
by the called program. This is why TEST
ACCESS sets condition code 2, instead of
condition code 1, when the tested ALET des-
ignates the primary-space access list.

5. The control program may manage the
ASN-second-table entry in a way that causes
a correctable ASTE-validity or
ASTE-sequence exception situation to exist;
that is, a situation which, if it were to cause a
program interruption during access-register
translation, would be corrected by the control
program so that access-register translation
could be completed successfully. In this case,
the program should not use TEST ACCESS
directly but should instead use a control-
program service that uses TEST ACCESS
and that corrects the situation, if possible,
when condition code 3 is set. MVS/ESA pro-
vides the TESTART macro instruction for use
instead of the direct use of TEST ACCESS.

 TEST BLOCK

TB R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B22C' │////////│////│ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The storage locations and storage key of a
4K-byte block are tested for usability, and the
result of the test is indicated in the condition code.
The test for usability is based on the susceptibility
of the block to the occurrence of invalid checking-
block code.

Bits 16-27 of the instruction are ignored.

The block tested is addressed by the contents of
general register R².

A complete testing operation is necessarily per-
formed only when the initial contents of general
register 0 are zero. The contents of general reg-
ister 0 are set to zero at the completion of the
operation.

If the block is found to be usable, the 4K bytes of
the block are cleared to zeros, the contents of the
storage key are unpredictable, and condition code
0 is set. If the block is found to be unusable, the
data and the storage key are set, as far as is pos-
sible by the model, to a value such that subse-
quent fetches to the area do not cause a
machine-check condition, and condition code 1 is
set.

In the 24-bit addressing mode, bits 8-19 of general
register R² designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R² designate a 4K-byte block
in real storage, and bits 0 and 20-31 of the reg-
ister are ignored.

The address of the block is a real address, and
the accesses to the block designated by the
second-operand address are not subject to key-
controlled, access-list-controlled, and page pro-
tection. Low-address protection does apply. The
operation is terminated on addressing and pro-
tection exceptions. If termination occurs, the con-
dition code and the contents of general register 0
are unpredictable. The contents of the storage
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block and its associated storage key are not
changed when these exceptions occur.

Depending on the model, the test for usability may
be performed (1) by alternately storing and
reading out test patterns to the data and storage
key in the block or (2) by reference to an internal
record of the usability of the blocks which are
available in the configuration, or (3) by using a
combination of both mechanisms.

In models in which an internal record is used, the
block is indicated as unusable if a solid failure has
been previously detected, or if intermittent failures
in the block have exceeded the threshold imple-
mented by the model. In such models, depending
on the criteria, attempts to store may or may not
occur. Thus, if block 0 is not usable, and no store
occurs, low-address protection may or may not be
indicated.

In models in which test patterns are used, TEST
BLOCK may be interruptible. When an inter-
ruption occurs after a unit of operation, other than
the last one, the condition code is unpredictable,
and the contents of general register 0 may contain
a record of the state of intermediate steps. When
execution is resumed after an interruption, the
condition code is ignored, but the contents of
general register 0 may be used to determine the
resumption point.

If (1) TEST BLOCK is executed with an initial
value other than zero in general register 0, or
(2) the interrupted instruction is resumed after an

| interruption with a value in general register 0 or a
| value in the storage block or its associated
| storage key other than the corresponding value

which was present at the time of the interruption,
| or (3) the block or its associated storage key is

accessed by another CPU or by the channel sub-
system during the execution of the instruction,
then the contents of the storage block, its associ-
ated storage key, and general register 0 are
unpredictable, along with the resultant condition-
code setting.

Invalid checking-block-code errors initially found in
the block or encountered during the test do not
normally result in machine-check conditions. The
test-block function is implemented in such a way
that the frequency of machine-check interruptions

due to the instruction execution is not significant.
However, if, during the execution of TEST BLOCK
for an unusable block, that block is accessed by
another CPU (or by the channel subsystem), error
conditions may be reported both to this CPU and
to the other CPU (or to the channel subsystem).

A serialization function is performed before the
block is accessed and again after the operation is
completed (or partially completed).

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-32.

Resulting Condition Code:  

0 Block usable
1 Block not usable
2 --
3 --

 Program Exceptions: 

� Addressing (fetch and store, operand 2)
 � Privileged operation
� Protection (store, operand 2, low-address pro-

tection only)

┌──────────────────────────────────────────────┐

│1.-6. Exceptions with the same priority as │

│ the priority of program-interruption │

│ conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruc- │

│ tion halfword. │

│ │

│ 7.B Privileged-operation exception. │

│ │

│ 8. Addressing exception due to block not │

│ being available in the configuration.\ │

│ │

│ 9.A Condition code 1, block not usable. │

│ │

│ 9.B Protection exception due to low-address │

│ protection.\ │

│ │

│1ð. Condition code ð, block usable and set │

│ to zeros. │

├──────────────────────────────────────────────┤

│Explanation: │

│ │

│ \ The operation is terminated on addressing │

│ and protection exceptions, and the condi- │

│ tion code may be unpredictable. │

└──────────────────────────────────────────────┘

Figure 10-32. Priority of Execution: TEST BLOCK
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Programming Notes:

1. The execution of TEST BLOCK on most
models is significantly slower than that of the
MOVE LONG instruction with padding; there-
fore, the instruction should not be used for the
normal case of clearing storage.

2. The program should use TEST BLOCK at
initial program loading and as part of the vary-
storage-online procedure to determine if
blocks of storage exist which should not be
used.

3. The program should use TEST BLOCK when
an uncorrected error is reported in either the
data or storage key of a block. This is
because in the execution of TEST BLOCK the
attempt is made, as far as is possible on the
model, to leave the contents of a block in a
state such that subsequent prefetches or unin-
tended references to the block do not cause
machine-check conditions. The program may
use the resulting condition code in this case to
determine if the block can be reused. (The
block could be indicated as usable if, for
example, the error were an externally gener-
ated error or an indirect storage error.) This
procedure should be followed regardless of
whether the indirect-storage-error indication is
reported.

4. The model may or may not be successful in
removing the errors from a block when TEST
BLOCK is executed. The program therefore
should take every reasonable precaution to
avoid referencing an unusable block. For
example, the program should not place the
page-frame real address of an unusable block
in an attached and valid page-table entry.

5. On some models, machine checks may be
reported for a block even though the block is
not referenced by the program. When a
machine check is reported for a storage-key
error in a block which has been marked as
unusable by the program, it is possible that
SET STORAGE KEY EXTENDED may be
more effective than TEST BLOCK in validating
the storage key.

6. The storage-operand references for TEST
BLOCK may be multiple-access references.
(See “Storage-Operand Consistency” on
page 5-83.)

 TEST PROTECTION

TPROT D±(B±),D²(B²) [SSE]

┌────────────────┬────┬─/──┬────┬─/──┐

│ 'E5ð1' │ B± │ D± │ B² │ D² │

└────────────────┴────┴─/──┴────┴─/──┘

ð 16 2ð 32 36 47

The location designated by the first-operand
address is tested for protection exceptions by
using the access key specified in bits 24-27 of the
second-operand address.

The second-operand address is not used to
address data; instead, bits 24-27 of the address
form the access key to be used in testing. Bits
0-23 and 28-31 of the second-operand address
are ignored.

The first-operand address is a logical address.
When the CPU is in the access-register mode
(when DAT is on and PSW bits 16 and 17 are 01
binary), the first-operand address is subject to
translation by means of both the access-register-
translation (ART) and the dynamic-address-
translation (DAT) processes. ART applies to the
access register designated by the B± field, and it
obtains the segment-table designation to be used
by DAT. When DAT is on but the CPU is not in
the access-register mode, the first-operand
address is subject to translation by DAT. In this
case, DAT uses the segment-table designation
contained in control register 1, 7, or 13 when the
CPU is in the primary-space, secondary-space, or
home-space mode, respectively. When DAT is
off, the first-operand address is a real address not
subject to translation by either ART or DAT.

When the CPU is in the access-register mode and
a segment-table designation cannot be obtained
by ART because of a situation that would normally
cause one of the exceptions shown in the fol-
lowing table, the instruction is completed by
setting condition code 3.

Exception Name Cause

ALET specification Access-list-entry-token
(ALET) bits 0-6 not zeros

ALEN translation Access-list entry (ALE)
outside list or invalid (bit 0 is
one)
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ALE sequence ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

ASTE validity ASN-second-table entry
(ASTE) invalid (bit 0 is one)

ASTE sequence ASTE sequence number
(ASTESN) in ALE not equal
to ASTESN in ASTE

Extended authority ALE private bit not zero,
ALE authorization index
(ALEAX) not equal to
extended authorization
index (EAX), and secondary
bit selected by EAX either
outside authority table or
zero

When the access register contains 00000000 hex
or 00000001 hex, ART obtains the segment-table
designation from control register 1 or 7, respec-
tively, without accessing the access list. When
the B± field designates access register 0, ART
treats the access register as containing 00000000
hex and does not examine the actual contents of
the access register.

When ART is completed successfully, the opera-
tion is continued through the performance of DAT.

When DAT is on and the first-operand address
cannot be translated because of a situation that
would normally cause a page-translation or
segment-translation exception, the instruction is
completed by setting condition code 3.

When translation of the first-operand address can
be completed, or when DAT is off, the storage key
for the block designated by the first-operand
address is tested against the access key specified
in bits 24-27 of the second-operand address, and
the condition code is set to indicate whether store
and fetch accesses are permitted, taking into con-
sideration all applicable protection mechanisms.
Thus, for example, if low-address protection is
active and the first-operand effective address is
less than 512, then a store access is not per-
mitted. Access-list-controlled protection, page pro-
tection, storage-protection override, and
fetch-protection override also are taken into
account.

The contents of storage, including the change bit,
are not affected. Depending on the model, the
reference bit for the first-operand address may be
set to one, even for the case in which the location
is protected against fetching.

Special Conditions

When the CPU is in the access-register mode, an
addressing exception is recognized when the
address used by ART to fetch the effective
access-list designation or the ALE, ASTE, or
authority-table entry designates a location which is
not available in the configuration. When it is nec-
essary to access the authority table -- when the
private bit in the ALE is not zero and the ALEAX
in the ALE is not equal to the EAX -- an
ASN-translation-specification exception may be
recognized when bits 30, 31, and 60-63 of the
ASTE are not all zeros.

When DAT is on, an addressing exception is
recognized when the address of the segment-table
entry or page-table entry or the operand real
address after translation designates a location
which is not available in the configuration. Also, a
translation-specification exception is recognized
when the segment-table entry or page-table entry
has a format error. When DAT is off, only the
addressing exception due to the operand real
address applies.

For all of the above cases, the operation is sup-
pressed.

Resulting Condition Code:  

0 Fetching permitted; storing permitted
1 Fetching permitted; storing not permitted
2 Fetching not permitted; storing not permitted
3 Translation not available

 Program Exceptions: 

� Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, segment-table entry,
page-table entry, or operand 1)

 � ASN-translation specification
 � Privileged operation
 � Translation specification
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Programming Notes:

1. TEST PROTECTION permits a program to
check the validity of an address passed from
a calling program without incurring program
exceptions. The instruction sets a condition
code to indicate whether fetching or storing is
permitted at the location designated by the
first-operand address of the instruction. The
instruction takes into consideration all of the
protection mechanisms in the machine:
access-list controlled, page, key-controlled,
and low-address protection, storage-protection
override, and fetch-protection override. Addi-
tionally, since segment-translation and page-
translation exception conditions may be a
program substitute for a protection violation,
these conditions are used to set the condition
code rather than cause a program exception.

When the CPU is in the access-register mode,
TEST PROTECTION additionally permits the
program to check the usability of an access-
list-entry token (ALET) in an access register
without incurring program exceptions. The
ALET is checked for validity (absence of an
ALET-specification, ALEN-translation, and
ALE-sequence exception condition) and for
being authorized for use by the program
(absence of an ASTE-validity,
ASTE-sequence, and extended-authority
exception condition).

2. See the programming notes under SET PSW
KEY FROM ADDRESS for more details and
for an alternative approach to testing validity
of addresses passed by a calling program.
The approach using TEST PROTECTION has
the advantage of a test which does not result
in interruptions; however, the test and use are
separated in time and may not be accurate if
the possibility exists that the storage key of
the location in question can change between
the time it is tested and the time it is used.

3. In the handling of dynamic address trans-
lation, TEST PROTECTION is similar to LOAD
REAL ADDRESS in that the instructions do
not cause segment-translation and page-
translation exceptions. Instead, these excep-
tion conditions are indicated by means of a
condition-code setting. Similarly, access-
register translation sets a condition code for

certain exception conditions when performed
during either of the two instructions. Condi-
tions which result in condition codes 1, 2, and
3 for LOAD REAL ADDRESS result in condi-
tion code 3 for TEST PROTECTION. The
instructions also differ in several other
respects. The first-operand address of TEST
PROTECTION is a logical address and thus is
not subject to dynamic address translation
when DAT is off. The second-operand
address of LOAD REAL ADDRESS is a virtual
address which is always translated. TEST
PROTECTION may use the TLB for trans-
lation of the address, whereas LOAD REAL
ADDRESS does not use the TLB. (LOAD
REAL ADDRESS is the only instruction which
must perform dynamic address translation
without use of the TLB.)

Access-register translation applies to TEST
PROTECTION only when the CPU is in the
access-register mode (DAT is on), whereas it
applies to LOAD REAL ADDRESS when PSW
bits 16 and 17 are 01 binary regardless of
whether DAT is on or off. When condition
code 3 is set because of an exception condi-
tion in access-register translation, LOAD
REAL ADDRESS, but not TEST PRO-
TECTION, returns in a general register the
program-interruption code assigned to the
exception. When access-register translation is
performed, both TEST PROTECTION and
LOAD REAL ADDRESS may use the
ART-lookaside buffer (ALB).

When DAT is off for LOAD REAL ADDRESS,
the translation-specification exception for an
invalid value of bits 8-12 of control register 0
occurs after instruction fetching as part of the
execution portion of the instruction. This
exception condition cannot occur for TEST
PROTECTION since the operand address is a
logical address and does not result in exam-
ination of control register 0 when DAT is off.
When DAT is on, the exception would be
recognized during instruction fetching. Since
the instruction-fetching portion of an instruc-
tion is common for all instructions,
descriptions of access exceptions associated
with instruction fetching do not appear in the
individual instruction definitions.
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 TRACE

TRACE R±,R³,D²(B²) [RS]

┌────────┬────┬────┬────┬────────────┐

│ '99' │ R± │ R³ │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

When explicit tracing is on (bit 31 of control reg-
ister 12 is one), the second operand, which is a
32-bit word in storage, is fetched, and bit 0 of the
word is examined. If bit 0 of the second operand
is zero, a trace entry is formed at the real-storage
location designated by control register 12.

If explicit tracing is off (bit 31 of control register 12
is zero), or if bit 0 of the second operand is one,
no trace entry is formed, and no trace exceptions
are recognized.

The trace entry is composed of an entry-type iden-
tifier, a count of the number of general registers
whose contents are placed in the entry, bits 16-63
of the TOD clock, the second operand, and the
contents of a range of general registers. The
general registers are stored in ascending order of
their register numbers, starting with general reg-
ister R± and continuing up to and including
general register R³, with general register 0 fol-
lowing general register 15. The trace table and
the trace-entry formats are described in “Tracing”
on page 4-10.

When a trace entry is made, a serialization and
checkpoint-synchronization function is performed
before the operation begins and again after the
operation is completed.

Special Conditions

A privileged-operation exception is recognized in
the problem state, even when explicit tracing is off
or bit 0 of the second operand is one.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized. It is unpredictable whether the
specification exception is recognized when explicit
tracing is off.

It is unpredictable whether access exceptions are
recognized for the second operand when explicit
tracing is off.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2)
 � Privileged operation
 � Specification
 � Trace

Programming Note:  Bits 1-15 of the second
operand are reserved for model-dependent func-
tions and should therefore be set to zeros.

 TRAP
TRAP2 [E]

┌────────────────┐

│ 'ð1FF' │

└────────────────┘

ð 15

TRAP4 D²(B²) [S]

┌──────────────────┬────┬────────────┐

│ 'B2FF' │ B² │ D² │

└──────────────────┴────┴────────────┘

ð 16 2ð 31

A trap operation is performed if the CPU is in the
primary-space or access-register mode and the
TRAP-enabled bit in byte 47 of the dispatchable-
unit control table (DUCT) is one. Otherwise, a
special-operation exception is recognized.

The trap operation obtains a trap-control-block
address from the DUCT and then a trap-save-area
address and a trap-program address from the trap
control block. State information is stored in the
trap save area. Then the trap-control-block
address is loaded into general register 15. Finally,
the current PSW is updated by setting the
addressing-mode bit to one (31-bit mode) and the
address-space-control bits to zeros (primary-space
mode) and by replacing the instruction address
with the trap-program address.

For TRAP4, the second-operand address is not
used to address data; instead, it is stored in the
trap save area.

Dispatchable-Unit Control Table

Bytes 44-47 (word 10) of the dispatchable-unit-
control table (DUCT) are used by this instruction.
The contents of those bytes are as follows:
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DUCT Bytes 44-47

┌─┬──────────────────────────────┬──┬─┐

│ │ Trap-Control-Block Address │ │E│

└─┴──────────────────────────────┴──┴─┘

ð 1 29 31

The fields in bytes 44-47 of the DUCT are allo-
cated as follows:

Trap-Control-Block Address:  Bits 1-28, with
three zeros appended on the right, form the 31-bit
home virtual address of the trap control block.
This address is treated as a 31-bit home virtual
address regardless of the current addressing
mode and regardless of the current value of the
address-space-control bits. This address, with a
zero appended on the left, is placed in general
register 15 after the contents of that register have
been saved in the trap save area.

TRAP-Enabled Bit (E):  Bit 31 specifies, when
one, that the trap operation is to be performed.
TRAP recognizes a special-operation exception if
bit 31 is zero.

Bits 0, 29, and 30 of bytes 44-47 are ignored, but
they should be zeros to permit possible future
extensions.

Trap Control Block

The trap control block is 64 bytes aligned on a
doubleword boundary. The format of the trap
control block is:

 Hex Dec

──────────┬───────────────────────────┐

 ð ð │ │

 4 4 │ │

 8 8 │ │

──────────┼───────────────────────────┤

 C 12 │ Trap-Save-Area Address │

──────────┼───────────────────────────┤

 1ð 16 │ │

──────────┼───────────────────────────┤

 14 2ð │ Trap-Program Address │

──────────┼───────────────────────────┤

 18 24 │ │

──────────┼───────────────────────────┤

 1C 28 │///////////////////////////│

──────────┼───────────────────────────┤

 2ð 32 │ │

 / /

 3C 6ð │ │

──────────┴───────────────────────────┘

The fields in the trap control block are allocated as
follows:

Trap-Save-Area Address:  Bits 1-28 of bytes
12-15, with three zeros appended on the right,
form the 31-bit home virtual address of the trap

| save area. This address is treated as a 31-bit
home virtual address regardless of the current
addressing mode and regardless of the current
value of the address-space-control bits. Bits 0
and 29-31 of bytes 12-15 are ignored.

Trap-Program Address:  Bits 1-31 of bytes
20-23 form the 31-bit primary virtual address of
the trap program. Bit 0 of bytes 20-23 is ignored.

Bytes 0-11, 16-19, 24-27, and 32-63 of the trap
control block are reserved and should contain
zeros. Bytes 28-31 are available for use by pro-
gramming.

Trap Save Area

The trap save area is 256 bytes aligned on a
doubleword boundary.

The trap operation stores information into the trap
save area as follows:
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 Hex Dec

──────────┬───────────────────────────┐

 ð ð │ Trap Flags │

──────────┼───────────────────────────┤

 4 4 │ Reserved (Zeros Stored) │

──────────┼───────────────────────────┤

8 8 │Second-Op. Address of TRAP4│

──────────┼───────────────────────────┤

C 12 │ Access Register 15 │

──────────┼───────────────────────────┤

 1ð 16 │ PSW Values │

 14 2ð │ │

──────────┼───────────────────────────┤

18 24 │ Reserved (Zeros Stored) │

 1C 28 │ │

──────────┼───────────────────────────┤

 2ð 32 │ │

 24 36 │ │

/ General Registers ð-15 /

 58 88 │ │

 5C 92 │ │

──────────┼───────────────────────────┤

 6ð 96 │ │

64 1ðð │ │

 / Reserved (Unchanged) /

98 152 │ │

9C 156 │ │

──────────┼───────────────────────────┤

Að 16ð │///////////////////////////│

A4 164 │///////////////////////////│

──────────┼───────────────────────────┤

A8 168 │ │

AC 172 │ │

 / Reserved (Unchanged) /

F8 248 │ │

FC 252 │ │

──────────┴───────────────────────────┤

The fields in the trap save area are allocated as
follows:

Trap Flags:  Information identifying the
instruction(s) causing the trap operation is stored
in byte positions 0-3. The detailed format of bytes
0-3 is as follows:

Flag Bits Meaning
0 TRAP was target of EXECUTE
1 TRAP is TRAP4 (not TRAP2)
2-12 Reserved, zeros stored
13-14 Instruction-length code (ILC)
15-31 Reserved, zeros stored

Bit 0 of bytes 0-3 is set to one if TRAP was the
target of an EXECUTE instruction.

Bit 1 of bytes 0-3 is set to one if TRAP is TRAP4
(not TRAP2).

Bits 13 and 14 are the instruction-length code
(ILC) that specifies the length of the TRAP instruc-
tion, or the length of the EXECUTE instruction if
TRAP was the target of EXECUTE.

Bits 2-12 and 15-31 are reserved and are stored
as zeros.

Second-Operand Address of TRAP4:  For
TRAP4, the second-operand address, generated
under the control of the current addressing mode,
is stored in byte positions 8-11. For TRAP2, all
zeros are stored in those byte positions.

Access Register 15:  The contents of access
register 15 are stored in byte positions 12-15.

PSW Values:  Certain information from the
current PSW is stored in byte positions 16-23.
The PSW has the following format:

┌─┬─┬─────┬─┬─┬─┬─────┬─┬─┬─┬─┬───┬───┬──────┬───────────────┐

│ │ │ │ │I│E│ │ │ │ │ │ │ │ Prog │ │

│ð│R│ð ð ð│T│O│X│ Key │1│M│W│P│A S│C C│ Mask │ð ð ð ð ð ð ð ð│

└─┴─┴─────┴─┴─┴─┴─────┴─┴─┴─┴─┴───┴───┴──────┴───────────────┘

ð 5 8 12 16 18 2ð 24 31

┌─┬──────────────────────────────────────────────────────────┐

│ │ │

│A│ Instruction Address │

└─┴──────────────────────────────────────────────────────────┘

32 63

Bits 0-63 of bytes 16-23 correspond one-to-one
with bits 0-63 of the PSW. For some bit positions
of bytes 16-23, the corresponding PSW bits are
stored. For the other bit positions of bytes 16-23,
unpredictable values are stored. Information is
stored in bytes 16-23 as follows:

In summary, bits 0, 2-4, and 24-31 are zero, bit 12
is one, bits 1, 5-11, and 13 are unpredictable, and

Bits Value
 0 Zero
 1 Unpredictable
 2-4 Zero
 5-11 Unpredictable
12 One
13 Unpredictable
14 Wait state (W)
15 Problem state (P)
16-17 Address-space control (AS)
18-19 Condition code (CC)
20-23 Program mask
24-31 Zero
32 Addressing mode (A)
33-63 Instruction address
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the other bits are set with variable information
from the PSW.

The wait-state, problem-state, address-space-
control, condition-code, program-mask, and
addressing-mode values specify the state of the
CPU before the TRAP instruction was executed.
The instruction-address value is the updated
instruction address, which is the address of the
instruction following TRAP, or the address of the
instruction following EXECUTE if TRAP was the
target of EXECUTE.

General Registers 0-15:  The contents of general
registers 0-15 are stored in byte positions 32-95.
They are stored in ascending order of register
numbers, starting with register 0 and continuing up
to and including register 15.

| Bytes 24-31 are reserved, and zeros are stored in
| these byte positions. Bytes 96-255 remain

unchanged. Bytes 96-159 and 168-255 are
reserved. Bytes 160-167 are available for use by
programming.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode, and bit 31 in bytes 44-47 of
the dispatchable-unit control table must be one;
otherwise, a special-operation exception is recog-
nized.

All protection mechanisms apply in the usual way
to the accesses to the trap control block and trap
save area.

The trap-program address in the trap control block
is not tested before it replaces the instruction
address in the PSW. An odd address will cause a
specification exception to be recognized as part of
the execution of the next instruction.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-33 on
page 10-110.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, trap control block; store, trap
save area)

� Addressing (dispatchable-unit control table)
� Operation (if the trap facility is not installed)

 � Special operation
 � Trace

Programming Notes:

1. It is intended that TRAP instructions will
overlay instructions in an application program
in order to give control to a trap program,
which might be a program for performing
fix-ups of data used by the application
program, such as dates that may be a
“Year-2000” problem. TRAP2 can overlay a
two-byte instruction, and TRAP4 can overlay a
four-byte instructions or the first four bytes of
a six-byte instruction. The trap program is to
simulate the overlaid instruction and perform
fix-ups as appropriate, and it is then to return
control to the application program.

2. The trap program can use the RESUME
PROGRAM instruction to return control to the
application program. For example, the trap
program can restore the contents of all regis-
ters except access and general registers 15,

| and then, using those registers (or at least the
general register) to address the trap save
area, can restore the contents of those regis-
ters and also PSW fields from the trap save
area.

3. The trap control block and trap save area are
in the home address space, and the trap
program is in the primary address space. The
trap-control-block address placed in general
register 15 by TRAP can be useful to the trap
program if (1) the primary address space and
home address space are the same address
space, (2) the trap control block and trap save
area are at the same locations in the primary
address space as in the home address space,
or (3) the trap program can use access regis-
ters to access the home address space.
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┌──────────────────────────────────────────────────────────────────────────┐

│ 1.-6. Exceptions with the same priority as the priority of program- │

│ interruption conditions for the general case. │

│ │

│ 7.A Access exceptions for second instruction halfword (TRAP4 │

│ only). │

│ │

│ 7.B.1 Operation exception if the trap facility is not installed. │

│ │

│ 7.B.2.A Special-operation exception due to the CPU not being in the │

│ primary-space mode or access-register mode. │

│ │

│ 7.B.2.B.1 Addressing exception for access to dispatchable-unit control │

│ table. │

│ │

│ 7.B.2.B.2 Special-operation exception due to bit 31 in bytes 44-47 of │

│ dispatchable-unit control table being zero. │

│ │

│ 8.A Trace exceptions. │

│ │

│ 8.B.1 Access exceptions (fetch) for trap control block. │

│ │

│ 8.B.2 Access exceptions (store) for trap save area. │

└──────────────────────────────────────────────────────────────────────────┘

Figure 10-33. Priority of Execution: TRAP
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The machine-check-handling mechanism provides
extensive equipment-malfunction detection to

ensure the integrity of system operation and to
permit automatic recovery from some malfunc-
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tions. Equipment malfunctions and certain
external disturbances are reported by means of a
machine-check interruption to assist in program-
damage assessment and recovery. The inter-
ruption supplies the program with information
about the extent of the damage and the location
and nature of the cause. Equipment malfunctions,
errors, and other situations which can cause
machine-check interruptions are referred to as
machine checks.

 Machine-Check Detection
Machine-check-detection mechanisms may take
many forms, especially in control functions for
arithmetic and logical processing, addressing,
sequencing, and execution. For program-
addressable information, detection is normally
accomplished by encoding redundancy into the
information in such a manner that most failures in
the retention or transmission of the information
result in an invalid code. The encoding normally
takes the form of one or more redundant bits,
called check bits, appended to a group of data
bits. Such a group of data bits and the associated
check bits are called a checking block. The size
of the checking block depends on the model.

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement,
the check bit is sometimes referred to as a “parity
bit.” In other arrangements, a group of check bits
is included to permit detection of multiple errors, to
permit error correction, or both.

For checking purposes, the contents of the entire
checking block, including the redundancy, are
called the checking-block code (CBC). When a
CBC completely meets the checking requirements
(that is, no failure is detected), it is said to be
valid. When both detection and correction are
provided and a CBC is not valid but satisfies the
checking requirements for correction (the failure is
correctable), it is said to be near-valid. When a
CBC does not satisfy the checking requirements
(the failure is uncorrectable), it is said to be
invalid.

Correction of Machine
Malfunctions
Four mechanisms may be used to provide
recovery from machine-detected malfunctions:
error checking and correction, CPU retry, channel-
subsystem recovery, and unit deletion.

Machine failures which are corrected successfully
may or may not be reported as machine-check
interruptions. If reported, they are system-
recovery conditions, which permit the program to
note the cause of CPU delay and to keep a log of
such incidents.

Error Checking and Correction
When sufficient redundancy is included in circuitry
or in a checking block, failures can be corrected.
For example, circuitry can be triplicated, with a
voting circuit to determine the correct value by
selecting two matching results out of three, thus
correcting a single failure. An arrangement for
correction of failures of one order and for
detection of failures of a higher order is called
error checking and correction (ECC). Commonly,
ECC allows correction of single-bit failures and
detection of double-bit failures.

Depending on the model and the portion of the
machine in which ECC is applied, correction may
be reported as system recovery, or no report may
be given.

Uncorrected errors in storage and in the storage
key may be reported, along with a failing-storage
address, to indicate where the error occurred.
Depending on the situation, these errors may be
reported along with system recovery or with the
damage or backup condition resulting from the
error.

 CPU Retry
In some models, information about some portion
of the state of the machine is saved periodically.
The point in the processing at which this informa-
tion is saved is called a checkpoint. The informa-
tion saved is referred to as the checkpoint
information. The action of saving the information
is referred to as establishing a checkpoint. The
action of discarding previously saved information
is called invalidation of the checkpoint information.
The length of the interval between establishing
checkpoints is model-dependent. Checkpoints
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may be established at the beginning of each
instruction or several times within a single instruc-
tion, or checkpoints may be established less fre-
quently.

Subsequently, this saved information may be used
to restore the machine to the state that existed at
the time when the checkpoint was established.
After restoring the appropriate portion of the
machine state, processing continues from the
checkpoint. The process of restoring to a check-
point and then continuing is called CPU retry.

CPU retry may be used for machine-check
recovery, to effect nullification and suppression of
instruction execution when certain program inter-
ruptions occur, and in other model-dependent situ-
ations.

Effects of CPU Retry
CPU retry is, in general, performed so that there is
no effect on the program. However, change bits
which have been changed from zeros to ones are
not necessarily set back to zeros. As a result,
change bits may appear to be set to ones for
blocks which would have been accessed if
restoring to the checkpoint had not occurred. If
the path taken by the program is dependent on
information that may be changed by another CPU
or by a channel program or if an interruption
occurs, then the final path taken by the program
may be different from the earlier path; therefore,
change bits may be ones because of stores along
a path apparently never taken.

 Checkpoint Synchronization
Checkpoint synchronization consists in the fol-
lowing steps.

1. The CPU operation is delayed until all concep-
tually previous accesses by this CPU to
storage have been completed, both for pur-
poses of machine-check detection and as
observed by other CPUs and by channel pro-
grams.

2. All previous checkpoints, if any, are canceled.

3. Optionally, a new checkpoint is established.
The CPU operation is delayed until all of
these actions appear to be completed, as
observed by other CPUs and by channel pro-
grams.

Handling of Machine Checks during
Checkpoint Synchronization
When, in the process of completing all previous
stores as part of the checkpoint-synchronization
action, the machine is unable to complete all
stores successfully but can successfully restore
the machine to a previous checkpoint, processing
backup is reported.

When, in the process of completing all stores as
part of the checkpoint-synchronization action, the
machine is unable to complete all stores success-
fully and cannot successfully restore the machine
to a previous checkpoint, the type of machine-
check-interruption condition reported depends on
the origin of the store. Failure to successfully
complete stores associated with instruction exe-
cution may be reported as instruction-processing
damage, or some less critical machine-check-
interruption condition may be reported with the
storage-logical-validity bit set to zero. A failure to
successfully complete stores associated with the
execution of an interruption, other than program or
supervisor call, is reported as system damage.

When the machine check occurs as part of a
checkpoint-synchronization action before the exe-
cution of an instruction, the execution of the
instruction is nullified. When it occurs before the
execution of an interruption, the interruption condi-
tion, if the interruption is external, I/O, or restart, is
held pending. If the checkpoint-synchronization
operation was a machine-check interruption, then
along with the originating condition, either the
storage-logical-validity bit is set to zero or
instruction-processing damage is also reported.
Program interruptions, if any, are lost.

 Checkpoint-Synchronization
Operations
All interruptions and the execution of certain
instructions cause a checkpoint-synchronization
action to be performed. The operations which
cause a checkpoint-synchronization action are
called checkpoint-synchronization operations and
include:

 � CPU reset
� All interruptions: external, I/O, machine

check, program, restart, and supervisor call
� The BRANCH ON CONDITION (BCR) instruc-

tion with the M± and R² fields containing all
ones and all zeros, respectively
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� The instructions LOAD PSW, SET STORAGE
KEY EXTENDED, and SUPERVISOR CALL

� All I/O instructions
� The instructions MOVE TO PRIMARY, MOVE

TO SECONDARY, PROGRAM CALL,
| PROGRAM CALL FAST, PROGRAM

TRANSFER, SET ADDRESS SPACE
CONTROL, and SET SECONDARY ASN, and
PROGRAM RETURN when the state entry to
be unstacked is a program-call state entry

� The three trace functions: branch tracing,
ASN tracing, and explicit tracing

Programming Note:  The instructions which are
defined to cause the checkpoint-synchronization
action invalidate checkpoint information but do not
necessarily establish a new checkpoint. Addi-
tionally, the CPU may establish a checkpoint
between any two instructions or units of operation,
or within a single unit of operation. Thus, the
point of interruption for the machine check is not
necessarily at an instruction defined to cause a
checkpoint-synchronization action.

 Checkpoint-Synchronization Action
For all interruptions except I/O interruptions, a
checkpoint-synchronization action is performed at
the completion of the interruption. For I/O inter-
ruptions, a checkpoint-synchronization action may
or may not be performed at the completion of the
interruption. For all interruptions except program,
supervisor-call, and exigent machine-check inter-
ruptions, a checkpoint-synchronization action is
also performed before the interruption. The fetch
access to the new PSW may be performed either
before or after the first checkpoint-synchronization
action. The store accesses and the changing of
the current PSW associated with the interruption
are performed after the first checkpoint-
synchronization action and before the second.

For all checkpoint-synchronization instructions
except BRANCH ON CONDITION (BCR), I/O
instructions, and SUPERVISOR CALL, checkpoint-
synchronization actions are performed before and
after the execution of the instruction. For BCR,
only one checkpoint-synchronization action is nec-
essarily performed, and it may be performed either
before or after the instruction address is updated.
For SUPERVISOR CALL, a checkpoint-

synchronization action is performed before the
instruction is executed, including the updating of
the instruction address in the PSW. The
checkpoint-synchronization action taken after the
supervisor-call interruption is considered to be part
of the interruption action and not part of the
instruction execution. For I/O instructions, a
checkpoint-synchronization action is always per-
formed before the instruction is executed and may
or may not be performed after the instruction is
executed.

The three trace functions — branch tracing, ASN
tracing, and explicit tracing — cause checkpoint-
synchronization actions to be performed before
the trace action and after completion of the trace
action.

 Channel-Subsystem Recovery
When errors are detected in the channel sub-
system, the channel subsystem attempts to
analyze and recover the internal state associated
with the various channel-subsystem functions and
the state of the channel subsystem and various
subchannels. This process, which is called
channel-subsystem recovery, may result in a com-
plete recovery or may result in the termination of
one or more I/O operations and the clearing of the
affected subchannels. Special channel-report-
pending machine-check-interruption conditions
may be generated to indicate to the program the
status of the channel-subsystem recovery.

Malfunctions associated with the I/O operations,
depending on the severity of the malfunction, may
be reported by means of the I/O-interruption
mechanism or by means of the channel-report-
pending and channel-subsystem-damage
machine-check-interruption conditions.

 Unit Deletion
In some models, malfunctions in certain units of
the system can be circumvented by discontinuing
the use of the unit. Examples of cases where unit
deletion may occur include the disabling of all or a
portion of a cache or of a translation-lookaside
buffer (TLB). Unit deletion may be reported as a
degradation machine-check-interruption condition.
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Handling of Machine Checks
A machine check is caused by a machine mal-
function and not by data or instructions. This is
ensured during the power-on sequence by initial-
izing the machine controls to a valid state and by
placing valid CBC in the CPU registers, in the
storage keys, and in main storage.

Designation of an unavailable component, such as
a storage location, subchannel, or I/O device,
does not cause a machine-check indication.
Instead, such a condition is indicated by the
appropriate program or I/O interruption or
condition-code setting. In particular, an attempt to
access a storage location which is not in the con-
figuration, or which has power off at the storage
unit, results in an addressing exception when
detected by the CPU and does not generate a
machine-check condition, even though the storage
location or its associated storage key has invalid
CBC. Similarly, if the channel subsystem attempts
to access such a location, an I/O-interruption con-
dition indicating program check is generated rather
than a machine-check condition.

A machine check is indicated whenever the result
of an operation could be affected by information
with invalid CBC or when any other malfunction
makes it impossible to establish reliably that an
operation can be, or has been, performed cor-
rectly. When information with invalid CBC is
fetched but not used, the condition may or may
not be indicated, and the invalid CBC is pre-
served.

When a machine malfunction is detected, the
action taken depends on the model, the nature of
the malfunction, and the situation in which the
malfunction occurs. Malfunctions affecting
operator-facility actions may result in machine
checks or may be indicated to the operator. Mal-
functions affecting certain other operations such
as SIGNAL PROCESSOR may be indicated by
means of a condition code or may result in a
machine-check-interruption condition.

A malfunction detected as part of an I/O operation
may cause a machine-check-interruption condition,
an I/O-error condition, or both. I/O-error condi-
tions are indicated by an I/O interruption or by the
appropriate condition-code setting during the exe-
cution of an I/O instruction. When the machine

reports a failing-storage location detected during
an I/O operation, both I/O-error and machine-
check conditions may be indicated. The I/O-error
condition is the primary indication to the program.
The machine-check condition is a secondary indi-
cation, which is presented as system recovery
together with a failing-storage address.

Certain malfunctions detected as part of I/O
instructions and I/O operations are reported by
means of special machine-check conditions called
I/O machine-check conditions. Thus, malfunctions
detected as part of an operation which is I/O
related may be reported, depending on the error,
in any of three ways: I/O-error condition, I/O
machine-check condition, or non-I/O machine-
check condition. In some cases, the definition
requires the error to be reported by only one of
these mechanisms; in other cases, any one, or in
some cases, more than one, may be indicated.

Programming Note:  Although the definition for
machine-check conditions is that they are caused
by machine malfunctions and not by data and
instructions, there are certain unusual situations in
which machine-check conditions are caused by
events which are not machine malfunctions. Two
examples follow:

1. In some cases, the channel-report-pending
machine-check-interruption condition indicates
a non-error situation. For example, this condi-
tion is generated at the completion of the
function specified by RESET CHANNEL
PATH.

2. Improper use of DIAGNOSE may result in
machine-check conditions.

 Validation
Machine errors can be generally classified as solid
or intermittent, according to the persistence of the
malfunction. A persistent machine error is said to
be solid, and one that is not persistent is said to
be intermittent. In the case of a register or
storage location, a third type of error must be con-
sidered, called externally generated. An externally
generated error is one where no failure exists in
the register or storage location but invalid CBC
has been introduced into the location by actions
external to the location. For example, the value
could be affected by a power transient, or an
incorrect value may have been introduced when
the information was placed at the location.
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Invalid CBC is preserved as invalid when informa-
tion with invalid CBC is fetched or when an
attempt is made to update only a portion of the
checking block. When an attempt is made to
replace the contents of the entire checking block
and the block contains invalid CBC, it depends on
the operation and the model whether the block
remains with invalid CBC or is replaced. An oper-
ation which replaces the contents of a checking
block with valid CBC, while ignoring the current
contents, is called a validation operation. Vali-
dation is used to place a valid CBC in a register or
at a location which has an intermittent or
externally generated error.

Validating a checking block does not ensure that a
valid CBC will be observed the next time the
checking block is accessed. If the failure is solid,
validation is effective only if the information placed
in the checking block is such that the failing bits
are set to the value to which they fail. If an
attempt is made to set the bits to the state oppo-
site to that in which they fail, then the validation
will not be effective. Thus, for a solid failure, vali-
dation is only useful to eliminate the error condi-
tion, even though the underlying failure remains,
thereby reducing the exposure to additional
reports. The locations, however, cannot be used,
since invalid CBC will result from attempts to store
other values at the location. For an intermittent
failure, however, validation is useful to restore a
valid CBC such that a subsequent partial store
into the checking block will be permitted. (A
partial store is a store into a checking block
without replacing the entire checking block.)

When a checking block consists of multiple bytes
in storage, or multiple bits in CPU registers, the
invalid CBC can be made valid only when all of
the bytes or bits are replaced simultaneously.

For each type of field in the system, certain
instructions are defined to validate the field.
Depending on the model, additional instructions
may also perform validation; or, in some models, a
register is automatically validated as part of the
machine-check-interruption sequence after the ori-
ginal contents of the register are placed in the
appropriate save area.

When an error occurs in a checking block, the ori-
ginal information contained in the checking block
should be considered lost even after validation.
Automatic register validation leaves the contents

unpredictable. Programmed and manual vali-
dation of checking blocks causes the contents to
be changed explicitly.

Programming Note:  The machine-check-
interruption handler must assume that the regis-
ters require validation. Thus, each register should
be loaded, using an instruction defined to validate,
before the register is used or stored.

Invalid CBC in Storage
The size of the checking block in storage depends
on the model but is never more than 4K bytes.

When invalid CBC is detected in storage, a
machine-check condition may occur; depending on
the circumstances, the machine-check condition
may be system damage, instruction-processing
damage, or system recovery. If the invalid CBC is
detected as part of the execution of a channel
program, the error is reported as an I/O-error con-
dition. When a CCW, indirect-data-address word,
or data is prefetched from storage, is found to
have invalid CBC, but is not used in the channel
program, the condition is normally not reported as
an I/O-error condition. The condition may or may
not be reported as a machine-check-interruption
condition. Invalid CBC detected during accesses
to storage for other than CPU-related accesses
may be reported as system recovery with storage
error uncorrected indicated, since the primary
error indication is reported by some other means.

When the storage checking block consists of mul-
tiple bytes and contains invalid CBC, special
storage-validation procedures are generally neces-
sary to restore or place new information in the
checking block. Validation of storage is provided
with the manual load-clear and system-reset-clear
operations and is also provided as a program
function. Programmed storage validation is done
a block at a time, by executing the privileged
instruction TEST BLOCK. Manual storage vali-
dation by clear reset validates all blocks which are
available in the configuration.

A checking block with invalid CBC is never vali-
dated unless the entire contents of the checking
block are replaced. An attempt to store into a
checking block having invalid CBC, without
replacing the entire checking block, leaves the
data in the checking block (including the check
bits) unchanged. Even when an instruction or a
channel-program-input operation specifies that the
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entire contents of a checking block are to be
replaced, validation may or may not occur,
depending on the operation and the model.

Programming Note:  Machine-check conditions
may be reported for prefetched and unused data.
Depending on the model, such situations may, or
may not, be successfully retried. For example, a
BRANCH AND LINK (BALR) instruction which
specifies an R² field of zero will never branch, but
on some models a prefetch of the location desig-
nated by register 0 may occur. Access exceptions
associated with this prefetch will not be reported.
However, if an invalid checking-block code is
detected, CPU retry may be attempted.
Depending on the model, the prefetch may recur
as part of the retry, and thus the retry will not be
successful. Even when the CPU retry is suc-
cessful, the performance degradation of such a
retry is significant, and system recovery may be
presented, normally with a failing-storage address.
To avoid continued degradation, the program
should initiate proceedings to eliminate use of the
location and to validate the location.

Programmed Validation of Storage
Provided that an invalid CBC does not exist in the
storage key associated with a 4K-byte block, the
instruction TEST BLOCK causes the entire
4K-byte block to be set to zeros with a valid CBC,
regardless of the current contents of the storage.
TEST BLOCK thus removes an invalid CBC from

a location in storage which has an intermittent, or
one-time, failure. However, if a permanent failure
exists in a portion of the storage, a subsequent
fetch may find an invalid CBC.

Invalid CBC in Storage Keys
Depending on the model, each storage key may
be contained in a single checking block, or the
access-control and fetch-protection bits and the
reference and change bits may be in separate
checking blocks.

Figure 11-1 on page 11-8 describes the action
taken when the storage key has invalid CBC. The
figure indicates the action taken for the case when
the access-control and fetch-protection bits are in
one checking block and the reference and change
bits are in a separate checking block. In
machines where both fields are included in a
single checking block, the action taken is the com-
bination of the actions for each field in error,
except that completion is permitted only if an error
in all affected fields permits completion. Refer-
ences to main storage to which key-controlled pro-
tection does not apply are treated as if an access
key of zero is used for the reference. This
includes such references as channel-program ref-
erences during initial program loading and implicit
references, such as interruption action and
DAT-table accesses.
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┌──────────────────────┬─────────────────────────────────────────────┐

│ │ Action Taken on Invalid CBC │

│ ├──────────────────────┬──────────────────────┤

│ │For Access-Control and│ For Reference and │

│ Type of Reference │Fetch-Protection Bits │ Change Bits │

├──────────────────────┼──────────────────────┼──────────────────────┤

│SET STORAGE KEY │Complete; validate. │Complete; validate. │

│ EXTENDED │ │ │

│ │ │ │

│INSERT STORAGE KEY │PD; preserve. │PD; preserve. │

│ EXTENDED │ │ │

│ │ │ │

│RESET REFERENCE BIT │PD or complete; │PD; preserve. │

│ EXTENDED │preserve. │ │

│ │ │ │

│INSERT VIRTUAL STORAGE│PD; preserve. │CPF; preserve. │

│ KEY or TEST PROTEC- │ │ │

│ TION │ │ │

│ │ │ │

│CPU prefetch (informa-│CPF; preserve. │CPF; preserve. │

│ tion not used) │ │ │

│ │ │ │

│Channel-program pre- │IPF; preserve. │IPF; preserve. │

│ fetch (information │ │ │

│ not used) │ │ │

│ │ │ │

│Fetch, nonzero access │MC; preserve. │MC or complete; │

│ key │ │preserve. │

│ │ │ │

│Storeñ, nonzero access│MCò; preserve. │MC and preserve; or │

│ key │ │completeó and correct.│

│ │ │ │

│Fetch, zero access │MC or complete; │MC or complete; │

│ keyô │preserve. │preserve. │

│ │ │ │

│Storeñ, zero access │MC or complete; │MC and preserve; or │

│ keyò │preserve. │completeó and correct.│

├──────────────────────┴──────────────────────┴──────────────────────┤

│Explanation: │

│ │

│ñ CPU virtual- and logical-address store accesses are sub- │

│ ject to page protection. When the page-protection bit │

│ is one, the location will not be changed; however, the │

│ machine may indicate a machine-check condition if the │

│ storage key or the data itself has invalid CBC. │

│ │

│ò The contents of the main-storage location are not changed.│

│ │

│ó The contents of the reference and change bits are set │

│ to ones if the "complete" action is taken. │

│ │

│ô The action shown for an access key of zero is also appli- │

│ cable to references to which key-controlled protection │

│ does not apply. │

└────────────────────────────────────────────────────────────────────┘

Figure 11-1 (Part 1 of 2). Invalid CBC in Storage Keys
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┌────────────────────────────────────────────────────────────────────┐

│Explanation (Continued): │

│ │

│Complete The condition does not cause termination of the execution │

│ of the instruction, and, unless an unrelated condition │

│ prohibits it, the execution of the instruction is │

│ completed, ignoring the error condition. No machine- │

│ check-damage conditions are reported, but system recovery │

│ may be reported. │

│ │

│Correct The reference and change bits are set to ones with valid │

│ CBC. │

│ │

│Preserve The contents of the entire checking block having invalid │

│ CBC are left unchanged. │

│ │

│Validate The entire key is set to the new value with valid CBC. │

│ │

│CPF Invalid CBC in the storage key for a CPU prefetch which │

│ is unused, or for instructions which do not examine the │

│ reference and change bits, may result in any of the fol- │

│ lowing situations: │

│ ¸ The operation is completed; no machine-check condi- │

│ tion is reported. │

│ ¸ The operation is completed; system recovery, with │

│ storage-key error uncorrected, is reported. │

│ ¸ Instruction-processing damage, with or without backup │

│ and with storage-key error uncorrected, is reported. │

│ │

│IPF Invalid CBC in the storage key for a channel-program pre- │

│ fetch which is unused may result in any of the following: │

│ ¸ The I/O operation is completed; no machine-check con- │

│ dition is reported. │

│ ¸ The I/O operation is completed; system recovery, with │

│ storage-key error uncorrected, is reported. │

│ │

│MC Same as PD for CPU references, but a channel-subsystem │

│ reference may result in the following combinations of │

│ I/O-error conditions and machine-check conditions: │

│ ¸ An I/O-error condition is reported; no machine-check │

│ condition is reported. │

│ ¸ An I/O-error condition is reported; system recovery, │

│ with or without storage-key error uncorrected, is │

│ reported. │

│ │

│PD Instruction-processing damage, with or without backup │

│ and with or without storage-key error uncorrected, is │

│ reported. │

│ │

│Note: When storage-key error uncorrected is reported, a failing- │

│ storage address may or may not also be reported. │

└────────────────────────────────────────────────────────────────────┘

Figure 11-1 (Part 2 of 2). Invalid CBC in Storage Keys

Invalid CBC in Registers
When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized.
CPU registers include the general, floating-point,
access, and control registers, the current PSW,
the prefix register, the TOD clock, the CPU timer,
and the clock comparator.

When a machine-check interruption occurs,
whether or not it is due to invalid CBC in a CPU
register, the following actions affecting the CPU
registers, other than the prefix register and the
TOD-clock, are taken as part of the interruption.
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1. The contents of the registers are saved in
assigned storage locations. Any register
which is in error is identified by a corre-
sponding validity bit of zero in the machine-
check-interruption code. Malfunctions
detected during register saving do not result in
additional machine-check-interruption condi-
tions; instead, the correctness of all the infor-
mation stored is indicated by the appropriate
setting of the validity bits.

2. On some models, registers with invalid CBC
are then validated, their actual contents being
unpredictable. On other models, programmed
validation is required.

The prefix register and the TOD clock are not
stored during a machine-check interruption, have
no corresponding validity bit, and are not vali-
dated.

On those models in which registers are not auto-
matically validated as part of the machine-check
interruption, a register with invalid CBC will not
cause a machine-check-interruption condition
unless the contents of the register are actually
used. In these models, each register may consist
of one or more checking blocks, but multiple regis-
ters are not included in a single checking block.
When only a portion of a register is accessed,
invalid CBC in the unused portion of the same
register may cause a machine-check-interruption
condition. For example, invalid CBC in the right
half of a floating-point register may cause a
machine-check-interruption condition if a LOAD
(LE) operation attempts to replace the left half, or
short form, of the register.

Invalid CBC associated with the prefix register
cannot safely be reported by the machine-check
interruption, since the interruption itself requires
that the prefix value be applied to convert real
addresses to the corresponding absolute
addresses. Invalid CBC in the prefix register
causes the CPU to enter the check-stop state
immediately.

On those models which do not validate registers
during a machine-check interruption, the following
instructions will cause validation of a register, pro-
vided the information in the register is not used
before the register is validated. Other instructions,
although they replace the entire contents of a reg-
ister, do not necessarily cause validation.

General registers are validated by BRANCH AND
LINK (BAL, BALR), BRANCH AND SAVE (BAS,
BASR), LOAD (LR), and LOAD ADDRESS.
LOAD (L) and LOAD MULTIPLE validate if the
operand is on a word boundary, and LOAD
HALFWORD validates if the operand is on a
halfword boundary.

Floating-point registers are validated by LOAD
(LDR) and, if the operand is on a doubleword
boundary, by LOAD (LD).

Access registers are validated by LOAD ACCESS
MULTIPLE. Only the even-odd access-register
pairs that are included in the set of access regis-
ters specified for LOAD ACCESS MULTIPLE are
validated. Thus, when a single access register is
specified, or when a pair of access registers
starting with an odd-numbered register is speci-
fied, no register is validated.

Control registers may be validated either singly or
in groups by using the instruction LOAD
CONTROL.

The CPU timer, clock comparator, and prefix reg-
ister are validated by SET CPU TIMER, SET
CLOCK COMPARATOR, and SET PREFIX,
respectively.

The TOD clock is validated by SET CLOCK if the
TOD-clock control is in the enable-set position.

Programming Note:  Depending on the register
and the model, the contents of a register may be
validated by the machine-check interruption, or the
model may require that a program execute a vali-
dating instruction after the machine-check inter-
ruption has occurred. In the case of the CPU
timer, depending on the model, both the machine-
check interruption and validating instructions may
be required to restore the CPU timer to full
working order.

 Check-Stop State
In certain situations, it is impossible or undesirable
to continue operation when a machine error
occurs. In these cases, the CPU may enter the
check-stop state, which is indicated by the check-
stop indicator.

In general, the CPU may enter the check-stop
state whenever an uncorrectable error or other
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malfunction occurs and the machine is unable to
recognize a specific machine-check-interruption
condition.

The CPU always enters the check-stop state if
any of the following conditions exists:

� PSW bit 13 is zero, and an exigent machine-
check condition is generated.

� During the execution of an interruption due to
one exigent machine-check condition, another
exigent machine-check condition is detected.

� During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully, or the new PSW cannot
be fetched successfully.

� Invalid CBC is detected in the prefix register.

� A malfunction in the receiving CPU, which is
detected after accepting the order, prevents
the successful completion of a SIGNAL
PROCESSOR order and the order was a
reset, or the receiving CPU cannot determine
what the order was. The receiving CPU
enters the check-stop state.

There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed.
The TOD clock is normally not affected by the
check-stop state. The CPU timer may or may not
run in the check-stop state, depending on the
error and the model. The start key and stop key
are not effective in this state.

The CPU may be removed from the check-stop
state by CPU reset.

In a multiprocessing configuration, a CPU entering
the check-stop state generates a request for a
malfunction-alert external interruption to all CPUs
in the configuration. Except for the reception of a
malfunction alert, other CPUs and the I/O system
are normally unaffected by the check-stop state in
a CPU. However, depending on the nature of the
condition causing the check stop, other CPUs may

also be delayed or stopped, and channel sub-
system and I/O activity may be affected.

System Check Stop
In a multiprocessing configuration, some errors,
malfunctions, and damage conditions are of such
severity that the condition causes all CPUs in the
configuration to enter the check-stop state. This
condition is called a system check stop. The state
of the channel subsystem and I/O activity is
unpredictable.

 Machine-Check Interruption
A request for a machine-check interruption, which
is made pending as the result of a machine check,
is called a machine-check-interruption condition.
There are two types of machine-check-interruption
conditions: exigent conditions and repressible
conditions.

 Exigent Conditions
Exigent machine-check-interruption conditions are
those in which damage has or would have
occurred such that execution of the current
instruction or interruption sequence cannot safely
continue. Exigent conditions include two sub-
classes: instruction-processing damage and
system damage. In addition to indicating specific
exigent conditions, system damage is used to
report any malfunction or error which cannot be
isolated to a less severe report.

Exigent conditions for instruction sequences can
be either nullifying exigent conditions or termi-
nating exigent conditions, according to whether
the instructions affected are nullified or terminated.
Exigent conditions for interruption sequences are
terminating exigent conditions. The terms
“nullification” and “termination” have the same
meanings as that used in Chapter 5, “Program
Execution,” except that more than one instruction
may be involved. Thus, a nullifying exigent condi-
tion indicates that the CPU has returned to the
beginning of a unit of operation prior to the error.
A terminating exigent condition means that the
results of one or more instructions may have
unpredictable values.
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 Repressible Conditions
Repressible machine-check-interruption conditions
are those in which the results of the instruction-
processing sequence have not been affected.
Repressible conditions can be delayed, until the
completion of the current instruction or even
longer, without affecting the integrity of CPU oper-
ation. Repressible conditions are of three groups:
recovery, alert, and repressible damage. Each
group includes one or more subclasses.

A malfunction in the CPU, storage, or operator
facilities which has been successfully corrected or
circumvented internally without logical damage is
called a recovery condition. Depending on the
model and the type of malfunction, some or all
recovery conditions may be discarded and not
reported. Recovery conditions that are reported
are grouped in one subclass, system recovery.

A machine-check-interruption condition not directly
related to a machine malfunction is called an alert
condition. The alert conditions are grouped in two
subclasses: degradation and warning.

A malfunction resulting in an incorrect state of a
portion of the system not directly affecting sequen-
tial CPU operation is called a repressible-damage
condition. Repressible-damage conditions are
grouped in six subclasses, according to the func-
tion affected: timing-facility damage, external
damage, channel report pending, channel-
subsystem damage, service-processor damage,
and vector-facility failure.

Programming Notes:

1. Even though repressible conditions are usually
reported only at normal points of interruption,
they may also be reported with exigent
machine-check conditions. Thus, if an exigent
machine-check condition causes an instruction
to be abnormally terminated and a machine-
check interruption occurs to report the exigent
condition, any pending repressible conditions
may also be reported. The meaningfulness of
the validity bits depends on what exigent con-
dition is reported.

2. Classification of damage as either exigent or
repressible does not imply the severity of the
damage. The distinction is whether action
must be taken as soon as the damage is
detected (exigent) or whether the CPU can

continue processing (repressible). For a
repressible condition, the current instruction
can be completed before taking the machine-
check interruption if the CPU is enabled for
machine checks; if the CPU is disabled for
machine checks, the condition can safely be
kept pending until the CPU is again enabled
for machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is han-
dling an earlier instruction-processing-damage
interruption. If, during that time, an I/O opera-
tion encounters a storage error, that condition
can be kept pending because it is not
expected to interfere with the current machine-
check processing. If, however, the CPU also
makes a reference to the area of storage con-
taining the error before re-enabling machine-
check interruptions, another
instruction-processing-damage condition is
created, which is treated as an exigent condi-
tion and causes the CPU to enter the check-
stop state.

3. A repressible condition may be a floating con-
dition. A floating repressible condition is eli-
gible to cause an interruption on any CPU in
the configuration. At the point when a CPU
performs an interruption for a floating
repressible condition, the condition is no
longer eligible to cause an interruption on the
remaining CPUs in the configuration.

 Interruption Action
A machine-check interruption causes the following
actions to be taken. The PSW reflecting the point
of interruption is stored as the machine-check old
PSW at real location 48. The contents of other
registers are stored in register save areas at real
locations 216-231 and 288-511, and in a machine-
check extended save area designated by the con-
tents of real locations 212-215. After the contents
of the registers are stored in register save areas
and the extended save area, depending on the
model, the registers may be validated with the
contents being unpredictable. A failing-storage

| address may be stored at real locations 248-251,
and an external-damage code may be stored at

| real locations 244-247. A machine-check-
interruption code (MCIC) of eight bytes is stored at

| real locations 232-239. The new PSW is fetched
| from real locations 112-119. In addition, a

machine-check logout may have occurred.
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The machine-generated addresses used to access
the old and new PSW, the MCIC, extended inter-
ruption information, the locations containing the
extended-save-area address, and the fixed-logout
area are all real addresses. The extended-save-
area address is an absolute address.

The fields in assigned storage locations that are
accessed during the machine-check interruption
are summarized in Figure 11-2.

┌──────────────────────────────────────┬─────────┬────────┐

│ │Starting │ Length │

│ Information Stored (Fetched) │Location\│in Bytes│

├──────────────────────────────────────┼─────────┼────────┤

│Old PSW │ 48 │ 8 │

│New PSW (fetched) │ 112 │ 8 │

│Extended-save-area address (fetched) │ 212 │ 4 │

│Machine-check-interruption code │ 232 │ 8 │

│Register save areas │ │ │

│ CPU timer │ 216 │ 8 │

│ Clock comparator │ 224 │ 8 │

│ Access registers ð-15 │ 288 │ 64 │

│ Floating-point registers ð, 2, 4, 6 │ 352 │ 32 │

│ General registers ð-15 │ 384 │ 64 │

│ Control registers ð-15 │ 448 │ 64 │

│Extended interruption information │ │ │

│ External-damage code │ 244 │ 4 │

│ Failing-storage address │ 248 │ 4 │

│Fixed-logout area │ 256 │ 16 │

├──────────────────────────────────────┴─────────┴────────┤

│Explanation: │

│ │

│ \ All locations are in real storage. │

└─────────────────────────────────────────────────────────┘

Figure 11-2. Machine-Check-Interruption Locations

When the basic-floating-point-extensions facility is
installed, the extended-save-area control, bit 2 of
control register 14, is one, and bits 1-19 of the
word at real locations 212-215 are not all zeros,
then other fields are stored in the machine-check
extended save area. Figure 11-3 lists the fields
that are stored, their offsets within the area, and
their lengths. Bytes 144-4095 of the extended
save area remain unchanged.

┌────────────────────────────┬────────┬────────┐

│ │ Byte │ Length │

│ Field │ Offset │in Bytes│

├────────────────────────────┼────────┼────────┤

│ Fl-pt registers ð-15 │ ð │ 128 │

│ Fl-pt-control register │ 128 │ 4 │

│ Reserved (zeros stored) │ 132 │ 12 │

└────────────────────────────┴────────┴────────┘

Figure 11-3. Machine-Check Extended-Save-Area
Locations

The address of the machine-check extended save
area is formed by appending 12 zeros to the right
of bits 1-19 of the word at real locations 212-215.
This address is treated as a 31-bit absolute
address. If the 4096-byte block of storage at the

address is not available in the configuration,
storing into the extended save area is not per-
formed.

If the machine-check-interruption code cannot be
stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-
stop state.

A repressible machine-check condition can initiate
a machine-check interruption only if both PSW bit
13 is one and the associated subclass mask bit, if
any, in control register 14 is also one. When it
occurs, the interruption does not terminate the
execution of the current instruction; the inter-
ruption is taken at a normal point of interruption,
and no program or supervisor-call interruptions are
eliminated. If the machine check occurs during
the execution of a machine function, such as a
CPU-timer update, the machine-check interruption
takes place after the machine function has been
completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Depending on the model and
the condition, multiple repressible conditions may
be held pending for a particular subclass, or only
one condition may be held pending for a particular
subclass, regardless of the number of conditions
that may have been detected for that subclass.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indi-
cated by the same interruption code, even though
the CPU is disabled for those subclasses. All indi-
cated conditions are then cleared.

If a machine check which is to be reported as a
system-recovery condition is detected during the
execution of the interruption procedure due to a
previous machine-check condition, the system-
recovery condition may be combined with the
other conditions, discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when PSW bit 13
is one. When a nullifying exigent condition causes
a machine-check interruption, the interruption is
taken at a normal point of interruption. When a
terminating exigent condition causes a machine-
check interruption, the interruption terminates the
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execution of the current instruction and may elimi-
nate the program and supervisor-call interruptions,
if any, that would have occurred if execution had
continued. Proper execution of the interruption
sequence, including the storing of the old PSW
and other information, depends on the nature of
the malfunction. When an exigent machine-check
condition occurs during the execution of a
machine function, such as a CPU-timer update,
the sequence is not necessarily completed.

If, during the execution of an interruption due to
one exigent machine-check condition, another
exigent machine check is detected, the CPU
enters the check-stop state. If an exigent machine
check is detected during an interruption due to a
repressible machine-check condition, system
damage is reported.

When PSW bit 13 is zero, an exigent machine-
check condition causes the CPU to enter the
check-stop state.

Machine-check-interruption conditions are handled
in the same manner regardless of whether the
wait-state bit in the PSW is one or zero: a
machine-check condition causes an interruption if
the CPU is enabled for that condition.

Machine checks which occur while the rate control
is set to the instruction-step position are handled
in the same manner as when the control is set to
the process position; that is, recovery mechanisms
are active, and machine-check interruptions occur
when allowed. Machine checks occurring during a
manual operation may be indicated to the oper-
ator, may generate a system-recovery condition,
may result in system damage, or may cause a
check stop, depending on the model.

Every reasonable attempt is made to limit the side
effects of any machine check and the associated
interruption. Normally, interruptions, as well as
the progress of I/O operations, remain unaffected.
The malfunction, however, may affect these activ-
ities, and, if the currently active PSW has bit 13
set to one, the machine-check interruption will
indicate the total extent of the damage caused,
and not just the damage which originated the con-
dition.

Point of Interruption
The point in the processing which is indicated by
the interruption and used as a reference point by
the machine to determine and indicate the validity
of the status stored is referred to as the point of
interruption.

Because of the checkpoint capability in models
with CPU retry, the interruption resulting from an
exigent machine-check-interruption condition may
indicate a point in the CPU processing sequence
which is logically prior to the error. Additionally,
the model may have some choice as to which
point in the CPU processing sequence the inter-
ruption is indicated, and, in some cases, the
status which can be indicated as valid depends on
the point chosen.

Only certain points in the processing may be used
as a point of interruption. For repressible
machine-check interruptions, the point of inter-
ruption must be after one unit of operation is com-
pleted and any associated program or
supervisor-call interruption is taken, and before the
next unit of operation is begun.

Exigent machine-check conditions for instruction
sequences are those in which damage has or
would have occurred to the instruction stream.
Thus, the damage can normally be associated
with a point part way though an instruction, and
this point is called the point of damage. In some
cases, there may be one or more instructions sep-
arating the point of damage and the point of inter-
ruption, and the processing associated with one or
more instructions may be damaged. When the
point of interruption is a point prior to the point of
damage due to a nullifiable exigent machine-check
condition, the point of interruption can be only at
the same points as for repressible machine-check
conditions.

In addition to the point of interruption permitted for
repressible machine-check conditions, the point of
interruption for a terminating exigent machine-
check condition may also be after the unit of oper-
ation is completed but before any associated
program or supervisor-call interruption occurs. In
this case, a valid PSW instruction address is
defined as that which would have been stored in
the old PSW for the program or supervisor-call
interruption. Since the operation has been termi-
nated, the values in the result fields, other than
the instruction address, are unpredictable. Thus,
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the validity bits associated with fields which are
due to be changed by the instruction stream are
meaningless when a terminating exigent machine-
check condition is reported.

When the point of interruption and the point of
damage due to an exigent machine-check condi-
tion are separated by a checkpoint-
synchronization function, the damage has not
been isolated to a particular program, and system
damage is indicated.

When an exigent machine-check-interruption con-
dition occurs, the point of interruption which is
chosen affects the amount of damage which must
be indicated. An attempt is made, when possible,
to choose a point of interruption which permits the
minimum indication of damage. In general, the
preference is the interruption point immediately
preceding the error.

When all the status information stored as a result
of an exigent machine-check-interruption condition
does not reflect the same point, an attempt is
made, when possible, to choose the point of inter-
ruption so that the instruction address which is
stored in the machine-check old PSW is valid.

 Machine-Check-Interruption Code
On all machine-check interruptions, a machine-
check-interruption code (MCIC) is stored in the
doubleword starting at real location 232. The
code has the format shown in Figure 11-4 on
page 11-16.

Bits in the MCIC which are not assigned or not
implemented by a particular model, are stored as
zeros.
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┌─────┬─┬───────┬───────┬─┬───┬─┬───────────────┬─┬─┬───────┬─┬─┐

│S P S│ │C E V D│ C S C│ │V │ │S S K D W M P I│F│ │E F G C│ │S│

│D D R│ð│D D F G│W P P K│ð│S B│ð│E C E S P S M A│A│ð│C P R R│ð│T│

└─────┴─┴───────┴───────┴─┴───┴─┴───────────────┴─┴─┴───────┴─┴─┘

ð 4 8 13 16 24 26 31

┌─┬─┬─┬─────────┬─────┬─┬─┬─┬─┬─┬───────────────┬───────────────┐

│I│A│D│ │ │X│A│ │C│C│ │ │

│E│R│A│ð ð ð ð ð│ð ð ð│F│P│ð│T│C│ð ð ð ð ð ð ð ð│ð ð ð ð ð ð ð ð│

└─┴─┴─┴─────────┴─────┴─┴─┴─┴─┴─┴───────────────┴───────────────┘

32 4ð 43 46 48 56 63

Bits Name

ð System damage (SD)

1 Instruction-processing damage (PD)

2 System recovery (SR)

4 Timing-facility damage (CD)

5 External damage (ED)

6 Vector-facility failure (VF)

 7 Degradation (DG)

 8 Warning (W)

9 Channel report pending (CP)

 1ð Service-processor damage (SP)

 11 Channel-subsystem damage (CK)

 13 Vector-facility source (VS)

 14 Backed up (B)

 16 Storage error uncorrected (SE)

 17 Storage error corrected (SC)

 18 Storage-key error uncorrected (KE)

 19 Storage degradation (DS)

 2ð PSW-MWP validity (WP)

 21 PSW mask and key validity (MS)

 22 PSW program-mask and condition-code validity (PM)

 23 PSW-instruction-address validity (IA)

 24 Failing-storage-address validity (FA)

 26 External-damage-code validity (EC)

 27 Floating-point-register validity (FP)

 28 General-register validity (GR)

 29 Control-register validity (CR)

 31 Storage logical validity (ST)

 32 Indirect storage error (IE)

 33 Access-register validity (AR)

 34 Delayed-access exception (DA)

 43 Extended-floating-point-register validity (XF)

 44 Ancillary report (AP)

 46 CPU-timer validity (CT)

 47 Clock-comparator validity (CC)

Note: All other bits of the MCIC are unassigned and stored as zeros.

Figure 11-4. Machine-Check Interruption-Code Format

 Subclass
Bits 0-2 and 4-11 are the subclass bits which
identify the type of machine-check condition
causing the interruption. At least one of the sub-
class bits is stored as a one. When multiple
errors have occurred, several subclass bits may
be set to ones.

 System Damage
Bit 0 (SD), when one, indicates that damage has
occurred which cannot be isolated to one or more
of the less severe machine-check subclasses.
When system damage is indicated, the ancillary-
report bit, bit 44, is meaningful, the remaining bits
in the machine-check-interruption code are not
meaningful, and information stored in the register
save areas and machine-check extended-
interruption fields is not meaningful.

System damage is a terminating exigent condition
and has no subclass-mask bit.
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 Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

The exact meaning of bit 1 depends on the setting
of the backed-up bit, bit 14. When the backed-up
bit is one, the condition is called processing
backup. When the backed-up bit is zero, the con-
dition is called processing damage. These two
conditions are described in “Synchronous
Machine-Check-Interruption Conditions” on
page 11-19.

Instruction-processing damage can be a nullifying
or a terminating exigent condition and has no
subclass-mask bit.

 System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or
have been successfully corrected. Some malfunc-
tions detected as part of an I/O operation may
result in a system-recovery condition in addition to
an I/O-error condition. The presence and extent
of the system-recovery capability depend on the
model.

System recovery is a repressible condition. It is
masked by the recovery subclass-mask bit, which
is in bit position 4 of control register 14.

Programming Notes:

1. System recovery may be used to report a
failing-storage address detected by a CPU
prefetch or by an I/O operation.

2. Unless the corresponding validity bits are
ones, the indication of system recovery does
not imply storage logical validity or that the
fields stored as a result of the machine-check
interruption are valid.

 Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has

| occurred to the TOD clock, the CPU timer, or the
clock comparator, or to the CPU-timer or clock-
comparator external-interruption conditions. The
timing-facility-damage machine-check condition is
set whenever any of the following occurs:

1. The TOD clock accessed by this CPU enters
the error or not-operational state.

2. The CPU timer is damaged, and the CPU is
enabled for CPU-timer external interruptions.

On some models, this condition may be
recognized even when the CPU is not enabled
for CPU-timer interruptions. Depending on the
model, the machine-check condition may be
generated only as the CPU timer enters an
error state. Or, the machine-check condition
may be continuously generated whenever the
CPU is enabled for CPU-timer interruptions,
until the CPU timer is validated.

3. The clock comparator is damaged, and the
CPU is enabled for clock-comparator external
interruptions. On some models, this condition
may be recognized even when the CPU is not
enabled for clock-comparator interruptions.

Timing-facility damage may also be set along with
instruction-processing damage when an instruction
which accesses the TOD clock, CPU timer, or
clock comparator produces incorrect results.
Depending on the model, the CPU timer or clock
comparator may be validated by the interruption
which reports the CPU timer or clock comparator
as invalid.

Timing-facility damage is a repressible condition.
It is masked by the external-damage subclass-
mask bit, which is in bit position 6 of control reg-
ister 14.

Timing-facility-damage conditions for the CPU
timer and the clock comparator are not recognized
on most models when these facilities are not in
use. The facilities are considered not in use when
the CPU is disabled for the corresponding external
interruptions (PSW bit 7, or the subclass-mask
bits, bits 20 and 21 of control register 0, are
zeros), and when the corresponding set and store
instructions are not executed. Timing-facility-
damage conditions that are already pending
remain pending, however, when the CPU is disa-
bled for the corresponding external interruption.

Timing-facility-damage conditions due to damage
to the TOD clock are always recognized.

 External Damage
Bit 5 (ED), when one, indicates that damage has
occurred during operations not directly associated
with processing the current instruction.

When bit 5, external damage, is one and bit 26,
external-damage-code validity, is also one, the
external-damage code has been stored to indi-
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cate, in more detail, the cause of the external-
damage machine-check interruption. When the
external damage cannot be isolated to one or
more of the conditions as defined in the external-
damage code, or when the detailed indication for
the condition is not implemented by the model,
external damage is indicated with bit 26 set to
zero. The presence and extent of reporting
external damage depend on the model.

External damage is a repressible condition. It is
masked by the external-damage subclass-mask
bit, which is in bit position 6 of control register 14.

 Vector-Facility Failure
Bit 6 (VF) of the machine-check-interruption code,
when one, indicates that the vector facility has
failed to such an extent that the service processor
has made the facility not available.

This bit may be set to one regardless of whether
the vector-control bit, bit 14 of control register 0, is
one or zero.

Vector-facility failure is a repressible condition and
has no subclass-mask bit.

 Degradation
Bit 7 (DG), when one, indicates that continuous
degradation of system performance, more serious
than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a machine-
preestablished threshold or when unit deletion has
occurred. The presence and extent of the
degradation-report capability depend on the
model.

Degradation is a repressible condition. It is
masked by the degradation subclass-mask bit,
which is in bit position 5 of control register 14.

 Warning
Bit 8 (W), when one, indicates that damage is
imminent in some part of the system (for example,
that power is about to fail, or that a loss of cooling
is occurring). Whether warning conditions are
recognized depends on the model.

If the condition responsible for the imminent
damage is removed before the interruption request
is honored (for example, if power is restored), the

request does not remain pending, and no inter-
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from the same condition.

Warning is a repressible condition. It is masked
by the warning subclass-mask bit, which is in bit
position 7 of control register 14.

Channel Report Pending
Bit 9 (CP), when one, indicates that a channel
report, consisting of one or more channel-report
words, has been made pending, and the contents
of the channel-report words describe, in further
detail, the effect of the malfunction and the results
of analysis or the action performed. A channel
report becomes pending when one of the following
conditions has occurred:

1. Channel-subsystem recovery has been com-
pleted. The channel-subsystem recovery may
have been initiated with no prior notice to the
program or may have been a result of a con-
dition previously reported to the program.

2. The function specified by RESET CHANNEL
PATH has been completed.

The channel-report words which make up the
channel report may be cleared, one at a time, by
execution of the instruction STORE CHANNEL
REPORT WORD, which is described in
Chapter 14, “I/O Instructions.”

Bit 9 is meaningless when channel-subsystem
damage is reported.

Channel report pending is a floating repressible
condition. It is masked by the channel-report-
pending subclass-mask bit, which is in bit position
3 of control register 14.

 Service-Processor Damage
Bit 10 (SP), when one, indicates that damage has
occurred to the service processor. Service-
processor damage may be made pending at all
CPUs in the configuration, or it may be detected
independently by each CPU. The presence and
extent of reporting service-processor damage
depend on the model.

Service-processor damage is a repressible condi-
tion and has no subclass-mask bit.
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 Channel-Subsystem Damage
Bit 11 (CK), when one, indicates that an error or
malfunction has occurred in the channel sub-
system, or that the channel subsystem is in the
check-stop state. The channel subsystem enters
the check-stop state when a malfunction occurs
which is so severe that the channel subsystem
cannot continue, or if power is lost in the channel
subsystem.

Channel-subsystem damage is a floating
repressible condition and has no subclass-mask
bit.

 Subclass Modifiers
Bits 13 (VS), 14 (B), 34 (DA), and 44 (AP) of the
machine-check-interruption code act as modifiers
to the subclass bits.

 Vector-Facility Source
Bit 13 (VS) of the machine-check-interruption
code, when one, indicates that the vector facility is
the source of the reported machine-check condi-
tion. Vector-facility source is reported together
with instruction-processing damage. When this bit
is one, the contents of vector-facility registers may
have been damaged.

This bit may be set to one regardless of whether
the vector-control bit, bit 14 of control register 0, is
one or zero.

Bit 13 is not meaningful when vector-facility failure
is reported.

 Backed Up
Bit 14 (B), when one, indicates that the point of
interruption is at a checkpoint before the point of
error. This bit is meaningful only when the
instruction-processing-damage bit, bit 1, is also set
to one. The presence and extent of the capability
to indicate a backed-up condition depend on the
model.

Delayed Access Exception
Bit 34 (DA), when one, indicates that an access
exception was detected during a storage access
using DAT when no such exception was detected
by an earlier test for access exceptions.

Bit 34 is a modifier to instruction-processing
damage (bit 1) and is meaningful only when bit 1
of the machine-check-interruption code is one.

When bit 1 is zero, bit 34 has no meaning. The
presence and extent of reporting delayed access
exception depend on the model.

Programming Note:  The occurrence of a
delayed access exception normally indicates that
the program is using an improper procedure to
update the DAT tables.

 Ancillary Report
Bit 44 (AP), when one, indicates that a malfunc-
tion of a system component has occurred which
has been recognized previously or which has
affected the activities of multiple system elements
such as CPUs and subchannels. When the mal-
function affects the activities of multiple elements,
an ancillary-report condition is recognized for all of
the affected elements except one. This bit, when
zero, indicates that this malfunction of a system
component has not been recognized previously.
This bit is meaningful for all conditions indicated
by either the machine-check-interruption code or
the external-damage code.

Depending on the model, recognition of an
ancillary-report condition may not be provided, or
it may not be provided for all system malfunctions.
When ancillary-report recognition is not provided,
bit 44 is set to zero.

 Synchronous
Machine-Check-Interruption
Conditions
The instruction-processing damage and backed-up
bits, bits 1 and 14 of the machine-check-
interruption code, identify, in combination, two
conditions.

 Processing Backup
The processing-backup condition indicates that the
point of interruption is prior to the point, or points,
of error. This is a nullifying exigent condition.
When all of the other CPU-related-damage sub-
classes and modifiers of the machine-check-
interruption code are zero, and certain validity bits
associated with CPU status are indicated as valid,
then the machine has successfully returned to a
checkpoint prior to the malfunction, and no
damage has yet occurred to the CPU.

Bit 1 Bit 14 Name of Condition

1 0 Processing damage
1 1 Processing backup
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The subclass bits which must be zero for this to
be the case are as follows:

MCIC 
 Bit Name
 0 System damage
 4 Timing-facility damage
 6 Vector-facility failure

The subclass-modifier bits which must be zero for
this to be the case are as follows:

MCIC 
 Bit Name
 13 Vector-facility source
 34 Delayed-access exception

The validity bits in the machine-check-interruption
code which must be one for this to be the case
are as follows:

MCIC 
 Bit Name
20 PSW MWP bits
21 PSW mask and key
22 PSW program mask and condition code
23 PSW instruction address
27 Floating-point registers 0, 2, 4, and 6

 28 General registers
 29 Control registers
31 Storage logical validity (result fields within

current checkpoint interval)
 33 Access registers
43 Floating-point registers 0-15 and the

floating-point-control register
 46 CPU timer
 47 Clock comparator

Programming Note:  The processing-backup
condition is reported rather than system recovery
to indicate that a malfunction or failure stands in
the way of continued operation of the CPU. The
malfunction has not been circumvented, and
damage would have occurred if instruction proc-
essing had continued.

 Processing Damage
The processing-damage condition indicates that
damage has occurred to the instruction processing
of the CPU. The point of interruption is a point
beyond some or all of the points of damage.
Processing damage is a terminating exigent condi-
tion; therefore, the contents of result fields may be
unpredictable and still indicated as valid.

Processing damage may include malfunctions in
program-event recording, monitor call, tracing,
access-register translation, and dynamic address
translation. Processing damage causes any
supervisor-call-interruption condition and program-
interruption condition to be discarded. However,
the contents of the old PSW and interruption-code
locations for these interruptions may be set to
unpredictable values.

 Storage Errors
Bits 16-18 of the machine-check-interruption code
are used to indicate an invalid CBC or a near-valid
CBC detected in main storage or an invalid CBC
in a storage key. Bit 19, storage degradation,
may be indicated concurrently with bit 17. The
failing-storage-address field, when indicated as
valid, identifies a location within the storage
checking block containing the error, or, for
storage-key error uncorrected, within the block
associated with the storage key. Bit 32, indirect
storage error, may be set to one to indicate that
the location designated by the failing-storage
address is not the original source of the error.

The storage-error-uncorrected and storage-key-
error-uncorrected bits do not in themselves indi-
cate the occurrence of damage because the error
detected may not have affected a result. The
portion of the configuration affected by an invalid
CBC is indicated in the subclass field of the
machine-check-interruption code.

Storage errors detected for a channel program,
when indicated as I/O-error conditions, may also
be reported as system recovery. CBC errors that
occur in storage or in the storage key and that are
detected on prefetched or unused data for a CPU
program may or may not be reported, depending
on the model.

Storage Error Uncorrected
Bit 16 (SE), when one, indicates that a checking
block in main storage contained invalid CBC and
that the information could not be corrected. The
contents of the checking block in main storage
have not been changed. The location reported
may have been accessed or prefetched for this
CPU or another CPU or a channel program, or it
may have been accessed as the result of a
model-dependent storage access.
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Storage Error Corrected
Bit 17 (SC), when one, indicates that a checking
block in main storage contained near-valid CBC
and that the information has been corrected
before being used. Depending on the model, the
contents of the checking block in main storage
may or may not have been restored to valid CBC.
The location reported may have been accessed or
prefetched for this CPU or for another CPU or for
a channel program, or it may have been accessed
as the result of a model-dependent storage
access. The presence and extent of the storage-
error-correction capability depend on the model.
This indication may or may not be accompanied
by an indication of storage degradation, bit 19
(DS).

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates that a storage
key contained invalid CBC and that the informa-
tion could not be corrected. The contents of the
checking block in the storage key have not been
changed. The storage key may have been
accessed or prefetched for this CPU or for another
CPU or for a channel program, or it may have
been accessed as the result of a model-
dependent storage access.

 Storage Degradation

Bit 19 (DS), when one, indicates that degradation
of the recovery characteristics has occurred for
the 4K-byte block reported by the failing-storage
address.

Storage degradation indicates that although the
associated storage error has been corrected, there
are solid failures associated with the storage block
(or with its associated key) that cause the cor-
rection process to take a substantial amount of
time, and that if an additional error occurs in the
block, the error may not be correctable or may go
undetected. Thus, this bit indicates that use of the
indicated block of storage should be avoided, if
possible.

The indication of storage degradation has
meaning only when failing-storage-address
validity, MCIC bit 24, is also one. The presence
and extent of reporting storage degradation
depend on the model.

Programming Note:  Because storage degrada-
tion is normally reported with system recovery, the
recovery subclass mask, bit 4 of control register
14, should be set to one in order for storage
degradation to be indicated.

Indirect Storage Error
Bit 32 (IE), when one, indicates that the physical
main-storage location identified by the failing-
storage address is not the original source of the
error. Instead, the error originated in another level
of the storage hierarchy and has been propagated
to the current physical-storage portion of the
storage hierarchy. Bit 32 is meaningful only when
bit 16 or 18 (storage error uncorrected or
storage-key error uncorrected) of the machine-
check-interruption code is one. When bits 16 and
18 are both zeros, bit 32 has no meaning.

For errors originating outside the storage hier-
archy, the attempt to store is rejected, and the
appropriate error indication is presented. When
an error is detected during implicit movement of
information inside the storage hierarchy, the action
is not rejected and reported in this manner
because the movement may be asynchronous and
may be initiated as the result of an attempt to
access completely unrelated information. Instead,
errors in the contents of the source during implicit
moving of information from one portion of the
storage hierarchy to another may be preserved in
the target area by placing a special invalid CBC in
the checking block associated with the target
location. These propagated errors, when detected
later, are reported as indirect storage errors. The
original source of such an error may have been in
a cache associated with an I/O processor or a
CPU, or the error may have been the result of a
data-path failure in transmitting data from one
portion of the storage hierarchy to another. Addi-
tionally, a propagated error may be generated
during the movement of data from one physical
portion of storage to another as the result of a
storage-reconfiguration action.

The presence and extent of reporting indirect
storage error depend on the model.

Programming Note:  See the programming notes
under TEST BLOCK in Chapter 10, “Control
Instructions” for the action which should be taken
after storage errors are reported.
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 Machine-Check Interruption-Code
Validity Bits
Bits 20-24, 26-29, 31, 33, 43, 46, and 47 of the
machine-check-interruption code are validity bits.
Each bit indicates the validity of a particular field
in storage. With the exception of the storage-
logical-validity bit (bit 31), each bit is associated
with a field stored during the machine-check inter-
ruption. When a validity bit is one, it indicates that
the saved value placed in the corresponding
storage field is valid with respect to the indicated
point of interruption and that no error was
detected when the data was stored.

When a validity bit is zero, one or more of the fol-
lowing conditions may have occurred: the original
information was incorrect, the original information
had invalid CBC, additional malfunctions were
detected while storing the information, or none or
only part of the information was stored. Even
though the information is unpredictable, the
machine attempts, when possible, to place valid
CBC in the storage field and thus reduce the pos-
sibility of additional machine checks being caused.

The validity bits for the floating-point registers,
general registers, control registers, access regis-
ters, extended floating-point registers, CPU timer,
and clock comparator indicate the validity of the
saved value placed in the corresponding save
area. The information in these registers after the
machine-check interruption is not necessarily
correct even when the correct value has been
placed in the save area and the validity bit set to
one. The use of the registers and the operation of
the facility associated with the control registers,
CPU timer, and clock comparator are unpredict-
able until these registers are validated. (See
“Invalid CBC in Registers” on page 11-9.)

 PSW-MWP Validity
Bit 20 (WP), when one, indicates that bits 12-15 of
the machine-check old PSW are correct.

PSW Mask and Key Validity
Bit 21 (MS), when one, indicates that the system
mask, PSW key, and miscellaneous bits of the
machine-check old PSW are correct. Specifically,
this bit covers bits 0-11, 16, 17, and 24-31 of the
PSW.

PSW Program-Mask and
Condition-Code Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check
old PSW are correct.

 PSW-Instruction-Address Validity
Bit 23 (IA), when one, indicates that the
addressing mode and instruction address (bits
32-63) of the machine-check old PSW are correct.

 Failing-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct
failing-storage address has been placed at real
location 248 after a storage-error-uncorrected,
storage-key-error-uncorrected, or storage-error-
corrected condition has occurred. The presence
and extent of the capability to identify the failing-
storage location depend on the model. When no
such errors are reported, that is, bits 16-18 of the
machine-check-interruption code are zeros, the
failing-storage address is meaningless, even
though it may be indicated as valid.

 External-Damage-Code Validity
Bit 26 (EC), when one, and provided that bit 5,
external damage, is also one, indicates that a
valid external-damage code has been stored in
the word at location 244. When bit 5 is zero, bit
26 has no meaning.

 Floating-Point-Register Validity
Bit 27 (FP), when one, indicates that the contents
of the floating-point-register save area at real
locations 352-383 reflect the correct state of

| floating-point registers 0, 2, 4, and 8 at the point
of interruption.

 General-Register Validity
Bit 28 (GR), when one, indicates that the contents
of the general-register save area at real locations
384-447 reflect the correct state of the general
registers at the point of interruption.

 Control-Register Validity
Bit 29 (CR), when one, indicates that the contents
of the control-register save area at real locations
448-511 reflect the correct state of the control reg-
isters at the point of interruption.
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Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by
the instructions being executed, contain the
correct information relative to the point of inter-
ruption. That is, all stores before the point of
interruption are completed, and all stores, if any,
after the point of interruption are suppressed.
When a store before the point of interruption is
suppressed because of an invalid CBC, the
storage-logical-validity bit may be indicated as
one, provided that the invalid CBC has been pre-
served as invalid.

When instruction-processing damage is indicated
but processing backup is not indicated, the
storage-logical-validity bit has no meaning.

Storage logical validity reflects only the instruction-
processing activity and does not reflect errors in

| the state of storage as the result of either I/O
| operations or the storing of the old PSW and other

interruption information.

 Access-Register Validity
Bit 33 (AR), when one, indicates that the contents
of the access-register save area at real locations
288-351 reflect the correct state of the access reg-
isters at the point of interruption.

 Extended-Floating-Point-Register
Validity
Bit 43 (XF), when one, indicates that the contents
of locations 0-143 of the machine-check extended
save area reflect the correct state of floating-point
registers 0-15 and the floating-point-control reg-
ister at the point of interruption.

Bit 43 is zero when the basic-floating-point-
extensions facility is not installed, the extended-
save-area control, bit 2 of control register 14, is
zero, or the machine-check extended-save-area
address formed from the contents of real locations
212-215 is either invalid or all zeros.

 CPU-Timer Validity
Bit 46 (CT), when one, indicates that the CPU
timer is not in error and that the contents of the
CPU-timer save area at real location 216 reflect
the correct state of the CPU timer at the time the
interruption occurred.

 Clock-Comparator Validity
Bit 47 (CC), when one, indicates that the clock
comparator is not in error and that the contents of
the clock-comparator save area at real location
224 reflect the correct state of the clock
comparator.

Programming Note:  The validity bits must be
used in conjunction with the subclass bits and the
backed-up bit in order to determine the extent of
the damage caused by a machine-check condi-
tion. No damage has occurred to the system
when all of the following are true:

� The four PSW-validity bits, the four register-
| validity bits, the extended-floating-point-
| register validity bit, the two

timing-facility-validity bits, and the storage-
logical-validity bit are all ones.

� Subclass bits 0, 4, 5, 6, 10, and 11 are zeros.

� The instruction-processing-damage bit is zero
or, if one, the backed-up bit is also one.

� The vector-facility-source bit and the delayed-
access-exception bit are zeros.

 Machine-Check Extended
Interruption Information
As part of the machine-check interruption, in some
cases, extended interruption information is placed
in fixed areas assigned in storage. The contents
of registers associated with the CPU are placed in
register save areas. For external damage, addi-
tional information is provided for some models by
storing an external-damage code. When storage
error uncorrected, storage error corrected, or
storage-key error uncorrected is indicated, the
failing-storage address is saved.

Each of these fields has associated with it a
validity bit in the machine-check-interruption code.
If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

Register Save Areas
As part of the machine-check interruption, the
current contents of the CPU registers, except for
the prefix register and the TOD clock, are stored
in six register save areas assigned in storage.
Each of these areas has associated with it a
validity bit in the machine-check-interruption code.
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If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

The following are the six sets of registers and the
real locations in storage where their contents are
saved during a machine-check interruption.

Locations Registers
216-223 CPU timer
224-231 Clock comparator
288-351 Access registers 0-15
352-383 Floating-point registers 0, 2, 4, 6
384-447 General registers 0-15
448-511 Control registers 0-15

Machine-Check Extended Save
Area
When the basic-floating-point-extensions facility is
installed, the extended-save-area control, bit 2 of
control register 14, is one, and bits 1-19 of real
locations 212-215 are not all zeros, then, as part
of a machine-check interruption, the current con-
tents of floating-point registers 0-15 and the
floating-point-control register are stored in a
machine-check extended save area. The absolute
address of the extended save area is obtained by
appending 12 bits to the right of bits 1-19 of real
locations 212-215. Storing does not occur if the
address is invalid.

The extended save area has associated with it a
validity bit in the machine-check-interruption code.
If, for any reason, the machine cannot store the
proper information in the area, the associated
validity bit is set to zero.

Figure 11-5 lists the fields that are stored, their
offsets within the area, and their lengths. Bytes
144-4095 of the extended save area remain
unchanged.

┌────────────────────────────┬────────┬────────┐

│ │ Byte │ Length │

│ Field │ Offset │in Bytes│

├────────────────────────────┼────────┼────────┤

│ Fl-pt registers ð-15 │ ð │ 128 │

│ Fl-pt-control register │ 128 │ 4 │

│ Reserved (zeros stored) │ 132 │ 12 │

└────────────────────────────┴────────┴────────┘

Figure 11-5. Machine-Check Extended-Save-Area
Locations

 External-Damage Code
The word at real location 244 is the external-
damage code. This field, when implemented and
indicated as valid, describes the cause of external
damage. The field is valid only when the external-
damage bit and the external-damage-code-validity
bit (bits 5 and 26 in the machine-check-
interruption code) are both ones. The presence
and extent of reporting an external-damage code
depend on the model.

The external-damage code has the following
format:

┌───────────────┬───┬──/────┐

│ │X X│ │

│ð ð ð ð ð ð ð ð│N F│ð ð ð│

└───────────────┴───┴──/────┘

ð 8 1ð 31

Expanded Storage Not Operational (XN):  Bit 8,
when one, indicates that the controller associated
with some or all of the expanded storage in the
configuration has become not operational.

Expanded-storage-not-operational conditions are
reported to all CPUs in the configuration.

Expanded-Storage Control Failure (XF):  Bit 9,
when one, indicates that a malfunction has been
detected in a controller associated with some or
all of the expanded storage in the configuration.
When expanded-storage control failure is indi-
cated, the blocks of the expanded storage contain
either the proper contents or a preserved error.
Expanded-storage-control-failure conditions are
reported to all CPUs in the configuration.

Reserved:  Bits 0-7 and 10-31 are reserved for
future expansion and are always set to zeros.

 Failing-Storage Address
When storage error uncorrected, storage error cor-
rected, or storage-key error uncorrected is indi-
cated in the machine-check-interruption code, the
associated address, called the failing-storage

| address, is stored at real locations 248-251. The
field is valid only if the failing-storage-address
validity bit, bit 24 of the machine-check-
interruption code, is one.

In the case of storage errors, the failing-storage
address may designate any byte within the
checking block. For storage-key error uncor-
rected, the failing-storage address may designate
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any address within the block of storage associated
with the storage key that is in error. When an
error is detected in more than one location before
the interruption, the failing-storage address may
designate any of the failing locations. The
address stored is an absolute address; that is, the
value stored is the address that is used to refer-
ence storage after dynamic address translation
and prefixing have been applied.

Handling of Machine-Check
Conditions

Floating Interruption Conditions
An interruption condition which is made available
to any CPU in a multiprocessing configuration is
called a floating interruption condition. The first
CPU that accepts the interruption clears the inter-
ruption condition, and it is no longer available to
any other CPU in the configuration.

Floating interruption conditions include service-
signal external-interruption and I/O-interruption
conditions. Two machine-check-interruption condi-
tions, channel report pending and channel-
subsystem damage, are floating interruption
conditions. Depending on the model, some
machine-check-interruption conditions associated
with system recovery and warning may also be
floating interruption conditions.

A floating interruption is presented to the first CPU
in the configuration which is enabled for the inter-
ruption condition and can accept the interruption.

| A CPU cannot accept the interruption when the
| CPU is in the check-stop state, has an invalid

prefix, is performing an unending string of inter-
ruptions due to a PSW-format error of the type
that is recognized early, or is in the stopped state.
However, a CPU with the rate control set to
instruction step can accept the interruption when
the start key is activated.

Programming Note:  When a CPU enters the
check-stop state in a multiprocessing configura-
tion, the program on another CPU can determine
whether a floating interruption may have been
reported to the failing CPU and then lost. This
can be accomplished if the interruption program
places zeros in the real storage locations con-
taining old PSWs and interruption codes after the
interruption has been handled (or has been moved
into another area for later processing). After a

CPU enters the check-stop state, the program in
another CPU can inspect the old-PSW and
interruption-code locations of the failing CPU. A
nonzero value in an old PSW or interruption code
indicates that the CPU has been interrupted but
the program did not complete the handling of the
interruption.

 Floating Machine-Check-Interruption
Conditions
Floating machine-check-interruption conditions are
reset only by the manually initiated resets through
the operator facilities. When a machine check
occurs which prohibits completion of a floating
machine-check interruption, the interruption condi-
tion is no longer considered a floating interruption
condition, and system damage is indicated.

Floating I/O Interruptions
The detection of a machine malfunction by the
channel subsystem, while in the process of pre-
senting an I/O-interruption request for a floating
I/O interruption, may be reported as channel
report pending or as channel-subsystem damage.
Detection of a machine malfunction by a CPU,
while in the process of accepting a floating I/O
interruption, is reported as system damage.

 Machine-Check Masking
All machine-check interruptions are under control
of the machine-check mask, PSW bit 13. In addi-
tion, some machine-check conditions are con-
trolled by subclass masks in control register 14.

The exigent machine-check conditions (system
damage and instruction-processing damage) are
controlled only by the machine-check mask, PSW
bit 13. When PSW bit 13 is one, an exigent con-
dition causes a machine-check interruption. When
PSW bit 13 is zero, the occurrence of an exigent
machine-check condition causes the CPU to enter
the check-stop state.

The repressible machine-check conditions, except
vector-facility failure, channel-subsystem damage,
and service-processor damage, are controlled
both by the machine-check mask, PSW bit 13,
and by five subclass-mask bits in control register
14. If PSW bit 13 is one and one of the subclass-
mask bits is one, the associated condition initiates
a machine-check interruption. If a subclass-mask
bit is zero, the associated condition does not ini-
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tiate an interruption but is held pending. However,
when a machine-check interruption is initiated
because of a condition for which the CPU is
enabled, those conditions for which the CPU is not
enabled may be presented along with the condi-
tion which initiates the interruption. All conditions
presented are then cleared.

Control register 14 contains mask bits that specify
whether certain conditions can cause machine-
check interruptions. It has the following format:

┌───┬─────┬─

│ │CRDEW│

│ │MMMMM│

└───┴─────┴─

ð 3 7

Bits 3-7 of control register 14 are the subclass
masks for repressible machine-check conditions.
In addition, bit 0 of control register 14 is initialized
to one but is otherwise ignored by the machine.

Programming Note:  The program should avoid,
whenever possible, operating with PSW bit 13, the
machine-check mask, set to zero, since any
exigent machine-check condition which is recog-
nized during this situation will cause the CPU to
enter the check-stop state. In particular, the
program should avoid executing I/O instructions or
allowing I/O interruptions with PSW bit 13 zero.

 Channel-Report-Pending Subclass
Mask
Bit 3 (CM) of control register 14 controls channel-
report-pending interruption conditions. This bit is
initialized to zero.

Recovery Subclass Mask
Bit 4 (RM) of control register 14 controls system-
recovery interruption conditions. This bit is initial-
ized to zero.

Degradation Subclass Mask
Bit 5 (DM) of control register 14 controls degrada-
tion interruption conditions. This bit is initialized to
zero.

External-Damage Subclass Mask
Bit 6 (EM) of control register 14 controls timing-
facility-damage and external-damage interruption
conditions. This bit is initialized to one.

Warning Subclass Mask
Bit 7 (WM) of control register 14 controls warning
interruption conditions. This bit is initialized to
zero.

 Machine-Check Logout

As part of the machine-check interruption, some
models may place model-dependent information in
the fixed-logout area. This area is 16 bytes in
length and starts at real location 256.

Summary of Machine-Check
Masking
A summary of machine-check masking is given in
Figure 11-6 on page  11-27 and Figure 11-7 on
page 11-27.
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┌─────────────────────────────────────┬───────┬─────────────────────┐

│ Machine-Check Condition │ │ │

├────┬────────────────────────────────┤ Sub- │ Action when CPU │

│MCIC│ │ Class │ Disabled │

│Bit │ Subclass │ Mask │ for Subclass │

├────┼────────────────────────────────┼───────┼─────────────────────┤

│ ð │ System damage │ - │ Check stop │

│ 1 │ Instruction-processing damage │ - │ Check stop │

│ 2 │ System recovery │ RM │ Y │

│ 4 │ Timing-facility damage │ EM │ P │

│ 5 │ External damage │ EM │ P │

│ 6 │ Vector-facility failure │ - │ P │

│ 7 │ Degradation │ DM │ P │

│ 8 │ Warning │ WM │ P │

│ 9 │ Channel report pending │ CM │ P │

│ 1ð │ Service-processor damage │ - │ P │

│ 11 │ Channel-subsystem damage │ - │ P │

├────┴────────────────────────────────┴───────┴─────────────────────┤

│Explanation: │

│ │

│ - The condition does not have a subclass mask. │

│ │

│ P Indication is held pending. │

│ │

│ Y Indication may be held pending or may be discarded. │

│ │

│ CM Channel-report-pending subclass mask (bit 3 of CR14). │

│ │

│ DM Degradation subclass mask (bit 5 of CR14). │

│ │

│ EM External-damage subclass mask (bit 6 of CR14). │

│ │

│ RM Recovery subclass mask (bit 4 of CR14). │

│ │

│ WM Warning subclass mask (bit 7 of CR14). │

└───────────────────────────────────────────────────────────────────┘

Figure 11-6. Machine-Check-Condition Masking

┌────────────────────────────────────┬────────────┬─────────────┐

│ │ Control │State of Bit │

│ │Register 14 │ on Initial │

│ Bit Description │Bit Position│ CPU Reset │

├────────────────────────────────────┼────────────┼─────────────┤

│Channel-report-pending subclass mask│ 3 │ ð │

│Recovery subclass mask │ 4 │ ð │

│Degradation subclass mask │ 5 │ ð │

│External-damage subclass mask │ 6 │ 1 │

│Warning subclass mask │ 7 │ ð │

└────────────────────────────────────┴────────────┴─────────────┘

Figure 11-7. Machine-Check Control-Register Bits
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 Manual Operation
The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine communi-
cation, indication of machine status, control over
the setting of the TOD clock, initial program
loading, resets, and other manual controls for
operator intervention in normal machine operation.

A model may provide additional operator facilities
which are not described in this chapter. Examples
are the means to indicate specific error conditions
in the equipment, to change equipment configura-
tions, and to facilitate maintenance. Furthermore,
controls covered in this chapter may have addi-
tional settings which are not described here. Such
additional facilities and settings may be described
in the appropriate System Library publication.

Most models provide, in association with the oper-
ator facilities, a console device which may be
used as an I/O device for operator communication
with the program; this console device may also be
used to implement some or all of the facilities
described in this chapter.

The operator facilities may be implemented on dif-
ferent models in various technologies and config-
urations. On some models, more than one set of
physical representations of some keys, controls,
and indicators may be provided, such as on mul-
tiple local or remote operating stations, which may
be effective concurrently.

A machine malfunction that prevents a manual
operation from being performed correctly, as
defined for that operation, may cause the CPU to
enter the check-stop state or give some other indi-
cation to the operator that the operation has failed.
Alternatively, a machine malfunction may cause a
machine-check-interruption condition to be recog-
nized.

Basic Operator Facilities

 Address-Compare Controls
The address-compare controls provide a way to
stop the CPU when a preset address matches the
address used in a specified type of main-storage
reference.

One of the address-compare controls is used to
set up the address to be compared with the
storage address.

Another control provides at least two positions to
specify the action, if any, to be taken when the
address match occurs:

1. The normal position disables the address-
compare operation.

2. The stop position causes the CPU to enter the
stopped state on an address match. When
the control is in this setting, the test indicator
is on. Depending on the model and the type
of reference, pending I/O, external, and
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machine-check interruptions may or may not
be taken before entering the stopped state.

A third control may specify the type of storage ref-
erence for which the address comparison is to be
made. A model may provide one or more of the
following positions, as well as others:

1. The any position causes the address compar-
ison to be performed on all storage refer-
ences.

2. The data-store position causes address com-
parison to be performed when storage is
addressed to store data.

3. The I/O position causes address comparison
to be performed when storage is addressed
by the channel subsystem to transfer data or
to fetch a channel-command or indirect-data-
address word. Whether references to the
measurement block, interruption-response
block, channel-path-status word, channel-
report word, subchannel-status word,
subchannel-information block, and operation-
request block cause a match to be indicated
depends on the model.

4. The instruction-address position causes
address comparison to be performed when
storage is addressed to fetch an instruction.
The rightmost bit of the address setting may
or may not be ignored. The match is indi-
cated only when the first byte of the instruc-
tion is fetched from the selected location. It
depends on the model whether a match is
indicated when fetching the target instruction
of EXECUTE.

Depending on the model and the type of refer-
ence, address comparison may be performed on
virtual, real, or absolute addresses, and it may be
possible to specify the type of address.

In a multiprocessing configuration, it depends on
the model whether the address setting applies to
one or all CPUs in the configuration and whether
an address match causes one or all CPUs in the
configuration to stop.

 Alter-and-Display Controls
The operator facilities provide controls and proce-
dures to permit the operator to alter and display
the contents of locations in storage, the storage
keys, the general, floating-point, access, and
control registers, the prefix, and the PSW.

Before alter-and-display operations may be per-
formed, the CPU must first be placed in the
stopped state. During alter-and-display opera-
tions, the manual indicator may be turned off tem-
porarily, and the start and restart keys may be
inoperative.

Addresses used to select storage locations for
alter-and-display operations are real addresses.
The capability of specifying logical, virtual, or
absolute addresses may also be provided.

 Architectural-Mode Indicator
The architectural-mode indicator shows the archi-
tectural mode of operation (the ESA/390 mode or
some other mode) selected by the last
architectural-mode-selection operation.

 Architectural-Mode-Selection
Controls
The architectural-mode-selection controls provide
for the selection of either the ESA/390 architec-
tural mode of operation or, possibly, some other
architectural mode of operation. Depending on
the model, the architectural-mode selection may
be provided as part of the IML operation or may
be a separate operation.

As part of the architectural-mode-selection
process, all CPUs and the associated channel-
subsystem components in a particular configura-
tion are placed in the same architectural mode.

 Check-Stop Indicator
The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus turn off the indicator. The manual indicator
may also be on in the check-stop state.

 IML Controls

The IML controls provided with some models
perform initial machine loading (IML), which is the
loading of licensed internal code into the machine.
The IML operation, when provided, may be used
to select the ESA/390 mode or, possibly, some
other mode of operation.

When the IML operation is completed, the state of
the affected CPUs, PLO locks, channel sub-
system, main storage, and operator facilities is the
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same as if a power-on reset had been performed,
except that the value and state of the TOD clock
are not changed. The contents of expanded
storage may have been cleared to zeros with valid
checking-block code or may have remained
unchanged, depending on the model.

The IML controls are effective while the power is
on.

 Interrupt Key
When the interrupt key is activated, an external-
interruption condition indicating the interrupt key is
generated. (See “Interrupt Key” on page 6-12.)

The interrupt key is effective when the CPU is in
the operating or stopped state. It depends on the
model whether the interrupt key is effective when
the CPU is in the load state.

 Load Indicator
The load indicator is on during initial program
loading, indicating that the CPU is in the load
state. The indicator goes on for a particular CPU
when the load-clear or load-normal key is acti-
vated for that CPU and the corresponding opera-
tion is started. It goes off after the new PSW is
loaded successfully. For details, see “Initial
Program Loading” on page 4-39.)

 Load-Clear Key
Activating the load-clear key causes a reset oper-
ation to be performed and initial program loading
to be started by using the I/O device designated
by the load-unit-address controls. Clear reset is
performed on the configuration. For details, see
“Resets” on page 4-34 and “Initial Program
Loading” on page 4-39.

The load-clear key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

 Load-Normal Key
Activating the load-normal key causes a reset
operation to be performed and initial program
loading to be started by using the I/O device des-
ignated by the load-unit-address controls. Initial
CPU reset is performed on the CPU for which the
load-normal key was activated, CPU reset is prop-
agated to all other CPUs in the configuration, and
a subsystem reset is performed on the remainder
of the configuration. For details, see “Resets” on

page 4-34 and “Initial Program Loading” on
page 4-39.

The load-normal key is effective when the CPU is
in the operating, stopped, load, or check-stop
state.

 Load-Unit-Address Controls
The load-unit-address controls specify four
hexadecimal digits, which provide the device
number used for initial program loading. For
details, see “Initial Program Loading” on
page 4-39.

 Manual Indicator
The manual indicator is on when the CPU is in the
stopped state. Some functions and several
manual controls are effective only when the CPU
is in the stopped state.

 Power Controls
The power controls are used to turn the power on
and off.

The CPUs, storage, channel subsystem, operator
facilities, and I/O devices may all have their power
turned on and off by common controls, or they
may have separate power controls. When a par-
ticular unit has its power turned on, that unit is
reset. The sequence is performed so that no
instructions or I/O operations are performed until
explicitly specified. The controls may also permit
power to be turned on in stages, but the machine
does not become operational until power on is
complete.

When the power is completely turned on, an IML
operation is performed on models which have an
IML function. A power-on reset is then initiated
(see “Resets” on page 4-34). It depends on the
model whether the architectural mode of operation
can be selected when the power is turned on, or
whether the mode-selection controls have to be
used to change the mode after the power is on.

 Rate Control
The setting of the rate control determines the
effect of the start function and the manner in
which instructions are executed.

The rate control has at least two positions. The
normal position is the process position. Another
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position is the instruction-step position. When the
rate control is set to the process position and the
start function is performed, the CPU starts oper-
ating at normal speed. When the rate control is
set to the instruction-step position and the wait-
state bit is zero, one instruction or, for interruptible
instructions, one unit of operation is executed, and
all pending allowed interruptions are taken before
the CPU returns to the stopped state. When the
rate control is set to the instruction-step position
and the wait-state bit is one, no instruction is exe-
cuted, but all pending allowed interruptions are
taken before the CPU returns to the stopped state.
For details, see “Stopped, Operating, Load, and
Check-Stop States” on page 4-1.

The test indicator is on while the rate control is not
set to the process position.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the
results are unpredictable.

 Restart Key
Activating the restart key initiates a restart inter-
ruption. (See “Restart Interruption” on
page 6-45.)

The restart key is effective when the CPU is in the
operating or stopped state. The key is not effec-
tive when the CPU is in the check-stop state. It
depends on the model whether the restart key is
effective when any CPU in the configuration is in
the load state.

The effect is unpredictable when the restart key is
activated while any CPU in the configuration is in
the load state. In particular, if the CPU performs a
restart interruption and enters the operating state
while another CPU is in the load state, operations
such as I/O instructions, the SIGNAL
PROCESSOR instruction, and the INVALIDATE
PAGE TABLE ENTRY instruction may not operate
according to the definitions given in this publica-
tion.

 Start Key
Activating the start key causes the CPU to
perform the start function. (See “Stopped, Oper-
ating, Load, and Check-Stop States” on
page 4-1.)

The start key is effective only when the CPU is in

the stopped state. The effect is unpredictable
when the stopped state has been entered by a
reset.

 Stop Key
Activating the stop key causes the CPU to perform
the stop function. (See “Stopped, Operating,
Load, and Check-Stop States” on page 4-1.)

The stop key is effective only when the CPU is in
the operating state.

Operation Note:  Activating the stop key has no
effect when:

� An unending string of certain program or
external interruptions occurs.

� The prefix register contains an invalid
address.

� The CPU is in the load or check-stop state.

 Store-Status Key
Activating the store-status key initiates a store-
status operation. (See “Store Status” on
page 4-40.)

The store-status key is effective only when the
CPU is in the stopped state.

Operation Note:  The store-status operation may
be used in conjunction with a standalone dump
program for the analysis of major program mal-
functions. For such an operation, the following
sequence would be called for:

1. Activation of the stop or system-reset-normal
key

2. Activation of the store-status key
3. Activation of the load-normal key to enter a

standalone dump program

The system-reset-normal key must be activated in
step 1 when (1) the stop key is not effective
because a continuous string of interruptions is
occurring, (2) the prefix register contains an
invalid address, or (3) the CPU is in the check-
stop state.

 System-Reset-Clear Key
Activating the system-reset-clear key causes a
clear-reset operation to be performed on the con-
figuration. For details, see “Resets” on
page 4-34.

The system-reset-clear key is effective when the

12-4 ESA/390 Principles of Operation  



  
 

CPU is in the operating, stopped, load, or check-
stop state.

 System-Reset-Normal Key
Activating the system-reset-normal key causes a
CPU-reset operation and a subsystem-reset oper-
ation to be performed. In a multiprocessing con-
figuration, a CPU reset is propagated to all CPUs
in the configuration. For details, see the section
“Resets” in Chapter 4, “Control.”

The system-reset-normal key is effective when the
CPU is in the operating, stopped, load, or check-
stop state.

 Test Indicator
The test indicator is on when a manual control for
operation or maintenance is in an abnormal posi-
tion that can affect the normal operation of a
program.

Setting the address-compare controls to the stop
position or setting the rate control to the
instruction-step position turns on the test indicator.

The test indicator may be on when one or more
diagnostic functions under the control of DIAG-
NOSE are activated, or when other abnormal con-
ditions occur.

The abnormal setting of a manual control causes
the test indicator of the affected CPU to be turned
on; however, in a multiprocessing configuration,
the operation of other CPUs may be affected even
though their test indicators are not turned on.

Operation Note:  If a manual control is left in a
setting intended for maintenance purposes, such
an abnormal setting may, among other things,
result in false machine-check indications or cause
actual machine malfunctions to be ignored. It may
also alter other aspects of machine operation,
including instruction execution, channel-subsystem
operation, and the functioning of operator controls
and indicators, to the extent that operation of the
machine does not comply with that described in
this publication.

 TOD-Clock Control
When the TOD-clock control is not activated, that
is, the control is set to the secure position, the
state and value of the TOD clock are protected
against unauthorized or inadvertent change by not
permitting the instructions SET CLOCK or DIAG-
NOSE to change the state or value.

When the TOD-clock control is activated, that is,
the control is set to the enable-set position, alter-
ation of the clock state or value by means of SET
CLOCK or DIAGNOSE is permitted. This setting
is momentary, and the control automatically
returns to the secure position.

In a multiprocessing configuration, activating the
TOD-clock control enables all TOD clocks in the
configuration to be set. If there is more than one
physical representation of the TOD-clock control,
no TOD clock is secure unless all TOD-clock con-
trols in the configuration are set to the secure
position.

 Wait Indicator
The wait indicator is on when the wait-state bit in
the current PSW is one. Instead of a wait indi-
cator, a model may have a means of indicating a
time-averaged value of the wait-state bit.

 Multiprocessing Configurations
In a multiprocessing configuration, one of each of
the following keys and controls is provided for
each CPU: alter and display, interrupt, rate,
restart, start, stop, and store status. The load-
clear key, load-normal key, and load-unit-address
controls are provided for each CPU capable of
performing I/O operations. Alternatively, a single
set of initial-program-loading keys and controls
may be used together with a control to select the
desired CPU.

There need not be more than one of each of the
following keys and controls in a multiprocessing
configuration: address compare, IML, power,
system reset clear, system reset normal, and TOD
clock.

One check-stop, manual, test, and wait indicator is
provided for each CPU. A load indicator is pro-
vided only on a CPU capable of performing I/O
operations. Alternatively, a single set of indicators
may be switched to more than one CPU.
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There need not be more than one architectural-
mode indicator in a multiprocessing configuration.

In a system capable of reconfiguration, there must
be a separate set of keys, controls, and indicators
in each configuration.
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 Input/Output (I/O)

The terms “input” and “output” are used to
describe the transfer of data between I/O devices
and main storage. An operation involving this kind
of transfer is referred to as an I/O operation. In
ESA/390, as in ESA/370 and 370-XA, the facilities
used to control I/O operations are collectively
called the channel subsystem. (I/O devices and
their control units attach to the channel sub-
system.) This chapter provides a brief description
of the basic components and operation of the
channel subsystem.

The Channel Subsystem
The channel subsystem directs the flow of infor-
mation between I/O devices and main storage. It
relieves CPUs of the task of communicating
directly with I/O devices and permits data proc-
essing to proceed concurrently with I/O proc-
essing. The channel subsystem uses one or more
channel paths as the communication link in man-
aging the flow of information to or from I/O
devices. As part of I/O processing, the channel
subsystem also executes a path-management
operation, testing for channel-path availability,
choosing an available channel path, and initiating
execution of the I/O operation with the device.

Within the channel subsystem are subchannels.
One subchannel is provided for and dedicated to
each I/O device accessible to the channel sub-
system. Each subchannel provides information
concerning the associated I/O device and its
attachment to the channel subsystem. The sub-
channel also provides information concerning I/O
operations and other functions involving the asso-

ciated I/O device. The subchannel is the means
by which the channel subsystem provides informa-
tion about associated I/O devices to CPUs, which
obtain this information by executing I/O
instructions. The actual number of subchannels
provided depends on the model and the configura-
tion; the maximum addressability is 65,536.

I/O devices are attached through control units to
the channel subsystem by means of channel
paths. Control units may be attached to the
channel subsystem by more than one channel
path, and an I/O device may be attached to more
than one control unit. In all, an individual I/O
device may be accessible to the channel sub-
system by as many as eight different channel
paths, depending on the model and the configura-
tion. The total number of channel paths provided
by a channel subsystem depends on the model
and the configuration; the maximum addressability
is 256.

The performance of a channel subsystem
depends on its use and on the system model in
which it is implemented. Channel paths are pro-
vided with different data-transfer capabilities, and
an I/O device designed to transfer data only at a
specific rate (a magnetic-tape unit or a disk
storage, for example) can operate only on a
channel path that can accommodate at least this
data rate.

The channel subsystem contains common facilities
for the control of I/O operations. When these
facilities are provided in the form of separate,
autonomous equipment designed specifically to
control I/O devices, I/O operations are completely
overlapped with the activity in CPUs. The only
main-storage cycles required by the channel sub-
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system during I/O operations are those needed to
transfer data and control information to or from the
final locations in main storage, along with those
cycles that may be required for the channel sub-
system to access the subchannels when they are
implemented as part of nonaddressable main
storage. These cycles do not delay CPU pro-
grams, except when both the CPU and the
channel subsystem concurrently attempt to refer-
ence the same main-storage area.

 Subchannels
A subchannel provides the logical appearance of a
device to the program and contains the informa-
tion required for sustaining a single I/O operation.
The subchannel consists of internal storage that
contains information in the form of a CCW
address, channel-path identifier, device number,
count, status indications, and I/O-interruption sub-
class code, as well as information on path avail-
ability and functions pending or being performed.
I/O operations are initiated with a device by exe-
cuting I/O instructions that designate the sub-
channel associated with the device.

Each device is accessible by means of one sub-
channel per channel subsystem to which it is
assigned during installation. The device may be a
physically identifiable unit or may be housed
internal to a control unit. For example, in certain
models of the IBM 3380 Direct-Access Storage,
each actuator used in retrieving the data is consid-
ered to be a device. In all cases, a device, from
the point of view of the channel subsystem, is an
entity that is uniquely associated with one sub-
channel and that responds to selection by the
channel subsystem by using the communication
protocols defined for the type of channel path by
which it is accessible.

In some models, subchannels are provided in
blocks. In these models, more subchannels may
be provided than there are attached devices.
Subchannels that are provided but do not have
devices assigned to them are not used by the
channel subsystem to perform any function and
are indicated by storing the associated device-
number-valid bit as zero in the subchannel-
information block of the subchannel.

The number of subchannels provided by the
channel subsystem is independent of the number
of channel paths to the associated devices. For

example, a device accessible through alternate
channel paths still is represented by a single sub-
channel. Each subchannel is addressed by using
a 16-bit binary subchannel number.

After the operation with the subchannel has been
requested by executing START SUBCHANNEL,
the CPU is released for other work, and the
channel subsystem assembles or disassembles
data and synchronizes the transfer of data bytes
between the I/O device and main storage. To
accomplish this, the channel subsystem maintains
and updates an address and a count that describe
the destination or source of data in main storage.
Similarly, when an I/O device provides signals that
should be brought to the attention of the program,
the channel subsystem transforms the signals into
status information and stores the information in
the subchannel, where it can be retrieved by the
program.

Attachment of Input/Output
Devices

 Channel Paths
The channel subsystem communicates with I/O
devices by means of channel paths between the
channel subsystem and control units. A control
unit may be accessible by the channel subsystem
by more than one channel path. Similarly, an I/O
device may be accessible by the channel sub-
system through more than one control unit, each
having one or more channel paths to the channel
subsystem.

Devices that are attached to the channel sub-
system by multiple channel paths may be
accessed by the channel subsystem by using any
of the available channel paths. Similarly, a device
having the dynamic-reconnection feature and
operating in multipath mode can be initialized to
operate such that the device may choose any
channel path to which it is attached when logically
reconnecting to the channel subsystem to con-
tinue a chain of I/O operations.

The channel subsystem may contain two types of
channel path. One type of channel path used by
the channel subsystem is the ESA/390 I/O inter-
face, described in the System Library publication
IBM Enterprise Systems Architecture/390 ESCON
I/O Interface, SA22-7202, which is hereafter

13-2 ESA/390 Principles of Operation  



  
 

referred to as the serial-I/O interface. The second
type of channel path used by the channel sub-
system is described in the System Library publica-
tion IBM System/360 and System/370 I/O
Interface Channel to Control Unit OEMI,
GA22-6974, which is hereafter referred to as the
parallel-I/O interface.

Depending on the type of channel path, the facili-
ties provided by the channel path, and the I/O
device, an I/O operation may occur in one of two
modes, burst mode or byte-multiplex mode.

In burst mode, the I/O device monopolizes a
channel path and stays logically connected to the
channel path for the transfer of a burst of informa-
tion. No other device can communicate over the
channel path during the time a burst is transferred.
The burst can consist of a few bytes, a whole
block of data, a sequence of blocks with associ-
ated control and status information (the block
lengths may be zero), or status information which
monopolizes the channel path. The facilities of
the channel path capable of operating in burst
mode may be shared by a number of concurrently
operating I/O devices.

Some channel paths can tolerate an absence of
data transfer for about a half minute during a
burst-mode operation, such as occurs when a long
gap on magnetic tape is read. An equipment mal-
function may be indicated when an absence of
data transfer exceeds the prescribed limit.

In byte-multiplex mode, the I/O device stays log-
ically connected to the channel path only for a
short interval of time. The facilities of a channel
path capable of operating in byte-multiplex mode
may be shared by a number of concurrently oper-
ating I/O devices. In this mode all I/O operations
are split into short intervals of time during which
only a segment of information is transferred over
the channel path. During such an interval, only
one device and its associated subchannel are log-
ically connected to the channel path. The inter-
vals associated with the concurrent operation of
multiple I/O devices are sequenced in response to
demands from the devices. The channel-
subsystem facility associated with a subchannel
exercises its controls for any one operation only
for the time required to transfer a segment of
information. The segment can consist of a single
byte of data, a few bytes of data, a status report

from the device, or a control sequence used for
the initiation of a new operation.

Ordinarily, devices with high data-transfer-rate
requirements operate with the channel path in
burst mode, and slower devices run in byte-
multiplex mode. Some control units have a
manual switch for setting the desired mode of
operation.

An I/O operation that occurs on a
parallel-I/O-interface type of channel path may
occur in either mode, depending on the facilities
provided by the channel path and the I/O device.
For improved performance, some channel paths
and control units are provided with facilities for
high-speed transfer and data streaming. See the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974, for a description of those two
facilities.

An I/O operation that occurs on a
serial-I/O-interface type of channel path may occur
only in burst mode. For improved performance,
some control units attaching to the serial-I/O inter-
face provide the capability to provide sense data
to the program concurrent with presentation of
unit-check status, if permitted to do so by the
program. (See “Concurrent Sense” on
page 17-16.)

Depending on the control unit or channel sub-
system, access to a device through a subchannel
may be restricted to a single channel-path type.

The modes and features described above affect
only the protocol used to transfer information over
the channel path and the speed of transmission.
No effects are observable by CPU or channel pro-
grams with respect to the way these programs are
executed.

 Control Units
A control unit provides the logical capabilities nec-
essary to operate and control an I/O device and
adapts the characteristics of each device so that it
can respond to the standard form of control pro-
vided by the channel subsystem.

Communication between the control unit and the
channel subsystem takes place over a channel
path. The control unit accepts control signals from
the channel subsystem, controls the timing of data
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transfer over the channel path, and provides indi-
cations concerning the status of the device.

The I/O device attached to the control unit may be
designed to execute only certain limited opera-
tions, or it may execute many different operations.
A typical operation is moving a recording medium
and recording data. To accomplish its operations,
the device needs detailed signal sequences
peculiar to its type of device. The control unit
decodes the commands received from the channel
subsystem, interprets them for the particular type
of device, and provides the signal sequence
required for execution of the operation.

A control unit may be housed separately, or it may
be physically and logically integrated with the I/O
device, the channel subsystem, or a CPU. In the
case of most electromechanical devices, a well-
defined interface exists between the device and
the control unit because of the difference in the
type of equipment the control unit and the device
require. These electromechanical devices often
are of a type where only one device of a group
attached to a control unit is required to transfer
data at a time (magnetic-tape units or disk-access
mechanisms, for example), and the control unit is
shared among a number of I/O devices. On the
other hand, in some electronic I/O devices, such
as the channel-to-channel adapter, the control unit
does not have an identity of its own.

From the programmer's point of view, most func-
tions performed by the control unit can be merged
with those performed by the I/O device. There-
fore, this publication normally makes no specific
mention of the control-unit function; the execution
of I/O operations is described as if the I/O devices
communicated directly with the channel sub-
system. Reference is made to the control unit
only when emphasizing a function performed by it
or when describing how the sharing of the control
unit among a number of devices affects the exe-
cution of I/O operations.

 I/O Devices
An input/output (I/O) device provides external
storage, a means of communication between data-
processing systems, or a means of communication
between a system and its environment. I/O
devices include such equipment as card readers,
card punches, magnetic-tape units, direct-access-
storage devices (for example, disks), display units,

typewriter-keyboard devices, printers, teleproc-
essing devices, and sensor-based equipment. An
I/O device may be physically distinct equipment,
or it may share equipment with other I/O devices.

The term “I/O device,” as it is used in this publica-
tion, refers to an entity with which the channel
subsystem can directly communicate. For
example, the IBM 2540 Card Reader-Punch is
considered to be two separate I/O devices from
the point of view of the channel subsystem since
the reader portion and the punch portion are indi-
vidually accessible.

Most types of I/O devices, such as printers, card
equipment, or tape devices, use external media,
and these devices are physically distinguishable
and identifiable. Other types are solely electronic
and do not directly handle physical recording
media. The channel-to-channel adapter, for
example, provides for data transfer between two
channel paths, and the data never reaches a
physical recording medium outside main storage.
Similarly, the IBM 3725 Communication Controller
handles the transmission of information between
the data-processing system and a remote station,
and its input and output are signals on a trans-
mission line.

In the simplest case, an I/O device is attached to
one control unit and is accessible from one
channel path. Switching equipment is available to
make some devices accessible from two or more
channel paths by switching devices among control
units and by switching control units among
channel paths. Such switching equipment pro-
vides multiple paths by which an I/O device may
be accessed. Multiple channel paths to an I/O
device are provided to improve performance or I/O
availability, or both, within the system. The man-
agement of multiple channel paths to devices is
under the control of the channel subsystem and
the device, but the channel paths may indirectly
be controlled by the program.

 I/O Addressing
Four different types of I/O addressing are provided
by the channel subsystem for the necessary
addressing of the various components: channel-
path identifiers, subchannel numbers, device
numbers, and, though not visible to programs,
addresses dependent on the channel-path type.
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 Channel-Path Identifier
The channel-path identifier (CHPID) is a system-
unique eight-bit value assigned to each installed
channel path of the system. A CHPID identifies a
physical channel path. A CHPID is specified by
the second-operand address of RESET CHANNEL
PATH and designates the physical channel path
that is to be reset. The channel paths by which a
device is accessible are identified in the
subchannel-information block (SCHIB), each by its
associated CHPID, when STORE SUBCHANNEL
is executed. The CHPID can also be used in
operator messages when it is necessary to identify
a particular channel path. A system model may
provide as many as 256 channel paths. The
maximum number of channel paths and the
assignment of CHPIDs to channel paths depends
on the system model.

 Subchannel Number
A subchannel number is a system-unique 16-bit
value used to address a subchannel. The sub-
channel is addressed by seven I/O instructions:
CLEAR SUBCHANNEL, HALT SUBCHANNEL,
MODIFY SUBCHANNEL, RESUME SUB-
CHANNEL, START SUBCHANNEL, STORE SUB-
CHANNEL, and TEST SUBCHANNEL. Each I/O
device accessible to the channel subsystem is
assigned a dedicated subchannel at installation
time. All I/O functions relative to a specific I/O
device are specified by the program by desig-
nating the subchannel assigned to the I/O device.
Subchannels are always assigned subchannel
numbers within a single range of contiguous
numbers. The lowest-numbered subchannel is
subchannel 0. The highest-numbered subchannel
of the channel subsystem has a subchannel
number equal to one less than the number of sub-
channels provided. A maximum of 65,536 sub-
channels can be provided. Normally, subchannel
numbers are only used in communication between
the CPU program and the channel subsystem.

 Device Number
Each subchannel that has an I/O device assigned
to it also contains a system-unique parameter
called the device number. The device number is
a 16-bit value that is assigned as one of the
parameters of the subchannel at the time the
device is assigned to the subchannel.

The device number provides a means to identify a
device, independent of any limitations imposed by
the system model, the configuration, or channel-
path protocols. The device number is used in
communications concerning the device that take
place between the system and the system oper-
ator. For example, the device number is entered
by the system operator to designate the input
device to be used for initial program loading.

 Device Identifier
A device identifier is an address, not apparent to
the program, that is used by the channel sub-
system to communicate with I/O devices. The
type of device identifier used depends on the spe-
cific channel-path type and the protocols provided.
Each subchannel contains one or more device
identifiers.

For a channel path of the parallel-I/O-interface
type, described in System Library publication IBM
System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974, the
device identifier is called a device address and
consists of an eight-bit value. For the serial-I/O
interface, described in IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202, the device identifier consists of a
control-unit address and a device address.

The device address identifies the particular I/O
device (and, on the parallel-I/O-interface, the
control unit) associated with a subchannel. The
device address may identify, for example, a partic-
ular magnetic-tape drive, disk-access mechanism,
or transmission line. Any number in the range
0-255 can be assigned as a device address.

For further information about the I/O-device
address used with the IBM I/O interface, see the
appropriate publication referred to above.

Programming Note:  The device number is
assigned at device-installation time and may have
any value so long as it is system-unique. Device
numbers may be assigned installation-unique
values in an installation with multiple system
installations in order to avoid ambiguity, partic-
ularly where a device can be switched between
two or more systems.

In installations in which a system may be operated
sometimes in the System/370 mode and some-
times in the ESA/390 mode, it is advisable to
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make the ESA/390 device number and
System/370 I/O address equivalent to prevent
operational problems in such mixed environments.

Additionally, the user must observe any
restrictions on device-number assignment that
may be required by the control program, support
programs, or the particular control unit or I/O
device.

Execution of I/O Operations
I/O operations are initiated and controlled by infor-
mation with three types of formats: the instruction
START SUBCHANNEL, channel-command words
(CCWs), and orders. The START SUBCHANNEL
instruction is executed by a CPU and is part of the
CPU program that supervises the flow of requests
for I/O operations from other programs that
manage or process the I/O data.

When START SUBCHANNEL is executed, param-
eters are passed to the target subchannel
requesting that the channel subsystem perform a
start function with the I/O device associated with
the subchannel. The channel subsystem performs
the start function by using information at the sub-
channel, including the information passed during
the execution of the START SUBCHANNEL
instruction, to find an accessible channel path to
the device. Once the device has been selected,
execution of an I/O operation is accomplished by
the decoding and executing of a CCW by the
channel subsystem and the I/O device. One or
more CCWs arranged for sequential execution
form a channel program and are executed as one
or more I/O operations, respectively. Both
instructions and CCWs are fetched from main
storage, and their formats are common for all
types of I/O devices, although the modifier bits in
the command code of a CCW may specify device-
dependent conditions for the execution of an oper-
ation at the device.

Operations peculiar to a device, such as rewinding
tape or positioning the access mechanism on a
disk drive, are specified by orders which are
decoded and executed by I/O devices. Orders
may be transferred to the device as modifier bits
in the command code of a control command, may
be transferred to the device as data during a
control or write operation, or may be made avail-
able to the device by other means.

 Start-Function Initiation
CPU programs initiate I/O operations with the
instruction START SUBCHANNEL. This instruc-
tion passes the contents of an operation-request
block (ORB) to the subchannel. The contents of
the ORB include the subchannel key, the address
of the first CCW to be executed, and the format of
the CCWs. The CCW specifies the command to
be executed and the storage area, if any, to be
used.

When the ORB contents have been passed to the
subchannel, the execution of START SUB-
CHANNEL is complete. The results of the exe-
cution of the instruction are indicated by the
condition code set in the program-status word.

When facilities become available, the channel sub-
system fetches the first CCW and decodes it
according to the format bit specified in the ORB.
If the format bit is zero, format-0
(System/370-compatible) CCWs are specified. If
the format bit is one, format-1 CCWs are speci-
fied. Format-0 and format-1 CCWs contain the
same information, but the fields are arranged dif-
ferently in the format-1 CCW so that 31-bit
addresses can be specified directly in the CCW.

 Path Management
If the first CCW passes certain validity tests and
does not have the suspend flag specified, the
channel subsystem attempts device selection by
choosing a channel path from the group of
channel paths that are available for selection. A
control unit that recognizes the device identifier
connects itself logically to the channel path and
responds to its selection. The channel subsystem
sends the command-code part of the CCW over
the channel path, and the device responds with a
status byte indicating whether the command can
be executed. The control unit may logically dis-
connect from the channel path at this time, or it
may remain connected to initiate data transfer.

If the attempted selection does not occur as a
result of either a busy indication or a path-not-
operational condition, the channel subsystem
attempts to select the device by an alternate
channel path if one is available. When selection
has been attempted on all paths available for
selection and the busy condition persists, the
operation remains pending until a path becomes
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free. If a path-not-operational condition is
detected on one or more of the channel paths on
which device selection was attempted, the
program is alerted by a subsequent I/O inter-
ruption. The I/O interruption occurs either upon
execution of the channel program (assuming the
device was selected on an alternate channel path)
or as a result of the execution being abandoned
because path-not-operational conditions were
detected on all of the channel paths on which
device selection was attempted.

 Channel-Program Execution
If the command is initiated at the device and
command execution does not require any data to
be transferred to or from the device, the device
may signal the end of the operation immediately
on receipt of the command code. In operations
that involve the transfer of data, the subchannel is
set up so that the channel subsystem will respond
to service requests from the device and assume
further control of the operation.

An I/O operation may involve the transfer of data
to or from one storage area, designated by a
single CCW, or to or from a number of noncontig-
uous storage areas. In the latter case, generally a
list of CCWs is used for execution of the I/O oper-
ation, each CCW designating a contiguous
storage area, and the CCWs are coupled by data
chaining. Data chaining is specified by a flag in
the CCW and causes the channel subsystem to
fetch another CCW upon the exhaustion or filling
of the storage area designated by the current
CCW. The storage area designated by a CCW
fetched on data chaining pertains to the I/O opera-
tion already in progress at the I/O device, and the
I/O device is not notified when a new CCW is
fetched.

Provision is made in the CCW format for the pro-
grammer to specify that, when the CCW is
decoded, the channel subsystem request an I/O
interruption as soon as possible, thereby notifying
a CPU program that chaining has progressed at
least as far as that CCW in the channel program.

To complement dynamic address translation in
CPUs, CCW indirect data addressing is provided.
A flag in the CCW specifies that an indirect-data-
address list is to be used to designate the storage
areas for that CCW. Each time the boundary of a
2K-byte block of storage is reached, the list is ref-

erenced to determine the next block of storage to
be used. CCW indirect data addressing permits
essentially the same CCW sequences to be used
for a program running with dynamic address trans-
lation active in a CPU as would be used if the
CPU were operating with equivalent contiguous
real storage. CCW indirect data addressing
permits the program to designate data blocks
having absolute storage addresses up to 2óñ-1,
independent of whether format-0 or format-1
CCWs have been specified in the ORB.

In general, execution of an I/O operation or chain
of operations involves as many as three levels of
participation:

1. Except for effects due to the integration of
CPU and channel-subsystem equipment, a
CPU is busy for the duration of the execution
of START SUBCHANNEL, which lasts until
the addressed subchannel has been passed
the ORB contents.

2. The subchannel is busy for a new START
SUBCHANNEL from the receipt of the ORB
contents until the primary interruption condi-
tion is cleared at the subchannel.

3. The I/O device is busy from the initiation of
the first operation at the device until either the
subchannel becomes suspended or the sec-
ondary interruption condition is placed at the
subchannel. In the case of a suspended sub-
channel, the device again becomes busy
when execution of the suspended channel
program is resumed.

Conclusion of I/O Operations
The conclusion of an I/O operation normally is
indicated by two status conditions: channel end
and device end. The channel-end condition indi-
cates that the I/O device has received or provided
all data associated with the operation and no
longer needs channel-subsystem facilities. This
condition is called the primary interruption condi-
tion, and the channel end in this case is the
primary status. Generally, the primary interruption
condition is any interruption condition that relates
to an I/O operation and that signals the conclusion
at the subchannel of the I/O operation or chain of
I/O operations.

The device-end signal indicates that the I/O device
has concluded execution and is ready to execute
another operation. This condition is called the
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secondary interruption condition, and the device
end in this case is the secondary status. Gener-
ally, the secondary interruption condition is any
interruption condition that relates to an I/O opera-
tion and that signals the conclusion at the device
of the I/O operation or chain of operations. The
secondary interruption condition can occur concur-
rently with, or later than, the primary interruption
condition.

Concurrent with the primary or secondary inter-
ruption conditions, both the channel subsystem
and the I/O device can provide indications of
unusual situations.

The conditions signaling the conclusion of an I/O
operation can be brought to the attention of the
program by I/O interruptions or, when the CPUs
are disabled for I/O interruptions, by programmed
interrogation of the channel subsystem. In the
former case, these conditions cause storing of the
I/O-interruption code, which contains information
concerning the interrupting source. In the latter
case, the interruption code is stored as a result of
the execution of TEST PENDING INTER-
RUPTION.

When the primary interruption condition is recog-
nized, the channel subsystem attempts to notify
the program, by means of an interruption request,
that a subchannel contains information describing
the conclusion of an I/O operation at the sub-
channel. The information identifies the last CCW
used and may provide its residual byte count, thus
describing the extent of main storage used. Both
the channel subsystem and the I/O device may
provide additional indications of unusual conditions
as part of either the primary or secondary inter-
ruption condition. The information contained at
the subchannel may be stored by the execution of
TEST SUBCHANNEL or the execution of STORE
SUBCHANNEL. This information, when stored, is
called a subchannel-status word (SCSW).

Facilities are provided for the program to initiate
execution of a chain of I/O operations with a
single START SUBCHANNEL instruction. When
the current CCW specifies command chaining and
no unusual conditions have been detected during
the operation, the receipt of the device-end signal
causes the channel subsystem to fetch a new
CCW. If the CCW passes certain validity tests
and the suspend flag is not specified in the new
CCW, execution of a new command is initiated at

the device. If the CCW fails to pass the validity
tests, the new command is not initiated, command
chaining is suppressed, and the status associated
with the new CCW causes an interruption condi-
tion to be generated. If the suspend flag is speci-
fied, execution of the new command is not
initiated, and command chaining is concluded.

Execution of the new command is initiated by the
channel subsystem in the same way as the pre-
vious operation. The ending signals occurring at
the conclusion of an operation caused by a CCW
specifying command chaining are not made avail-
able to the program. When another I/O operation
is initiated by command chaining, the channel sub-
system continues execution of the channel
program. If, however, an unusual condition has
been detected, command chaining is suppressed,
the channel program is terminated, an interruption
condition is generated, and the ending signals
causing the termination are made available to the
program.

The suspend-and-resume function provides the
program with control over the execution of a
channel program. The initiation of the suspend
function is controlled by the setting of the
suspend-control bit in the ORB. The suspend
function is signaled to the channel subsystem
during channel-program execution by specifying
the suspend (S) flag in the first CCW or in a CCW
fetched during command chaining.

Suspension occurs when the channel subsystem
fetches a CCW with a valid S flag. The command
in this CCW is not sent to the I/O device, and the
device is signaled that the chain of commands is
concluded. A subsequent RESUME SUB-
CHANNEL instruction informs the channel sub-
system that the CCW that caused suspension may
have been modified and that the channel sub-
system must refetch the CCW and examine the
current setting of the suspend flag. If the suspend
flag is found to be not specified in the CCW, the
channel subsystem resumes execution of the
chain of commands with the I/O device.

Channel-program execution may be terminated
prematurely by HALT SUBCHANNEL or CLEAR
SUBCHANNEL. The execution of HALT SUB-
CHANNEL causes the channel subsystem to issue
the halt signal to the I/O device and terminate
channel-program execution at the subchannel.
When channel-program execution is terminated by
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the execution of HALT SUBCHANNEL, the
program is notified of the termination by means of
an I/O-interruption request. The interruption
request is generated when the device presents
status for the terminated operation. If, however,
the halt signal was issued to the device during
command chaining after the receipt of device end
but before the next command was transferred to
the device, the interruption request is generated
after the device has been signaled. In the latter
case, the device-status field of the SCSW will
contain zeros. The execution of CLEAR SUB-
CHANNEL clears the subchannel of indications of
the channel program in execution, causes the
channel subsystem to issue the clear signal to the
I/O device, and causes the channel subsystem to
generate an I/O-interruption request to notify the
program of the completion of the clear function.

 I/O Interruptions
Conditions causing I/O-interruption requests are
asynchronous to activity in CPUs, and more than
one condition can occur at the same time. The
conditions are preserved at the subchannels until
cleared by TEST SUBCHANNEL or CLEAR SUB-
CHANNEL, or reset by an I/O-system reset.

When an I/O-interruption condition has been
recognized by the channel subsystem and indi-
cated at the subchannel, an I/O-interruption
request is made pending for the I/O-interruption
subclass specified at the subchannel. The
I/O-interruption subclass for which the interruption
is made pending is under programmed control
through the use of MODIFY SUBCHANNEL. A
pending I/O interruption may be accepted by any

CPU that is enabled for interruptions from its
I/O-interruption subclass. Each CPU has eight
mask bits in control register 6 which control the
enabling of that CPU for each of the eight
I/O-interruption subclasses, with the I/O mask (bit
6) in the PSW the master I/O-interruption mask for
the CPU.

When an I/O interruption occurs at a CPU, the
I/O-interruption code is stored in the
I/O-communication area of that CPU, and the
I/O-interruption request is cleared. The
I/O-interruption code identifies the subchannel for
which the interruption was pending. The condi-
tions causing the generation of the interruption
request may then be retrieved from the sub-
channel explicitly by TEST SUBCHANNEL or by
STORE SUBCHANNEL.

A pending I/O-interruption request may also be
cleared by TEST PENDING INTERRUPTION
when the corresponding I/O-interruption subclass
is enabled but the PSW has I/O interruptions disa-
bled or TEST SUBCHANNEL when the CPU is
disabled for I/O interruptions from the corre-
sponding I/O-interruption subclass. A pending
I/O-interruption request may also be cleared by
CLEAR SUBCHANNEL. Both CLEAR SUB-
CHANNEL and TEST SUBCHANNEL clear the
preserved interruption condition at the subchannel
as well.

Normally, unless the interruption request is
cleared by CLEAR SUBCHANNEL, the program
executes TEST SUBCHANNEL to obtain informa-
tion concerning the execution of the operation.
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 Chapter 14. I/O Instructions
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SET ADDRESS LIMIT . . . . . . . . . . .  14-10
SET CHANNEL MONITOR . . . . . . . .  14-11
START SUBCHANNEL  . . . . . . . . . . 14-13
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STORE SUBCHANNEL  . . . . . . . . . . 14-15
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TEST SUBCHANNEL  . . . . . . . . . . . 14-17

The I/O instructions include all instructions that are
provided for the control of channel-subsystem
operations. The I/O instructions are listed in
Figure 14-1 on page 14-3. All of the I/O
instructions are privileged instructions.

Several I/O instructions result in the channel sub-
system being signaled to perform functions asyn-
chronous to the execution of the instructions. The
description of each instruction of this type contains
a section called “Associated Functions,” which
summarizes the asynchronous functions.

 I/O-Instruction Formats
All I/O instructions use the S format:

┌────────────────┬────┬────────────┐

│ Op Code │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The use of the second-operand address and
general registers 1 and 2 (as implied operands)
depends on the I/O instruction. Figure 14-1 on
page  14-3 defines which operands are used to
execute each I/O instruction. In addition, detailed
information regarding operand usage appears in
the description of each I/O instruction.

All I/O instructions that reference a subchannel
use the contents of general register 1 as an
implied operand. For these I/O instructions,
general register 1 contains the subsystem-
identification word. The subsystem-identification
word has the following format:

┌────────────────┬────────────────┐

│ │ Subchannel │

│ððððððððððððððð1│ Number │

└────────────────┴────────────────┘

ð 16 31

Bits 16-31 form the binary number of the sub-
channel to be used for the function specified by
the instruction.

 I/O-Instruction Execution

 Serialization
The execution of any I/O instruction causes serial-
ization and checkpoint synchronization to occur.
For a definition of the serialization of CPU opera-
tions, see “CPU Serialization” on page 5-87.

 Operand Access
During execution of an I/O instruction, the order in
which fields of the operand and fields of the sub-
channel (if applicable) are accessed is unpredict-
able. It is also unpredictable as to whether fetch
accesses are made to fields of an operand or the
subchannel (as applicable) when those fields are
not needed to complete execution of the I/O
instruction. (See “Relation between Operand
Accesses” on page 5-86.)

 Condition Code
During the execution of some I/O instructions, the
results of certain tests are used to set one of four
condition codes in the PSW. The I/O instructions
for which execution can result in the setting of the
condition code are listed in Figure 14-1 on
page 14-3. The condition code indicates the
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result of the execution of the I/O instruction. The
general meaning of the condition code for I/O
instructions is given below; the meaning of the
condition code for a specific instruction appears in
the description of that instruction.

Condition Code 0:  Instruction execution
produced the expected or most probable result.
(See “Deferred Condition Code (CC)” on page
16-8 for a description of conditions that can be
encountered subsequent to the presentation of
condition code 0 that result in a nonzero deferred
condition code.)

Condition Code 1:  Instruction execution
produced the alternate or second-most-probable
result, or status conditions were present that may
or may not have prevented the expected result.

Condition Code 2:  Instruction execution was
ineffective because the designated subchannel or
channel-subsystem facility was busy with a previ-
ously initiated function.

Condition Code 3:  Instruction execution was
ineffective because the designated element was
not operational or because some condition pre-
cluded initiation of the normal function.

In situations where conditions exist that could
cause more than one nonzero condition code to
be set, priority of the condition codes is as follows:

Condition code 3 has precedence over condition
codes 1 and 2.

Condition code 1 has precedence over condition
code 2.

 Program Exceptions
The program exceptions that the I/O instructions
can encounter are access, operand, privileged-
operation, and specification exceptions.
Figure 14-1 on page  14-3 shows the exceptions
that are applicable to each of the I/O instructions.
The execution of the instruction is suppressed for
privileged-operation, operand, and specification
exceptions. Except as indicated otherwise in the
section “Special Conditions” for each instruction,
the instruction ending for access exceptions is as
described in “Recognition of Access Exceptions”
on page 6-34.

 Instructions
The mnemonics, format, and operation codes of
the I/O instructions are given in Figure 14-1 on
page 14-3. The figure also indicates the condi-
tions that can cause a program interruption and
whether the condition code is set.

In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language
are shown with each instruction. In the case of
START SUBCHANNEL, for example, SSCH is the
mnemonic and D²(B²) the operand designation.
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│CLEAR SUBCHANNEL │CSCH │S C │P │OP ¢ GS │ │ │B23ð│

│HALT SUBCHANNEL │HSCH │S C │P │OP ¢ GS │ │ │B231│

│MODIFY SUBCHANNEL │MSCH │S C │P A SP│OP ¢ GS │ │ B²│B232│

│RESET CHANNEL PATH │RCHP │S C │P │OP ¢ G1 │ │ │B23B│

│RESUME SUBCHANNEL │RSCH │S C │P │OP ¢ GS │ │ │B238│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SET ADDRESS LIMIT │SAL │S │P │OP ¢ G1 │ │ │B237│

│SET CHANNEL MONITOR │SCHM │S │P │OP ¢ GM │ │ │B23C│

│START SUBCHANNEL │SSCH │S C │P A SP│OP ¢ GS │ │ B²│B233│

│STORE CHANNEL PATH STATUS │STCPS│S │P A SP│ ¢ │ ST│ B²│B23A│

│STORE CHANNEL REPORT WORD │STCRW│S C │P A SP│ ¢ │ ST│ B²│B239│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│STORE SUBCHANNEL │STSCH│S C │P A SP│OP ¢ GS │ ST│ B²│B234│

│TEST PENDING INTERRUPTION │TPI │S C │P Añ SP│ ¢ │ ST│ B²│B236│

│TEST SUBCHANNEL │TSCH │S C │P A SP│OP ¢ GS │ ST│ B²│B235│

├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤

│Explanation: │

│ │

│ ¢ Causes serialization and checkpoint synchronization. │

│ A Access exceptions for logical addresses. │

│ Añ When the effective address is zero, it is not used to access storage, and no access │

│ exceptions can occur, except that access exceptions may occur during access-register │

│ translation. │

│ B² B² field designates an access register in the access-register mode. │

│ C Condition code is set. │

│ G1 Instruction execution includes the implied use of general register 1 │

│ as a parameter. │

│ GM Instruction execution includes the implied use of multiple general │

│ registers. General register 1 is used as a parameter, and general │

│ register 2 may be used as a parameter depending on the contents of │

│ general register 1. │

│ GS Instruction execution includes the implied use of general register 1 │

│ as the subsystem-identification word. │

│ OP Operand exception. │

│ P Privileged-operation exception. │

│ S S instruction format. │

│ SP Specification exception. │

│ ST PER storage-alteration event. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 14-1. Summary of I/O Instructions
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 CLEAR SUBCHANNEL

CSCH [S]

┌────────────────┬────────────────┐

│ 'B23ð' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The designated subchannel is cleared, the current
start or halt function, if any, is terminated at the
designated subchannel, and the channel sub-
system is signaled to asynchronously perform the
clear function at the designated subchannel and at
the associated device.

General register 1 contains the subsystem-
identification word, which designates the sub-
channel that is to be cleared.

If a start or halt function is in progress, it is termi-
nated at the subchannel.

The subchannel is made no longer status-pending.
All activity, as indicated in the activity-control field
of the SCSW, is cleared at the subchannel, except
that the subchannel is made clear-pending. Any
functions in progress, as indicated in the function-
control field of the SCSW, are cleared at the sub-
channel, except for the clear function which is to
be performed because of the execution of this
instruction.

The channel subsystem is signaled to asynchro-
nously perform the clear function. The clear func-
tion is summarized below in the section
“Associated Functions” and is described in detail
in “Clear Function” on page 15-13.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of CLEAR SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the clear function. If conditions
allow, the channel subsystem chooses a channel
path and attempts to issue the clear signal to the
device to terminate the I/O operation, if any. The
subchannel then becomes status-pending. Condi-
tions encountered by the channel subsystem that

preclude issuing the clear signal to the device do
not prevent the subchannel from becoming status-
pending (see “Clear Function” on page 15-13).

When the subchannel becomes status-pending as
a result of performing the clear function, data
transfer, if any, with the associated device has
been terminated. The SCSW stored when the
resulting status is cleared by TEST SUB-
CHANNEL has the clear-function bit stored as
one. If the channel subsystem can determine that
the clear signal was issued to the device, the
clear-pending bit is stored as zero in the SCSW.
Otherwise, the clear-pending bit is stored as one,
and other indications are provided that describe in
greater detail the condition that was encountered.
(See “Interruption-Response Block” on
page 16-6.)

Measurement data is not accumulated and the
device-connect time is not stored in the extended-
status word for the subchannel for a start function
that is terminated by CLEAR SUBCHANNEL.

Special Conditions

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
CLEAR SUBCHANNEL. A subchannel is not
operational for CLEAR SUBCHANNEL when the
subchannel is not provided in the channel sub-
system, has no valid device number assigned to it,
or is not enabled.

CLEAR SUBCHANNEL can encounter the
program exceptions that are listed below. Bit
positions 0-15 of general register 1 must contain
the value 0001 hex; otherwise, an operand excep-
tion is recognized.

Resulting Condition Code:  

0 Function initiated
1 --
2 --
3 Not operational

 Program Exceptions: 

 � Operand
 � Privileged operation
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 HALT SUBCHANNEL

HSCH [S]

┌────────────────┬────────────────┐

│ 'B231' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The current start function, if any, is terminated at
the designated subchannel, and the channel sub-
system is signaled to asynchronously perform the
halt function at the designated subchannel and at
the associated device.

General register 1 contains the subsystem-
identification word, which designates the sub-
channel that is to be halted.

If a start function is in progress, it is terminated at
the subchannel.

The subchannel is made halt-pending and the halt
function is indicated at the subchannel.

When HALT SUBCHANNEL is executed and the
designated subchannel is subchannel-and-device-
active and status-pending with intermediate status,
the status-pending indication is eliminated (see the
discussion of bits 24, 25, and 28 in “Activity
Control (AC)” on page 16-13). The status-
pending condition is reestablished as part of the
halt function (see the section “Associated
Functions” below).

The channel subsystem is signaled to asynchro-
nously perform the halt function. The halt function
is summarized below in the section “Associated
Functions” and is described in detail in “Halt
Function” on page 15-14.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of HALT SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the halt function. If conditions
allow, the channel subsystem chooses a channel
path and attempts to issue the halt signal to the
device to terminate the I/O operation, if any. The
subchannel then becomes status-pending.

When the subchannel becomes status-pending as
a result of performing the halt function, data

transfer, if any, with the associated device has
been terminated. The SCSW stored when the
resulting status is cleared by TEST SUB-
CHANNEL has the halt-function bit stored as one.
If the halt signal was issued to the device, the
halt-pending bit is stored as zero. Otherwise, the
halt-pending bit is stored as one, and other indi-
cations are provided that describe in greater detail
the condition that was encountered. (See
“Interruption-Response Block” on page 16-6 and
“Halt Function” on page 15-14.)

In some models, path availability is tested as part
of the halt function (rather than as part of the exe-
cution of the instruction). In these models, when
no channel path is available for selection, the halt
signal is not issued, and the subchannel is made
status-pending. When the status-pending condi-
tion is subsequently cleared by TEST SUB-
CHANNEL, the halt-pending bit is stored as one in
the SCSW.

If a status-pending condition is eliminated during
execution of HALT SUBCHANNEL, then this con-
dition is reestablished along with the other status
conditions when completion of the halt function is
indicated to the program.

The halt-pending condition may not be recognized
by the channel subsystem if a status-pending con-
dition has been generated. This situation could
occur, for example, when alert status is presented
or generated while the subchannel is already start-
pending or resume-pending, or when primary
status is presented during the attempt to initiate
the I/O operation for the first command as speci-
fied by the start function or implied by the resume
function. If recognition of the status-pending con-
dition by the channel subsystem has occurred log-
ically prior to recognition of the halt-pending
condition, the SCSW, when cleared by TEST
SUBCHANNEL, has the halt-pending bit stored as
one.

If measurement data is being accumulated when a
start function is terminated by HALT SUB-
CHANNEL, the measurement data continues to be
accumulated for the subchannel and reflects the
extent of subchannel and device usage required, if
any, while performing the currently terminated
start function. The measurement data, if any, is
accumulated in the measurement block for the
subchannel or placed in the extended-status word,
as appropriate, when the subchannel becomes
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status-pending with primary status. (See
“Channel-Subsystem Monitoring” on page 17-1.)

Special Conditions

Condition code 1  is set and no other action is
taken when the subchannel is status-pending
alone or is status-pending with any combination of
alert, primary, or secondary status.

Condition code 2  is set and no other action is
taken when the subchannel is busy for HALT
SUBCHANNEL. The subchannel is busy for
HALT SUBCHANNEL when a halt function or
clear function is already in progress at the sub-
channel.

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
HALT SUBCHANNEL. A subchannel is not opera-
tional for HALT SUBCHANNEL when the sub-
channel is not provided in the channel subsystem,
has no valid device number assigned to it, or is
not enabled. In some models, a subchannel is
also not operational for HALT SUBCHANNEL
when no channel paths are available for selection
by the device. (See “Channel-Path Availability” on
page  15-12 for a description of channel paths
that are available for selection.)

HALT SUBCHANNEL can encounter the program
exceptions listed below. Bit positions 0-15 of
general register 1 must contain the value 0001
hex; otherwise, an operand exception is recog-
nized.

Resulting Condition Code:  

0 Function initiated
1 Status-pending with other than intermediate

status
2 Busy
3 Not operational

 Program Exceptions: 

 � Operand
 � Privileged operation

Programming Note:  After execution of HALT
SUBCHANNEL, the status-pending condition indi-
cating the completion of the halt function may be
delayed for an extended period of time, for
example, when the device is a magnetic-tape unit
executing a rewind command.

 MODIFY SUBCHANNEL

MSCH D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B232' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The information contained in the subchannel-
information block (SCHIB) is placed in the
program-modifiable fields of the subchannel. As a
result, the program influences, for that sub-
channel, certain aspects of I/O processing relative
to the clear, halt, resume, and start functions and
certain I/O support functions.

General register 1 contains the subsystem-
identification word, which designates the sub-
channel that is to be modified as specified by
certain fields of the SCHIB. The second-operand
address is the logical address of the SCHIB and is
designated on a word boundary.

The channel-subsystem operations that may be
influenced due to placement of SCHIB information
in the subchannel are: (1) I/O processing (E
field), (2) interruption processing (interruption
parameter and ISC field), (3) path management
(D, LPM, and POM fields), (4) monitoring and
address-limit-checking facilities (measurement-
block index and LM and MM fields), and
(5) concurrent-sense facility (S field). Bits 0-1 and
5-7 of word 1, and bits 0-30 of word 6 of the
SCHIB operand must be specified as zeros, and
bits 9-10 of word 1 must not both be ones. Addi-
tionally, when the concurrent-sense facility is not
installed, bit 31 of word 6 of the SCHIB operand
must be specified as zero. The remaining fields of
the SCHIB are ignored and do not affect the proc-
essing of MODIFY SUBCHANNEL. (For further
details, see “Subchannel-Information Block” on
page 15-1.)

Condition code 0 is set to indicate that the infor-
mation from the SCHIB has been placed in the
program-modifiable fields of the subchannel,
except for some models, when the device-number-
valid (V) bit at the designated subchannel is zero,
then condition code 0 is set and the information
from the SCHIB is not placed in the program-
modifiable fields of the subchannel.
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Special Conditions

Condition code 1  is set and no other action is
taken when the subchannel is status-pending.
(See “Status Control (SC)” on page 16-16.)

Condition code 2  is set and no other action is
taken when a clear, halt, or start function is in
progress at the subchannel. (See “Function
Control (FC)” on page 16-12.)

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
MODIFY SUBCHANNEL. A subchannel is not
operational for MODIFY SUBCHANNEL when the
subchannel is not provided in the channel sub-
system.

MODIFY SUBCHANNEL can encounter the
program exceptions listed below. In word 1 of the
SCHIB, bits 0-1 and 5-7 must be zeros, and bits 9
and 10 must not both be ones; in word 6 of the
SCHIB, bits 0-30 must be zeros; bits 0-15 of
general register 1 must contain the value 0001
hex; otherwise, an operand exception is recog-
nized. Additionally, when the concurrent-sense
facility is not installed, bit 31 of word 6 of the
SCHIB operand must be zero; otherwise, an
operand exception is recognized.

The execution of MODIFY SUBCHANNEL is sup-
pressed on all addressing and protection
exceptions.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized.

Resulting Condition Code:  

0 Function completed
1 Status-pending
2 Busy
3 Not operational

 Program Exceptions: 

� Access (fetch, operand 2)
 � Operand
 � Privileged operation
 � Specification

Programming Note:   If a device signals I/O-error
alert while the associated subchannel is disabled,
the channel subsystem issues the clear signal to

the device and discards the I/O-error-alert indi-
cation without generating an I/O-interruption condi-
tion.

If a device presents unsolicited status while the
associated subchannel is disabled, that status is
discarded by the channel subsystem without gen-
erating an I/O-interruption condition. However, if
the status presented contains unit check, the
channel subsystem issues the clear signal for the
associated subchannel and does not generate an
I/O-interruption condition. This should be taken
into account when the program uses MODIFY
SUBCHANNEL to enable a subchannel. For
example, the medium on the associated device
that was present when the subchannel became
disabled may have been replaced, and, therefore,
the program should verify the integrity of that
medium.

RESET CHANNEL PATH

RCHP [S]

┌────────────────┬────────────────┐

│ 'B23B' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The channel-path-reset facility is signaled to
perform the channel-path-reset function at the
designated channel path.

General register 1 contains, in bit positions 24-31,
the channel-path identifier (CHPID) of the channel
path on which the channel-path-reset function is to
be performed. Bit positions 0-23 of general reg-
ister 1 are reserved and must contain zeros; oth-
erwise, an operand exception is recognized.

General register 1 has the following format:
┌──────────────────────────┬───────┐

│ðððððððð ðððððððð ðððððððð│ CHPID │

└──────────────────────────┴───────┘

ð 24 31

If conditions allow, the channel-path-reset facility
is signaled to asynchronously perform the
channel-path-reset function on the designated
channel path. The channel-path-reset function is
summarized below in the section “Associated
Functions” and is described in detail in “Channel-
Path Reset” on page 17-9.

Condition code 0 is set to indicate that the
channel-path-reset facility has been signaled.
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Associated Functions

Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset facility asynchro-
nously performs the channel-path-reset function.
Certain indications are reset at all subchannels
that have access to the designated channel path,
and the reset signal is issued on that channel
path. Any I/O functions in progress at the devices
are reset, but only for the channel path on which
the reset signal is received. An I/O operation or
chain of I/O operations taking place in multipath
mode may be able to continue to execute on other
channel paths in the multipath group, if any. (See
“Channel-Path-Reset Function” on page 15-40.)

The result of performing the channel-path-reset
function on the designated channel path is com-
municated to the program by means of a channel
report (see “Channel Report” on page 17-17).

Special Conditions

Condition code 2  is set and no other action is
taken when, on some models, the channel-path-
reset facility is busy performing the channel-path-
reset function for a previous execution of the
RESET CHANNEL PATH instruction.

Condition code 3  is set and no other action is
taken when, on some models, the designated
channel path is not operational for the execution
of RESET CHANNEL PATH. On these models,
the channel path is not operational for the exe-
cution of RESET CHANNEL PATH when the des-
ignated channel path is not physically available.

If the channel-path-reset facility is busy and the
designated channel path is not physically avail-
able, it depends on the model whether condition
code 2 or 3 is set.

RESET CHANNEL PATH can encounter the
program exceptions listed below. Bit positions
0-23 of general register 1 must contain zeros; oth-
erwise, an operand exception is recognized.

Resulting Condition Code:  

0 Function initiated
1 --
2 Busy
3 Not operational

 Program Exceptions: 

 � Operand
 � Privileged operation

Programming Notes:

1. To eliminate the possibility of a data-integrity
exposure for devices that have the capability
of generating unsolicited device-end status,
I/O operations in progress with such devices
on the channel path for which RESET
CHANNEL PATH is to be executed must be
terminated by execution of either HALT SUB-
CHANNEL or CLEAR SUBCHANNEL. Other-
wise, subsequent to receiving the reset signal,
the device may present an unsolicited device
end that may be interpreted by the channel
subsystem as a solicited device end and
cause command chaining to occur.

2. If the status-verification facility is being used
and RESET CHANNEL PATH is executed
without first stopping all ongoing operations
associated with the channel path being reset,
erroneous device-status-check conditions may
be detected.

 RESUME SUBCHANNEL

RSCH [S]

┌────────────────┬────────────────┐

│ 'B238' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The channel subsystem is signaled to perform the
resume function at the designated subchannel.

General register 1 contains the subsystem-
identification word, which designates the sub-
channel at which the resume function is to be
performed.

The subchannel is made resume-pending.

Logically prior to the setting of condition code 0
and only if the subchannel is currently in the sus-
pended state, path-not-operational conditions at
the subchannel, if any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the resume function. The resume
function is summarized below in the section
“Associated Functions” and is described in detail
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in “Start Function and Resume Function” on
page 15-17.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of RESUME SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the resume function. Except
when the subchannel is subchannel-active, if the
execution of RESUME SUBCHANNEL results in
the setting of condition code 0, performance of the
resume function causes execution of a currently
suspended channel program to be resumed with
the associated device, provided that the suspend
flag for the current CCW has been set to zero by
the program. If the suspend flag remains set to
one, execution of the channel program remains
suspended. But, if the subchannel is subchannel-
active at the time the execution of RESUME SUB-
CHANNEL results in the setting of condition code
0, then it is unpredictable whether execution of the
current program is resumed or whether it is found
by the resume function that the subchannel has
become suspended in the interim. The sub-
channel is found to be suspended by the resume
function only if the subchannel is status-pending
with intermediate status when the resume-pending
condition is recognized by the channel subsystem.
(See “Start Function and Resume Function” on
page 15-17.)

Special Conditions

Condition code 1  is set and no other action is
taken when the subchannel is status-pending.

Condition code 2  is set and no other action is
taken when the resume function is not applicable.
The resume function is not applicable when the
subchannel (1) has any function other than the
start function alone specified, (2) has no function
specified, (3) is resume-pending, or (4) does not
have suspend control specified for the start func-
tion in progress.

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
the resume function. A subchannel is not opera-
tional for the resume function if the subchannel is
not provided in the channel subsystem, has no

valid device number assigned to it, or is not
enabled.

RESUME SUBCHANNEL can encounter the
program exceptions listed below. Bit positions
0-15 of general register 1 must contain the value
0001 hex; otherwise, an operand exception is
recognized.

Resulting Condition Code:  

0 Function initiated
1 Status-pending
2 Function not applicable
3 Not operational

 Program Exceptions: 

 � Operand
 � Privileged operation

Programming Notes:

1. When channel-program execution is resumed
from the suspended state, the device views
the resumption as the beginning of a new
chain of commands. When the suspension of
channel-program execution occurs and the
device requires that certain commands be first
or appear only once in a chain of commands
(for example, direct-access-storage devices),
the program must ensure that the appropriate
commands in the proper sequence are
fetched by the channel subsystem after
channel-program execution is resumed. One
way the program can ensure proper
sequencing of commands at the device is by
allowing the I/O interruption to occur for an
intermediate interruption condition due to sus-
pension.

It is not reliable to notify the program that the
subchannel is suspended by using the PCI
flag in the CCW that contains the S flag
because the PCI I/O interruption may occur
before the subchannel is suspended. The
SCSW would indicate that an I/O operation is
in progress at the subchannel and device in
this case.

The suspend flag of the target CCW should
be set to zero before RESUME SUB-
CHANNEL is executed; otherwise, it is pos-
sible that the resume-pending condition may
be recognized and the CCW refetched while
the suspend flag is still one, in which case the
resume-pending condition would be reset, and
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the execution of the channel program would
be suspended. If the suspend flag of the
target CCW is set to zero before the execution
of RESUME SUBCHANNEL, the channel
program is not suspended, provided that the
subchannel is not subchannel-active at the
time the execution of RESUME SUB-
CHANNEL results in the setting of condition
code 0. If condition code 0 is set while the
subchannel is still subchannel-active, it is
unpredictable whether the resume-pending
condition is recognized by the channel sub-
system or whether it is found by the resume
function that the subchannel has become sus-
pended in the interim. The subchannel is
found to be suspended by the resume function
only if the subchannel is status-pending with
intermediate status at the time the resume-
pending condition is recognized. When the
subchannel is suspended, the execution of
TEST SUBCHANNEL, which clears the inter-
mediate interruption condition, also clears the
indication of resume-pending.

2. Some models recognize a resume-pending
condition only after a CCW having a valid S
flag set to one is fetched. Therefore, if a sub-
channel is resume-pending and, during exe-
cution of the channel program, no CCW is
fetched having a valid S flag set to one, the
subchannel remains resume-pending until the
primary interruption condition is cleared by
TEST SUBCHANNEL.

3. Path availability is not tested during the exe-
cution of RESUME SUBCHANNEL. Instead,
path availability is tested when the channel
subsystem begins performance of the resume
function.

4. The contents of the CCW fetched during per-
formance of the resume function may be dif-
ferent from the contents of the same CCW
when it was previously fetched and contained
a valid S flag.

SET ADDRESS LIMIT

SAL [S]

┌────────────────┬────────────────┐

│ 'B237' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The address-limit-checking facility is signaled to
use the specified address as the address-limit

value, and the specified address is passed to the
facility.

General register 1 contains the address to be
used as the address-limit value. The address is
designated on a 64K-byte boundary, and the left-
most bit of general register 1 is zero.

General register 1 has the following format:
┌─┬───────────────────────────────┐

│ð│ Address─Limit Value │

└─┴───────────────────────────────┘

ð 1 31

Associated Functions

The value that is used by the address-limit-
checking facility when determining whether to
permit or prohibit a data access is called the
address-limit value. The initialized address-limit
value is zero. The initial address-limit value is
used by the address-limit-checking facility until the
facility recognizes a signal (caused by the exe-
cution of SET ADDRESS LIMIT) to use a specified
address. The recognition of this specified address
as the new address-limit value occurs asynchro-
nously with respect to the execution of SET
ADDRESS LIMIT.

If address-limit checking is specified for a sub-
channel, then whether the specified address is
used by the address-limit-checking facility (when
determining whether to permit or prohibit a data
access) depends on whether SET ADDRESS
LIMIT was executed before, during, or after the
execution of START SUBCHANNEL for that sub-
channel. If SET ADDRESS LIMIT is executed
before START SUBCHANNEL, then the specified
address is used by the address-limit-checking
facility. If SET ADDRESS LIMIT is executed
during or after the execution of START SUB-
CHANNEL, then it is unpredictable whether the
specified address is used by the address-limit-
checking facility for that particular start function.
For a description of the manner in which address-
limit checking is performed, see “Address-Limit
Checking” on page 17-15.

Special Conditions

SET ADDRESS LIMIT can encounter the program
exceptions listed below. The address in general
register 1 must be designated on a 64K-byte
boundary, and the leftmost bit of general register 1

14-10 ESA/390 Principles of Operation  



  
 

must be zero; otherwise, an operand exception is
recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Operand
 � Privileged operation

SET CHANNEL MONITOR

SCHM [S]

┌────────────────┬────────────────┐

│ 'B23C' │////////////////│

└────────────────┴────────────────┘

ð 16 31

The monitoring modes of the channel subsystem
are made either active or inactive, depending on
the setting of the measurement-mode-control bits
in general register 1. Depending on the setting of
the measurement-mode-control bit for
measurement-block update, the channel sub-
system is signaled to make the mode active, or
the mode is made inactive. If the measurement-
mode-control bit for measurement-block update is
one, the measurement-block origin and the
measurement-block key are passed to the channel
subsystem. Depending on the setting of the
measurement-mode-control bit for device-connect
time, the mode is made active or inactive.

General register 1 has the following format:
┌─────┬─────────────────────────────┬─┬─┐

│ MBK │ðððð ðððððððð ðððððððð ðððððð│M│D│

└─────┴─────────────────────────────┴─┴─┘

ð 4 3ð 31

Bit positions 0-3 of general register 1 contain the
measurement-block key (MBK). When bit 30 is
one, MBK specifies the access key that is to be
used by the channel subsystem when it accesses
the measurement-block area. Otherwise, MBK is
ignored.

Bit 30 (M) of general register 1 is the
measurement-mode-control bit that controls the
measurement-block-update mode. When bit 30 of
general register 1 is one and conditions allow, the
measurement-block-update facility is signaled to
asynchronously make the measurement-block-
update mode active. In addition, the MBO
address (in general register 2) and the
measurement-block key (MBK) (in general register
1) are passed to the measurement-block-update

facility. Furthermore, when bit 30 is one, bit 0 of
general register 2 must be zero. The asynchro-
nous functions that are performed by the
measurement-block-update facility are summa-
rized below in the section “Associated Functions”
and are described in detail in “Channel-Subsystem
Monitoring” on page 17-1.

When bit 30 of general register 1 is zero and con-
ditions allow, the measurement-block-update
mode is made inactive if it is active or remains
inactive if it is inactive. The contents of bit posi-
tions 0-3 (MBK) of general register 1 and the con-
tents of general register 2 are ignored.

Bit 31 (D) of general register 1 is the
measurement-mode-control bit that controls the
device-connect-time-measurement mode. When
bit 31 is one and conditions allow, the device-
connect-time-measurement mode is made active if
it is inactive or remains active if it is active. When
bit 31 is zero and conditions allow, the device-
connect-time-measurement mode is made inactive
if it is active or remains inactive if it is inactive.

The remaining bit positions of general register 1
are reserved and must contain zeros; otherwise,
an operand exception is recognized.

General register 2 has the following format:
┌─┬─────────────────────────────────────┐

│ð│ MBO Address │

└─┴─────────────────────────────────────┘

ð 1 31

Bit 0 of general register 2 must be zero when bit
30 (M) of general register 1 is one; otherwise, an
operand exception is recognized. When bit 30 (M)
of general register 1 is zero, bit 0 of general reg-
ister 2 is ignored. Bit positions 1-31 of general
register 2 contain the absolute address of the
measurement-block origin (MBO). When bit 30
(M) of general register 1 is one, the MBO address
designates the beginning of the measurement-
block area. The origin of the measurement-block
area must be designated on a 32-byte boundary.
The MBO address is used by the channel sub-
system to locate measurement blocks. When bit
30 (M) of general register 1 is zero, the contents
of general register 2 are ignored.

If the channel-subsystem timer that is used by the
channel-subsystem-monitoring facilities is in the
error state, the state is reset. This happens inde-
pendent of the setting of the two measurement-
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mode-control bits. (See “Channel-Subsystem
Timing” on page  17-1 for a description of the
timing facilities.)

Associated Functions

When the measurement-block-update facility is
signaled (by means of SET CHANNEL MONITOR)
to make the measurement-block-update mode
active, the functions that are performed by the
facility depend on whether or not the mode is
already active when the signal is generated.

If the measurement-block-update mode is inactive
when the signal is generated, the mode remains
inactive until the measurement-block-update
facility recognizes the signal. When the
measurement-block-update facility recognizes the
signal, the measurement-block-update mode is
made active, and the MBK and MBO associated
with that signal (that is, the MBK and MBO that
were passed when the signal was generated) are
used to control the storing of measurement data.

If the measurement-block-update mode is active
when the signal is generated, the mode remains
active, and the MBK and MBO associated with the
execution of a previous SET CHANNEL
MONITOR instruction continue to be used to
control the storing of measurement data until the
measurement-block-update facility recognizes the
signal. When the measurement-block-update
facility recognizes the signal, the MBK and MBO
associated with that signal are used instead of the
MBK and MBO associated with the execution of a
previous SET CHANNEL MONITOR instruction.

In either of the above cases, the measurement-
block-update facility recognizes the signal during,
or subsequent to, the execution of the SET
CHANNEL MONITOR instruction that caused the
signal to be generated and logically prior to the
performance of any start function that is initiated
by the subsequent execution of START SUB-
CHANNEL for a subchannel that is enabled for
measurement by this facility. If a subchannel that
is enabled for measurement by this facility already
has a start function in progress when the signal is
generated, it is unpredictable when measurement
data for that subchannel is stored by using the
MBK and MBO associated with that signal.

While the measurement-block-update mode is
active, performance measurements are accumu-

lated for subchannels that are enabled for
measurement-block update. Measurements for a
subchannel are accumulated in a single 32-byte
measurement block within the measurement-block
area. A subchannel is enabled for the
measurement-block-update mode by setting the
measurement-block-update-enable bit to one in
the SCHIB and then executing MODIFY SUB-
CHANNEL for that subchannel. The measure-
ment block that is used to accumulate
measurements for a subchannel is determined by
the measurement-block index that is contained in
the subchannel.

When the device-connect-time-measurement
mode is active, measurements of the length of
time that the device is actively communicating with
the channel subsystem during the execution of a
channel program are accumulated for subchannels
that are enabled for device-connect-time measure-
ment. Measurements for a subchannel are pro-
vided in the ESW of the IRB. A subchannel is
enabled for device-connect-time-measurement
mode by setting the device-connect-time-
measurement-enable bit to one in the SCHIB and
then executing MODIFY SUBCHANNEL for that
subchannel.

For a more detailed description of the
measurement-block-update mode, the format and
contents of the measurement block, and the
device-connect-time-measurement mode, see
“Channel-Subsystem Monitoring” on page 17-1.

Special Conditions

SET CHANNEL MONITOR can encounter the
program exceptions listed below. Bits 4-29 of
general register 1 must be zeros; bits 1-31 of
general register 2, the MBO address, must be
designated on a 32-byte boundary when bit 30 (M)
of general register 1 is one; and bit 0 of general
register 2 must be zero when bit 30 (M) of general
register 1 is one; otherwise, an operand exception
is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

 � Operand
 � Privileged operation

Programming Note:  When the channel sub-
system is initialized, the measurement-block-
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update and device-connect-time-measurement
modes are made inactive.

 START SUBCHANNEL

SSCH D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B233' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The channel subsystem is signaled to asynchro-
nously perform the start function for the associ-
ated device, and the execution parameters that
are contained in the designated ORB are placed
at the designated subchannel. (See “Operation-
Request Block” on page 15-21.)

General register 1 contains the subsystem-
identification word, which designates the sub-
channel that is to be started. The second-operand
address is the logical address of the ORB and is
designated on a word boundary.

The execution parameters contained in the ORB
are placed at the subchannel.

In some models, when START SUBCHANNEL is
executed and the subchannel is status-pending
with only secondary status, the status-pending
condition is discarded at the subchannel.

The subchannel is made start-pending, and the
start function is indicated at the subchannel.

Logically prior to the setting of condition code 0,
path-not-operational conditions at the subchannel,
if any, are cleared.

The channel subsystem is signaled to asynchro-
nously perform the start function. The start func-
tion is summarized below in the section
“Associated Functions” and is described in detail
in “Start Function and Resume Function” on
page 15-17.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of START SUB-
CHANNEL, the channel subsystem asynchro-
nously performs the start function.

The contents of the ORB, other than the fields that
must contain all zeros, are checked for validity. In
some models, the fields of the ORB that must
contain zeros are also checked asynchronously
(rather than during the execution of the instruc-
tion). When invalid fields are detected asynchro-
nously, the subchannel becomes status-pending
with primary, secondary, and alert status and with
deferred condition code 1 and program check indi-
cated. (See “Program Check” on page 16-25.) In
this situation, the I/O operation or chain of I/O
operations is not initiated at the device, and the
condition is indicated by the start-pending bit
being stored as one when the SCSW is cleared by
the execution of TEST SUBCHANNEL. (See
“Subchannel-Status Word” on page 16-6).

In some models, path availability is tested asyn-
chronously (rather than as part of the execution of
the instruction). When no channel path is avail-
able for selection, the subchannel becomes
status-pending with primary and secondary status
and with deferred condition code 3 indicated. The
I/O operation or chain of I/O operations is not initi-
ated at the device, and this condition is indicated
by the start-pending bit being stored as one when
the SCSW is cleared by the execution of TEST
SUBCHANNEL.

If conditions allow, a channel path is chosen and
execution of the channel program that is desig-
nated in the ORB is initiated. (See “Start Function
and Resume Function” on page 15-17.)

Special Conditions

Condition code 1  is set and no other action is
taken if the subchannel is status-pending when
START SUBCHANNEL is executed. In some
models, condition code 1 is not set when the sub-
channel is status-pending with only secondary
status; instead, the status-pending condition is dis-
carded.

Condition code 2  is set and no other action is
taken when a start, halt, or clear function is cur-
rently in progress at the subchannel (see “Func-
tion Control (FC)” on page 16-12).

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
START SUBCHANNEL. A subchannel is not
operational for START SUBCHANNEL if the sub-
channel is not provided in the channel subsystem,
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has no valid device number associated with it, or
is not enabled.

A subchannel is also not operational for START
SUBCHANNEL, in some models, when no
channel path is available for selection. In these
models, the lack of an available channel path is
detected as part of START SUBCHANNEL exe-
cution. In other models, channel path availability
is only tested as part of the asynchronous start
function.

START SUBCHANNEL can encounter the
program exceptions listed below. The execution
of START SUBCHANNEL is suppressed on all
addressing and protection exceptions. In word 1
of the ORB, bits 5-7, 13-15, and 25-31 must be
zeros, in word 2 of the ORB, bit 0 must be 0; oth-
erwise, in some models, an operand exception is
recognized. In other models, an I/O-interruption
condition is generated indicating program check
as part of the asynchronous start function.

Bits 0-15 of general register 1 must contain 0001
hex; when the incorrect-length-indication-
suppression facility is not installed, bit 24 of word
1 of the ORB must be zero; otherwise, an operand
exception is recognized.

The second operand must be designated on a
word boundary; otherwise, a specification excep-
tion is recognized, and the execution of START
SUBCHANNEL is suppressed.

Resulting Condition Code:  

0 Function initiated
1 Status-pending
2 Busy
3 Not operational

 Program Exceptions: 

� Access (fetch, operand 2)
 � Operand
 � Privileged operation
 � Specification

STORE CHANNEL PATH STATUS

STCPS D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B23A' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

A channel-path-status word of up to 256 bits is
stored at the designated location.

The second-operand address is the logical
address of the location where the channel-path-
status word is to be stored and is designated on a
32-byte boundary.

The channel-path-status word indicates which
channel paths are actively communicating with a
device at the time STORE CHANNEL PATH
STATUS is executed. Bit positions 0-255 corre-
spond, respectively, to the channel paths having
the channel-path identifiers 0-255. Each of the
256 bits at the designated location is set to one,
set to zero, or left unchanged, as follows:

� For all channel paths in the configuration that
are actively communicating with devices at the
time STORE CHANNEL PATH STATUS is
executed, the corresponding bits are stored as
ones.

� For all channel paths that are (1) provided in
the system (PIM bit in the PMCW is one) and
(2) in the configuration, but not currently being
used by the channel subsystem in actively
communicating with devices, the corre-
sponding bits are stored as zeros.

� For all channel paths that are not provided in
the system (PIM bit in the PMCW is zero), the
corresponding bits either are not stored or are
stored as zeros.

� For all channel paths in the configuration that
are in the channel-path-terminal state or are
not physically available (the corresponding
PAM bit in the PMCW is zero), the corre-
sponding bits are stored as zeros.

Special Conditions

STORE CHANNEL PATH STATUS can encounter
the program exceptions listed below. The exe-
cution of STORE CHANNEL PATH STATUS is
suppressed on all addressing and protection
exceptions. The second operand must be desig-
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nated on a 32-byte boundary; otherwise, a specifi-
cation exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Note:  To ensure a consistent
interpretation of channel-path-status-word bits, the
program should, prior to the initial use of the area,
store zeros at the location where the channel-
path-status word is to be stored.

STORE CHANNEL REPORT
WORD

STCRW D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B239' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

A CRW containing information affecting the
channel subsystem is stored at the designated
location.

The second-operand address is the logical
address of the location where the CRW is to be
stored and is designated on a word boundary.

When a malfunction or other condition affecting
channel-subsystem operation is recognized, a
channel report (consisting of one or more CRWs)
describing the condition is made pending for
retrieval and analysis by the program. The
channel report contains information concerning the
identity and state of a facility of the channel sub-
system following the detection of the malfunction
or other condition. For a description of the
channel report, the CRW, and program-recovery
actions related to the channel subsystem, see
“Channel-Subsystem Recovery” on page 17-17.

When one or more channel reports are pending,
the instruction causes a CRW to be stored at the
designated location and condition code 0 to be
set. A pending CRW can only be stored by exe-
cuting STORE CHANNEL REPORT WORD and,
once stored, is no longer pending. Thus, each
pending CRW is presented only once to the
program.

When no channel reports are pending in the
channel subsystem, execution of STORE
CHANNEL REPORT WORD causes zeros to be
stored at the designated location and condition
code 1 to be set.

Special Conditions

STORE CHANNEL REPORT WORD can
encounter the program exceptions listed below.
The execution of STORE CHANNEL REPORT
WORD is suppressed on all addressing and pro-
tection exceptions. The second operand must be
designated on a word boundary; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 CRW stored
1 Zeros stored
2 --
3 --

 Program Exceptions: 

� Access (store, operand 2)
 � Privileged operation
 � Specification

Programming Notes:

1. CRW overflow conditions may occur if STORE
CHANNEL REPORT WORD is not executed
to clear pending channel reports. If the over-
flow condition is encountered, one or more
channel-report words have been lost. (See
“Channel-Subsystem Recovery” on
page 17-17 for details.)

2. A pending CRW can be cleared by any CPU
in the configuration executing STORE
CHANNEL REPORT WORD, regardless of
whether a machine-check interruption has
occurred in any CPU.

 STORE SUBCHANNEL

STSCH D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B234' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

Control and status information for the designated
subchannel is stored in the designated SCHIB.
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General register 1 contains the subsystem-
identification word, which designates the sub-
channel for which the information is to be stored.
The second-operand address is the logical
address of the SCHIB and is designated on a
word boundary.

The information that is stored in the SCHIB con-
sists of the path-management-control word, the
SCSW, and three words of model-dependent infor-
mation. (See “Subchannel-Information Block” on
page 15-1.)

The execution of STORE SUBCHANNEL does not
change any information contained in the sub-
channel.

Condition code 0 is set to indicate that control and
status information for the designated subchannel
has been stored in the SCHIB. Whenever the
execution of STORE SUBCHANNEL results in the
setting of condition code 0, the information in the
SCHIB indicates a consistent state of the sub-
channel.

Special Conditions

Condition code 3  is set and no other action is
taken when the designated subchannel is not
operational for STORE SUBCHANNEL. A sub-
channel is not operational for STORE SUB-
CHANNEL if the subchannel is not provided in the
channel subsystem.

STORE SUBCHANNEL can encounter the
program exceptions listed below. Bit positions
0-15 of general register 1 must contain the value
0001 hex; otherwise, an operand exception is
recognized. The second operand must be desig-
nated on a word boundary; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 SCHIB stored
1 --
2 --
3 Not operational

 Program Exceptions: 

� Access (store, operand 2)
 � Operand
 � Privileged operation
 � Specification

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the SCHIB is
obtained from the subchannel. The STORE
SUBCHANNEL instruction does not cause the
channel subsystem to interrogate the
addressed device.

3. STORE SUBCHANNEL may be executed at
any time to sample conditions existing at the
subchannel, without causing any pending
status conditions to be cleared.

4. Repeated execution of STORE SUB-
CHANNEL without an intervening delay (for
example, to determine when a subchannel
changes state) should be avoided because
repeated accesses of the subchannel by the
CPU may delay or prohibit access of the sub-
channel by the channel subsystem to update
the subchannel.

TEST PENDING INTERRUPTION

TPI D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B236' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

The I/O-interruption code for a pending
I/O-interruption request is stored at the location
designated by the second-operand address, and
the pending I/O-interruption request is cleared.

The second-operand address, when nonzero, is
the logical address of the location where the
I/O-interruption code is to be stored and is desig-
nated on a word boundary.

If the second-operand address is zero, the
I/O-interruption code is stored at real locations
184-191. In this case, low-address protection and
key-controlled protection do not apply.

In the access-register mode when the second-
operand address is zero, it is unpredictable
whether access-register translation occurs for
access register B². If the translation occurs, the
resulting segment-table designation is not used;
that is, the interruption code still is stored in real
locations 184-191.
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Pending I/O-interruption requests are accepted
only for those I/O-interruption subclasses allowed
by the I/O-interruption subclass mask in control
register 6 of the CPU executing the instruction. If
no I/O-interruption requests exist that are allowed
by control register 6, the I/O-interruption code is
not stored, the second-operand location is not
modified, and condition code 0 is set.

If a pending I/O-interruption request is accepted,
the I/O-interruption code is stored, the pending
I/O-interruption request is cleared, and condition
code 1 is set. The I/O-interruption code that is
stored is the same as would be stored if an I/O
interruption had occurred. However, PSWs are
not swapped, as when an I/O interruption occurs.

The I/O-interruption code that is stored during exe-
cution of the instruction is defined as follows:

 ┌────────────────────────────────┐

Word ð│ Subsystem-Identification Word │

 ├────────────────────────────────┤

 1│ Interruption Parameter │

 └────────────────────────────────┘

 ð 31

 Subsystem-Identification Word: See
“I/O-Instruction Formats” on page 14-1.

Interruption Parameter:  Word 1 contains a four-
byte parameter which is specified by the program
and which previously was passed to the sub-
channel in word 0 of the ORB or the PMCW.
When a device presents alert status and the inter-
ruption parameter was not passed previously to
the subchannel by executing START SUB-
CHANNEL or MODIFY SUBCHANNEL, this field
contains zeros.

Special Conditions

TEST PENDING INTERRUPTION can encounter
the program exceptions listed below. The exe-
cution of TEST PENDING INTERRUPTION is sup-
pressed on all addressing and protection
exceptions. The second operand must be desig-
nated on a word boundary; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Interruption code not stored
1 Interruption code stored
2 --
3 --

 Program Exceptions: 

� Access (store, operand 2, second-operand
address nonzero only)

 � Privileged operation
 � Specification

Programming Notes:

1. When TEST PENDING INTERRUPTION is
executed with a second-operand address of
zero, I/O interruptions should be masked off.
Otherwise, an I/O-interruption code stored by
the instruction may be lost if an I/O inter-
ruption occurs. The I/O-interruption code that
identifies the source of the I/O interruption is
stored at real locations 184-191, replacing the
code that is stored by the instruction.

2. In the access-register mode, when the
second-operand address is zero, an access
exception is recognized if access-register
translation occurs and the access register is in
error. This exception can be prevented by
making the B² field zero or by placing
00000000 hex, 00000001 hex, or any other
valid contents in the access register.

 TEST SUBCHANNEL

TSCH D²(B²) [S]

┌────────────────┬────┬────────────┐

│ 'B235' │ B² │ D² │

└────────────────┴────┴────────────┘

ð 16 2ð 31

Control and status information for the subchannel
is stored in the designated IRB.

General register 1 contains the subsystem-
identification word, which designates the sub-
channel for which the information is to be stored.
The second-operand address is the logical
address of the IRB and is designated on a word
boundary.

The information that is stored in the IRB consists
of the SCSW, the extended-status word, and the
extended-control word. (See “Interruption-
Response Block” on page 16-6.)

If the subchannel is status-pending, the status-
pending bit of the status-control field is stored as
one. Whether or not the subchannel is status-
pending has an effect on the functions that are
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performed when TEST SUBCHANNEL is exe-
cuted.

When the subchannel is status-pending and TEST
SUBCHANNEL is executed, information (as
described above) is stored in the IRB, followed by
the clearing of certain conditions and indications
that exist at the subchannel (as described in
Figure 14-2). If an I/O-interruption request is
pending for the subchannel, the request is
cleared. Condition code 0 is set to indicate that
these actions have been taken.

When the subchannel is not status-pending and
TEST SUBCHANNEL is executed, information (as
described above) is stored in the IRB, and no con-
ditions or indications are cleared. Condition code
1 is set to indicate that these actions have been
taken.

Figure 14-2 describes which conditions and indi-
cations are cleared by TEST SUBCHANNEL when
the subchannel is status-pending. All other condi-
tions and indications at the subchannel remain
unchanged.

┌──────────────┬──────────────────────────────────┐

│ │ Subchannel Condition\ │

│ ├──────┬──────┬──────┬──────┬──────┤

│ │Alert │ Int │ Pri │ Sec │Status│

│ │Status│Status│Status│Status│ Pdg │

│ Field │ Pdg │ Pdg │ Pdg │ Pdg │Alone │

├──────────────┼──────┼──────┼──────┼──────┼──────┤

│Function │ C │ Nc │ C │ C │ C │

│Control │ │ │ │ │ │

├──────────────┼──────┼──────┼──────┼──────┼──────┤

│Activity │ Cp │ Nr │ Cp │ Cp │ Cp │

│Control │ │ │ │ │ │

├──────────────┼──────┼──────┼──────┼──────┼──────┤

│Status │ Cs │ Cs │ Cs │ Cs │ Cs │

│Control │ │ │ │ │ │

├──────────────┼──────┼──────┼──────┼──────┼──────┤

│N condition │ C │ Nr │ C │ C │ C │

│ │ │ │ │ │ │

├──────────────┴──────┴──────┴──────┴──────┴──────┤

│Explanation: │

│ │

│ \ Note that the rightmost column applies to │

│ status-pending when it is alone. The other │

│ four status-pending conditions result in the │

│ clearing actions given. These actions apply │

│ both when a single status-pending condition │

│ occurs and when a combination of the four │

│ status-pending conditions occurs. In the │

│ combination case, all the clearing actions │

│ of the individual cases apply. │

│ C Cleared. │

│ Cp The resume-, start-, halt-, clear-pending, │

│ and suspended conditions are cleared. │

│ Cs The status-pending condition is cleared. │

│ Nc Not changed unless function control indicates│

│ the halt function and activity control │

│ indicates suspended. If both the halt │

│ function and suspended are indicated, condi- │

│ tions are cleared as for status-pending │

│ alone. │

│ Nr Not changed unless activity control indicates│

│ suspended and function control indicates the │

│ start function with or without the halt func-│

│ tion. If the halt function is indicated, the│

│ conditions are cleared as for status-pending │

│ alone. If only the start function is indi- │

│ cated, the resume-pending condition and the │

│ N condition are cleared. │

└─────────────────────────────────────────────────┘

Figure 14-2. Conditions and Indications Cleared at the
Subchannel by TEST SUBCHANNEL

Special Conditions

Condition code 3  is set and no other action is
taken when the subchannel is not operational for
TEST SUBCHANNEL. A subchannel is not opera-
tional for TEST SUBCHANNEL if the subchannel
is not provided, has no valid device number asso-
ciated with it, or is not enabled.

TEST SUBCHANNEL can encounter the program
exceptions listed below. When the execution of
TEST SUBCHANNEL is terminated on addressing
and protection exceptions, the state of the sub-
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channel is not changed. Bit positions 0-15 of
general register 1 must contain 0001 hex; other-
wise, an operand exception is recognized. The
second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:  

0 IRB stored; subchannel status-pending
1 IRB stored; subchannel not status-pending
2 --
3 Not operational

 Program Exceptions: 

� Access (store, operand 2)
 � Operand
 � Privileged operation
 � Specification

Programming Notes:

1. Device status that is stored in the SCSW may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the IRB is
obtained from the subchannel. The TEST
SUBCHANNEL instruction does not cause the
channel subsystem to interrogate the
addressed device.

3. When an I/O interruption occurs, it is the
result of a status-pending condition at the sub-
channel, and typically TEST SUBCHANNEL is
executed to clear the status. TEST SUB-
CHANNEL may also be executed at any other
time to sample conditions existing at the sub-
channel.

4. Repeated execution of TEST SUBCHANNEL
to determine when a start function has been
completed should be avoided because there
are conditions under which the completion of
the start function may or may not be indicated.
For example, if the channel subsystem is
holding an interface-control-check (IFCC) con-
dition in abeyance (for any subchannel)
because another subchannel is already status-
pending, and if the start function being tested
by TEST SUBCHANNEL has as the only path
available for selection the channel path with
the IFCC condition, then the start function
may not be initiated until the status-pending
condition in the other subchannel is cleared,
allowing the IFCC condition to be indicated at
the subchannel to which it applies.

5. Repeated execution of TEST SUBCHANNEL
without an intervening delay, for example, to
determine when a subchannel changes state,
should be avoided because repeated
accesses of the subchannel by the CPU may
delay or prohibit accessing of the subchannel
by the channel subsystem. Execution of
TEST SUBCHANNEL by multiple CPUs for
the same subchannel at approximately the
same time may have the same effect and also
should be avoided.

6. The priority of I/O-interruption handling by a
CPU can be modified by execution of TEST
SUBCHANNEL. When TEST SUBCHANNEL
is executed and the designated subchannel
has an I/O-interruption request pending, that
I/O-interruption request is cleared and the
SCSW is stored, without regard to any previ-
ously established priority. The relative priority
of the remaining I/O-interruption requests is
unchanged.
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Chapter 15. Basic I/O Functions
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Execution of I/O Operations . . . . . . . . .  15-20

Blocking of Data . . . . . . . . . . . . . .  15-21

Operation-Request Block  . . . . . . . . . 15-21
Channel-Command Word  . . . . . . . . . 15-23
Command Code  . . . . . . . . . . . . . . 15-25
Designation of Storage Area . . . . . . .  15-25
Chaining  . . . . . . . . . . . . . . . . . . . 15-27

Data Chaining  . . . . . . . . . . . . . . 15-29
Command Chaining . . . . . . . . . . . 15-30

Skipping  . . . . . . . . . . . . . . . . . . . 15-31
Program-Controlled Interruption  . . . . . 15-31
CCW Indirect Data Addressing . . . . . .  15-32
Suspension of Channel-Program

Execution  . . . . . . . . . . . . . . . . 15-34
Commands and Flags . . . . . . . . . . .  15-36
Branching in Channel Programs . . . . .  15-36

Transfer in Channel . . . . . . . . . . .  15-37
Command Retry  . . . . . . . . . . . . . . 15-37

Concluding I/O Operations during Initiation . 15-37
Immediate Conclusion of I/O Operations . .  15-38
Concluding I/O Operations During Data

Transfer  . . . . . . . . . . . . . . . . . . 15-39
Channel-Path-Reset Function  . . . . . . . . 15-40

Channel-Path-Reset-Function Signaling .  15-40
Channel-Path-Reset

Function-Completion Signaling  . . . . 15-41

Some I/O instructions specify to the channel sub-
system that a function is to be performed. Collec-
tively, these functions are referred to as the basic
I/O functions. The basic I/O functions are the
clear, halt, start, resume, and channel-path-reset
functions.

Control of Basic I/O Functions
Information that is present at the subchannel con-
trols how the clear, halt, resume, and start func-
tions are performed. This information is
communicated to the program in the subchannel-
information block during execution of STORE
SUBCHANNEL.

 Subchannel-Information Block
The subchannel-information block (SCHIB) is the
operand of the MODIFY SUBCHANNEL and
STORE SUBCHANNEL instructions. The two
rightmost bits of the SCHIB address are zeros,
designating the SCHIB on a word boundary. The
SCHIB contains three major fields: the path-
management-control word (PMCW), the
subchannel-status word (SCSW), and a model-
dependent area. (Figure 15-1 on page 15-2
shows the format of the PMCW, and Figure 16-2
on page 16-7 shows the format of the SCSW.)

STORE SUBCHANNEL is used to store the
current PMCW, the SCSW, and model-dependent
data of the designated subchannel. MODIFY
SUBCHANNEL alters certain PMCW fields at the
subchannel. When the program needs to change
the contents of one or more of the PMCW fields,
the normal procedure is (1) to execute STORE
SUBCHANNEL to obtain the current contents,
(2) to perform the required modifications to the
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PMCW in main storage, and (3) to execute
MODIFY SUBCHANNEL to pass the new informa-
tion to the subchannel. The SCHIB has the fol-
lowing format:

 ┌────────────────────────────────┐

Word ð│ │

 │ │

 1│ │

 │ │

 2│ │

 │ Path-Management-Control Word │

 3│ │

 │ │

 4│ │

 │ │

 5│ │

 │ │

 6│ │

 ├────────────────────────────────┤

 7│ │

 │ │

 8│ Subchannel-Status Word │

 │ │

 9│ │

 ├────────────────────────────────┤

 1ð│ │

 │ │

 11│ Model-Dependent Area │

 │ │

 12│ │

 └────────────────────────────────┘

 Path-Management-Control Word
Words 0-6 of the SCHIB contain the path-
management-control word (PMCW). The PMCW
has the format shown in Figure 15-1 when the
subchannel is valid (see “Device Number Valid
(V)” on page 15-4).

 ┌───────────────────────────────────────────────────────┐

ð│ Interruption Parameter │

 ├──┬─────┬────┬─┬──┬──┬─┬─┬─┬───────────────────────────┤

1│ðð│ ISC │ððð │E│LM│MM│D│T│V│ Device Number │

 ├──┴─────┴────┼─┴──┴──┴─┴─┴─┼─────────────┬─────────────┤

2│ LPM │ PNOM │ LPUM │ PIM │

 ├─────────────┴─────────────┼─────────────┼─────────────┤

3│ MBI │ POM │ PAM │

 ├─────────────┬─────────────┼─────────────┼─────────────┤

4│ CHPID-ð │ CHPID-1 │ CHPID-2 │ CHPID-3 │

 ├─────────────┼─────────────┼─────────────┼─────────────┤

5│ CHPID-4 │ CHPID-5 │ CHPID-6 │ CHPID-7 │

 ├─────────────┴─────────────┴─────────────┴───────────┬─┤

6│ ðððððððð ðððððððð ðððððððð ððððððð │S│

 └─────────────────────────────────────────────────────┴─┘

 ð 8 11 16 24 31

Figure 15-1. PMCW Format

Interruption Parameter:  Bits 0-31 of word 0
contain the interruption parameter that is stored as
word 1 of the interruption code. The interruption
parameter can be set to any value by START
SUBCHANNEL and MODIFY SUBCHANNEL.
The initial value of the interruption parameter is
zero.

I/O-Interruption Subclass Code (ISC):   Bits 2-4
of word 1 contain a binary value (0-7) which corre-
sponds to the bit position of the I/O-interruption
subclass-mask bit in control register 6 of each
CPU in the configuration. The setting of that
mask bit in control register 6 of a CPU controls
the recognition of interruption requests relating to
this subchannel by that CPU (see “Priority of
Interruptions” on page 16-4). The ISC can be set
to any value by MODIFY SUBCHANNEL. The
initial value of the ISC is zero.

Reserved:  Bits 0-1 and 5-7 of word 1 are
reserved and stored as zeros by STORE SUB-
CHANNEL. They must be zeros when MODIFY
SUBCHANNEL is executed; otherwise, an
operand exception is recognized.

Enabled (E):  Bit 8 of word 1, when one, indi-
cates that the subchannel is enabled for all I/O
functions. When the E bit is zero, status pre-
sented by the device is not made available to the
program, and I/O instructions other than MODIFY
SUBCHANNEL and STORE SUBCHANNEL that
are executed for the designated subchannel cause
condition code 3 to be set. The E bit can be
either zero or one when MODIFY SUBCHANNEL
is executed; initially, all subchannels are not
enabled; IPL causes the IPL I/O device to become
enabled.

Limit Mode (LM):   Bits 9-10 of word 1 define the
limit mode (LM) of the subchannel. The limit
mode is used by the channel subsystem when
address-limit checking is invoked for an I/O opera-
tion. (See “Address-Limit Checking” on
page 17-15.) Address-limit checking is under the
control of the address-limit-checking-control bit
that is passed to the subchannel in the operation-
request block (ORB) during the execution of
START SUBCHANNEL. (See “Address-Limit-
Checking Control (A)” on page 15-22.) The defi-
nitions of the LM bits, whose values are used
during data transfer, are as follows:

Bit Bit
Function9 10

0 0 Initialized value. No limit checking is
performed for this subchannel.

0 1 Data address must be equal to, or
greater than, the current address limit.

1 0 Data address must be less than the
current address limit.

1 1 Reserved.
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Bits 9 and 10 can contain any of the first three bit
combinations shown above when MODIFY SUB-
CHANNEL is executed. Specification of the
reserved bit combination in the operand causes an
operand exception to be recognized when
MODIFY SUBCHANNEL is executed.

Measurement Mode Enable (MM):  Bits 11 and
12 of word 1 enable the measurement-block-
update mode and the device-connect-time-
measurement mode, respectively, of the
subchannel. These bits can contain any value
when MODIFY SUBCHANNEL is executed; ini-
tially, neither measurement mode is enabled. The
definition of each of these bits is as follows:

The meaning of the measurement-mode (MM)
enable bits described above applies when the
timing-facility bit for the subchannel is one. When
the timing-facility bit is zero, the effect of the MM
bits is changed, as described below under “Timing
Facility.” (For more discussion on measurement
modes, see “Measurement-Block Update” on
page 17-2 and “Device-Connect-Time
Measurement” on page 17-6.)

Multipath Mode (D):  Bit 13 of word 1, when one,
indicates that the subchannel operates in multi-
path mode when executing an I/O operation or
chain of I/O operations. For proper operation in
multipath mode when more than one channel path
is available for selection, the associated device
must have the dynamic-reconnection feature
installed and must be set up for multipath-mode
operation. During performance of a start function
in multipath mode, a device is allowed to request
service from the channel subsystem over any of
the channel paths indicated at the subchannel as
being available for selection (see “Logical-Path
Mask (LPM)” on page 15-4 and “Path-Available
Mask (PAM)” on page 15-7). Bit 13, when zero,
indicates that the subchannel operates in single-
path mode when executing an I/O operation or
chain of I/O operations. In single-path mode, the
entire start function is performed by using the
channel path on which the first command of the
I/O operation or chain of I/O operations was
accepted by the device. The D bit can be either
zero or one when MODIFY SUBCHANNEL is exe-

Bit Device-Connect-Time-Measurement
Enable:12

0 Initialized value. The subchannel is not
enabled for device-connect-time measure-
ment. Storing of the device-connect-time
interval (DCTI) in the extended-status word
(ESW) does not occur.

1 The subchannel is enabled for device-
connect-time measurement. If the device-
connect-time-measurement mode is active
and timing facilities are provided for the sub-
channel, the value of the DCTI is stored in
the ESW when TEST SUBCHANNEL is exe-
cuted after channel-program execution is
completed or suspended at the subchannel,
provided no error conditions described by
subchannel logout have been detected. If
the device-connect-time-measurement mode
is inactive, no measurement values are
stored in the ESW.

Bit
Measurement-Block-Update Enable:11

0 Initialized value. The subchannel is not
enabled for measurement-block update.
Storing of measurement-block data does not
occur.

1 The subchannel is enabled for
measurement-block update. If the
measurement-block-update mode is active,
measurement data is accumulated in the
measurement block at the time channel-
program execution is completed or sus-
pended at the subchannel, provided no error
conditions described by subchannel logout
have been detected. (See “Measurement-
Block Update” on page 17-2.) If the
measurement-block-update mode is inactive,
no measurement-block data is stored.
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cuted; initially, the subchannel is in single-path
mode.

Timing Facility (T):  Bit 14 of word 1, when one,
indicates that the channel-subsystem-timing facility
is available for the subchannel and is under the
control of the two measurement-mode-enable bits
(MM) and SET CHANNEL MONITOR. Bit 14,
when zero, indicates that the channel-subsystem-
timing facility is not available for the subchannel.
When bit 14 is zero, the START SUBCHANNEL
count is the only measurement data that can be
accumulated in the measurement block for the
subchannel. Storing of the START SUB-
CHANNEL count is under the control of bit 11 and
SET CHANNEL MONITOR, as described above
under “Measurement Mode Enable.” Similarly, if
the T bit is zero, no device-connect-time-interval
(DCTI) values can be measured for the sub-
channel. (See “Measurement-Block Update” on
page 17-2 and “Device-Connect-Time
Measurement” on page 17-6.)

Device Number Valid (V):  Bit 15 of word 1,
when one, indicates that the device-number field
(see below) contains a valid device number and
that a device associated with this subchannel may
be physically installed. Bit 15, when zero, indi-
cates that the subchannel is not valid, there is no
I/O device currently associated with the sub-
channel, and the contents of all other defined
fields of the SCHIB are unpredictable.

Device Number:  Bits 16-31 of word 1 contain
the binary representation of the four-digit
hexadecimal device number of the device that is
associated with this subchannel. The device
number is a system-unique parameter that is
assigned to the subchannel and the associated
device when the device is installed.

Logical-Path Mask (LPM):  Bits 0-7 of word 2
indicate the logical availability of channel paths to
the associated device. Each bit of the LPM corre-
sponds one-for-one, by relative bit position, with a
CHPID located in an associated byte of words 4
and 5 of the SCHIB. A bit set to one means that
the corresponding channel path is logically avail-
able; a zero means the corresponding channel
path is logically not available. When a channel
path is logically not available, the channel sub-
system does not use that channel path to initiate
performance of any clear, halt, resume, or start
function, except when a dedicated allegiance

exists for that channel path. When a dedicated
allegiance exists at the subchannel for a channel
path, the logical availability of the channel path is
ignored whenever a clear, halt, resume, or start
function is performed. (See “Channel-Path
Allegiance” on page 15-10). If the subchannel is
idle, the logical availability of the channel path is
ignored whenever the control unit initiates a
request to present alert status to the channel sub-
system. The logical availability of a channel path
associated with the subchannel can be changed
by setting the corresponding LPM bit in the SCHIB
and then executing MODIFY SUBCHANNEL, or
by setting the corresponding LPM bit in the ORB
and then executing START SUBCHANNEL. Ini-
tially, each installed channel path is logically avail-
able.

Path-Not-Operational Mask (PNOM):   Any of
bits 8-15 of word 2, when one, indicates that a
path-not-operational condition has been recog-
nized on the corresponding channel path. Each
bit of the PNOM corresponds one-for-one, by rela-
tive bit position, with a CHPID located in an asso-
ciated byte of words 4 and 5 of the SCHIB. The
channel subsystem recognizes a path-not-
operational condition when, during an attempted
device selection in order to perform a clear, halt,
resume, or start function, the device associated
with the subchannel appears not operational on a
channel path that is operational for the sub-
channel. When a path-not-operational condition is
recognized, the state of the channel path changes
from operational for the subchannel to not opera-
tional for the subchannel. A channel path is oper-
ational for the subchannel if the associated device
appeared operational on that channel path the last
time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection. A
channel path is not operational for the subchannel
if the associated device appeared not operational
on that channel path the last time the channel
subsystem attempted device selection in order to
perform a clear, halt, resume, or start function.
Any of bits 8-15 of word 2, when zero, indicates
that a path-not-operational condition has not been
recognized on the corresponding channel path.

Initially, each of the eight possible channel paths
associated with each subchannel is considered to
be operational, regardless of whether the respec-
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tive channel paths are installed or available; there-
fore, unless a path-not-operational condition is
recognized during initial program loading, the
PMCW, if stored, contains a PNOM of all zeros if
stored prior to executing a CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, RESUME SUB-
CHANNEL, or START SUBCHANNEL instruction.

Programming Note:  The PNOM indicates those
channel paths for which a path-not-operational
condition has been recognized during the perform-
ance of the most recent clear, halt, resume, or
start function. That is, the PNOM indicates which
of the channel paths associated with the sub-
channel have made a transition from the opera-
tional to the not-operational state for the
subchannel during the performance of the most
recent clear, halt, resume, or start function.
However, the transition of a channel path from the
not-operational to the operational state for the
subchannel is indicated in the POM. Therefore,
the POM must be examined in order to determine
whether any of the channel paths that are associ-
ated with a designated subchannel are operational
for the subchannel.

Furthermore, while performing either a start or
resume function, the transition of a channel path
from the not-operational to the operational state
for the subchannel is recognized by the channel
subsystem only during the initiation sequence for
the first command specified by the start function or
implied by the resume function. Therefore, a
channel path which is currently not operational for
the subchannel can be used by the device associ-
ated with the subchannel when reconnecting to
the channel subsystem in order to continue
command chaining; however, the channel sub-
system does not indicate a transition of that
channel path from the not-operational to the oper-
ational state for the subchannel in the POM.

┌───────────────────┬─────────────────────────────┐

│ POM Value and │ │

│ Device State │ Value of Specified Bit │

│ before Selection │ Subsequent to Selection │

│ Attempt │ Attempt │

├─────────┬─────────┼─────────┬─────────┬─────────┤

│ Device │ │ │ │ SCSW │

│ Stateñ │ POM │ POM │ PNOMò │ N Bit │

├─────────┼─────────┼─────────┼─────────┼─────────┤

│ OP │ ð │ 1 │ ð │ ð │

│ NOP │ ð │ ð │ ð │ ð │

│ OP │ 1 │ 1 │ ð │ ð │

│ NOP │ 1 │ ð │ 1 │ 1ó │

├─────────┴─────────┴─────────┴─────────┴─────────┤

│Explanation: │

│ │

│ ñ Device state as it appears on the │

│ corresponding channel path. │

│ │

│ ò Prior to the attempted device selection │

│ during the performance of either a start │

│ function or a resume function while the │

│ subchannel is suspended, the channel │

│ subsystem clears all existing │

│ path-not-operational conditions, if any, │

│ at the designated subchannel. │

│ │

│ ó The N bit (bit 15, word ð of the SCSW) is │

│ indicated to the program and the N │

│ condition is cleared at the subchannel when │

│ TEST SUBCHANNEL is executed the next time │

│ the subchannel is status-pending for other │

│ than intermediate status alone provided that│

│ it is not also suspended. │

│ │

│ NOP The device is not operational on the │

│ corresponding channel path. │

│ │

│ OP The device is operational on the │

│ corresponding channel path. │

└─────────────────────────────────────────────────┘

Figure 15-2. Resulting POM, PNOM, and N-Bit Values
Subsequent to Selection Attempt

Last-Path-Used Mask (LPUM):  Bits 16-23 of
word 2 indicate the channel path that was last
used for communicating or transferring information
between the channel subsystem and the device.
Each bit of the LPUM corresponds one-for-one, by
relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB.
Each bit of the LPUM is stored as zero except for
the bit which corresponds to the channel path last
used whenever one of the following occurs:

1. The first command of a start or resume func-
tion is accepted by the device (see “Activity
Control (AC)” on page 16-13).

2. The device and channel subsystem are
actively communicating when the suspend
function is performed for the channel program
in execution.
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3. Status has been accepted from the device
that is recognized as an interruption condition,
or a condition has been recognized that sup-
presses command chaining (see “Interruption
Conditions” on page 16-1).

4. An interface-control-check condition has been
recognized (see “Interface-Control Check” on
page 16-28), and no subchannel-logout infor-
mation is currently present in the subchannel.

The LPUM field of the PMCW contains the most
recent setting. The initial value of the LPUM is
zero.

Path-Installed Mask (PIM):  Bits 24-31 of word 2
indicate which of the channel paths 0-7 to the I/O
device are physically installed. The PIM indicates
the validity of the channel-path identifiers (see
below) for those channel paths that are physically
installed. Each bit of the PIM corresponds one-
for-one, by relative bit position, with a CHPID
located in an associated byte of words 4 and 5 of
the SCHIB. A PIM bit stored as one indicates that
the corresponding channel path is installed. A
PIM bit stored as zero indicates that the corre-
sponding channel path is not installed. The PIM
always reflects the full complement of installed
paths to the device, regardless of how the system
is configured. Therefore, some of the channel
paths indicated in the PIM may not be physically
available in that configuration, as indicated by the
bit settings in the path-available mask (see below).
The initial value of the PIM indicates all the phys-
ically installed channel paths to the device.

Measurement-Block Index (MBI):   Bits 0-15 of
word 3 form an index value used by the
measurement-block-update facility when the
measurement-block-update mode is active (see
“SET CHANNEL MONITOR” on page 14-11) and
the subchannel is enabled for the mode (see
“Measurement Mode Enable (MM)” on
page 15-3). When the measurement-block index
is used, five zero bits are appended on the right,
and the result is added to the measurement-block-
origin address designated by SET CHANNEL
MONITOR. The calculated address, called the
measurement-block address, designates the
beginning of a 32-byte storage area where meas-
urement data is stored. (See “Measurement
Block” on page 17-3.) The MBI can contain any
value when MODIFY SUBCHANNEL is executed;
the initial value is zero.

Path-Operational Mask (POM):   Bits 16-23 of
word 3 indicate the last known operational state of
the device on the corresponding channel paths.
Each bit of the POM corresponds one-for-one, by
relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB. If
the associated device appeared operational on a
channel path the last time the channel subsystem
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel path is operational for the subchannel,
and the bit corresponding to the channel path in
the POM is one. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection. A
channel path is also operational for the sub-
channel if MODIFY SUBCHANNEL is executed
and the bit corresponding to that channel path in
the POM is specified as one.

If the associated device appeared not operational
on a channel path the last time the channel sub-
system attempted device selection in order to
perform a clear, halt, resume, or start function,
then the channel path is not operational for the
subchannel, and the bit corresponding to the
channel path in the POM is zero. A channel path
is also not operational for the subchannel if
MODIFY SUBCHANNEL is executed and the bit
corresponding to that channel path in the POM is
specified as zero.

If the device associated with the subchannel
appears not operational on a channel path that is
operational for the subchannel during an
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel subsystem recognizes a path-not-
operational condition. If an SCSW is subse-
quently stored, then bit 15 of word 0 is one,
indicating the path-not-operational condition.
When a path-not-operational condition is recog-
nized, the state of the channel path changes from
operational for the subchannel to not operational
for the subchannel.

When the channel path is not operational for the
subchannel, a path-not-operational condition
cannot be recognized. Moreover, a channel path
that is not operational for the subchannel may be
available for selection; if the channel subsystem
chooses that channel path while executing a path-
management operation, and if during the
attempted device selection, the device appears to
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be operational again on that channel path, then
the state of the channel path changes from not
operational for the subchannel to operational for
the subchannel.

The POM can contain any value when MODIFY
SUBCHANNEL is executed. Initially, each of the
eight possible channel paths associated with each
subchannel is considered to be operational,
regardless of whether the respective channel
paths are installed or available; therefore, unless a
path-not-operational condition is recognized during
initial program loading, the PMCW, if stored, con-
tains a POM of all ones if stored prior to executing
a CLEAR SUBCHANNEL, HALT SUBCHANNEL,
RESUME SUBCHANNEL, or START SUB-
CHANNEL instruction.

Path-Available Mask (PAM):  Bits 24-31 of word
3 indicate the physical availability of installed
channel paths. Each bit of the PAM corresponds
one-for-one, by relative bit position, with a CHPID
located in an associated byte of words 4 and 5 of
the SCHIB. A PAM bit of one indicates that the
corresponding channel path is physically available
for use in accessing the device. A PAM bit of
zero indicates the channel path is not physically
available for use in accessing the device. When a
channel path is not physically available, it may,
depending upon the model and the extent of
failure, be used during performance of the reset-
channel-path function. A channel path which is
physically available may become not physically
available as a result of reconfiguring the system,
or this may occur as a result of the performance
of the channel-path-reset function. The initial
value of the PAM reflects the set of channel paths
by which the I/O device is physically accessible at
the time of initialization.

Note:  The change in the availability of a channel
path affects all subchannels having access to that
channel path. Whenever the setting of a PAM bit
is referred to in conjunction with the availability
status of a channel path, for brevity, reference is
made in this chapter to a single PAM bit instead of
to the respective PAM bits in all of the affected
subchannels.

Channel-Path Identifiers (CHPIDs):  Words 4
and 5 contain eight one-byte channel-path identi-
fiers corresponding to channel paths 0-7 of the
PIM. A CHPID is valid if the corresponding PIM

bit is one. Each valid CHPID contains the identi-
fier of a physical channel path to a control unit by
which the associated I/O device may be accessed.
A unique CHPID is assigned to each physical
channel path in the system.

Different devices that are accessible by the same
physical channel path have, in their respective
subchannels, the same CHPID value. The CHPID
value may, however, appear in each subchannel
in different locations in the CHPID fields 0-7.

Subchannels that share an identical set of channel
paths have the same corresponding PIM bits set
to ones. The channel-path identifiers (CHPIDs)
for these channel paths are the same and occupy
the same respective locations in each SCHIB.

Reserved:  Bits 0-30 of word 6 are reserved and
are stored as zeros by STORE SUBCHANNEL.
They must be zeros when MODIFY SUB-
CHANNEL is executed; otherwise, an operand
exception may be recognized.

Concurrent Sense (S):  Bit 31 of word 6, when
one, indicates that the subchannel is in
concurrent-sense mode. When the subchannel is
in concurrent-sense mode, whenever the sub-
channel becomes status-pending with alert status
and the status byte accepted from the device con-
tains the unit-check indication, then the channel
subsystem may attempt to retrieve sense informa-
tion from the associated device and place that
sense information in the extended-control word.

If the concurrent-sense facility is not installed, bit
31 of word 6 of the SCHIB operand must be zero
when MODIFY SUBCHANNEL is executed; other-
wise, an operand exception is recognized.

 Subchannel-Status Word
Words 7-9 of the SCHIB contain a copy of the
SCSW. The format of the SCSW is described in
“Subchannel-Status Word” on page 16-6. The
SCSW is stored by executing either STORE SUB-
CHANNEL or TEST SUBCHANNEL (see “STORE
SUBCHANNEL” on page  14-15 and “TEST
SUBCHANNEL” on page 14-17).

 Model-Dependent Area
Words 10-12 of the SCHIB contain model-
dependent information.
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Summary of Modifiable Fields
Figure 15-3 on page 15-8 lists the initial settings
for fields in a subchannel whose device-number-
valid bit is set to one and indicates what modifies
the fields.

All of the PMCW fields contain meaningful infor-
mation when STORE SUBCHANNEL is executed

and the designated subchannel is idle. Sub-
channel fields that the channel subsystem does
not modify contain valid information whenever
STORE SUBCHANNEL is executed, provided that
the device-number-valid bit is one. The validity of
the subchannel fields that are modifiable by the
channel subsystem depends on the state of the
subchannel at the time STORE SUBCHANNEL is
executed.

┌──────────────────────────────┬───────────────────┬──────────────────┬───────────┐

│ │ │ │ Modified │

│ │ │ Program Modifies │ by Channel│

│ Subchannel Field │ Initial Valueñ │ by Executing │ Subsystemò│

├──────────────────────────────┼───────────────────┼──────────────────┼───────────┤

│Interruption parameter │ Zeros │ MSCH,SSCH │ No │

│ │ │ │ │

│I/O-interruption subclass code│ Zeros │ MSCH │ No │

│ │ │ │ │

│Enabled │ Zero │ MSCH │ No │

│ │ │ │ │

│Limit mode │ Zeros │ MSCH │ No │

│ │ │ │ │

│Measurement mode │ Zeros │ MSCH │ Yesó │

│ │ │ │ │

│Multipath mode │ Zero │ MSCH │ No │

│ │ │ │ │

│Timing facility │Installed valueô │ None │ No │

│ │ │ │ │

│Device number valid │Installed valueô │ None │ No │

│ │ │ │ │

│Device number │Installed valueô │ None │ No │

│ │ │ │ │

│Logical-path mask │Path-installed-mask│ MSCH,SSCH │ No │

│ │value │ │ │

│ │ │ │ │

│Path-not-operational mask │ Zeros │ CSCH,SSCH,RSCHõ│ Yes │

│ │ │ │ │

│Last-path-used mask │ Zeros │ CSCH │ Yes │

│ │ │ │ │

│Path-installed mask │Installed valueô │ None │ No │

│ │ │ │ │

│Measurement-block index │ Zeros │ MSCH │ No │

│ │ │ │ │

│Path-operational mask │ Ones │ CSCH,MSCH,RSCHõ│ Yes │

│ │ │ │ │

│Path-available mask │Installed valuesô ö│ None │ Yesö │

│ │ │ │ │

│Channel-path ID ð-7 │Installed valueô │ None │ No │

│ │ │ │ │

│Subchannel-status word │ Zeros │ TSCH │ Yes │

│ │ │ │ │

│Concurrent sense │ Zero │ MSCH │ No │

│ │ │ │ │

│Model-dependent area │ \ │ None │ \ │

└──────────────────────────────┴───────────────────┴──────────────────┴───────────┘

Figure 15-3 (Part 1 of 2). Modification of Subchannel Fields
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┌─────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ \ Model-dependent. │

│ │

│ ñ These fields are not meaningful if the subchannel is not valid. │

│ Initializing of a subchannel is performed when I/O-system reset occurs. │

│ (See the section “I/O-System Reset” in Chapter 17, “I/O Support │

│ Functions.”) One or more of the installed-value parameters that are │

│ unmodifiable by the program may be set when the subchannel is idle. In │

│ this case, all the program-modifiable fields are set to their initialized │

│ values, and the program is notified of such a change by a channel report. │

│ (See the section “Channel-Report Word” in Chapter 17, “I/O │

│ Support Functions.”) │

│ │

│ ò Subchannel fields that are not normally modifiable by the channel subsystem│

│ may be modified by external means. When this occurs, the program is noti- │

│ fied of the change by a channel report that is made pending at the time of │

│ the change. │

│ │

│ ó When any of the following error conditions associated with the │

│ measurement-block-update mode are detected, the measurement-block-update │

│ mode is disabled by the channel subsystem (bit 11, word 1, of the SCHIB │

│ zero) in the affected subchannel. The device-connect-time-measurement- │

│ enable bit (bit 12, word 1 of the SCHIB) is never modified by the channel │

│ subsystem. │

│ │

│ Measurement program check │

│ Measurement protection check │

│ Measurement data check │

│ Measurement key check │

│ │

│ ô This information is entered when the channel-subsystem configuration is │

│ established. │

│ │

│ õ The mask is modified by the resume function only when the subchannel is in │

│ the suspended state at the time RESUME SUBCHANNEL is executed. │

│ │

│ ö The channel subsystem may modify the PAM to reflect changes in the system │

│ configuration caused by partitioning or unpartitioning channel paths │

│ because of reconfiguration or permanent failure of part of the I/O system. │

│ │

└─────────────────────────────────────────────────────────────────────────────────┘

Figure 15-3 (Part 2 of 2). Modification of Subchannel Fields
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Programming Notes:

1. System performance may be degraded if the
LPM is not used to make channel paths for
which a path-not-operational condition has
been indicated in the PNOM logically not
available.

2. If, during the performance of a start function, a
channel path becomes not physically available
because a channel-path failure has been
recognized, continued performance of the start
function may be precluded. That is, the
program may or may not be notified, and the
subchannel may remain in the subchannel-
and-device-active state until cleared by the
performance of the clear function.

3. If the same MBI is placed in more than one
subchannel by the program, the channel-
subsystem-monitoring facility updates the
same locations with measurement data
relating to more than one subchannel. In this
case, the values stored in the measurement
data are unpredictable. (See “Measurement-
Block Update” on page 17-2.)

4. Modification of the I/O configuration (reconfig-
uration) may be accomplished in various ways
depending on the model. If the reconfigura-
tion procedure affects the physical availability
of a channel path, then any change in avail-
ability can be detected by executing STORE
SUBCHANNEL for a subchannel that has
access to the channel path and by subse-
quently examining the PAM bits of the SCHIB.

5. The definitions of the PNOM, POM, and N bit
are such that a path-not-operational condition
is reported to the program only the first time
the condition is detected by the channel sub-
system after the corresponding POM bit is set
to one.

For example, if the POM bit for every channel
path available for selection is one and the
device appears not operational on all corre-
sponding channel paths while the channel
subsystem is attempting to initiate a start func-
tion at the device, the channel subsystem
makes the subchannel status-pending, with
deferred condition code 3 and with the N bit
stored as one. The PNOM in the SCHIB indi-
cates the channel path or channel paths that
appeared not operational, for which the corre-

sponding POM bits have been set to zeros.
The next START SUBCHANNEL causes the
channel subsystem to again attempt device
selection by choosing a channel path from
among all of the channel paths that are avail-
able for selection. If device selection is not
successful and all channel paths available for
selection have again been chosen, deferred
condition code 3 is set, but the N bit in the
SCSW is zero. The POM contains zeros in at
least those bit positions that correspond to the
channel paths that are available for selection.
(See “Channel-Path Availability” on
page 15-12 for a description of the term
“available for selection.”) When the N bit in the
SCSW is zero, the PNOM is also zero.

6. If the program is to detect path-not-operational
conditions, the PNOM should be inspected fol-
lowing the execution of TEST SUBCHANNEL
(which results in the setting of condition code
zero and the valid storing of the N bit as one)
and preceding the performance of another
start, resume, halt, or clear function at the
subchannel.

 Channel-Path Allegiance
The channel subsystem establishes allegiance
conditions between subchannels and channel
paths. The kind of allegiance established at a
subchannel for a channel path or set of channel
paths depends upon the state of the subchannel,
the device, and the information, if any, transferred
between the channel subsystem and device. The
way in which path management is handled during
the performance of a clear, halt, resume, or start
function is determined by the kind of allegiance, if
any, currently recognized between a subchannel
and a channel path.

Performing the clear function at a subchannel
clears any currently existing allegiance condition in
the subchannel for all channel paths.

Performing the reset-channel-path function clears
all currently existing allegiances for that channel
path in all subchannels.

When a channel path becomes not physically
available, all internal indications of prior allegiance
conditions are cleared in all subchannels having
access to the designated channel path.

15-10 ESA/390 Principles of Operation  



  
 

 Working Allegiance
A subchannel has a working allegiance for a
channel path when the subchannel becomes
device-active on that channel path. Once a
working allegiance is established, the channel
subsystem maintains the working allegiance at the
subchannel for the channel path until either the
subchannel is no longer device-active or a dedi-
cated allegiance is recognized, whichever occurs
earlier. Unless a dedicated allegiance is recog-
nized, a working allegiance for a channel path is
extended to the set of channel paths that are
available for selection if the device is specified to
be operating in multipath mode (that is, the
multipath-mode bit is stored as one in the SCHIB).
Otherwise, the working allegiance remains only for
that channel path over which the start function
was initiated.

Once a working allegiance is established for a
channel path or set of channel paths, the working
allegiance is not changed until the subchannel is
no longer device-active or until a dedicated alle-
giance is established. If the subchannel is oper-
ating in single-path mode, a working allegiance is
maintained only for a single path.

While a working allegiance exists at a subchannel,
an active allegiance can occur only for a channel
path for which the working allegiance is being
maintained, unless the device is specified as oper-
ating in multipath mode. When the device is
specified as operating in multipath mode, an
active allegiance may also occur for a channel
path that is not available for selection if the pres-
entation of status by the device on that channel
path causes an alert interruption condition to be
recognized.

A working allegiance is cleared in any subchannel
having access to a channel path if the channel
path becomes not physically available.

 Active Allegiance
A subchannel has an active allegiance established
for a channel path no later than when active com-
munication has been initiated on that channel path
with an I/O device. The subchannel can have an
active allegiance to only one channel path at a
time. While the subchannel has an active alle-
giance for a channel path, the channel subsystem
does not actively communicate with that device on

any other channel path. When the channel sub-
system accepts a no-longer-busy indication from
the device that does not cause an interruption
condition, this status does not constitute the initi-
ation of active communication. An active alle-
giance at a subchannel for a channel path is
terminated when the channel subsystem is no
longer actively communicating with the I/O device
on that channel path.

A working allegiance can become an active alle-
giance.

 Dedicated Allegiance
If a channel path is physically available (that is,
the corresponding PAM bit is one), a dedicated
allegiance may be recognized for that channel
path. If a channel path is not physically available,
a dedicated allegiance cannot be recognized for
the corresponding channel path. The channel
subsystem establishes a dedicated allegiance at
the subchannel for a channel path when (1) the
subchannel becomes status-pending with alert
status, and device status containing the unit-check
indication is present but (2) concurrent-sense
information is not present at the subchannel. A
dedicated allegiance is maintained until the sub-
channel is no longer start-pending (unless it
becomes suspended) or resume-pending following
performance of the next start function, clear func-
tion, or channel-path-reset function or the next
resume function if applicable. If the subchannel
becomes suspended, the dedicated allegiance
remains until the resume function is initiated and
the subchannel is no longer resume-pending.
Unless a clear or channel-path-reset function is
performed, the subchannel establishes a working
allegiance when the dedicated allegiance ends.
This occurs when the subchannel becomes
device-active. While a dedicated allegiance exists
at a subchannel, only that channel path is avail-
able for selection until the dedicated-allegiance
condition is cleared.

A dedicated allegiance can become an active alle-
giance. While a dedicated allegiance exists, an
active allegiance can only occur for the same
channel path.

A currently existing dedicated allegiance is cleared
at any subchannel having access to a channel
path when the channel path becomes not phys-
ically available or whenever the device appears
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not operational on the channel path for which the
dedicated allegiance exists.

 Channel-Path Availability
When a channel path is not physically available,
the channel subsystem does not use the channel
path to perform any of the basic I/O functions
except, in some cases, the channel-path-reset
function and does not respond to any control-unit-
initiated requests on that same channel path. If a
channel path is not physically available, the condi-
tion is indicated by the corresponding path-
available-mask (PAM) bit being zero when STORE
SUBCHANNEL is executed (see “Path-Available
Mask (PAM)” on page 15-7). Furthermore, if the
channel path is not physically available for the
subchannel designated by STORE SUB-
CHANNEL, then it is not physically available for
any subchannel that has a device which is acces-
sible by that channel path.

Unless a dedicated allegiance exists at a sub-
channel for the channel path, a channel path
becomes available for selection if it is logically
available and physically available (as indicated by
the bits in the LPM and PAM corresponding to the
channel path being stored as ones when STORE
SUBCHANNEL is executed). If a dedicated alle-
giance exists at a subchannel for the channel
path, only that channel path is available for
selection, and the setting of the corresponding
LPM bit is ignored. If the channel path is currently
being used and a dedicated allegiance exists at
the subchannel for the channel path, selection of
the device is delayed until the channel path is no
longer being used.

The availability status of the eight logical paths to
the associated device described in Figure 15-4 is
determined by the hierarchical arrangement of the
corresponding bit values contained in the PIM,
PAM, and LPM and by existing conditions, if any,
recognized by the channel subsystem.

┌───────────┬──────────┬──────────────────────────┐

│ Value of │ │ │

│ Bit 'n' │ Channel- │ │

├───┬───┬───┤ Path │ │

│PIM│PAM│LPM│Conditionñ│ Channel-Path State │

├───┼───┼───┼──────────┼──────────────────────────┤

│ ð │ ðò│ - │ X │ Not installed │

├───┼───┼───┼──────────┼──────────────────────────┤

│ 1 │ ð │ - │ X │ Not physically available │

├───┼───┼───┼──────────┼──────────────────────────┤

│ 1 │ 1 │ ðó│ X │ Not logically available │

├───┼───┼───┼──────────┼──────────────────────────┤

│ 1 │ 1 │ 1ó│ Active │ Available for selectionô │

├───┼───┼───┼──────────┼──────────────────────────┤

│ 1 │ 1 │ 1 │ Inactive │ Available for selection │

├───┴───┴───┴──────────┴──────────────────────────┤

│Explanation: │

│ │

│ - Bit value is not meaningful. │

│ │

│ ñ If the channel path is recognized as being │

│ used in active communication with a device, │

│ the channel-path condition is described as │

│ active. Otherwise, its condition is described│

│ as inactive. │

│ │

│ ò A PAM bit cannot have the value one when the │

│ corresponding PIM bit has the value zero. │

│ │

│ ó If a dedicated allegiance exists to the │

│ channel path at the subchannel, the state of │

│ the bit is ignored, and the channel path is │

│ considered to be available for selection. │

│ │

│ ô The channel path may appear to be active when │

│ a channel-path-terminal condition has been │

│ recognized. │

│ │

│ X Condition is not meaningful. │

└─────────────────────────────────────────────────┘

Figure 15-4. Path Condition and Path-Availability
Status for PIM, PAM, and LPM Values

 Control-Unit Type
In “Clear Function” on page 15-13, “Halt Function”
on page 15-14, and “Start Function and Resume
Function” on page 15-17, reference is made to
type-1, type-2, and type-3 control units. For a
description of these control-unit types, see the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974. For the purposes of this defi-
nition, all control units attaching to the serial-I/O
interface, described in IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202, are considered type-2 control units.
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 Clear Function
Subsequent to the execution of CLEAR SUB-
CHANNEL, the channel subsystem performs the
clear function. Performance of the clear function
consists in (1) executing a path-management
operation, (2) modifying fields at the subchannel,
(3) issuing the clear signal to the associated
device, and (4) causing the subchannel to be
made status-pending, indicating completion of the
clear function.

Clear-Function Path Management
A path-management operation is executed as part
of the clear function in order to examine channel-
path conditions for the associated subchannel and
to attempt to choose an available channel path on
which the clear signal can be issued to the associ-
ated device.

Channel-path conditions are examined in the fol-
lowing order:

1. If the channel subsystem is actively communi-
cating or attempting to establish active com-
munication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled,
and the associated subchannel has no alle-
giance to any channel path, the channel path
that is in use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel
path is chosen.

4. If the associated subchannel has a working
allegiance for one or more channel paths, one
of those channel paths is chosen.

5. If the associated subchannel has no alle-
giance for any channel path, if a last-used
channel path is indicated, and if that channel
path is available for selection, that channel
path is chosen. If that channel path is not
available for selection, either no channel path
is chosen or a channel path is chosen from
the set of channel paths, if any, that are avail-
able for selection (as though no last-used
channel path were indicated).

6. If the associated subchannel has no alle-
giance for any channel path, if no last-used
channel path is indicated, and if there exist
one or more channel paths that are available
for selection, one of those channel paths is
chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi-
tions, and for item 6, the channel subsystem
chooses a channel path from a set of channel
paths. In these cases, the channel subsystem
may attempt to choose a channel path, provided
that the following conditions do not apply:

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance
for the channel path.

3. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

4. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

 Clear-Function Subchannel
Modification
Path-management-control indications at the sub-
channel are modified during performance of the
clear function. Effectively, this modification occurs
after the attempt to choose a channel path, but
prior to the attempt to select the device to issue
the clear signal. The path-management-control
indications that are modified are as follows:

1. The state of all eight possible channel paths
at the subchannel is set to operational for the
subchannel.

2. The last-path-used indication is reset to indi-
cate no last-used channel path.

3. Path-not-operational conditions, if any, are
reset.
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Clear-Function Signaling and
Completion
Subsequent to the attempt to choose a channel
path and the modification of the path-
management-control fields, the channel sub-
system, if conditions allow, attempts to select the
device to issue the clear signal. (See “Clear
Signal” on page 17-8.) Conditions associated
with the subchannel and the chosen channel path,
if any, affect (1) whether an attempt is made to
issue the clear signal, and (2) whether the attempt
to issue the clear signal is successful. Inde-
pendent of these conditions, the subchannel is
subsequently set status-pending and the perform-
ance of the clear function is complete. These
conditions and their effect on the clear function
are described as follows:

No Attempt Is Made to Issue the Clear Signal:
The channel subsystem does not attempt to issue
the clear signal to the device if any of the fol-
lowing conditions exist:

1. No channel path was chosen. (See “Clear-
Function Path Management” on page 15-13.)

2. The chosen channel path is no longer avail-
able for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The chosen channel path is currently being
used to actively communicate with a different
device.

5. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

6. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If any of the conditions above exist, the sub-
channel remains clear-pending and is set status-
pending, and the performance of the clear function
is complete.

The Attempt to Issue the Clear Signal Is Not
Successful:  When the channel subsystem
attempts to issue the clear signal to the device,
the attempt may not be successful because of the
following conditions:

1. The control unit or device signals a busy con-
dition when the channel subsystem attempts
to select the device to issue the clear signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to
select the device to issue the clear signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the clear
signal.

If any of the conditions above exist and the
channel subsystem either determines that the
attempt to issue the clear signal was not suc-
cessful or cannot determine whether the attempt
was successful, the subchannel remains clear-
pending and is set status-pending, and the per-
formance of the clear function is complete.

The Attempt to Issue the Clear Signal Is Suc-
cessful:  When the channel subsystem deter-
mines that the attempt to issue the clear signal
was successful, the subchannel is no longer clear-
pending and is set status-pending, and the per-
formance of the clear function is complete. When
the subchannel becomes status-pending, the I/O
operation, if any, with the associated device has
been terminated.

Programming Note:  Subsequent to the perform-
ance of the clear function, any nonzero status,
except control-unit end alone, that is presented to
the channel subsystem by the device is passed to
the program as unsolicited alert status. Unsolic-
ited status consisting of control-unit end alone or
zero status is not presented to the program.

 Halt Function
Subsequent to the execution of HALT SUB-
CHANNEL, the channel subsystem performs the
halt function. Performance of the halt function
consists in (1) executing a path-management
operation, (2) issuing the halt signal to the associ-
ated device, and (3) causing the subchannel to be
made status-pending, indicating completion of the
halt function.
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Halt-Function Path Management
A path-management operation is executed as part
of the halt function to examine channel-path condi-
tions for the associated subchannel and to attempt
to choose a channel path on which the halt signal
can be issued to the associated device.

Channel-path conditions are examined in the fol-
lowing order:

1. If the channel subsystem is actively communi-
cating or attempting to establish active com-
munication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled,
and the associated subchannel has no alle-
giance to any channel path, the channel path
that is in use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel
path is chosen.

4. If the associated subchannel has a working
allegiance for one or more channel paths, one
of those channel paths is chosen.

5. If the associated subchannel has no alle-
giance for any channel path, if a last-used
channel path is indicated, and if that channel
path is available for selection, that channel
path is chosen. If that channel path is not
available for selection, either no channel path
is chosen or a channel path is chosen from
the set of channel paths, if any, that are avail-
able for selection (as though no last-used
channel path were indicated).

6. If the associated subchannel has no alle-
giance for any channel path, if no last-used
channel path is indicated, and if there exist
one or more channel paths that are available
for selection, one of those channel paths is
chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi-
tions, and for item 6, the channel subsystem
chooses a channel path from a set of channel
paths. In these cases, the channel subsystem

may attempt to choose a channel path for which
the following conditions do not apply:

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance
for the channel path.

3. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

4. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

Halt-Function Signaling and
Completion
Subsequent to the attempt to choose a channel
path, the channel subsystem, if conditions allow,
attempts to select the device to issue the halt
signal. (See “Halt Signal” on page 17-8.) Condi-
tions associated with the subchannel and the
chosen channel path, if any, affect (1) whether an
attempt is made to issue the halt signal,
(2) whether the attempt to issue the halt signal is
successful, and (3) whether the subchannel is
made status-pending to complete the halt function.
These conditions and their effect on the halt func-
tion are described as follows:

No Attempt Is Made to Issue the Halt Signal:
The channel subsystem does not attempt to issue
the halt signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See “Halt-
Function Path Management.”)

2. The chosen channel path is no longer avail-
able for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The associated subchannel is status-pending
with other than intermediate status alone.

5. The device to be signaled is attached to a
type-1 control unit, and the subchannel for
another device attached to the same control
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unit has an allegiance to the same channel
path, unless the allegiance is a working alle-
giance and primary status has been accepted
by that subchannel.

6. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If the conditions described in items 3 on
page 15-15, 5 on page 15-15, or 6 above exist,
the associated subchannel remains halt-pending
until those conditions no longer exist. When the
conditions no longer exist (for the channel-path-
terminal condition, when the condition no longer
exists as a result of executing RESET CHANNEL
PATH), the channel subsystem attempts to issue
the halt signal to the device.

If any of the remaining conditions above exist, the
subchannel remains halt-pending, is set status-
pending, and the halt function is complete.

The Attempt to Issue the Halt Signal Is Not
Successful:  When the channel subsystem
attempts to issue the halt signal to the device, the
attempt may not be successful because of the fol-
lowing conditions:

1. The control unit or device signals a busy con-
dition when the channel subsystem attempts
to select the device to issue the halt signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to
select the device to issue the halt signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the halt
signal.

If the control unit or device signals a busy condi-
tion (item 1), the subchannel remains halt-pending
until the internal indication of busy is reset. When
this event occurs, the channel subsystem again
attempts to issue the halt signal to the device.

If any of the remaining conditions above exists
and the channel subsystem either determines that
the attempt to issue the halt signal was not suc-
cessful or cannot determine whether the attempt
was successful, then the subchannel remains halt-
pending and is set status-pending, and the halt
function is complete.

The Attempt to Issue the Halt Signal Is Suc-
cessful:  When the channel subsystem deter-
mines that the attempt to issue the halt signal was
successful and ending status, if appropriate, has
been received at the subchannel, the subchannel
is no longer halt-pending and is set status-
pending, and the halt function is complete. When
the subchannel becomes status-pending, the I/O
operation, if any, with the associated device has
been terminated. The conditions that affect the
receipt of ending status at the subchannel, and
the effect of the halt signal at the device are
described in the following discussion.

When the subchannel is subchannel-and-device-
active or only device-active during the perform-
ance of the halt function, the state continues until
the subchannel is made status-pending because
(1) the device has provided ending status or
(2) the channel subsystem has determined that
ending status is unavailable. When the sub-
channel is idle, start-pending, start-pending and
resume-pending, suspended, or suspended and
resume-pending, or when the halt signal is issued
during command chaining after the receipt of
device end but before the next command is trans-
ferred to the device, no operation is in progress at
the device, and therefore no status is generated
by the device as a result of receiving the halt
signal. When the subchannel is neither
subchannel-active nor status-pending with inter-
mediate status, and no errors are detected during
the attempt to issue the halt signal to the device,
an interruption condition indicating status-pending
alone is generated after the halt signal is issued.

The effect of the halt signal at the device depends
partially on the type of device and its state. The
effect of the halt signal on a device that is not
active or that is executing a mechanical operation
in which data is not transferred across the channel
path, such as rewinding tape or positioning a disk-
access mechanism, depends upon the control-unit
or device model. If the device is executing a type
of operation that is unpredictable in duration or in
which data is transferred across the channel path,
the control unit interprets the signal as one to ter-
minate the operation. Pending status conditions
at the device are not reset. When the control unit
recognizes the halt signal, it immediately ceases
all communication with the channel subsystem
until it has reached the normal ending point. The
control unit then requests selection by the channel
subsystem to present any generated status.
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If the subchannel is involved in the data-transfer
portion of an I/O operation, data transfer is termi-
nated during the performance of the halt function,
and the device is logically disconnected from the
channel path. If the halt function is addressed to
a subchannel executing a chain of I/O operations
and the device has already provided channel end
for the current I/O operation, the channel sub-
system causes the device to be disconnected and
command chaining or command retry to be sup-
pressed. If the subchannel is executing a chain of
I/O operations with the device and the halt signal
is issued during command chaining at a point after
the receipt of device end for the previous I/O oper-
ation but before the next command is transferred
to the device, the subchannel is made status-
pending with primary and secondary status imme-
diately after the halt signal is issued. The
device-status field of the SCSW contains zeros in
this case. If the halt function is addressed to a
subchannel that is start-pending and the halt-
pending condition is recognized before initiation of
the start function, initiation of the start function is
not attempted, and the subchannel becomes
status-pending after the device has been signaled.

When the subchannel is not executing an I/O
operation with the associated device, the device is
selected, and an attempt is made to issue the halt
signal as the device responds. If the subchannel
is in the device-active state, the subchannel does
not become status-pending until it receives the
device-end status from the halted device. If the
subchannel is neither subchannel-and-device-
active nor device-active, the subchannel becomes
status-pending immediately after selecting the
device and issuing the halt signal. The SCSW for
the latter case has the status-pending bit set to
one (see “Status-Pending (Bit 31)” on
page 16-18).

The termination of an I/O operation by performing
the halt function may result in two distinct inter-
ruption conditions.

The first interruption condition occurs when the
device generates the channel-end condition. The
channel subsystem handles this condition as it
would any other interruption condition from the
device, except that the command address in the
associated SCSW designates the point at which
the I/O operation is terminated, and the
subchannel-status bits may reflect unusual condi-
tions that were detected. If the halt signal was

issued before all data designated for the operation
had been transferred, incorrect length is indicated,
subject to the control of the SLI flag in the current
CCW. The value in the count field of the associ-
ated SCSW is unpredictable.

The second interruption condition occurs if
device-end status was not presented with the
channel-end interruption condition. In this situ-
ation, the subchannel-key, command-address, and
count fields of the associated SCSW are not
meaningful.

When HALT SUBCHANNEL terminates an I/O
operation, the method of termination differs from
that used upon exhaustion of count or upon
detection of programming errors to the extent that
termination by HALT SUBCHANNEL is not contin-
gent on the receipt of a service request from the
associated device.

Programming Notes:

1. When, after an operation is terminated by
HALT SUBCHANNEL, the subchannel is
status-pending with primary, primary and sec-
ondary, or secondary status, the extent of
data transferred as described by the count
field is unpredictable.

2. When the path that is chosen by the path-
management operation has a channel-path-
terminal condition associated with it, the halt
function remains pending until the condition no
longer exists. Until the condition is cleared,
the associated subchannel cannot be used to
execute I/O operations, even if other channel
paths become available for selection. CLEAR
SUBCHANNEL can be executed to terminate
the halt-pending condition and make the sub-
channel usable.

Start Function and Resume
Function
Subsequent to execution of START SUB-
CHANNEL and RESUME SUBCHANNEL, the
channel subsystem performs the start and resume
functions, respectively, to initiate an I/O operation
with the associated device. Performance of a
start or resume function consists in: (1) executing
a path-management operation, (2) executing an
I/O operation or chain of I/O operations with the
associated device, and (3) causing the sub-
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channel to be made status-pending, indicating
completion of the performance of the start func-
tion. (Completion of a start function is described
in Chapter 16, “I/O Interruptions” on page 16-1.)
The start function initiates the execution of a
channel program that is designated in the ORB,
which in turn is designated as the operand of
START SUBCHANNEL, in contrast to the resume
function which initiates the execution of a sus-
pended channel program, if any, beginning at the
CCW that caused suspension; otherwise, the
resume function is performed as if it were a start
function (see “Resume-Pending (Bit 20)” on
page 16-13).

 Start-Function and
Resume-Function Path
Management
A path-management operation is executed by the
channel subsystem during the performance of
either a start or resume function to choose an
available channel path that can be used for device
selection to initiate an I/O operation with that
device. The actions taken are as follows:

1. If the subchannel is currently start-pending
and device-active, the start function remains
pending at the subchannel until the secondary
status for the previous start function has been
accepted from the associated device and the
subchannel is made start-pending alone.
When the status is accepted and it does not
describe an alert interruption condition, the
subchannel is not made status-pending, and
the performance of the pending start function
is subsequently initiated. If the status
describes an alert interruption condition, the
subchannel becomes status-pending with sec-
ondary and alert status, the pending start
function is not initiated, deferred condition
code 1 is set, and the start-pending bit
remains one. If the subchannel is currently
start-pending alone, the performance of the
start function is initiated as described below.

2. If a dedicated allegiance exists at the sub-
channel for a channel path, the channel sub-
system chooses that path for device selection.
If a busy condition is encountered while
attempting to select the device and a dedi-
cated allegiance exists at the subchannel, the
start function remains pending until the
internal indication of busy is reset for that
channel path. When the internal indication of

busy is reset, the performance of the pending
start function is initiated on that channel path.

3. If no channel paths are available for selection
and no dedicated allegiance exists in the sub-
channel for a channel path, a channel path is
not chosen.

4. If all channel paths that are available for
selection have been tried and one or more of
them are being used to actively communicate
with other devices, or, alternatively, if the
channel subsystem has encountered either a
control-unit-busy or device-busy condition on
one or more of those channel paths, or a
combination of those conditions on one or
more of those channel paths, the start function
remains pending at the subchannel until a
channel path, control unit, or device, as appro-
priate, becomes available.

5. If (1) the start function is to be initiated on a
channel path with a device attached to a
type-1 control unit and (2) no other device is
attached to the same control unit whose sub-
channel has either a dedicated allegiance to
the same channel path or a working alle-
giance to the same channel path where
primary status has not been received for that
subchannel, then that channel path is chosen
if it is available for selection; otherwise, that
channel path is not chosen. If, however,
another channel path to the device is available
for selection and if no allegiances exist as
described above, that channel path is chosen.
If no other channel paths are available for
selection, the start or resume function, as
appropriate, remains pending until a channel
path becomes available.

6. If the device is attached to a type-3 control
unit and if at least one other device is
attached to the same control unit whose sub-
channel has a dedicated allegiance to the
same channel path, another channel path that
is available for selection may be chosen, or
the start function remains pending until the
dedicated allegiance for the other device is
cleared.

7. If a channel path has been chosen and a busy
indication is received during device selection
to initiate execution of the first command of a
pending channel program, the channel path
over which the busy indication is received is
not used again for that device or control unit
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(depending on the device-busy or control-unit-
busy indication received) until the internal indi-
cation of busy is reset.

8. If, during an attempt to select the device in
order to initiate execution of the first command
specified for the start or implied for the
resume function (as described in action 7 on
page 15-18), the channel subsystem receives
a busy indication, it performs one of the fol-
lowing actions:

a. If the device is specified to be operating in
multipath mode and the busy indication
received is device busy, then the start or
resume function remains pending until the
internal indication of busy is reset. (See
“Multipath Mode (D)” on page 15-3.)

b. If the device is specified to be operating in
multipath mode and the busy indication
received is control unit busy, or if the
device is specified to be operating in
single-path mode, the channel subsystem
attempts selection of the device by
choosing an alternate channel path that is
available for selection and continues the
path-management operation until either
the start or resume function is initiated or
selection of the device has been
attempted on all channel paths that are
available for selection. If the start or
resume function has not been initiated by
the channel subsystem after all channel
paths available for selection have been
chosen, the start or resume function
remains pending until the internal indi-
cation of busy is reset.

c. If the subchannel has a dedicated alle-
giance, then action 2 on page 15-18
applies.

9. When, during the selection attempt to transfer
the first command, the device appears not
operational and the corresponding channel
path is operational for the subchannel, a path-
not-operational condition is recognized, and
the state of the channel path changes at the
subchannel from operational for the sub-
channel to not operational for the subchannel
(see “Path-Not-Operational Mask (PNOM)” on
page 15-4). The path-not-operational condi-
tions at the subchannel, if any, are preserved
until the subchannel next becomes clear-

pending, start-pending, or resume-pending (if
the subchannel was suspended), at which
time the path-not-operational conditions are
cleared. If, however, the corresponding
channel path is not operational for the sub-
channel, a path-not-operational condition is
not recognized. When the device appears not
operational during the selection attempt to
transfer the first command on a channel path
that is available for selection, one of the fol-
lowing actions occurs:

a. If a dedicated allegiance exists for that
channel path, then it is the only channel
path that is available for selection; there-
fore, further attempts to initiate the start or
resume function are abandoned, and an
interruption condition is recognized.

b. If no dedicated allegiance exists and there
are alternate channel paths available for
selection which have not been tried, one
of those channel paths is chosen to
attempt device selection and transfer the
first command.

c. If no dedicated allegiance exists, no alter-
nate channel paths are available for
selection which have not been tried, and
the device has appeared operational on at
least one of the channel paths that were
tried, the start or resume function remains
pending at the subchannel until either a
channel path, a control unit, or the device,
as appropriate, becomes available.

d. If no dedicated allegiance exists, no alter-
nate channel paths are available for
selection which have not been tried, and
the device has appeared not operational
on all channel paths that were tried,
further attempts to initiate the start or
resume function are abandoned, and an
interruption condition is recognized.

10. When the subchannel is active and an I/O
operation is to be initiated with a device, all
device selections occur according to the
LPUM indication if the multipath mode is not
specified at the subchannel. For example, if
command chaining is specified, the channel
subsystem transfers the first and all subse-
quent commands describing a chain of I/O
operations over the same channel path.
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Execution of I/O Operations
After a channel path is chosen, the channel sub-
system, if conditions allow, initiates execution of
an I/O operation with the associated device. Exe-
cution of additional I/O operations may follow initi-
ation and execution of the first I/O operation. The
channel subsystem can execute seven com-
mands: write, read, read backward, control,
sense, sense ID, and transfer in channel. Each
command, except transfer in channel, initiates a
corresponding I/O operation. Except for periods
while channel-program execution is suspended at
the subchannel (see “Suspension of Channel-
Program Execution” on page 15-34), the sub-
channel is active from the acceptance of the first
command until the primary interruption condition is
recognized at the subchannel. If the primary inter-
ruption condition is recognized before the accept-
ance of the first command, the subchannel does
not become active. Normally, the primary inter-
ruption condition is caused by the channel-end
signal or, in the case of command chaining, the
channel-end signal for the last CCW of the chain.
(See “Primary Interruption Condition” on
page 16-4.) The device is active until the sec-
ondary interruption condition is recognized at the
subchannel. Normally, the secondary interruption
condition is caused by the device-end signal or, in
the case of command chaining, the device-end
signal for the last CCW of the chain. (See “Sec-
ondary Interruption Condition” on page 16-4.)

Programming Note:  An I/O operation or chain of
I/O operations is normally executed by the
channel subsystem and the device operating in
single-path mode. In single-path mode, all trans-
fers of commands, data, and status for the I/O
operation or chain of I/O operations occur on the
channel path over which the first command was
transferred to the device.

When the device has the dynamic-reconnection
feature installed, an I/O operation or chain of I/O
operations may be executed in multipath mode; to
operate in multipath mode, MODIFY SUB-
CHANNEL must have been previously executed
for the subchannel with bit 13 of word 1 of the
SCHIB specified as one. (See “Multipath Mode
(D)” on page 15-3.) In addition, the device must
be set up for multipath mode by execution of
certain model-dependent commands appropriate
to that type of device. The general procedures for

handling multipath-mode operations are as
follows:

 1. Setup

a. A set-multipath-mode type of command
must be successfully executed by the
device on each channel path that is to be
a member of the multipath group being set
up; otherwise, the multipath mode of oper-
ation may give unpredictable results at the
subchannel. If, for any reason, one or
more physically available channel paths to
the device are not included in the multi-
path group, these channel paths must not
be available for selection while the sub-
channel is operating in multipath mode. A
channel path can be made not available
for selection by having the corresponding
LPM bit set to zero either in the SCHIB
prior to executing MODIFY SUBCHANNEL
or in the ORB prior to executing START
SUBCHANNEL.

b. When a set-multipath-mode type of
command is transferred to a device, only
a single channel path must be logically
available in order to avoid alternate
channel-path selection for the perform-
ance of that start function; otherwise,
device-busy conditions may be detected
by the channel subsystem on more than
one channel path, which may cause
unpredictable results for subsequent
multipath-mode operations. This type of
setup procedure should be used whenever
the membership of a multipath group is
changed.

2. Leaving Multipath Mode

To leave multipath mode and continue proc-
essing in single-path mode, either of the fol-
lowing two procedures may be used:

a. A disband-multipath-mode type of
command may be executed for any
channel path of the multipath group. This
command must be followed either by
(1) the execution of MODIFY SUB-
CHANNEL with bit 13 of word 1 of the
SCHIB specified as zero, or by (2) the
specification of only a single channel path
as logically available in the LPM. A start
function must not be performed at a sub-
channel operating in multipath mode with
multiple channel paths available for
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selection while the device is operating in
single-path mode; otherwise, unpredict-
able results may occur at the subchannel
for that function or subsequent start func-
tions.

b. A resign-multipath-mode type of command
is executed on each channel path of the
multipath group (the reverse of the setup
described in item 1 on page 15-20). This
command must be followed by either
(1) the execution of MODIFY SUB-
CHANNEL with bit 13 of word 1 of the
SCHIB specified as zero, or (2) the spec-
ification of only a single channel path as
logically available in the LPM. No start
function may be performed at a sub-
channel operating in multipath mode with
multiple channel paths available for
selection while the device is operating in
single-path mode; otherwise, unpredict-
able results may occur at the subchannel
for that or subsequent start functions.

Blocking of Data
Data recorded by an I/O device is divided into
blocks. The length of a block depends on the
device; for example, a block can be a card, a line
of printing, or the information recorded between
two consecutive gaps on magnetic tape.

The maximum amount of information that can be
transferred in one I/O operation is one block. An
I/O operation is terminated when the associated
main-storage area is exhausted or the end of the
block is reached, whichever occurs first. For
some operations, such as writing on a magnetic-
tape unit or at an inquiry station, blocks are not
defined, and the amount of information transferred
is controlled only by the program.

 Operation-Request Block
The operation-request block (ORB) is the operand
of START SUBCHANNEL. The ORB specifies the
parameters to be used in controlling that particular
start function. These parameters include the inter-
ruption parameter, the subchannel key, the
address of the first CCW, operation-control bits,
and a specification of the logical availability of
channel paths. The contents of the ORB are
placed at the designated subchannel during the
execution of START SUBCHANNEL, prior to the
setting of condition code 0. If the execution of

START SUBCHANNEL results in the setting of a
nonzero condition code, the contents of the ORB
have not been placed at the designated sub-
channel. The two rightmost bits of the ORB
address must be zeros, placing the ORB on a
word boundary; otherwise, a specification excep-
tion is recognized. The format of the ORB is as
follows:

 ┌────────────────────────────────────────────────────────┐

ð│ Interruption Parameter │

 ├───────┬─┬───┬─┬─┬─┬─┬─┬───┬───────────────┬─┬──────────┤

1│ Key │S│ððð│F│P│I│A│U│ððð│ LPM │L│ ððððððð │

 ├───────┴─┴───┴─┴─┴─┴─┴─┴───┴───────────────┴─┴──────────┤

2│ Channel-Program Address │

 └────────────────────────────────────────────────────────┘

 ð 31

The fields in the ORB are defined as follows:

Interruption Parameter:  Bits 0-31 of word 0 are
preserved unmodified in the subchannel until
replaced by a subsequent START SUBCHANNEL
or MODIFY SUBCHANNEL instruction. These bits
are placed in word 1 of the interruption code when
an I/O interruption occurs and when an inter-
ruption request is cleared by execution of TEST
PENDING INTERRUPTION.

Subchannel Key:  Bits 0-3 of word 1 form the
subchannel key for all fetching of CCWs, IDAWs,
and output data and for the storing of input data
associated with the start function initiated by
START SUBCHANNEL. This key is matched with
a storage key during these storage references.
For details, see “Key-Controlled Protection” on
page 3-9.

Suspend Control (S):  Bit 4 of word 1 controls
the performance of the suspend function for the
channel program identified in the ORB. The
setting of the S bit applies to all CCWs of the
channel program designated by the ORB (see
“Commands and Flags” on page 15-36). When
bit 4 is one, suspend control is specified, and
channel-program suspension occurs when a valid
suspend flag is detected in a CCW. If bit 4 is
zero, suspend control is not specified, and the
presence of the suspend flag in any CCW of the
channel program causes a program-check condi-
tion to be recognized.

Reserved:  Bits 5-7 of word 1 are reserved for
future use and must be zeros; otherwise, either an
operand exception or a program-check condition is
recognized.
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Format Control (F):  Bit 8 of word 1 specifies the
format of the channel-command words (CCWs)
which make up the channel program designated
by the channel-program-address field. If bit 8 of
word 1 is zero, format-0 CCWs are specified. If
bit 8 is one, format-1 CCWs are specified. (See
“Channel-Command Word” on page 15-23, for the
definition of the CCW formats).

Prefetch Control (P):  Bit 9 of word 1 specifies
whether or not unlimited prefetching of CCWs is
allowed for the channel program. If this bit is
zero, no prefetching is allowed, except in the case
of data chaining on output, where the prefetching
of one CCW describing a data area is allowed. If
this bit is one, unlimited prefetching is allowed.

Initial-Status-Interruption Control (I):  Bit 10 of
word 1 specifies whether or not the channel sub-
system must verify to the program that the device
has accepted the first command associated with a
start or resume function. If the I bit is specified as
one in the ORB, then when initial status is
received and the subchannel becomes active, indi-
cating that the first command has been accepted
for this start or resume function, the Z bit (see
“Zero Condition Code (Z)” on page 16-11) is set
to one at this subchannel, and the subchannel
becomes status-pending with intermediate status.

If the subchannel does not become active -- for
example, when the device signals channel end
immediately upon receiving the first command,
command chaining is not specified in the CCW,
and command retry is not signaled -- the
command-accepted condition (Z bit set to one) is
not generated; instead, the subchannel becomes
status-pending with primary status; intermediate
status may also be indicated in this case when the
command is accepted if the first CCW contained
the PCI flag.

Address-Limit-Checking Control (A):  Bit 11 of
word 1 specifies whether or not address-limit
checking is specified for the channel program. If
this bit is zero, no address-limit checking is per-
formed for the execution of the channel program,
independent of the setting of the limit-mode bits in
the subchannel (see “Limit Mode (LM)” on
page 15-2). If this bit is one, address-limit
checking is allowed for the channel program,
subject to the setting of the limit-mode bits in the
subchannel.

Suppress-Suspended-Interruption Control (U):
Bit 12 of word 1, when one, specifies that the
channel subsystem is to suppress the generation
of an intermediate interruption condition due to
suspension if the subchannel becomes sus-
pended. When bit 12 is zero, the channel sub-
system generates an intermediate interruption
condition whenever the subchannel becomes sus-
pended during execution of the channel program.

Reserved:  Bits 13-15 of word 1 are reserved for
future use and must be zeros; otherwise, an
operand exception or a program-check condition is
recognized.

Logical-Path Mask (LPM):  Bits 16-23 of word 1
are preserved unmodified in the subchannel and
specify to the channel subsystem which of the
logical paths 0-7 are to be considered logically
available, as viewed by the program. A bit setting
of one means that the corresponding channel path
is logically available; a zero specifies that the cor-
responding channel path is logically not available.
If a channel path is specified by the program as
being logically not available, the channel sub-
system does not use that channel path to perform
clear, halt, resume, or start functions when
requested by the program, except when a
dedicated-allegiance condition exists for that
channel path. If a dedicated-allegiance condition
exists, the setting of the LPM is ignored, and a
resume, start, halt, or clear function is performed
by using the channel path having the dedicated
allegiance.

 Incorrect-Length-Suppression Mode (L): When
the incorrect-length-indication-suppression facility
is installed and bit 8 of word 1 is one, then bit 24
of word 1, when one, specifies the incorrect-
length-suppression mode. If the subchannel is in
this mode when an immediate operation occurs
(that is, a device signals the channel-end condition
during initiation of the command) and the current
CCW contains a nonzero value in bits 16-31, indi-
cation of an incorrect-length condition is sup-
pressed.

When the incorrect-length-indication-suppression
facility is installed and bit 8 of word 1 is one, then
bit 24 of word 1, when zero, specifies the
incorrect-length-indication mode. If the sub-
channel is in this mode when an immediate opera-
tion occurs (that is, a device signals the
channel-end condition during initiation of the
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command) and the current CCW contains a
nonzero value in bits 16-31, indication of an
incorrect-length condition is recognized.
Command chaining is suppressed unless the SLI
flag in the CCW is one and the chain-data flag is
zero.

When the incorrect-length-indication-suppression
facility is installed and bit 8 of word 1 is zero, the
value of bit 24 is ignored by the channel sub-
system, and the subchannel is in the incorrect-
length-suppression mode.

When the incorrect-length-indication-suppression
facility is not installed and bit 24 of word 1 is zero,
the subchannel is in the incorrect-length-
suppression mode. When the incorrect-length-
indication-suppression facility is not installed, bit
24 must be zero; otherwise, an operand exception
is recognized.

Reserved:   Bits 25-31 of word 1 are reserved for
future use and must be set to zeros; otherwise, an
operand exception or a program-check condition is
recognized.

Channel-Program Address:  Bits 0-31 of word 2
designate the location of the first CCW in absolute
storage. Bit 0 of word 2 must be zero; otherwise,
either an operand exception or a program-check
condition is recognized. If format-0 CCWs have
been specified in bit 8 of word 1, then bits 1-7
must also be zeros; otherwise, a program-check
condition is recognized.

The three rightmost bits of the channel-program
address must be zeros, designating the CCW on a
doubleword boundary; otherwise, a program-check
condition is recognized.

If the channel-program address designates a
location protected against fetching or designates a
location outside the storage of the particular instal-
lation, the start function is not initiated at the
device. In this situation, the subchannel becomes
status-pending with primary, secondary, and alert
status.

Programming Notes:

1. Bit positions of the ORB which presently are
specified to contain zeros may in the future be
assigned for the control of new functions.

2. The interruption parameter may contain any
information, but ordinarily the information is of
significance to the program handling the I/O
interruption.

 Channel-Command Word
The channel-command word (CCW) specifies the
command to be executed and, for commands initi-
ating certain I/O operations, it designates the
storage area associated with the operation, the
action to be taken whenever transfer to or from
the area is completed, and other options.

A channel program consists of one or more CCWs
that are logically linked such that they are fetched
by the channel subsystem and executed in the
sequence specified by the CPU program. Contig-
uous CCWs are linked by the use of the chain-
data or chain-command flags, and noncontiguous
CCWs may be linked by a CCW specifying the
transfer-in-channel command.

As each CCW is executed, it is recognized as the
current CCW. A CCW becomes current (1) when
it is the first CCW of a channel program and has
been fetched, (2) when, during command
chaining, the new CCW is logically fetched, or
(3) when, during data chaining, the new CCW
takes over control of the I/O operation (see “Data
Chaining” on page 15-29). When chaining is not
specified, a CCW is no longer current after TEST
SUBCHANNEL clears the start-function bit in the
subchannel.

The location of the first CCW of the channel
program is designated in the ORB that is the
operand of START SUBCHANNEL. The first
CCW is fetched subsequent to the execution of
the instruction. The format of the CCWs fetched
by the channel subsystem is specified by bit 8 of
word 1 of the ORB. Each additional CCW in the
channel program is obtained when the CCW is
needed. Fetching of the CCWs by the channel
subsystem does not affect those locations in main
storage.

CCWs have either of two different formats, format
0 or format 1. The two formats do not differ in the
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information contained in the CCW but only in the
arrangement of the fields within the CCW.

The formats are defined as follows:

Format ð

┌────────┬────────────────────────────────────────┐

│Cmd Code│ Data Address │

└────────┴────────────────────────────────────────┘

ð 8 31

┌─────────────┬─┬────────┬────────────────────────┐

│ Flags │ð│////////│ Count │

└─────────────┴─┴────────┴────────────────────────┘

32 39 48 63

Format 1

┌────────┬─────────────┬─┬────────────────────────┐

│Cmd Code│ Flags │ð│ Count │

└────────┴─────────────┴─┴────────────────────────┘

ð 8 15 31

┌─┬───────────────────────────────────────────────┐

│ð│ Data Address │

└─┴───────────────────────────────────────────────┘

32 63

Format-0 CCWs can be located anywhere in the
first 16,777,216 bytes of main storage.

Format-1 CCWs can be located anywhere in main
storage.

Bit 39 (format 0) or bit 15 (format 1) of every CCW
other than a format-0 CCW specifying transfer in
channel must be zero. Additionally, if indirect data
addressing is specified, bits 30-31 (format 0) or
bits 62-63 (format 1) of the CCW must be zeros,
designating a word boundary, and bit 0 of the first
entry of the indirect-data-address list must be
zero. Otherwise, a program-check condition may
be generated (see “CCW Indirect Data
Addressing” on page 15-32). Detection of this
condition during data chaining causes the I/O
device to be signaled to conclude the operation.
When the absence of these zeros is detected
during command chaining or subsequent to the
execution of START SUBCHANNEL, the new
operation is not initiated, and an interruption con-
dition is generated.

The contents of bit positions 40-47 of a format-0
CCW are ignored.

The fields in the CCWs are defined as follows:

Command Code:  Bits 0-7 (both formats) specify
the operation to be executed.

Data Address:  Bits 8-31 (format 0) or bits 33-63
(format 1) designate a location in absolute
storage. It is the first location referred to in the
area designated by the CCW. If a byte count of
zero is specified, this field is not checked.

Chain-Data (CD) Flag:  Bit 32 (format 0) or bit 8
(format 1), when one, specifies chaining of data.
It causes the storage area designated by the next
CCW to be used with the current I/O operation.
When the CD flag is one in a CCW, the chain-
command and suppress-length-indication flags
(see below) are ignored.

Chain-Command (CC) Flag:  Bit 33 (format 0) or
bit 9 (format 1), when one, and when the CD flag
and S flag are both zeros, specifies chaining of
commands. It causes the operation specified by
the command code in the next CCW to be initiated
on normal completion of the current operation.

Suppress-Length-Indication (SLI) Flag:  Bit 34
(format 0) or bit 10 (format 1) controls whether an
incorrect-length condition is to be indicated to the
program. When this bit is one and the CD flag is
zero, the incorrect-length indication is suppressed.
When both the CC and SLI flags are ones, and
the CD flag is zero, command chaining takes
place, regardless of the presence of an incorrect-
length condition. This bit should be specified in all
CCWs where suppression of the incorrect-length
indication is desired.

Skip (SKIP) Flag:  Bit 35 (format 0) or bit 11
(format 1), when one, specifies the suppression of
transfer of information to storage during a read,
read-backward, sense ID, or sense operation.

Program-Controlled-Interruption (PCI) Flag:  Bit
36 (format 0) or bit 12 (format 1), when one,
causes the channel subsystem to generate an
intermediate interruption condition when the CCW
takes control of the I/O operation. When the PCI
flag bit is zero, normal operation takes place.

Indirect-Data-Address (IDA) Flag:  Bit 37
(format 0) or bit 13 (format 1), when one, specifies
indirect data addressing.

Suspend (S) Flag:  Bit 38 (format 0) or bit 14
(format 1), when one, specifies suspension of
channel-program execution. When valid, it causes
channel-program execution to be suspended prior
to execution of the CCW containing the S flag.
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The S flag is valid when bit 4, word 1 of the asso-
ciated ORB is one.

Count:  Bits 48-63 (format 0) or bits 16-31
(format 1) specify the number of bytes in the
storage area designated by the CCW.

Programming Note:  Bit 39 of a format-0 CCW
or bit 15 of a format-1 CCW, which presently must
be zero, may in the future be assigned for the
control of new functions. It is recommended,
therefore, that this bit position not be set to one
for the purpose of obtaining an intentional
program-check indication.

 Command Code
The command code, bit positions 0-7 of the CCW,
specifies to the channel subsystem and the I/O
device the operation to be executed.

The two rightmost bits or, when these bits are
zeros, the four rightmost bits of the command
code identify the operation to the channel sub-
system. The channel subsystem distinguishes
among the following four operations:

Output forward (write, control)
Input forward (read, sense, sense ID)
Input backward (read backward)
Branching (transfer in channel)

The channel subsystem ignores the leftmost bits
of the command code, except in a format-1 CCW
specifying transfer in channel. In this situation, all
bits of the command code are decoded by the
channel subsystem. A more detailed description
of the commands for input and output operations
appears in the publication ESA/390 Common
I/O-Device Commands, SA22-7204; a description
of the branching operation appears in “Transfer in
Channel” on page 15-37.

Commands that initiate I/O operations (write, read,
read backward, control, sense, and sense ID)
cause all eight bits of the command code to be
transferred to the control unit. In these command
codes, the leftmost bit positions contain modifier
bits. The modifier bits specify to the device how
the command is to be executed. They may, for
example, cause the device to compare data
received during a write operation with data previ-
ously recorded, and they may specify such condi-
tions as recording density and parity. For the
control command, the modifier bits may contain
the order code specifying the control function to

be executed. The meaning of the modifier bits
depends on the type of I/O device and is specified
in the System Library publication for the device.

The command-code assignment is listed in
Figure 15-5. The symbol x indicates that the bit
position is ignored; m identifies a modifier bit.

┌───────────────────┬──────────────────────────┐

│ Code │ Command │

├───────────────────┼──────────────────────────┤

│ x x x x ð ð ð ð │ Invalid │

│ m m m m m m ð 1 │ Write │

│ m m m m m m 1 ð │ Read │

│ m m m m 1 1 ð ð │ Read backward │

│ m m m m m m 1 1 │ Control │

│ m m m m ð 1 ð ð │ Sense │

│ 1 1 1 ð ð 1 ð ð │ Sense ID │

│ x x x x 1 ð ð ð │ Transfer in channelñ │

│ ð ð ð ð 1 ð ð ð │ Transfer in channelò │

│ m m m m 1 ð ð ð │ Invalidó │

├───────────────────┴──────────────────────────┤

│Explanation: │

│ │

│ m Modifier bit │

│ │

│ x Ignored │

│ │

│ ñ Format-ð CCW │

│ │

│ ò Format-1 CCW │

│ │

│ ó Format-1 CCW with any of bits ð-3 nonzero │

└──────────────────────────────────────────────┘

Figure 15-5. Command-Code Assignment

Whenever the channel subsystem detects an
invalid command code during the initiation of
command execution, the program-check-
interruption condition is generated and channel-
program execution is terminated. The command
code is ignored during data chaining, unless it
specifies transfer in channel.

Designation of Storage Area
The main-storage area associated with an I/O
operation is defined by one or more CCWs. A
CCW defines an area by designating the address
of the first byte to be transferred and the number
of consecutive bytes contained in the area. The
address of the first byte of data to be transferred
is specified either directly in the data-address field
of the CCW, or indirectly in the word designated
by the data-address field of the CCW. The
number of bytes contained in the storage area is
specified in the count field.

In write, read, control, sense, and sense-ID opera-
tions, storage locations are used in ascending
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order of addresses. As information is transferred
to or from main storage, the address from the
address field is incremented, and the count from
the count field is decremented. The read-
backward operation places data in storage in a
descending order of addresses, and both the
count and the address are decremented. When
the count reaches 0, the storage area defined by
the CCW is exhausted.

Any main-storage location available to the start
function can be used in the transfer of data to or
from an I/O device, provided in both cases that
the location is not protected against that type of
reference. Format-0 CCWs can be located in any
available part of the first 16M bytes of storage,
and format-1 CCWs may be located in any part of
available storage, provided that the location is not
protected against a fetch-type reference. When
the channel subsystem attempts to refer to a pro-
tected location, the protection-check condition is
generated, and the device is signaled to terminate
the operation.

A main-storage location is available if it is pro-
vided and access to it is not prevented by the
address-limit-checking facility. If a main-storage
location is not available, it is said to have an
invalid address.

If the channel subsystem refers to a location not
provided in the system, the program-check condi-
tion is generated. When the first CCW designated
by the channel-program address is at a nonex-
istent location, the start function is not initiated at
the device, the status portion of the SCSW is
updated with the program-check indication, and
the subchannel becomes status-pending with
primary, secondary, and alert status, and deferred
condition code 1 is indicated. Invalid data
addresses, as well as any invalid CCW addresses
detected on chaining or subsequent to the exe-
cution of START SUBCHANNEL, cause the
channel subsystem to signal the device to con-
clude the operation the next time the device
requests or offers a byte of data or status. In this
situation, the subchannel is made status-pending
with program check indicated in the subchannel
status; the device status is a function of the status
received from the device. The program-check
condition causes command chaining and
command retry to be suppressed.

During an output operation, the channel sub-
system may fetch data from main storage before
the time the I/O device requests the data. Any
number of bytes specified by the current CCW
may be prefetched and buffered. When data
chaining during an output operation, the channel
subsystem may fetch one CCW describing a data
area at any time during the execution of the
current CCW. If unlimited prefetching is allowed
by the setting of the prefetch-control bit in the
ORB, then any number of CCWs may be pre-
fetched by the channel subsystem. When the I/O
operation uses data and CCWs from locations
near the end of the available storage, such pre-
fetching may cause the channel subsystem to
refer to locations that do not exist. Invalid
addresses detected during prefetching of data or
CCWs do not affect the execution of the operation
and do not cause error indications until the I/O
operation actually attempts to use the information.
If the operation is concluded by the I/O device or
by execution of HALT SUBCHANNEL or CLEAR
SUBCHANNEL before the invalid information is
needed, the condition is not brought to the atten-
tion of the program.

The count field in the CCW can specify any
number of bytes up to 65,535. In format-0 CCWs,
the count field is always nonzero unless the
command code specifies transfer in channel, in
which case the count field is ignored. In format-1
CCWs, the count field may contain the value zero
unless data chaining is specified or the CCW is
fetched while data chaining. Whenever (1) the
count field in a format-1 CCW is zero, (2) data
chaining is either not specified or is not in effect,
and (3) data transfer is requested by the device,
the device is signaled to stop, and the I/O opera-
tion is terminated. The channel subsystem sets
the incorrect-length condition if the SLI flag is not
one in the CCW. No data is transferred. If the
device does not request data transfer, the opera-
tion proceeds to the normal ending point.

If a zero byte count is contained in a format-0
CCW which does not specify transfer in channel,
or if a zero byte count is contained in a format-1
CCW that specifies data chaining or was fetched
while data chaining, a program-check condition is
recognized, and the subchannel is made status-
pending with combinations of primary, secondary,
and alert status as a function of the state of the
subchannel and the status received from the
device.
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Note:  For a description of the storage area asso-
ciated with a CCW when indirect data addressing
is invoked, see “CCW Indirect Data Addressing”
on page 15-32.

Programming Notes:

1. Since a format-1 CCW with a count of zero is
valid, the program can use the CCW count
field to specify that no data be transferred to
the I/O device. If the device requests a data
transfer, the device is signaled to terminate
data transfer. If the SLI and chain-command
flags are also specified, and no unusual condi-
tions are encountered subsequent to signaling
the device to terminate data transfer, then the
new operation is initiated upon receipt of
device end from the device.

2. If the subchannel is in the incorrect-length-
suppression mode, if the chain-data flag in the
current CCW is zero, and if the operation is
executed as an immediate operation, then
incorrect length is not indicated, regardless of
the setting of the SLI flag.

If the subchannel is in the incorrect-length-
indication mode, if the chain-data flag in the
current CCW is zero, and if the operation is
executed as an immediate operation, then
incorrect length is indicated if the count field of
the current CCW specifies a nonzero value,
unless suppressed by the SLI flag of the
CCW; incorrect length is not indicated,
however, if the count field of the CCW speci-
fies a value of zero.

If a new CCW that has a count field of zero is
fetched during data chaining or if a CCW is
fetched with the chain-data flag set to one and
a count field of zero, then a program-check
condition is recognized by the channel sub-
system.

 Chaining
When the channel subsystem has completed the
transfer of information specified by a CCW, it can
continue performing the start function by fetching
a new CCW. Such fetching of a new CCW is
called chaining, and the CCWs belonging to such
a sequence are said to be chained.

Chaining takes place between CCWs located in
successive doubleword locations in storage. It
proceeds in an ascending order of addresses; that
is, the address of the new CCW is obtained by
adding 8 to the address of the current CCW. Two
chains of CCWs located in noncontiguous storage
areas can be coupled for chaining purposes by a
transfer-in-channel command. All CCWs in a
chain apply to the I/O device that is associated
with the subchannel designated by the original
START SUBCHANNEL instruction.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is con-
trolled by the chain-data (CD) and chain-command
(CC) flags in conjunction with the suppress-length-
indication (SLI) flag in the CCW. These flags
specify the action to be taken by the channel sub-
system upon the exhaustion of the current CCW
and upon receipt of ending status from the device,
as shown in Figure 15-6 on page 15-28.

The specification of chaining is effectively propa-
gated through a transfer-in-channel command.
When, in the process of chaining, a transfer-in-
channel command is fetched, the CCW desig-
nated by the transfer-in-channel command is used
for the type of chaining specified in the CCW pre-
ceding the transfer-in-channel command.

The CD and CC flags are ignored in a format-0
CCW specifying the transfer-in-channel command.
In a format-1 CCW specifying the transfer-in-
channel command, the CD and CC flags must be
zeros; otherwise, a program-check condition is
recognized.
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┌───────────┬────────────────────────────────────────────────────────────────────────────┐

│ │Action at the Subchannel upon Exhaustion of Count or Receipt of Channel End │

│ ├───────────────────────────────────────────┬────────────────────────────────┤

│ │ Immediate Operation │ Nonimmediate Operation │

│ ├─────────────────────┬─────────────────────┼─────────────────────┬──────────┤

│Flags in │ Incorrect-Length- │ Incorrect-Length- │ │ │

│Current CCW│ Suppression Modeñ │ Indication Mode │ Count Exhausted │Count Not │

├───┬───┬───┼──────────┬──────────┼──────────┬──────────┼──────────┬──────────┤Exhausted │

│ │ │ │ CCW │ CCW │ CCW │ CCW │ CE Not │ CE │ and CE │

│CD │CC │SLI│ Count/=ð │ Count=ð │ Count/=ð │ Count=ð │ Received │ Received │ Received │

├───┼───┼───┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┼──────────┤

│ ð │ ð │ ð │ End, NIL │ End, NIL │ End, IL │ End, NIL │ Stop, IL │ End, NIL │ End, IL │

│ ð │ ð │ 1 │ End, NIL │ End, NIL │ End, NIL │ End, NIL │ Stop,NIL │ End, NIL │ End, NIL │

│ ð │ 1 │ ð │ CC │ CC │ End, IL │ CC │ Stop, IL │ CC │ End, IL │

│ ð │ 1 │ 1 │ CC │ CC │ CC │ CC │ Stop, CC │ CC │ CC │

│ │ │ │ │ │ │ │ │ │ │

│ 1 │ - │ - │ End, NIL │ PC │ End, IL │ PC │ CD │ \ │ End, IL │

├───┴───┴───┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┴──────────┤

│Explanation: │

│ │

│ - The selected bit is ignored and may be either zero or one. │

│ │

│ \ These situations cannot validly occur. When data chaining is specified, the new │

│ CCW takes control of the operation after transferring the last byte of data │

│ designated by the current CCW, but before the next request for data or status │

│ transfer from the device. The new CCW (which cannot contain a count of zero │

│ unless a program-check condition is also recognized) is in control of the │

│ operation. │

│ │

│ ñ The count field must contain a nonzero value when format-ð CCWs are specified; │

│ otherwise, the operation is terminated with a program-check condition. │

│ │

│ CC Command chaining is performed by the channel subsystem upon receipt of device │

│ end. │

│ │

│ CD The chain-data flag causes the channel subsystem to immediately fetch a new CCW │

│ for the same operation. The operation continues unless the CCW thus fetched has │

│ a count field of zero, in which case the operation is terminated with a │

│ program-check condition. │

│ │

│ CE Channel end from the device which indicates end of block. │

│ │

│ End Operation is terminated. │

│ │

│ IL Incorrect length is indicated with the subsequent interruption condition │

│ generated at the subchannel. │

│ │

│ NIL Incorrect length is not indicated with the subsequent interruption condition │

│ generated at the subchannel. │

│ │

│ PC These situations cannot validly occur. The channel subsystem recognizes a │

│ program-check condition when a CCW is fetched that has the chain-data flag set to│

│ one and a count field of zero. │

│ │

│ Stop Device is signaled to terminate data transfer, but subchannel remains │

│ subchannel-active until channel end is received. │

└────────────────────────────────────────────────────────────────────────────────────────┘

Figure 15-6. Subchannel Chaining Action
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Programming Note:   When bit 9 of word 1 of
the ORB is one, unlimited fetching of chained
CCWs by the channel subsystem is permitted.
When prefetching is allowed by the ORB, no mod-
ification of the channel program should be per-
formed after START SUBCHANNEL is executed
and before the primary interruption condition for
the operation has been received unless the sub-
channel is currently suspended and is not resume-
pending.

 Data Chaining
During data chaining, the new CCW fetched by
the channel subsystem defines a new storage
area for the original I/O operation. If the channel
path is the parallel-I/O-interface type, described in
the System Library publication IBM System/360
and System/370 I/O Interface Channel to Control
Unit OEMI, GA22-6974, then execution of the
operation at the I/O device is not affected. If the
channel path is the serial-I/O-interface type, IBM
Enterprise Systems Architecture/390 ESCON I/O
Interface, SA22-7202, then execution of the opera-
tion at the I/O device either is not affected, or,
depending on the device model, may be termi-
nated with unit-check status. When the operation
at the I/O device is not affected and all data desig-
nated by the current CCW has been transferred to
main storage or to the device, data chaining
causes the operation to continue, using the
storage area designated by the new CCW. The
contents of the command-code field of the new
CCW are ignored, unless they specify transfer in
channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the
current CCW has been transferred to main
storage or to the device. When the last byte of
the data transfer has been placed in main storage
or accepted by the device, the new CCW takes
over the control of the operation. If the device
sends channel end after exhausting the count of
the current CCW but before transferring any data
to or from the storage area designated by the new
CCW, the SCSW associated with the concluded
operation pertains to the new CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude
the operation when it attempts to transfer data
designated by the new CCW. If the device signals
the channel-end condition before transferring any

data designated by the new CCW, program check
or protection check is indicated in the SCSW
associated with the termination. The contents of
the SCSW pertain to the new CCW unless the
address of the new CCW is invalid, the location is
protected against fetching, or programming errors
are detected in an intervening transfer-in-channel
command. A data address referring to a nonex-
istent or protected area causes an error indication
only after the I/O device has attempted to transfer
data to or from the invalid location.

Data chaining during an input operation causes
the new CCW to be fetched when all data desig-
nated by the current CCW has been placed in
main storage. On an output operation, the
channel subsystem may fetch the new CCW from
main storage before data chaining occurs. Any
programming errors in the prefetched CCW,
however, do not affect the execution of the opera-
tion until all data designated by the current CCW
has been transferred to the I/O device. If the
device concludes the operation before all data
designated by the current CCW has been trans-
ferred, the conditions associated with the pre-
fetched CCW are not indicated to the program.
Unlimited prefetching is allowed under the control
of the prefetch bit specified in the ORB. (See
“Prefetch Control (P)” on page 15-22.) When
unlimited prefetching is not allowed and an output
operation is specified, only one CCW describing a
data area may be prefetched. If a prefetched
CCW specifies transfer in channel, only one more
CCW may be fetched before the exhaustion of the
current CCW.

Programming Notes:

1. If the ORB does not specify unlimited pre-
fetching, no prefetching of CCWs is per-
formed, except in the case of data chaining on
an output operation where one CCW
describing a data area may be prefetched at a
time.

If the ORB for the I/O operation specifies that
prefetching is allowed, any number of CCWs
may be prefetched and buffered in the
channel subsystem.

The same actions for signaling errors and ter-
minating operations take place when unlimited
prefetching is allowed by the ORB as when it
is not allowed. Therefore, neither the program
nor the I/O device is aware of any differences
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whether or not prefetching of CCWs is being
performed by the channel subsystem.

When prefetching has been specified in the
ORB, the result of modifications to CCWs
after START SUBCHANNEL has been exe-
cuted or after self-describing channel pro-
grams have been used, is unpredictable.
(See note 2 for the definition of self-describing
channel programs.)

2. Data chaining may be used to rearrange infor-
mation as it is transferred between main
storage and an I/O device. Data chaining
permits blocks of information to be transferred
to or from noncontiguous areas of storage,
and, when used in conjunction with the skip-
ping function, data chaining allows the
program to place in main storage specified
portions of a block of data.

When, during an input operation, the program
specifies data chaining to a location in which
data has been placed under the control of the
current CCW, the channel subsystem, in
fetching the next CCW, fetches the new con-
tents of the location. This is true even if the
location contains the last byte transferred
under the control of the current CCW. When
a channel program data-chains to a CCW
placed in storage by the CCW specifying data
chaining, the input block is said to be self-
describing. A self-describing block contains
one or more CCWs that designate storage
locations and counts for subsequent data in
the same input block.

The use of self-describing blocks is equivalent
to the use of unchecked data. An I/O data-
transfer malfunction that affects validity of a
block of information is signaled only at the
completion of data transfer. The error condi-
tion normally does not prematurely terminate
or otherwise affect the execution of the opera-
tion. Thus, there is no assurance that a CCW
read as data is valid until the operation is
completed. If the CCW thus read is in error,
use of the CCW in the current operation may
cause subsequent data to be placed at wrong
locations in main storage with resultant
destruction of its contents, subject only to the
control of the protection key and the address-
limit-checking facility, if used.

3. When, during data chaining, a device transfers
data by using the data-streaming feature, an

overrun or chaining-check condition may be
recognized when a small byte-count value is
specified in the CCW. The minimum accept-
able number of bytes that can be specified
varies as a function of the system model and
system activity.

 Command Chaining
During command chaining, the new CCW fetched
by the channel subsystem specifies a new I/O
operation. The channel subsystem fetches the
new CCW upon the receipt of the device-end
signal for the current operation. If the new CCW
does not specify an S flag and if no unusual con-
ditions are detected, the channel subsystem initi-
ates the new operation. The presence of the S
flag or unusual conditions causes command
chaining to be suppressed. When command
chaining takes place, the completion of the current
operation does not cause an I/O interruption, and
the count indicating the amount of data transferred
during the current operation is not made available
to the program. For operations involving data
transfer, the new command always applies to the
next block of data at the device.

Command chaining takes place and the new oper-
ation is initiated only if no unusual conditions have
been detected in the current operation. In partic-
ular, the channel subsystem initiates a new I/O
operation by command chaining upon receipt of a
status byte containing only the following bit combi-
nations: (1) device end, (2) device end and
status modifier, (3) device end and channel end,
and (4) device end, channel end, and status mod-
ifier. In the first two cases, channel end is sig-
naled before device end, with all other status bits
zeros. If a condition such as attention, unit check,
unit exception, incorrect length, program check, or
protection check has occurred, the sequence of
operations is concluded, and the status associated
with the current operation causes an interruption
condition to be generated. The new CCW in this
case is not fetched. The incorrect-length condition
does not suppress command chaining if the
current CCW has the SLI flag set to one.

An exception to sequential chaining of CCWs
occurs when the I/O device presents the status-
modifier condition with the device-end signal or
channel-end and device-end signals. When
command chaining is specified and no unusual
conditions have been detected, or when command
retry has been previously signaled and an imme-
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diate retry could not be performed, the combina-
tion of status-modifier and device-end bits causes
the channel subsystem to alter the sequential exe-
cution of CCWs. If command chaining was speci-
fied, status modifier and device end cause the
channel subsystem to fetch and chain to the CCW
whose main-storage address is 16 higher than
that of the CCW that specified chaining. If
command retry was previously signaled and
immediate retry could not be performed, the status
causes the channel subsystem to command chain
to the CCW whose storage address is 8 higher
than that of the CCW for which retry was initially
signaled.

When both command and data chaining are speci-
fied, the first CCW associated with the operation
specifies the operation to be executed, and the
last CCW specifies whether another operation
follows.

Programming Note:  Command chaining makes
it possible for the program to initiate transfer of
multiple blocks of data by executing a single
START SUBCHANNEL instruction. It also permits
a subchannel to be set up for execution of other
commands, such as positioning the disk-access
mechanism, and for data-transfer operations
without interference by the program at the end of
each operation. Command chaining, in conjunc-
tion with the status-modifier condition, permits the
channel subsystem to modify the normal
sequence of operations in response to signals pro-
vided by the I/O device.

 Skipping
Skipping causes the suppression of main-storage
references during an I/O operation. It is defined
only for read, read-backward, sense-ID, and sense
operations, and is controlled by the skip flag,
which can be specified individually for each CCW.
When the skip flag is one, skipping occurs; when
it is zero, normal operation takes place. The
setting of the skip flag is ignored in all other oper-
ations.

Skipping affects only the handling of information
by the channel subsystem. The operation at the
I/O device proceeds normally, and information is
transferred. The channel subsystem keeps
updating the count but does not place the informa-
tion in main storage. Chaining is not precluded by
skipping. In the case of data chaining, normal

operation is resumed if the skip flag in the new
CCW is zero.

No checking for invalid or protected data
addresses takes place during skipping.

Programming Note:  Skipping, when combined
with data chaining, permits the program to place in
main storage specified portions of a block of infor-
mation from an I/O device.

 Program-Controlled Interruption
The program-controlled-interruption (PCI) function
permits the program to cause an I/O interruption
during execution of an I/O operation. The function
is controlled by the PCI flag of the CCW. Neither
the value of the PCI flag nor the associated inter-
ruption request affects the execution of the current
operation.

The value of the PCI flag can be one either in the
first CCW designated for the current start or
resume function or in a CCW fetched during
chaining. If the PCI flag is one in a CCW that has
become current, the subchannel becomes status-
pending with intermediate status, and an
I/O-interruption request is generated. The point at
which the subchannel becomes status-pending
depends on the progress of the current start or
resume function as follows:

1. If the PCI flag is one in the first CCW associ-
ated with a start function or a resume function,
the subchannel becomes status-pending with
intermediate status only after the command
has been accepted.

2. If the PCI flag is one in a CCW which has
become current while data chaining, the sub-
channel becomes status-pending with interme-
diate status after all data designated by the
preceding CCW has been transferred.

3. If the PCI flag is one in a CCW which has
become current while command chaining, the
subchannel becomes status-pending with
intermediate status as that CCW becomes
current.

In all cases, if the subchannel is enabled for I/O
interruptions, the point of interruption depends on
the current activity in the system and may be
delayed. No predictable relationship exists
between the point at which the interruption request
is generated because of the PCI flag and the
extent to which data transfer has been completed
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to or from the area designated by the CCW.
However, all the fields within the SCSW pertain to
the same instant.

An intermediate interruption condition that is made
pending because of a PCI flag remains pending
during chaining if not cleared by TEST SUB-
CHANNEL or CLEAR SUBCHANNEL. If another
CCW containing a PCI flag that is one becomes
current prior to the clearing of the intermediate
interruption condition, only one interruption condi-
tion is preserved.

An intermediate interruption may occur while the
subchannel is subchannel-and-device-active with
the operation specified by the CCW causing the
intermediate interruption condition or with the
operation specified by a CCW that has subse-
quently become current. If the intermediate inter-
ruption condition is not cleared prior to the
conclusion of the operation or chain of operations,
the condition is indicated together with the primary
interruption condition at the conclusion of the
operation or chain of operations. The intermediate
interruption condition may be cleared by TEST
SUBCHANNEL while the subchannel is
subchannel-active.

If the SCSW stored by TEST SUBCHANNEL indi-
cates that the subchannel is status-pending with
intermediate status and the operation or chain of
operations has not been concluded (that is, the
activity-control field indicates subchannel-and-
device-active or suspended), then the
CCW-address field contains an address which is 8
higher than the address of the most recent CCW
to become current and have a PCI flag that is
one, or the CCW-address field contains an
address which is 8 higher than a CCW which has
subsequently become current. Unless the SCSW
also contains the primary-status bit set to one, the
device-status field contains zeros, and the count is
unpredictable.

Subchannel-status conditions other than PCI may
be indicated when the SCSW is stored. If the
subchannel is not also status-pending with primary
status, these conditions may or may not be indi-
cated again. If the subchannel-status condition is
detected while prefetching and the operation or
chain of operations is concluded before the condi-
tion affects an operation, the condition is reset and
is not indicated when the subchannel subse-
quently becomes status-pending with primary

status. If the subchannel-status condition affects
an operation, the condition is indicated when the
subchannel becomes status-pending with primary
status.

If the program-controlled-interruption condition
remains pending until the operation or chain of
operations is concluded at the subchannel, a
single interruption request exists. When TEST
SUBCHANNEL is subsequently executed, the
status-control field of the SCSW stored indicates
both the primary interruption condition and the
intermediate interruption condition, and the PCI bit
of the subchannel-status field is one.

The value of the PCI flag is inspected in every
CCW except for those CCWs that specify the
transfer-in-channel command. The PCI flag is
ignored during initial program loading.

Programming Notes:

1. The program-controlled interruption provides a
means of alerting the program to the progress
of chaining during an I/O operation. It permits
programmed dynamic main-storage allocation.

2. A CCW with a PCI flag that has a value of
one may, if retried because of command retry,
cause multiple PCI interruptions to occur.
(See “Command Retry” on page 15-37.)

CCW Indirect Data Addressing
CCW indirect data addressing permits a single
channel-command word to control the transfer of
data that spans noncontiguous pages in real main
storage. The use of CCW indirect data
addressing also allows the program to designate
data addresses above 16M bytes for both format-0
and format-1 CCWs.

CCW indirect data addressing is specified by a
flag in the CCW which, when one, indicates that
the data address is not used to directly address
data. Instead, the address points to a list of
words, called indirect-data-address words
(IDAWs), each of which contains an absolute
address designating a data area within a 2K-byte
block of main storage.

When the indirect-data-addressing bit in the CCW
is one, the data-address field of the CCW desig-
nates the location of the first IDAW to be used for
data transfer for the command. Additional IDAWs,
if needed for completing the data transfer for the
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CCW, are in successive locations in storage. The
number of IDAWs required for a CCW is deter-
mined by the count field of the CCW and by the
data address in the initial IDAW. When, for
example, the CCW count field specifies 4K bytes
and the first IDAW designates a location in the
middle of a 2K-byte block, three IDAWs are
required.

Each IDAW is used for the transfer of up to 2K
bytes. The IDAW designated by the CCW can
designate any location. Data is then transferred,
for read, write, control, sense ID, and sense com-
mands, to or from successively higher storage
locations or, for a read-backward command, to
successively lower storage locations, until a
2K-byte block boundary is reached. The control of
data transfer is then passed to the next IDAW.
The second and any subsequent IDAWs must
designate, depending on the command, the first or
last byte (for read backward) of a 2K-byte block.
Thus, for read, write, control, sense ID, and sense
commands, these IDAWs have zeros in bit posi-
tions 21-31. For a read-backward command,
these IDAWs have ones in bit positions 21-31.

Except for the unique restrictions on the desig-
nation of the data address by the IDAW, all other
actions taken for the data address, such as for
protected storage and invalid addresses, and the
actions taken for data prefetching are the same as
when indirect data addressing is not used.

IDAWs pertaining to the current CCW or a pre-
fetched CCW may be prefetched. The number of
IDAWs that can be prefetched cannot exceed that
required to satisfy the count in the CCW that
points to the IDAWs. An IDAW takes control of
data transfer when the last byte has been trans-
ferred for the previous IDAW. The same actions
take place as with data chaining regarding when
an IDAW takes control of data transfer during an
I/O operation. That is, when the count for the
CCW has not reached zero, a new IDAW takes
control of the data transfer when the last byte has
been transferred for the previous IDAW for that
CCW, even in situations where (1) channel end,
(2) channel end and device end, or (3) channel
end, device end, and status modifier are received
prior to transfer of any data bytes pertaining to the
new IDAW.

A prefetched IDAW does not take control of an I/O
operation if the count in the CCW has reached

zero with the transfer of the last byte of data for
the previous IDAW for that CCW. Program or
access errors detected in prefetched IDAWs are
not indicated to the program until the IDAW takes
control of data transfer. However, when the
channel subsystem detects an invalid CBC on the
contents of a prefetched IDAW or its associated
key, the condition may be indicated to the
program, when detected, before the IDAW takes
control of data transfer. For a description of the
indications provided when an invalid CBC is
detected on the contents of an IDAW or its associ-
ated key, see “Channel-Control Check” on
page 16-27.

The format of the IDAW and the significance of its
fields are as follows:

┌─┬───────────────────────────────────────────────┐

│ð│ Data Address │

└─┴───────────────────────────────────────────────┘

ð 31

Bit 0 is reserved for future use and must be zero.
Otherwise, a program-check condition may be
recognized, as described below.

Bits 1-31 designate the location of the first byte to
be used in the data transfer. In the first IDAW for
a CCW, any location can be designated. For sub-
sequent IDAWs, depending on the command,
either the first or the last location of a 2K-byte
block located on a 2K-byte boundary must be des-
ignated. For read, write, control, and sense com-
mands, the location at the beginning of the block
must be designated; that is, bits 21-31 of the
IDAW must be zeros. For a read-backward
command, the location at the end of the block
must be designated; that is, bits 21-31 of the
IDAW must be all ones. Improper data-address
designation causes the program-check condition
to be generated and the operation to be termi-
nated.

When the IDA flag of the CCW is set to one and
any of the following conditions occurs:

1. The address in the CCW does not designate
the first IDAW on an integral word boundary,

2. The address in the CCW designated a storage
location which is not available,

3. Access to the storage location designated by
the address in the CCW is prohibited by pro-
tection, or
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4. Bit 0 of the first IDAW is not zero,

then, depending on the model, one of the fol-
lowing two actions is taken independent of the
setting of the skip flag:

1. The above conditions are checked before initi-
ating the operation at the device. If any of
these conditions is recognized, initiation of the
I/O operation does not occur, and the sub-
channel is made status-pending with primary,
secondary, and alert status.

2. The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is sig-
naled to terminate the I/O operation, and the
subchannel is made status-pending with
primary, secondary, and alert status as a func-
tion of the subchannel state and the status
presented by the device.

Suspension of Channel-Program
Execution

The suspend function, when used in conjunction
with RESUME SUBCHANNEL, provides the
program with a means to stop and restart the exe-
cution of a channel program. The initiation of the
suspend function is controlled by the setting of the
suspend-control bit in the ORB (bit 4 of word 1).
The suspend function is signaled when suspend
control has been specified for the subchannel in
the ORB and a CCW containing a valid S flag set
to one becomes the current CCW. The flag can
be indicated either in the first CCW of the channel
program or in a CCW fetched while command
chaining. The S flag is not valid and causes a
program-check condition to be recognized if
(1) the ORB contains the suspend-control bit set
to zero, or (2) the CCW is fetched while data
chaining (see “Data Chaining” on page 15-29,
concerning the handling of programming errors
detected during data chaining).

Upon recognition of the suspend function, suspen-
sion of channel-program execution occurs when
the CCW becomes current (see “Channel-
Command Word” on page 15-23, for a definition
of when a CCW becomes current). If suspension
occurs during command chaining, the device is
signaled that command chaining is no longer in
effect.

RESUME SUBCHANNEL signals that the CCW
which caused channel-program suspension may
have been modified, that the CCW must be
refetched, and that the contents of the CCW must
be examined to determine the settings of the
flags. If the S flag is one, execution of that CCW
does not occur. If the CCW is valid and the S flag
in the CCW is zero, execution is initiated (see
“RESUME SUBCHANNEL” on page  14-8 and
“Start Function and Resume Function” on
page 15-17).

When a valid CCW that contains a valid S flag
becomes the current CCW during command
chaining and the resume-pending condition is not
recognized, the suspend function is performed and
causes the following actions to occur in the order
given:

1. The device is signaled that the chain of opera-
tions has been concluded.

2. Channel-program execution is suspended at
the subchannel; all prefetched IDAWs, CCWs,
and data are discarded; and the subchannel is
set up such that the resume function can be
performed when the subchannel is next recog-
nized to be resume-pending.

3. If the measurement-block-update mode is
active and the subchannel is enabled for the
mode, the accrued values of the measurement
data, including the start-subchannel and
sample count, are added to the accumulated
values in the measurement block for the sub-
channel. The start-subchannel count is the
only measurement data which is updated in
the measurement block if the channel-
subsystem-timing facility is not available for
the subchannel. (See “Channel-Subsystem
Monitoring” on page 17-1 for more informa-
tion.)

If a measurement-check condition is detected
during the measurement-block update, the
channel program is terminated at the sub-
channel. The subchannel is made status
pending with primary, secondary, and alert
status, the device-status and subchannel-
status fields are set to zero, and one of the
measurement-check conditions is indicated in
the extended-status flags of the format-0
ESW. The subchannel is not placed in the
suspended state. (See “Subchannel-Control
Field” on page 16-11.)
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4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume-pending at
this point, the intermediate interruption condi-
tion due to suspension is recognized if the
suppress-suspended-interruption bit of the
ORB is zero; otherwise, the resume function is
performed.

When a valid CCW that contains a valid S flag
becomes the current CCW during command
chaining and the resume-pending condition is
recognized, the resume function is performed
instead of the suspend function.

When the first CCW of a channel program con-
tains a valid S flag and the resume-pending condi-
tion is not recognized, the suspend function is
performed and causes the following actions to
occur in the order given:

1. Channel-program execution is suspended
prior to selection of the device.

2. The subchannel is set up such that the
resume function can be performed when the
subchannel is next recognized to be resume-
pending.

3. If the measurement-block-update mode is
active and the subchannel is enabled for the
mode, the SSCH+RSCH count is incremented
and the accrued function-pending time (a
function of the setting of the timing-facility bit)
is added to the accumulated value in the
measurement block for the subchannel.

If a measurement-check condition is detected
during the measurement-block update, the
channel program is not started at the sub-
channel. The subchannel is made status
pending with primary, secondary, and alert
status. Deferred condition code one is set,
and the start-pending bit remains set to one.
The device-status and subchannel-status
fields are set to zero, and one of the
measurement-check conditions is indicated in
the extended-status flags of the format-0
ESW. The subchannel is not placed in the
suspended state. (See “Subchannel-Control
Field” on page 16-11.)

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume-pending at
this point, the subchannel is made status-

pending with intermediate status due to sus-
pension if the
suppress-suspended-interruption-control bit of
the ORB is zero; otherwise, the resume func-
tion is performed.

When the first CCW of a channel program con-
tains a valid S flag and the resume-pending condi-
tion is recognized, the resume function is
performed instead of the suspend function.

Programming Notes:

1. The execution of MODIFY SUBCHANNEL and
START SUBCHANNEL completes with condi-
tion code 2 set if the designated subchannel is
suspended. The start function is indicated at
the subchannel while the subchannel is in the
suspended state.

2. In certain situations, normal resumption of the
execution of a channel program which has
been suspended may not be desired. Normal
termination of the suspended channel-program
execution may be accomplished by:

a. Executing HALT SUBCHANNEL desig-
nating the subchannel

b. Modifying the CCWs in storage such that
when channel-program execution is
resumed, the command transferred to the
device is a control command with all modi-
fier bits specified as zeros (no-operation)
and with the chain-command flag specified
as zero; and then executing RESUME
SUBCHANNEL.

c. When an IRB indicates measurement
check along with zero device status, zero
subchannel status, and status pending
with primary, secondary, and alert status,
it may indicate that the measurement
check was detected during an attempt to
place the subchannel into the suspended
state.

3. If the suspended interruption is suppressed,
the N condition and DCTI values applicable to
the preceding subchannel-active period are
not made available to the program. The exe-
cution of RESUME SUBCHANNEL when the
subchannel is in the suspended state causes
path-not-operational conditions and the N con-
dition to be reset to zeros. Path-not-
operational conditions and the N condition are
not reset when RESUME SUBCHANNEL is
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executed and the designated subchannel is
not in the suspended state.

Commands and Flags

Figure 15-7 lists the command codes for the
seven commands and indicates which flags are
defined for each command. Except for a format-1
CCW specifying transfer in channel, the flags are
ignored for all commands for which they are not
defined. The flags are reserved in a format-1
CCW specifying transfer in channel and must be
zeros.

┌─────────────┬──────────────────┬────────────────────────┐

│ Name │ Code │ Flags │

├─────────────┼──────────────────┼────────────────────────┤

│Write │ M M M M M M ð 1 │ CD CC SLI PCI IDA S │

│Read │ M M M M M M 1 ð │ CD CC SLI SK PCI IDA S │

│Read backward│ M M M M 1 1 ð ð │ CD CC SLI SK PCI IDA S │

│Control │ M M M M M M 1 1 │ CD CC SLI PCI IDA S │

│Sense │ M M M M ð 1 ð ð │ CD CC SLI SK PCI IDA S │

│Sense ID │ 1 1 1 ð ð 1 ð ð │ CD CC SLI SK PCI IDA S │

│Transfer in │ X X X X 1 ð ð ð │ (See note below) │

│channel │ │ │

├─────────────┴──────────────────┴────────────────────────┤

│Explanation: │

│ │

│ CC Chain command │

│ CD Chain data │

│ IDA Indirect data addressing │

│ M Modifier bit │

│ PCI Program-controlled interruption │

│ S Suspend │

│ SK Skip │

│ SLI Suppress-length indication │

│ X Ignored in a format-ð CCW; must be zero in a │

│ format-1 CCW │

│ │

│Note: Flags are ignored in a format-ð transfer-in- │

│ channel CCW and must be zeros in a format-1 │

│ transfer-in-channel CCW. │

└─────────────────────────────────────────────────────────┘

Figure 15-7. Command Codes and Flags

All flags have individual significance, except that
the CC and SLI flags are ignored when the CD
flag is set to one, and, for output forward opera-
tions the SK flag is ignored. The presence of the
SLI flag is ignored for immediate operations
involving format-0 CCWs, in which case the
incorrect-length indication is suppressed regard-
less of the setting of the flag. The incorrect-length
indication may be suppressed for immediate oper-
ations when executing a format-1 CCW,
depending on the incorrect-length-suppression
mode. The PCI flag is ignored during initial

program loading. All flags, except the PCI flag,
are ignored when the S flag is one.

Programming Notes:

1. A malfunction that affects the validity of data
transferred in an I/O operation is signaled at
the end of the operation by means of unit
check or channel-data check, depending on
whether the device (control unit) or the
channel subsystem detected the error. In
order to make use of the checking facilities
provided in the system, data read in an input
operation should not be used until the end of
the operation has been reached and the
validity of the data has been checked. Simi-
larly, on writing, the copy of data in main
storage should not be destroyed until the
program has verified that no malfunction
affecting the transfer and recording of data
was detected.

2. An error condition may be recognized and the
I/O operation terminated when 256 or more
chained commands are executed with a
device and none of the executed commands
result in the transfer of any data. When this
condition is recognized, program check is indi-
cated.

3. All CCWs that require suppression of
incorrect-length indications must use the SLI
flag.

Branching in Channel Programs

The channel subsystem provides two methods to
modify the normal sequential execution of the
CCWs in a channel program. One is the transfer-
in-channel command (described in “Transfer in
Channel” on page 15-37), which can be used to
loop back to a previously executed CCW, or to
connect discontiguous segments of the channel
program. The other method, which uses the
status-modifier device-status bit (described in the
publication ESA/390 Common I/O-Device Com-
mands, SA22-7204), allows conditions at the
device to cause the channel to bypass the next
CCW in the channel program.
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Transfer in Channel

Format ð

┌────┬────┬───────────────────────────────────────┐

│////│1ððð│ CCW Address │

└────┴────┴───────────────────────────────────────┘

ð 8 31

┌─────────────────────────────────────────────────┐

│/////////////////////////////////////////////////│

└─────────────────────────────────────────────────┘

32 63

Format 1

┌────────┬────────────────────────────────────────┐

│ðððð1ððð│ Zeros │

└────────┴────────────────────────────────────────┘

ð 8 31

┌─┬───────────────────────────────────────────────┐

│ð│ CCW Address │

└─┴───────────────────────────────────────────────┘

32 63

The next CCW is fetched from the location in
absolute main storage designated by the data-
address field of the CCW specifying transfer in
channel. The transfer-in-channel command does
not initiate any I/O operation, and the I/O device is
not signaled of the execution of the command.
The purpose of the transfer-in-channel command
is to provide chaining between CCWs not located
in adjacent doubleword locations in an ascending
order of addresses. The command can occur in
both data and command chaining.

Bits 29-31 (format 0) or bits 61-63 (format 1) of a
CCW that specifies the transfer-in-channel
command must be zeros, designating a CCW on a
doubleword boundary. Furthermore, a CCW spec-
ifying transfer in channel may not be fetched from
a location designated by an immediately preceding
transfer in channel. When either of these errors is
detected or when an invalid address is designated
in the transfer-in-channel command, the program-
check condition is generated. When a CCW
which specifies the transfer-in-channel command
designates a CCW at a location protected against
fetching, the protection-check condition is gener-
ated. Detection of these errors during data
chaining causes the operation at the I/O device to
be terminated and an interruption condition to be
generated, whereas during command chaining it
causes only an interruption condition to be gener-
ated.

The contents of the second half of the format-0
CCW, bit positions 32-63, are ignored. Similarly,
the contents of bit positions 0-3 of the format-0
CCW are ignored.

Bit positions 0-3 and 8-32 of the format-1 CCW
must contain zeros; otherwise, a program-check
condition is generated.

 Command Retry
The channel subsystem has the capability to
perform command retry, a procedure that causes
a command to be retried without requiring an I/O
interruption. This retry is initiated by the control
unit presenting either of two status-bit combina-
tions by means of a special sequence. When
immediate retry can be performed, it presents a
channel-end, unit-check, and status-modifier
status-bit combination, together with device end.
When immediate retry cannot be performed, the
presentation of device end is delayed until the
control unit is prepared. When device end is pre-
sented alone, the previous command is trans-
ferred again. If device end is accompanied by
status modifier, command retry is not performed,
and the channel subsystem command-chains to
the CCW following the one for which command
retry was signaled (for information on status modi-
fier, see the publication ESA/390 Common
I/O-Device Commands, SA22-7204). When the
channel subsystem is not capable of performing
command retry due to an error condition, or when
any status bit other than device end or device end
and status modifier accompanies the requested
command-retry initiation, the retry is suppressed,
and the subchannel becomes status-pending. The
SCSW stored by TEST SUBCHANNEL contains
the status provided by the I/O device.

Programming Note:  The following possible
results of a command retry must be anticipated by
the program:

1. A CCW containing a PCI may, if retried
because of command retry, cause multiple
PCI interruptions to occur.

2. If a CCW used in an operation is changed
before that operation has been successfully
completed, the results are unpredictable.

Concluding I/O Operations during
Initiation
After the designated subchannel has been deter-
mined to be in a state such that START SUB-
CHANNEL can be executed, certain tests are
performed on the validity of the information speci-
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fied by the program and on the logical availability
of the associated device. This testing occurs
during or subsequent to the execution of START
SUBCHANNEL and during command chaining and
command retry.

A data-transfer operation is initiated at the sub-
channel and device only when no programming or
equipment errors are detected by the channel sub-
system and when the device responds with zero
status during the initiation sequence. When the
channel subsystem detects or the device signals
any unusual condition during the initiation of an
I/O operation, the command is said to be not
accepted. In this case, the subchannel becomes
status-pending with primary, secondary, and alert
status. Deferred condition code 1 is set, and the
start-pending bit remains set to one.

Conditions that preclude the initiation of an I/O
operation are detailed in the SCSW stored by
TEST SUBCHANNEL. In this situation, the device
is not started, no interruption conditions are gener-
ated subsequent to TEST SUBCHANNEL, and the
subchannel is idle. The device is immediately
available for the initiation of another operation,
provided the command was not rejected because
of the busy or not-operational condition.

When an unusual condition causes a command to
be not accepted during the initiation of an I/O
operation by command chaining or command
retry, an interruption condition is generated, and
the subchannel becomes status-pending with com-
binations of primary, secondary, and alert status
as a function of the status signaled by the device.
The status describing the condition remains at the
subchannel until cleared by TEST SUBCHANNEL.
The conditions are indicated to the program by
means of the corresponding status bits in the
SCSW. A path-not-operational condition recog-
nized during command chaining is signaled to the
program by means of an interface-control-check
indication. The new I/O operation at the device is
not started.

START SUBCHANNEL is executed independent
of its associated device. Tests on most program-
specified information, on device availability and
unit status, and on most error conditions are per-
formed subsequent to the execution of START
SUBCHANNEL. When any conditions are
detected that preclude performance of the start

function, an interruption condition is generated by
the channel subsystem and placed at the sub-
channel, causing it to become status-pending.

Immediate Conclusion of I/O
Operations
During the initiation of an I/O operation, the device
can accept the command and signal the
channel-end condition immediately upon receipt of
the command code. An I/O operation causing the
channel-end condition to be signaled during the
initiation sequence is called an immediate opera-
tion. Status generated by the device for the
immediate command, when command chaining is
not specified and command retry is not signaled,
causes the subchannel to become status-pending
with combinations of primary, secondary, interme-
diate, and alert status as a result of information
specified in the ORB and CCW and status pre-
sented by the device. If the immediate operation
is the first operation of the channel program,
deferred condition code 1 is set and accompanies
the status indications. If intermediate status is
indicated, the indication can occur only as a result
of the CCW having the PCI flag set to one (see
“Program-Controlled Interruption” on page 15-31).

Whenever command chaining is specified after an
immediate operation and no unusual conditions
have been detected during the execution, or when
command retry occurs for an immediate operation,
an interruption condition is not generated. The
subsequent commands in the chain are handled
normally, and, usually, the channel-end condition
for the last CCW generates a primary interruption
condition. If device end is signaled with channel
end, a secondary interruption condition is also
generated.

Whenever immediate completion of an I/O opera-
tion is signaled, no data has been transferred to or
from the device, and the data address in the CCW
is not checked for validity. If the subchannel is in
the incorrect-length-suppression mode, incorrect
length is not indicated to the program, and
command chaining is performed when specified.
If the subchannel is in the incorrect-length-
indication mode, incorrect length and command
chaining are under control of the SLI and chain-
command flags. The conditions which cause the
incorrect-length indication to be suppressed are
summarized in Figure 15-6 on page 15-28.
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Programming Note:  I/O operations for which the
entire operation is specified in the command code
may be executed as immediate operations.
Whether the command is executed as an imme-
diate operation depends on the operation and type
of device.

Concluding I/O Operations
During Data Transfer
When the subchannel has been passed the con-
tents of an ORB, the subchannel is said to be
start-pending. When the I/O operation has been
initiated and the command has been accepted, the
subchannel becomes subchannel-and-device
active and remains in that state unless (1) the
channel subsystem detects an equipment malfunc-
tion, (2) the operation is concluded by execution
of CLEAR SUBCHANNEL or HALT SUB-
CHANNEL, or (3) status which causes a primary
interruption condition to be recognized (usually
channel end) is accepted from the device. When
command chaining and command retry are not
specified or when chaining is suppressed because
of unusual conditions, the status that is recognized
as primary status causes the operation at the sub-
channel to be concluded and an interruption con-
dition to be generated. The status bits in the
associated SCSW indicate primary status and the
unusual conditions, if any. The device can
present status that is recognized as primary status
at any time after the initiation of the I/O operation,
and the presentation of status may occur before
any data has been transferred.

For operations not involving data transfer, the
device normally controls the timing of the
channel-end condition. The duration of data-
transfer operations may be variable and may be
controlled by the device or the channel sub-
system.

Excluding equipment errors, and the execution of
the CLEAR SUBCHANNEL, HALT SUB-
CHANNEL, and RESET CHANNEL PATH
instructions, the channel subsystem signals the
device to conclude execution of an I/O operation
during data transfer whenever any of the following
conditions occurs:

� The storage areas designated for the opera-
tion are exhausted or filled.

� A program-check condition is detected.

� A protection-check condition is detected.

� A chaining-check condition is detected.

� A channel-control-check condition is detected
that does not affect the control of the I/O oper-
ation.

The first of these conditions occurs when the
channel subsystem has decremented the count to
zero in the last CCW associated with the opera-
tion. A count of zero indicates that the channel
subsystem has transferred all information specified
by the I/O operation. The other four conditions are
due to errors and cause premature conclusion of
data transfer. In either case, the conclusion is sig-
naled in response to a service request from the
device and causes data transfer to cease. If the
device has no blocks defined for the operation
(such as writing on magnetic tape), it concludes
the operation and presents channel-end status.

The device can control the duration of an opera-
tion and the timing of channel end by blocking of
data. On certain operations for which blocks are
defined (such as reading on magnetic tape), the
device does not present channel-end status until
the end of the block is reached, regardless of
whether the device has been previously signaled
to conclude data transfer.

Checking for the validity of the data address is
performed only as data is transferred to or from
main storage. When the initial data address in the
CCW is invalid, no data is transferred during the
operation, and the device is signaled to conclude
the operation in response to the first service
request. On writing, devices such as magnetic-
tape units request the first byte of data before any
mechanical motion is started and, if the initial data
address is invalid, the operation is terminated by
the channel subsystem before the recording
medium has been advanced. However, since the
operation has been initiated at the device, the
device presents channel-end status, causing the
channel subsystem to recognize a primary inter-
ruption condition. Subsequently, the device also
presents device-end status, causing the channel
subsystem to recognize a secondary interruption
condition. Whether a block at the device is
advanced when no data is transferred depends on
the type of device.

When command chaining takes place, the sub-
channel is in the subchannel-and-device-active
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state from the time the first I/O operation is initi-
ated at the device until the device presents
channel-end status for the last I/O operation of the
chain. The subchannel remains in the device-
active state until the device presents the
device-end status for the last I/O operation of the
chain.

Any unusual conditions cause command chaining
to be suppressed and a primary interruption condi-
tion to be generated. The unusual conditions can
be detected by either the channel subsystem or
the device, and the device can provide the indi-
cations with channel end, control-unit end, or
device end. When the channel subsystem is
aware of the unusual condition by the time the
channel-end status for the operation is accepted,
the chain is ended as if the operation during which
the condition occurred were the last operation of
the chain. The device-end status is recognized as
a secondary interruption condition whether pre-
sented together with the channel-end status or
separately. If the device presents unit check or
unit exception together with either control-unit end
or device end as status which causes the channel
subsystem to recognize the primary interruption
condition, then the subchannel-and-device-active
state of the subchannel is terminated, and the
subchannel is made status-pending with primary,
secondary, and alert status. Intermediate status
may also be indicated if an intermediate inter-
ruption condition previously existed at the sub-
channel for the initial-status-interruption condition
or the PCI condition and that condition still
remains pending at the subchannel. The
channel-end status which was presented to the
channel subsystem previously when command
chaining was signaled is not made available to the
program.

 Channel-Path-Reset Function
Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset function is per-
formed. Performance of the function consists in:
(1) issuing the reset signal on the designated
channel path and (2) causing a channel report to
be made pending, indicating completion of the
channel-path-reset function.

 Channel-Path-Reset-Function
Signaling
The channel subsystem issues the reset signal on
the designated channel path. As part of this oper-
ation, the following actions are taken:

1. All internal indications associated with control
unit busy, device busy, and allegiance condi-
tions for the designated channel path are
reset. These indications are reset at all sub-
channels that have access to the designated
channel path. The reset function has no other
effect on subchannels, including those having
I/O operations in progress.

2. If the channel path fails to respond properly to
the reset signal (see “I/O-System Reset” on
page  17-9 for a detailed description) or,
because of a malfunction, the reset signal
could not be issued, the channel path is made
physically not available at each applicable
subchannel.

3. If an I/O operation is in progress at the device
and the device is actively communicating on
the channel path in the execution of that I/O
operation when the reset signal is received on
that channel path, the I/O operation is reset,
and the control unit and device immediately
terminate current communication with the
channel subsystem. (To avoid possible misin-
terpretation of unsolicited device-end status,
programming measures can be taken as
described in programming note 2 on
page 15-41.)

4. If an I/O operation is in progress in multipath
mode at the device and the device is not cur-
rently communicating over the channel path in
execution of that I/O operation when the reset
signal is received, then the I/O operation may
or may not be reset depending on whether
another channel path is available for selection
in the same multipath group for the device. If
there is at least one other channel path in the
multipath group for the device that is available
for selection, the I/O operation is not reset.
However, the channel path on which the
system reset is received is removed from the
current set of channel paths that form the
multipath group. If the channel path on which
the reset signal is received is either the only
channel path of a multipath group or the
device is operating in single-path mode, the
I/O operation is reset.
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5. The channel-path-reset function causes I/O
operations to be terminated at the device as
described above; however, I/O operations are
never terminated at the subchannel by the
channel-path-reset function.

If an I/O operation is in progress at the sub-
channel and the channel path designated for the
performance of the channel-path-reset function is
being used for that I/O operation, the subchannel
may or may not accurately reflect the progress of
the I/O operation up to that instant. The sub-
channel remains in the state that exists at the time
the channel-path-reset function is performed until
the state is changed because of some action
taken by the program or by the device.

 Channel-Path-Reset
Function-Completion Signaling
After the reset signal has been issued and an
attempt has been made to issue the reset signal,
or after it has been determined that the reset
signal cannot be issued, the channel-path-reset
function is completed. (See “Reset Signal” on
page 17-8.)

As a result of the channel-path-reset function
being performed, a channel report is made
pending (see “Channel-Subsystem Recovery” on
page 17-17) to report the results. If the channel
path responds properly to the system-reset signal,
the channel report indicates that the channel path
has been initialized and is physically available for
use. If the reset signal was issued but either the
channel path failed to respond properly or the
channel path was already not physically available
at each subchannel having access to the channel
path, the channel report indicates that the channel
path has been initialized but is not physically avail-
able for use. If, because of a malfunction or
because the designated channel path is not in the

configuration, the reset signal could not be issued,
the channel report indicates that the channel path
has not been initialized and is not physically avail-
able for use.

Programming Notes:

1. If an I/O operation is in progress in multipath
mode when the channel-path-reset function is
performed on a channel path of the multipath
group, it is possible for the I/O operation to be
continued on a remaining channel path of the
group.

2. When the performance of the channel-path-
reset function causes the I/O operation at the
device to be reset, unsolicited device-end
status presented by the device, if any, may be
erroneously interpreted by the channel sub-
system to be chaining status and thus cause
the channel subsystem to continue the chain
of commands. If this situation occurs, the
device-end status is not made available to the
program and the device is selected again by
the channel subsystem; however, the device
may interpret the initiation sequence as the
beginning of a new channel program instead
of command chaining. This possibility can be
avoided by executing CLEAR SUBCHANNEL
or HALT SUBCHANNEL, designating the
affected subchannels, prior to executing
RESET CHANNEL PATH.

3. Execution of the channel-path-reset function
may, on some models, cause overruns to
occur on other channel paths.

4. Even though reset is signaled on the desig-
nated channel path, allegiances to that
channel path by one or more devices may not
have been reset because of a malfunction at a
control unit or a malfunction at the physical
channel path to the control unit.
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When an I/O operation or sequence of I/O opera-
tions initiated by the execution of START SUB-
CHANNEL is ended, the channel subsystem and
the device generate status conditions. The gener-
ation of these conditions can be brought to the
attention of the program by means of an I/O inter-
ruption or by means of the execution of the TEST
PENDING INTERRUPTION instruction. (During
certain abnormal situations, these conditions can
be brought to the attention of the program by
means of a machine-check interruption. See
“Channel-Subsystem Recovery” on page  17-17
for details.) The status conditions, as well as an
address and a count indicating the extent of the
operation sequence, are presented to the program
in the form of a subchannel-status word (SCSW).
The SCSW is stored in an interruption-response
block (IRB) during the execution of TEST SUB-
CHANNEL.

Normally an I/O operation is in execution until the
device signals primary interruption status. Primary
interruption status can be signaled during initiation
of an I/O operation, or later. An I/O operation can
be terminated by the channel subsystem per-

forming a clear or halt function when it detects an
equipment malfunction, a program check, a
chaining check, a protection check, or an
incorrect-length condition, or by performing a
clear, halt, or channel-path-reset function as a
result of the execution of CLEAR SUBCHANNEL,
HALT SUBCHANNEL, or RESET CHANNEL
PATH, respectively.

I/O interruptions provide a means for the CPU to
change its state in response to conditions that
occur at I/O devices or subchannels. These con-
ditions can be caused by the program, by the
channel subsystem, or by an external event at the
device.

 Interruption Conditions
The conditions causing requests for I/O inter-
ruptions to be initiated are called I/O-interruption
conditions. When an interruption condition is
recognized by the channel subsystem, it is indi-
cated at the appropriate subchannel. The sub-
channel is then said to be status-pending. The
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subchannel becoming status-pending causes the
channel subsystem to generate an I/O-interruption
request. An I/O-interruption request can be
brought to the attention of the program only once.

An I/O-interruption request remains pending until it
is accepted by a CPU in the configuration, is with-
drawn by the channel subsystem, or is cleared by
means of the execution of TEST PENDING
INTERRUPTION, TEST SUBCHANNEL, or
CLEAR SUBCHANNEL, or by means of sub-
system reset. When a CPU accepts an inter-
ruption request and stores the associated
interruption code, the interruption request is
cleared. Alternatively, an I/O-interruption request
can be cleared by means of the execution of
TEST PENDING INTERRUPTION. In either case,
the subchannel remains status-pending until the
associated interruption condition is cleared when
TEST SUBCHANNEL or CLEAR SUBCHANNEL
is executed or when the subchannel is reset.

An I/O-interruption condition is normally cleared by
means of the execution of TEST SUBCHANNEL.
If TEST SUBCHANNEL is executed, designating a
subchannel that has an I/O-interruption request
pending, both the interruption request and the
interruption condition at the subchannel are
cleared. The interruption request and the inter-
ruption condition can also be cleared by CLEAR
SUBCHANNEL.

A device-end status condition generated by the
I/O device and presented following the conclusion
of the last I/O operation of a start function is reset
at the subchannel by the channel subsystem
without generating an I/O-interruption condition or
I/O-interruption request if the subchannel is cur-
rently start-pending and if the status contains
device end either alone or accompanied by
control-unit end. If any other status bits accom-
pany the device-end status bit, then the channel
subsystem generates an I/O-interruption request
with deferred condition code 1 indicated.

When an I/O operation is terminated because of
an unusual condition detected by the channel sub-
system during the command initiation sequence,
status describing the interruption condition is
placed at the subchannel, causing it to become
status-pending. If the unusual condition is
detected by the device, the device-status field of
the associated SCSW identifies the condition.

When command chaining takes place, the gener-
ation of status by the device does not cause an
interruption, and the status is not made available
to the program.

When the channel subsystem detects any of the
following interruption conditions, it initiates a
request for an I/O interruption without necessarily
communicating with, or having received the status
byte from, the device:

� A programming error associated with the con-
tents of the ORB passed to the subchannel by
the previous execution of START SUB-
CHANNEL

� A valid suspend flag in the first CCW fetched
that initiates channel-program execution for
either START SUBCHANNEL or RESUME
SUBCHANNEL, and suppress suspended
interruption not specified in the ORB

� A programming error associated with the first
CCW or first IDAW

These interruption conditions from the subchannel,
except for the suspended condition, can be
accompanied by other subchannel-status indi-
cations, but the device-status indications are all
stored as zeros.

The channel subsystem issues the clear signal to
the device when status containing unit check is
presented to a subchannel that is disabled or
when the device is not associated with any sub-
channel. However, if the presented status does
not contain unit check, the status is accepted by
the channel subsystem and discarded without
causing the subchannel to become status-
pending.

An interruption condition caused by the device
may be accompanied by multiple device-status
conditions. Further, more than one interruption
condition associated with the same device can be
accepted by the channel subsystem without an
intervening I/O interruption. As an example, when
the channel-end condition is not cleared at the
device by the time device end is generated, both
conditions may be cleared at the device concur-
rently and indicated in the SCSW together. Alter-
natively, channel-end status may have been
previously accepted at the subchannel, and an I/O
interruption may have occurred; however, the
associated status-pending condition may not have
been cleared by TEST SUBCHANNEL by the time
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device-end status was accepted at the sub-
channel. In this situation, the device-end status
may be merged with the channel-end status
without causing an additional I/O interruption.
Whether an interruption condition may be merged
at the subchannel with other existing interruption
conditions depends upon whether the interruption
condition is unsolicited or solicited.

Unsolicited Interruption Condition:  An unsolic-
ited interruption condition is any interruption condi-
tion which is unrelated to the performance of a
clear, halt, resume, or start function. An unsolic-
ited interruption condition is identified at the sub-
channel as alert status. An unsolicited interruption
condition can be generated only when the sub-
channel is not device-active.

The subchannel and device status associated with
an unsolicited interruption condition is never
merged with that of any currently existing inter-

ruption condition. If the subchannel is currently
status-pending, the unsolicited interruption condi-
tion is held in abeyance in either the channel sub-
system or the device, as appropriate, until the
status-pending condition has been cleared.

Solicited Interruption Condition:  A solicited
interruption condition is any interruption condition
generated as a direct consequence of performing
or attempting to perform a clear, halt, resume, or
start function. Solicited interruption conditions
include any interruption condition generated while
the subchannel is either subchannel-and-device-
active or device-active. The subchannel and
device status associated with a solicited inter-
ruption condition may be merged at the sub-
channel with that of another currently existing
solicited interruption condition. Figure 16-1
describes the interruption condition that results
from any combination of bits in the status-control
field of the SCSW.

┌────────────────────┬───────────────────────────────────────────────────────────────┐

│Status-Control Field│ Status-Control-Bit Combinations │

├────────────────────┼───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┤

│Alert │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ ð │ ð │ ð │ ð │ ð │ ð │ ð │ ð │

│Primary │ ð │ 1 │ 1 │ 1 │ 1 │ ð │ ð │ ð │ 1 │ 1 │ 1 │ 1 │ ð │ ð │ ð │ ð │

│Secondary │ ð │ ð │ 1 │ 1 │ ð │ 1 │ 1 │ ð │ ð │ 1 │ 1 │ ð │ 1 │ 1 │ ð │ ð │

│Intermediate │ ð │ ð │ ð │ 1 │ 1 │ ð │ 1 │ 1 │ ð │ ð │ 1 │ 1 │ ð │ 1 │ 1 │ ð │

│Status-pending │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │ 1 │

├────────────────────┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┼───┤

│Resulting interrup- │ E │ S │ S │ S │ S │ S │ - │ S │ S │ S │ S │ S │ S │ - │ S │ S │

│ tion condition │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │

├────────────────────┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┤

│Explanation: │

│ │

│ - Combination does not occur. │

│ E Unsolicited or solicited interruption condition. │

│ S Solicited interruption condition. │

│ ð Indicates the bit stored as zero. │

│ 1 Indicates the bit stored as one. │

└────────────────────────────────────────────────────────────────────────────────────┘

Figure 16-1. Interruption Condition for Status-Control-Bit Combinations
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 Intermediate Interruption
Condition
An intermediate interruption condition is a solicited
interruption condition that indicates that an event
for which the program had previously requested
notification has occurred. An intermediate inter-
ruption condition is described by solicited sub-
channel status, the Z bit, the
subchannel-suspended condition, or any combina-
tion of the three. An intermediate interruption con-
dition can occur only after it has been requested
by the program through the use of flags in the
ORB or a CCW. Depending on the state of the
subchannel, execution or suspension of the I/O
operation continues, unaffected by the setting of
the intermediate-status bit.

An intermediate interruption condition can be indi-
cated only together with one of the following indi-
cations:

 1. Subchannel-active

2. Status-pending with primary status alone

3. Status-pending with primary status together
with alert status or secondary status or both

 4. Suspended

If only the intermediate-status bit and the status-
pending bit of the status-control field are ones
during the execution of TEST SUBCHANNEL, the
device-status field is zero.

Primary Interruption Condition
A primary interruption condition is a solicited inter-
ruption condition that indicates the performance of
the start function is completed at the subchannel.
A primary interruption condition is described by
the SCSW stored as a result of executing TEST
SUBCHANNEL while the subchannel is status-
pending with primary status. Once the primary
interruption condition is indicated at the sub-
channel, the channel subsystem is no longer
actively participating in the I/O operation by trans-
ferring commands or data. When a subchannel is
status-pending with a primary interruption condi-
tion, execution of any of the following instructions
results in the setting of a nonzero condition code:
HALT SUBCHANNEL, MODIFY SUBCHANNEL,
RESUME SUBCHANNEL, and START SUB-
CHANNEL. Once the primary interruption condi-
tion is cleared by executing TEST SUBCHANNEL,
the subchannel accepts the START SUB-

CHANNEL instruction. (See “START
SUBCHANNEL” on page 14-13.)

Secondary Interruption Condition
A secondary interruption condition is a solicited
interruption condition that normally indicates the
completion of an I/O operation at the device. A
secondary interruption condition is also generated
by the channel subsystem if the start function is
terminated because a solicited alert interruption
condition is recognized prior to initiating the first
I/O operation at the device. A secondary inter-
ruption condition is described by the SCSW stored
as a result of executing TEST SUBCHANNEL
while the subchannel is status-pending with sec-
ondary status. Once the channel subsystem has
accepted status from the device that causes a
secondary interruption condition to be recognized,
the start function is completed at the device.

Alert Interruption Condition
An alert interruption condition is either a solicited
interruption condition that indicates the occurrence
of an unusual condition in a halt, resume, or start
function or an unsolicited interruption condition
that describes a condition unrelated to the per-
formance of a halt, resume, or start function. An
alert interruption condition is described by the
SCSW stored as a result of executing TEST SUB-
CHANNEL while the subchannel is status-pending
with alert status. An alert interruption condition
may be generated by either the channel sub-
system or the device. Nonzero alert status is
always brought to the attention of the program.
Whenever the subchannel is idle and zero status
is presented by the device, the status is dis-
carded.

Priority of Interruptions
All requests for an I/O interruption are asynchro-
nous to any activity in any CPU, and interruption
requests associated with more than one sub-
channel can exist at the same time. The priority
of interruptions is controlled by two types of mech-
anisms -- one establishes within the channel sub-
system the priority among interruption requests
from subchannels associated with the same
I/O-interruption subclass, and another establishes
within a given CPU the priority among requests
from subchannels of different I/O-interruption sub-
classes. The channel subsystem requests an I/O
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interruption only after it has established priority
among requests from its subchannels. The condi-
tions responsible for the requests are preserved at
the subchannels until cleared by a CPU executing
TEST SUBCHANNEL or CLEAR SUBCHANNEL
or until I/O-system reset is performed.

The assignment of priority among requests for
interruption from subchannels of the same
I/O-interruption subclass is in the order that the
need for interruption is recognized by the channel
subsystem. The order of recognition by the
channel subsystem is a function of the type of
interruption condition and the type of channel
path. For the parallel-I/O-interface type of channel
path, the order depends on the electrical position
of the device on the channel path to which it is
attached. (A device's electrical position on the
parallel-I/O interface is not related to its device
address.)

The assignment of priority among requests for
interruption from subchannels of different
I/O-interruption subclasses is made by the CPU
according to the numerical value of the
I/O-interruption subclass codes (with zero having
highest priority), in conjunction with the
I/O-interruption subclass mask in control register
6. The numerical value of the I/O-interruption sub-
class code is directly related to the bit position in
the I/O-interruption subclass mask in control reg-
ister 6 of a CPU. If in any CPU an I/O-interruption
subclass-mask bit is zero, then all subchannels
having an I/O-interruption subclass code numer-
ically equal to the associated position in the mask
register are said to be masked off in the respec-
tive CPU. Therefore, a CPU accepts the highest-
priority I/O-interruption request from a subchannel
which has the lowest-numbered I/O-interruption
subclass code that is not masked off by a corre-
sponding bit in control register 6 of that CPU.
When the highest-priority interruption request is
accepted by a CPU, it is cleared so that the inter-
ruption request is not accepted by any other CPU
in the configuration.

The priority of interruption handling can be modi-
fied by execution of either TEST SUBCHANNEL
or CLEAR SUBCHANNEL. When either of these
instructions is executed and the designated sub-
channel has an interruption request pending, that
interruption request is cleared, without regard to
any previous established priority. The relative pri-

ority of the remaining interruption requests is
unchanged.

Programming Notes:

1. The I/O-interruption subclass mask is in
control register 6, which has the following
format:

┌────────┬───────────────────────┐

│ISC Mask│ Reserved │

└────────┴───────────────────────┘

ð 8 31

2. Control register 6 is set to all zeros during
initial CPU reset.

 Interruption Action
An I/O interruption can occur only when the
I/O-interruption subclass-mask bit associated with
the subchannel is one and the CPU is enabled for
I/O interruptions.

The interruption occurs at the completion of a unit
of operation (see “Point of Interruption” on
page 5-16). If the channel subsystem establishes
the priority among requests for interruption from
subchannels while the CPU is disabled for I/O
interruptions, the interruption occurs immediately
after completion of the instruction enabling the
CPU and before the next instruction is executed,
provided that the I/O-interruption subclass-mask
bit associated with the subchannel is one. Alter-
natively, if the channel subsystem establishes the
priority among requests for interruption from sub-
channels while the I/O-interruption subclass-mask
bit is zero for each subchannel which is status-
pending, the interruption occurs immediately after
completion of the instruction which sets at least
one of the I/O-interruption subclass-mask bits to
one, provided that the CPU is also enabled for I/O
interruptions. This interruption is associated with
the highest-priority I/O-interruption request, as
established by the CPU.

If the channel subsystem has not established the
priority among requests for interruption from the
subchannels by the time the interruption is
allowed, the interruption does not necessarily
occur immediately after completion of the instruc-
tion enabling the CPU. A delay can occur regard-
less of how long the interruption condition has
existed at the subchannel.
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The interruption causes the current PSW to be
stored as the old PSW at real location 56 and
causes the I/O-interruption code associated with
the interruption to be stored at real locations
184-191 of the CPU allowing the interruption.
Subsequently, a new PSW is loaded from real
location 120, and processing resumes in the CPU
state indicated by that PSW. The subchannel
causing the interruption is identified by the inter-
ruption code.

The I/O-interruption code has the following format
when it is stored:

Hex. Dec.

 ┌─────────────────────────────┐

 B8 184 │Subsystem-Identification Word│

 ├─────────────────────────────┤

 BC 188 │ Interruption Parameter │

 └─────────────────────────────┘

 ð 31

Programming Note:  The I/O-interruption sub-
class code for all subchannels is set to zero by
I/O-system reset. It may be set to any of the
values 0-7 by executing MODIFY SUBCHANNEL.
(The operation of the instruction is described in
“MODIFY SUBCHANNEL” on page 14-6.)

 Interruption-Response Block
The interruption-response block (IRB) is the
operand of TEST SUBCHANNEL. The two right-
most bits of the IRB address are zeros, desig-
nating the IRB on a word boundary. The IRB
contains three major fields: the subchannel-status
word, the extended-status word, and the
extended-control word. The format of the IRB is
as follows:

 ┌────────────────────────────────┐

Word ð│ │

 1│ Subchannel-Status Word │

 2│ │

 ├────────────────────────────────┤

 3│ │

 4│ │

 5│ Extended-Status Word │

 6│ │

 7│ │

 ├────────────────────────────────┤

 8│ │

 │ │

 / Extended-Control Word /

 │ │

 15│ │

 └────────────────────────────────┘

The length of the subchannel-status and
extended-status words is 12 bytes and 20 bytes,
respectively. The length of the extended-control
word is 32 bytes. When the extended-control bit
(bit 14, word 0) of the SCSW is zero, words 8-15
of the interruption-response block may or may not
be stored.

 Subchannel-Status Word
The subchannel-status word (SCSW) provides to
the program indications describing the status of a
subchannel and its associated device. If perform-
ance of a halt, resume, or start function has
occurred, the SCSW may describe the conditions
under which the operation was concluded.

The SCSW is stored when TEST SUBCHANNEL
is executed and the designated subchannel is
operational. The SCSW is placed in words 0-2 of
the IRB that is designated as the TEST SUB-
CHANNEL operand. When STORE SUB-
CHANNEL is executed, the SCSW is stored in
words 7-9 of the subchannel-information block
(described in “Subchannel-Information Block” on
page 15-1). Figure 16-2 on page 16-7 shows the
format of the SCSW and summarizes its contents.
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Word ┌───────┬─┬─┬───┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─────┬─────────────┬─────────┐

ð │ Key │S│L│ CC│F│P│I│A│U│Z│E│N│ð│ FC │ AC │ SC │

 ├───────┴─┴─┴───┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─────┴─────────────┴─────────┤

 1 │ CCW Address │

 ├───────────────┬───────────────┬───────────────────────────────┤

2 │ Device Status │ Sch Status │ Count │

 └───────────────┴───────────────┴───────────────────────────────┘

 ð 4 8 16 2ð 27 31

BITS NAME

Word ð

 ð-3 Subchannel key

4 Suspend control (S)

5 ESW Format (L)

6-7 Deferred condition code (CC)

 8 Format (F)

 9 Prefetch (P)

1ð Initial-status interruption control (I)

11 Address-limit-checking control (A)

12 Suppress-suspended interruption (U)

13 Zero condition code (Z)

14 Extended control (E)

15 Path not operational (N)

 16 Reserved (ð)

 17-19 Function control (FC)

(bit 17, start function; bit 18, halt function;

bit 19, clear function)

 2ð-26 Activity control (AC)

(bit 2ð, resume-pending; bit 21, start-pending;

bit 22, halt-pending; bit 23, clear-pending;

bit 24, subchannel-active; bit 25, device-active;

bit 26, suspended)

 27-31 Status control (SC)

(bit 27, alert status; bit 28, intermediate status;

bit 29, primary status; bit 3ð, secondary status;

bit 31, status-pending)

Word 1

 ð-31 CCW address

Word 2

 ð-7 Device status

(bit ð, attention; bit 1, status modifier;

bit 2, control-unit end; bit 3, busy;

bit 4, channel end; bit 5, device end;

bit 6, unit check; bit 7, unit exception)

8-15 Subchannel status (Sch Status)

(bit 8, program-controlled interruption; bit 9, incorrect length;

bit 1ð, program check; bit 11, protection check;

bit 12, channel-data check; bit 13, channel-control check;

bit 14, interface-control check; bit 15, chaining check)

 16-31 Count

Figure 16-2. SCSW Format
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The contents of the subchannel-status word
(SCSW) depend on the state of the subchannel
when the SCSW is stored. Depending on the
state of the subchannel and the device, the spe-
cific fields of the SCSW may contain (1) informa-
tion pertaining to the last operation,
(2) information unrelated to the execution of an
operation, (3) zeros, or (4) a value of no
meaning. The following descriptions indicate
when an SCSW field contains meaningful informa-
tion.

 Subchannel Key
When the start-function bit (bit 17 of word 0) is
one, bits 0-3 of word 0 contain the access key
used during performance of the associated start
function. These bits are identical with the key
specified in the ORB (bits 0-3 of word 1). The
subchannel key is meaningful only when the start-
function bit (bit 17 of word 0) is one.

Suspend Control (S)
When the start-function bit (bit 17 of word 0) is
one, bit 4 of word 0, when one, indicates that the
suspend function can be initiated at the sub-
channel. Bit 4 is meaningful only when bit 17 is
one. If bit 17 is one and bit 4 is one, channel-
program execution can be suspended if the
channel subsystem recognizes a valid S flag
which is set to one in a CCW. If bit 4 is zero,
channel-program execution cannot be suspended,
and if an S flag set to one in a CCW is recog-
nized, a program-check condition is recognized.

Extended-Status-Word Format (L)
When the status-pending bit (bit 31 of word 0) is
one, bit 5 of word 0, when one, indicates that a
format-0 ESW has been stored. A format-0 ESW
is stored when an interruption condition containing
one of the following indications is cleared by TEST
SUBCHANNEL:

 Channel-data check
 Channel-control check
 Interface-control check
 Measurement-block-program check
 Measurement-block-data check
 Measurement-block-protection check

Path verification required
 Authorization check

The extended-status-word-format bit is meaningful
whenever the subchannel is status-pending. The
extended-status information that is used to form a

format-0 ESW is cleared at the subchannel by
TEST SUBCHANNEL or CLEAR SUBCHANNEL.

Deferred Condition Code (CC)
When the start-function bit (bit 17 of word 0) is
one and the status-pending bit (bit 31 of word 0) is
also one, bits 6-7 of word 0 indicate the general
reason that the subchannel was status-pending
when TEST SUBCHANNEL or STORE SUB-
CHANNEL was executed. The deferred condition
code is meaningful when the subchannel is status-
pending with any combination of status and only
when the start-function bit of the function-control
field in the SCSW is one. The meaning of the
deferred condition code for each value when the
subchannel is status-pending is given in
Figure 16-3 on page 16-10.

The deferred condition code, if not zero, is used to
indicate whether conditions have been encount-
ered that preclude the subchannel becoming
subchannel-and-device-active while the sub-
channel is either start-pending or suspended.

Deferred Condition Code 0:  A normal I/O inter-
ruption has taken place.

Deferred Condition Code 1:  Status is present in
the SCSW that was presented by the associated
device or generated by the channel subsystem
subsequent to the setting of condition code 0 for
START SUBCHANNEL or RESUME SUB-
CHANNEL. If only the alert-status bit and the
status-pending bit of the status-control field of the
SCSW are ones, the status present is not related
to the execution of a channel program. If the
intermediate-status bit, the primary-status bit, or
both are ones, then the status is related to the
execution of the channel program specified by the
most recently executed START SUBCHANNEL
instruction or implied by the most recently exe-
cuted RESUME SUBCHANNEL instruction. (See
“Immediate Conclusion of I/O Operations” on
page 15-38.) If the secondary-status bit is one
and the primary-status bit is zero, the status
present is related to the channel program speci-
fied by the START SUBCHANNEL instruction or
implied by the RESUME SUBCHANNEL instruc-
tion that preceded the most recently executed
START SUBCHANNEL instruction.

Deferred Condition Code 2:  This code does not
occur and is reserved for future use.
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Deferred Condition Code 3:  An attempted
device selection has occurred, and the device
appeared not operational on all of the channel
paths that were available for selection of the
device.

A device appears not operational when it does not
respond to a selection attempt by the channel
subsystem. This occurs when the control unit is
not provided in the system, when power is off in
the control unit, or when the control unit has been
logically switched off the channel path. The not-
operational state is also indicated when the control
unit is provided and is capable of attaching the
device, but the device has not been installed and
the control unit is not designed to recognize the
device being selected as one of its attached
devices. (See also “I/O Addressing” on
page 13-4.)

A deferred condition code 3 also can be set by the
channel subsystem if no channel paths to the
device are available for selection. (See
Figure 16-3 on page 16-10.)

Programming Notes:

1. If, during performance of a start function, the
I/O device being selected is not installed or
has been logically removed from the control
unit, but the associated control unit is opera-
tional and the control unit recognizes the I/O
device being selected as one of its I/O
devices (for example, access mechanism 7 on
the IBM 3830 Storage Control that has only

access mechanisms 0-3 installed), the control
unit, depending upon the model, either fails to
recognize the address of the I/O device or
considers the I/O device to be not ready. In
the former case, a path-not-operational condi-
tion is recognized, subject to the setting of the
path-operational mask. (See “Path-
Operational Mask (POM)” on page 15-6.) In
the latter case, the not-ready condition is indi-
cated when the control unit responds to the
selection and indicates unit check whenever
the not-ready state precludes successful initi-
ation of the operation at the I/O device. In
this case, unit-check status is indicated in the
SCSW, the subchannel becomes status-
pending with primary, secondary, and alert
status, and with deferred condition code 1
indicated. (See the publication ESA/390
Common I/O-Device Commands, SA22-7204,
for a description of unit-check status.) Refer
to the System Library publication for the
control unit to determine how the condition is
indicated.

2. The deferred condition code is 1 and the
status-control field contains the status-pending
and intermediate-status bits or the status-
pending, intermediate-status, and alert-status
bits as ones when HALT SUBCHANNEL has
been executed and the designated sub-
channel is suspended and status-pending with
intermediate status. If the alert-status bit is
one, then subchannel-logout information was
generated as a result of attempting to issue
the halt signal to the device.
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┌─────┬─────┬───────────────┬───────────────────────────────────────────────────────┐

│Bit 6│Bit 7│Status Controlñ│ Meaning │

├─────┼─────┼───────────────┼───────────────────────────────────────────────────────┤

│ ð │ ð │ A I P S X │Normal I/O interruption │

│ │ │ A I P - X │ │

│ │ │ A - P S X │ │

│ │ │ A - P - X │ │

│ │ │ - I P S X │ │

│ │ │ - I P - X │ │

│ │ │ - I - - X │ │

│ │ │ - - P S X │ │

│ │ │ - - P - X │ │

├─────┼─────┼───────────────┼───────────────────────────────────────────────────────┤

│ ð │ 1 │ A I P S X │Either an immediate operation, with chaining not │

│ │ │ A I P - X │specified, has ended normally, or the setting of some │

│ │ │ A I - - Xò │status condition precluded the initiation or resumpt- │

│ │ │ A - P S X │ion of a requested I/O operation at the device. │

│ │ │ A - P - X │ │

│ │ │ A - - S X │ │

│ │ │ A - - - X │ │

│ │ │ - I P S X │ │

│ │ │ - I P - X │ │

│ │ │ - I - - Xò │ │

│ │ │ - - P S X │ │

│ │ │ - - P - X │ │

│ │ │ - - - S Xó │ │

│ │ │ - - - - Xó ò │ │

├─────┼─────┼───────────────┼───────────────────────────────────────────────────────┤

│ 1 │ ð │ Reserved │Reserved │

├─────┼─────┼───────────────┼───────────────────────────────────────────────────────┤

│ 1 │ 1 │ - - P S X │The device is not operational on any available path or,│

│ │ │ - I P S X │if a dedicated-allegiance condition exists, the device │

│ │ │ │is not operational on the path to which the dedicated │

│ │ │ │allegiance is owed. │

├─────┴─────┴───────────────┴───────────────────────────────────────────────────────┤

│Explanation: │

│ │

│ - Bit is zero. │

│ ñ The allowed combinations of status-control-bit settings when the │

│ start-function bit is one in the function-control field. │

│ ò The condition is encountered after the execution of HALT SUBCHANNEL when the │

│ subchannel is currently suspended. │

│ ó The condition is encountered after the execution of HALT SUBCHANNEL when the │

│ subchannel is currently start-pending. │

│ A Alert status. │

│ I Intermediate status. │

│ P Primary status. │

│ S Secondary status. │

│ X Status-pending. │

└───────────────────────────────────────────────────────────────────────────────────┘

Figure 16-3. Deferred-Condition-Code Meaning for Status-Pending Subchannel

 Format (F)
When the start-function bit (bit 17 of word 0) is
one, bit 8 of word 0 indicates the format of the
CCWs associated with an I/O operation. The
format bit is meaningful only when bit 17 is one. If
bit 8 of word 0 is zero, format-0 CCWs are indi-
cated. If it is one, format-1 CCWs are indicated.
(See “Channel-Command Word” on page  15-23
for the description of the two CCW formats.)

 Prefetch (P)
When the start-function bit (bit 17 of word 0) is
one, bit 9 of word 0 indicates whether or not
unlimited prefetching of CCWs is allowed. The
prefetch bit is meaningful only when bit 17 is one.
If bit 9 is zero, prefetching of one CCW describing
a data area is allowed during output-data-chaining
operations and is not allowed during any other
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operations. If bit 9 is one, unlimited prefetching of
CCWs is allowed.

Initial-Status-Interruption Control (I)
When the start-function bit (bit 17 of word 0) is
one, bit 10 of word 0, when one, indicates that the
channel subsystem is to generate an intermediate
interruption condition if the subchannel becomes
subchannel-active (see “Initial-Status-Interruption
Control (I)” on page 15-22). Bit 10 of word 0,
when zero, indicates that the subchannel
becoming subchannel-active is not to cause an
intermediate interruption condition to be gener-
ated.

The program requests the intermediate inter-
ruption condition by means of the ORB. An I/O
interruption that results from that request may be
due to the channel subsystem performing either a
start function or a resume function. (See “Zero
Condition Code (Z)” for details of the indication
given by the channel subsystem when the inter-
mediate interruption condition is cleared by TEST
SUBCHANNEL.)

Address-Limit-Checking Control (A)
When the start-function bit (bit 17 of word 0) is
one, bit 11 of word 0, when one, indicates that the
channel subsystem has been requested by the
program to perform address-limit checking, subject
to the setting of the limit mode at the subchannel
(see “Address-Limit-Checking Control (A)” on
page 15-22). The address-limit-checking-control
bit is meaningful only when bit 17 is one.

Suppress-Suspended Interruption (U)
When the start-function bit (bit 17 of word 0) is
one, bit 12 of word 0, when one, indicates that the
channel subsystem has been requested by the
program to suppress the generation of a
subchannel-suspended interruption condition when
the subchannel is suspended (see “Suppress-
Suspended-Interruption Control (U)” on
page 15-22). When bit 12 is zero, the channel
subsystem generates an intermediate interruption
condition whenever the subchannel is suspended
during execution of the associated channel
program. The suppress-suspended-interruption bit
is meaningful only when bit 17 is one.

 Subchannel-Control Field
The following subchannel-control-information
descriptions apply to the subchannel-control field
(bits 13-31 of word 0) of the SCSW.

Zero Condition Code (Z)
Bit 13 of word 0, when one, indicates that the sub-
channel has become subchannel-active and the
channel subsystem has recognized an initial-
status-interruption condition at the subchannel.
The Z bit is meaningful only when the
intermediate-status bit (bit 28 of word 0) and the
start-function bit (bit 17 of word 0) are both ones.

If the initial-status-interruption-control bit (bit 10,
word 1 of the ORB) is one when START SUB-
CHANNEL is executed, then the subchannel
becoming subchannel-active causes the sub-
channel to be made status-pending with interme-
diate status indicating the initial-status-interruption
condition. The initial-status-interruption condition
remains at the subchannel until the intermediate
interruption condition is cleared by the execution
of TEST SUBCHANNEL or CLEAR SUB-
CHANNEL. If the initial-status-interruption-control
bit of the ORB is zero when START SUB-
CHANNEL is executed, then the subchannel
becoming subchannel-active does not cause an
intermediate interruption condition to be gener-
ated, and the initial-status-interruption condition is
not recognized.

Extended Control (E)
Bit 14 of word 0, when one, indicates that model-
dependent information or concurrent-sense infor-
mation is stored in the extended-control word
(ECW). When bit 14 is zero, the contents of
words 0-7 of the ECW, if stored, are unpredict-
able. The E bit is meaningful whenever the sub-
channel is status-pending with alert status either
alone or together with primary status, secondary
status, or both.

Programming Note:  During execution of TEST
SUBCHANNEL, the storing of words 0-7 of the
ECW is a model-dependent function subject to the
setting of bit 14 as described above. Therefore,
the program should always provide sufficient
storage to accommodate the storing of a 64-byte
IRB.
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Path Not Operational (N)
Bit 15 of word 0, when one, indicates that the N
condition has been recognized by the channel
subsystem. The N condition, in turn, indicates
that one or more path-not-operational conditions
have been recognized. The channel subsystem
recognizes a path-not-operational condition when,
during an attempted device selection in order to
perform a clear, halt, resume, or start function, the
device associated with the subchannel appears
not operational on a channel path that is opera-
tional for the subchannel. A channel path is oper-
ational for the subchannel if the associated device
appeared operational on that channel path the last
time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A channel path is not operational
for the subchannel if the associated device
appeared not operational on that channel path the
last time the channel subsystem attempted device
selection in order to perform a clear, halt, resume,
or start function. A device appears to be opera-
tional on a channel path when the device
responds to an attempted device selection.

The N bit is meaningful whenever the status-
control field contains one of the indications listed
below, and at least one basic I/O function is also
indicated at the subchannel:

� Status-pending with any combination of
primary, secondary, or alert status

 � Status-pending alone

� Status-pending with intermediate status when
the subchannel is also suspended

The N condition is reset whenever the execution
of TEST SUBCHANNEL results in the setting of
condition code 0 and the N bit is meaningful as
described above.

Notes:

1. A path-not-operational condition does not
imply a malfunctioning channel path. A mal-
functioning channel path causes the gener-
ation of an error indication, such as
interface-control check.

2. When a path-not-operational condition has
been recognized and the subchannel subse-
quently becomes status-pending with only
intermediate status, the path-not-operational
condition (a) continues to be recognized until
the subchannel becomes status-pending with

primary status or becomes suspended and
(b)  is indicated by storing the path-not-
operational bit as a one during the execution
of TEST SUBCHANNEL. When a path-not-
operational condition has been recognized
and the channel-program execution subse-
quently becomes suspended, the path-not-
operational condition does not remain pending
if channel-program execution is subsequently
resumed. Instead, the old indication is lost,
and the path-not-operational indication, if any,
pertains to the attempt by the channel sub-
system to resume channel-program execution.

Function Control (FC)
The function-control field indicates the basic I/O
functions that are indicated at the subchannel.
This field may indicate the acceptance of as many
as two functions. The function-control field is con-
tained in bit positions 17-19 of the first word of the
SCSW. The function-control field is meaningful at
an installed subchannel whenever the subchannel
is valid (see “Device Number Valid (V)” on
page 15-4). The function-control field contains all
zeros whenever both the activity- and status-
control fields contain all zeros. The meaning of
the individual bits is as follows:

Start Function (Bit 17):  When one, bit 17 indi-
cates that a start function has been requested and
is either pending or in progress at the subchannel.
A start function is requested by executing START
SUBCHANNEL. A start function is indicated at
the subchannel when condition code 0 is set
during the execution of START SUBCHANNEL.
The start-function indication is cleared at the sub-
channel when TEST SUBCHANNEL is executed
and the subchannel is either status-pending alone,
or status-pending with any combination of alert,
primary, or secondary status. The start-function
indication is also cleared at the subchannel during
the execution of CLEAR SUBCHANNEL.

Halt Function (Bit 18):  When one, bit 18 indi-
cates that a halt function has been requested and
is either pending or in progress at the subchannel.
A halt function is requested by executing HALT
SUBCHANNEL. A halt function is indicated at the
subchannel when condition code 0 is set for HALT
SUBCHANNEL. The halt-function indication is
cleared at the subchannel when the next status-
pending condition which occurs is cleared by exe-
cution of TEST SUBCHANNEL. The next
status-pending condition depends on the state of
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the subchannel when HALT SUBCHANNEL is
executed. If the subchannel is subchannel-active
when HALT SUBCHANNEL is executed, then the
next status-pending condition is status-pending
with at least primary status indicated. If the sub-
channel is device-active when HALT SUB-
CHANNEL is executed, then the next
status-pending condition is status-pending with at
least secondary status indicated. If the sub-
channel is suspended and status-pending with
intermediate status when HALT SUBCHANNEL is
executed, then the next status-pending condition
is status-pending with intermediate status. If the
subchannel is idle when HALT SUBCHANNEL is
executed, then the next status-pending condition
is status-pending alone. The halt-function indi-
cation is also cleared at the subchannel during the
execution of CLEAR SUBCHANNEL. In normal
operations, this function is indicated together with
bit 17; that is, there is a start function either
pending or in progress which is to be halted.

Clear Function (Bit 19):  When one, bit 19 indi-
cates that a clear function has been requested
and is either pending or in progress at the sub-
channel. A clear function is requested by exe-
cuting CLEAR SUBCHANNEL. A clear function is
indicated at the subchannel when condition code 0
is set for CLEAR SUBCHANNEL (see “CLEAR
SUBCHANNEL” on page 14-4). The clear-
function indication is cleared at the subchannel
when the resulting status-pending condition is
cleared by TEST SUBCHANNEL.

Activity Control (AC)
The activity-control field is contained in bit posi-
tions 20-26 of the first word of the SCSW. This
field indicates the current progress of a basic I/O
function previously accepted at the subchannel.
By using the contents of this field, the program
can determine the degree of completion of the
basic I/O function. The activity-control field is
meaningful at an installed subchannel whenever
the subchannel is valid (see “Device Number Valid
(V)” on page 15-4). However, if an IFCC or CCC
condition is detected during the performance of a
basic I/O function and that function is indicated as
pending, I/O operations may or may not have
been executed at the device. The activity-control
bits are defined as follows:

Bit Designation
20 Resume-pending
21 Start-pending

22 Halt-pending
23 Clear-pending
24 Subchannel-active
25 Device-active
26 Suspended

When an SCSW is stored that has the status-
pending bit of the status-control field zero and all
zeros in the activity-control field, the subchannel is
said to be idle or in the idle state.

Note:  All conditions that are represented by the
bits in the function-control field and by the
resume-pending, start-pending, halt-pending,
clear-pending, subchannel-active, and suspended
bits in the activity-control field are reset at the sub-
channel when TEST SUBCHANNEL is executed
and the subchannel (1) is status-pending alone,
(2) is status-pending with primary status, (3) is
status-pending with alert status, or (4) is status-
pending with intermediate status and is also sus-
pended.

Resume-Pending (Bit 20):  When one, bit 20
indicates that the subchannel is resume-pending.
The channel subsystem may or may not be in the
process of performing the start function. The sub-
channel becomes resume-pending when condition
code 0 is set for RESUME SUBCHANNEL. The
point at which the subchannel is no longer
resume-pending is a function of the subchannel
state existing when the resume-pending condition
is recognized and the state of the device if
channel-program execution is resumed.

If the subchannel is in the suspended state when
the resume-pending condition is recognized, the
CCW that caused the suspension is refetched, the
setting of the suspend flag is examined, and one
of the following actions is taken by the channel
subsystem:

1. If the CCW suspend flag is one, the device is
not selected, the subchannel is no longer
resume-pending, and channel-program exe-
cution remains suspended.

2. If the CCW suspend flag is zero, the channel
subsystem attempts to resume channel-
program execution by performing a modified
start function. The resumption of channel-
program execution appears to the device as
the initiation of a new channel-program exe-
cution. The resume function causes the
channel subsystem to execute the path-
management operation as if a new start func-
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tion were being initiated, using the ORB
parameters previously passed to the sub-
channel by START SUBCHANNEL with the
exception that the channel-program address is
the address of the CCW that caused suspen-
sion of channel-program execution.

The subchannel remains resume-pending
when, during the performance of the start
function, the channel subsystem (1) deter-
mines that it is not possible to attempt to ini-
tiate the I/O operation for the first command,
(2) determines that an attempt to initiate the
I/O operation for the first command does not
result in the command being accepted, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the first
command has been accepted. (See “Start
Function and Resume Function” on
page 15-17.)

The subchannel is no longer resume-pending
when any of the following events occurs:

a. While performing the start function, the
subchannel becomes subchannel-and-
device-active or device-active only, or the
first command is accepted with
channel-end and device-end initial status
and the CCW does not specify command
chaining.

b. CLEAR SUBCHANNEL is executed.

c. TEST SUBCHANNEL clears any combina-
tion of primary, secondary, and alert
status or clears the status-pending condi-
tion alone.

d. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

If the subchannel is not in the suspended state
when the resume-pending condition is recognized,
the CCW suspend flag of the most recently
fetched CCW, if any, is examined and one of the
following actions is taken by the channel sub-
system:

1. If a CCW has not been fetched or the
suspend flag of the most recently fetched
CCW is zero, the subchannel is no longer
resume-pending, and the resume function is
not performed.

2. If the suspend flag of the most recently
fetched CCW is one, the subchannel is no
longer resume-pending, and the CCW is
refetched. The subchannel proceeds with

channel-program execution if the suspend flag
of the refetched CCW is zero. The sub-
channel suspends channel-program execution
if the suspend flag of the refetched CCW is
one.

Some models recognize a resume-pending condi-
tion only after a CCW having a valid S flag set to
one is fetched. Therefore, if a subchannel is
resume-pending and, during execution of the
channel program, no CCW is fetched that has a
valid S flag set to one, the subchannel remains
resume-pending until the primary interruption con-
dition is cleared by TEST SUBCHANNEL.

Start-Pending (Bit 21):  When one, bit 21 indi-
cates that the subchannel is start-pending. The
channel subsystem may or may not be in the
process of performing the start function. The sub-
channel becomes start-pending when condition
code 0 is set for START SUBCHANNEL. The
subchannel remains start-pending when, during
the performance of the start function, the channel
subsystem (1) determines that it is not possible to
attempt to initiate the I/O operation for the first
command, (2) determines that an attempt to ini-
tiate the I/O operation for the first command does
not result in the command being accepted, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the first command
has been accepted. (See “Start Function and
Resume Function” on page 15-17.)

The subchannel becomes no longer start-pending
when any of the following occurs:

1. While performing the start function, the sub-
channel becomes subchannel-and-device-
active or device-active only, or the first
command is accepted with channel-end and
device-end initial status and the CCW does
not specify command chaining.

2. The subchannel becomes suspended because
of a valid suspend flag in the first CCW.

3. CLEAR SUBCHANNEL is executed.

4. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

Halt-Pending (Bit 22):  When one, bit 22 indi-
cates that the subchannel is halt-pending. The
channel subsystem may or may not be in the
process of performing the halt function. The sub-
channel becomes halt-pending when condition
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code 0 is set for HALT SUBCHANNEL. The sub-
channel remains halt-pending when, during the
performance of the halt function, the channel sub-
system (1) determines that it is not possible to
attempt to issue the halt signal to the device,
(2) determines that the attempt to issue the halt
signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the halt signal is
issued to the device. (See “Halt Function” on
page 15-14.)

The subchannel is no longer halt-pending when
any of the following occurs:

1. While performing the halt function, the channel
subsystem determines that the halt signal has
been issued to the device.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

Clear-Pending (Bit 23):  When one, bit 23 indi-
cates that the subchannel is clear-pending. The
channel subsystem may or may not be in the
process of performing the clear function. The sub-
channel becomes clear-pending when condition
code 0 is set for CLEAR SUBCHANNEL. The
subchannel remains clear-pending when, during
performance of the clear function, the channel
subsystem (1) determines that it is not possible to
attempt to issue the clear signal to the device,
(2) determines that the attempt to issue the clear
signal to the device is not successful, or
(3) detects an IFCC or CCC condition and is
unable to determine whether the clear signal is
issued to the device. (See “Clear Function” on
page 15-13.)

The subchannel is no longer clear-pending when
either of the following occurs:

1. While performing the clear function, the
channel subsystem determines that the clear
signal has been issued to the device.

2. TEST SUBCHANNEL clears the status-
pending condition alone.

Subchannel-Active (Bit 24):  When one, bit 24
indicates that the subchannel is subchannel-
active. A subchannel is said to be subchannel-
active when an I/O operation is currently in
execution at the subchannel. The subchannel
becomes subchannel-active when the first
command is accepted for any of the following
initial-status combinations and the start function or
resume function is not immediately concluded at
the subchannel. (See “Immediate Conclusion of
I/O Operations” on page 15-38.)

 1. All zeros

2. Unit check, status modifier, and channel end
when used to indicate command retry
(delayed). (See “Command Retry” on
page 15-37.)

3. Unit check, status modifier, channel end, and
device end when used to indicate command
retry (immediate). (See “Command Retry” on
page 15-37.)

4. Channel end when the chain-command flag is
one in the CCW

5. Channel end and device end when the chain-
command flag is one in the CCW

6. Channel end, device end, and status modifier
when the chain-command flag is one in the
CCW

The subchannel is no longer subchannel-active
when any of the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status-pending with
primary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during
performance of a halt function.

The subchannel does not become subchannel-
active during performance of the function specified
by either a HALT SUBCHANNEL or a CLEAR
SUBCHANNEL instruction.

Device-Active (Bit 25):  When one, bit 25 indi-
cates that the subchannel is device-active. A sub-
channel is said to be device-active when an I/O
operation is currently in progress at the associated
device. The subchannel becomes device-active
when the first command is accepted for:

1. One of the combinations of initial status listed
above in “Subchannel-Active (Bit 24).”
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2. Initial status of channel end with neither busy
nor device end, and command chaining is not
specified in the CCW. (See “Immediate Con-
clusion of I/O Operations” on page 15-38.)

The subchannel is no longer device-active when
any of the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status-pending with
secondary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during
performance of a halt function.

If the subchannel is not start-pending or if the
status accepted from the device also describes an
alert condition, the subchannel becomes status-
pending with secondary status. After the status
has been accepted from the device, the device is
capable of accepting a command for executing a
new I/O operation. If the subchannel is start-
pending and the status is device end or device
end with control-unit end, then the channel sub-
system discards the status and performs the start
function for the new channel program. (See “Start
Function and Resume Function” on page 15-17)
In this situation, the subchannel does not become
status-pending with the secondary interruption
condition, and the status is not made available to
the program.

The subchannel does not become device-active
during performance of the functions specified by
either a HALT SUBCHANNEL or a CLEAR SUB-
CHANNEL instruction.

Suspended (Bit 26):  When one, bit 26 indicates
that the subchannel is suspended. A subchannel
is said to be suspended when channel-program
execution is currently suspended. The sub-
channel becomes suspended as part of the
suspend function. (See “Suspension of Channel-
Program Execution” on page 15-34.)

The subchannel is no longer suspended when any
of the following occurs:

1. As part of the resume function following the
execution of RESUME SUBCHANNEL when
the subchannel becomes subchannel-and-
device-active or device-active only, or the first
command is accepted for channel-end and
device-end initial status, with or without status

modifier, and the CCW does not specify
command chaining.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate
status while the halt function is specified.

Programming Note:  When an SCSW is stored
by STORE SUBCHANNEL or TEST SUB-
CHANNEL following CLEAR SUBCHANNEL but
prior to the subchannel becoming status-pending,
and the subchannel-active bit (bit 24 of word 0) is
stored as zero, this does not mean that data
transfer has stopped for the device. The program
cannot determine whether data transfer has
stopped until the subchannel becomes status-
pending as a result of performing the clear func-
tion.

Status Control (SC)
The status-control field is contained in bit positions
27-31 of the first word of the SCSW. This field
provides the program with a summary-level indi-
cation of the interruption condition described by
either subchannel or device status, the Z bit, or, in
the case of the subchannel-suspended inter-
ruption, the suspended bit (bit 26). More than one
summary indication may be signaled as a result of
existing conditions at the subchannel. Whenever
the subchannel is enabled (see “Enabled (E)” on
page 15-2) and at least bit 31 is one, the sub-
channel is said to be status-pending. Whenever
the subchannel is disabled, the subchannel is not
made status-pending. Bit 31 of SCSW word 0 is
meaningful at an installed subchannel whenever
the subchannel is valid (see “Device Number Valid
(V)” on page 15-4); bits 27-30 are meaningful
when bit 31 is one. The status-control bits are
defined as follows:

Alert Status (Bit 27):  When one (and when the
status-pending bit is also one), bit 27 indicates an
alert interruption condition exists. In such a case,
the subchannel is said to be status-pending with
alert status. An alert interruption condition is
recognized when alert status is present at the sub-
channel. Alert status may be subchannel status
or device status. Alert status is status generated
by either the channel subsystem or the device
under any of the following conditions:
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� The subchannel is idle (activity-control bits
20-26 and status-control bit 31 are zeros).

� The subchannel is start-pending, and the
status condition precludes initiation of the I/O
operation.

� The subchannel is subchannel-and-device-
active, and the status condition has sup-
pressed command chaining or would have
suppressed command chaining if chaining had
been specified (see “Chaining” on
page 15-27).

� The subchannel is subchannel-and-device-
active, command chaining is not specified,
execution of the channel program has just
been concluded, and the status presented by
the device is attempting to alter the sequential
execution of commands (see the publication
ESA/390 Common I/O-Device Commands,
SA22-7204, for more information on the use of
status modifier to alter the sequential exe-
cution of commands).

� The subchannel is device-active only, and the
status presented by the device is other than
device end, control-unit end, or device end
and control-unit end.

� The subchannel is suspended (bit 26 is one).

If the subchannel is start-pending when an alert
interruption condition is recognized, the sub-
channel becomes status-pending with alert status,
deferred condition code 1 is set, the start-pending
bit remains one, and execution of the pending I/O
operation is not initiated.

When TEST SUBCHANNEL is executed and
stores an SCSW with the alert-status bit and the
status-pending bit as ones in the IRB, the alert
interruption condition is cleared at the subchannel.
The alert interruption condition is also cleared
during execution of CLEAR SUBCHANNEL.

Whenever alert status is present at the sub-
channel, it is brought to the attention of the
program. Examples of alert status include atten-
tion, device end (which signals a transition from
the not-ready to the ready state), incorrect length,
program check, and unit check.

Intermediate Status (Bit 28):  When one (and
when the status-pending bit is also one), bit 28
indicates an intermediate interruption condition
exists. In such a case, the subchannel is said to

be status-pending with intermediate status. Inter-
mediate status can be indicated when the Z bit (of
the subchannel-control field), the suspended bit (of
the activity-control field), or the PCI bit (of the
subchannel-status field) is one.

When the initial-status-interruption-control bit is
one in the ORB, the subchannel becomes status-
pending with intermediate status (the Z bit indi-
cated) only after initial status is received for the
first CCW of the channel program and the sub-
channel is subchannel-active. If the subchannel
does not become subchannel-active, the Z condi-
tion is not generated.

When suspend control is specified and the gener-
ation of an intermediate interruption condition due
to suspension is not suppressed in the ORB, then
the subchannel can become status-pending with
intermediate status due to suspension if a CCW
becomes current that contains the suspend flag
set to one. When the suspend flag is specified in
the first CCW of a channel program, channel-
program execution is suspended and the sub-
channel becomes status-pending with intermediate
status (the suspended bit indicated) before the
command in the first CCW is transferred to the
device. When the suspend flag is specified in a
CCW fetched during command chaining, channel-
program execution is suspended and the sub-
channel becomes status-pending with intermediate
status (the suspended bit indicated) only after exe-
cution of the preceding CCW is complete.

When the PCI flag is specified in a CCW, the gen-
eration of an intermediate interruption condition
due to PCI depends on whether the CCW is the
first CCW of the channel program. When the PCI
flag is specified in the first CCW of a channel
program, the subchannel becomes status-pending
with intermediate status (the PCI bit indicated)
only after initial status is received for the first
CCW of the channel program indicating the
command has been accepted. When the PCI flag
is specified in a CCW fetched while chaining, the
subchannel becomes status-pending with interme-
diate status (the PCI bit indicated) only after exe-
cution of the preceding CCW is complete. If
chaining occurs before an interruption condition
containing PCI is cleared by TEST SUB-
CHANNEL, the condition is carried over to the
next CCW. This carryover occurs during both
data and command chaining, and, in either case,
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the condition is propagated through the transfer-in-
channel command.

If the subchannel is status-pending with interme-
diate status when HALT SUBCHANNEL is exe-
cuted, the intermediate interruption condition
remains at the subchannel, but the interruption
request, if any, is withdrawn, and the subchannel
becomes no longer status-pending. The sub-
channel remains no longer status-pending until
performance of the halt function has ended. The
subchannel then becomes status-pending with
intermediate status indicated (possibly together
with any combination of primary, secondary, and
alert status).

When TEST SUBCHANNEL is executed and
stores an SCSW with the intermediate-status bit
and the status-pending bit as ones in the IRB, the
intermediate interruption condition is cleared at the
subchannel. The intermediate interruption condi-
tion is also cleared at the subchannel during the
execution of CLEAR SUBCHANNEL.

Primary Status (Bit 29):  When one (and when
the status-pending bit is also one), bit 29 indicates
a primary interruption condition exists. In such a
case, the subchannel is said to be status-pending
with primary status. A primary interruption condi-
tion is a solicited interruption condition that indi-
cates the completion of the start function at the
subchannel. The primary interruption condition is
described by the SCSW stored. When an I/O
operation is terminated by HALT SUBCHANNEL
but the halt signal is not issued to the device
because the device appeared not operational, the
subchannel is made status-pending with primary
status (and secondary status) with both the
subchannel-status field and the device-status field
set to zero.

When TEST SUBCHANNEL is executed and
stores an SCSW with the primary-status bit and
the status-pending bit as ones in the IRB, the
primary interruption condition is cleared at the
subchannel. The primary interruption condition is
also cleared at the subchannel during the exe-
cution of CLEAR SUBCHANNEL.

Secondary Status (Bit 30):  When one (and
when the status-pending bit is also one), bit 30
indicates a secondary interruption condition exists.
In such a case, the subchannel is said to be
status-pending with secondary status. A sec-

ondary interruption condition is a solicited inter-
ruption condition that normally indicates the
completion of the I/O operation at the device. The
secondary interruption condition is described by
the SCSW stored.

When an I/O operation is terminated by HALT
SUBCHANNEL but the halt signal is not issued to
the device because the device appeared not oper-
ational, the subchannel is made status-pending
with secondary status (and primary status if the
subchannel is also subchannel-active) with zeros
for subchannel and device status.

When TEST SUBCHANNEL is executed and
stores an SCSW with the secondary-status bit as
one in the IRB, the secondary interruption condi-
tion is cleared at the subchannel. The secondary
interruption condition is also cleared at the sub-
channel during execution of CLEAR SUB-
CHANNEL.

Status-Pending (Bit 31):   When one, bit 31 indi-
cates that the subchannel is status-pending and
that information describing the cause of the inter-
ruption condition is available to the program. The
subchannel becomes status-pending whenever
intermediate, primary, secondary, or alert status is
generated. When HALT SUBCHANNEL is exe-
cuted, designating a subchannel that is idle, the
subchannel becomes status-pending subsequent
to performance of the halt function to notify the
program that the halt function has been com-
pleted. When TEST SUBCHANNEL is executed,
thus storing an SCSW with the status-pending bit
as one in the IRB, the status-pending condition is
cleared at the subchannel. The status-pending
condition is also cleared at the subchannel during
the execution of CLEAR SUBCHANNEL. When
CLEAR SUBCHANNEL is executed, and the des-
ignated subchannel is operational, the subchannel
becomes status-pending subsequent to perform-
ance of the clear function to notify the program
that the clear function has been completed.

Note:  The status-pending bit, in conjunction with
the remaining bits of the status-control field, indi-
cates the type of status condition. For example, if
bits 29 and 31 are ones, the subchannel is status-
pending with primary status. Alternatively, if only
bit 31 is one, then the subchannel is said to be
status-pending or status-pending alone. If only bit
31 is one in the status-control field, the settings of
all bits in the subchannel- and device-status fields
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are unpredictable. If bit 31 is not one, then the
remaining bits of the status-control field are not
meaningful.

 CCW-Address Field
Bits 1-31 of word 1 form an absolute address.
The address indicated is a function of the sub-
channel state when the SCSW is stored, as indi-
cated in Figure 16-4 on page 16-20. When the
subchannel-status field indicates channel-control
check, channel-data check, or interface-control
check, the CCW-address field is usable for
recovery purposes if the CCW-address field-
validity flag in the ESW is one.

Programming Note:  When a CCW address,
either detected in the channel-program address
(see “Channel-Program Address” on page 15-23)
or generated during chaining, would cause the
channel subsystem to fetch a CCW from a
location greater than 16,777,215 while format-0
CCWs are specified for the operation, the invalid
address is stored in the CCW-address field of the
SCSW without truncation. If the invalid address
causes the channel subsystem, while chaining, to
fetch a CCW from a location greater than
2,147,483,647 while in 31-bit addressing mode,
the rightmost 31 bits of the invalid address are
stored in the CCW-address field.
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┌──────────────────────────────────────────────┬──────────────────────────────────────┐

│ Subchannel Stateñ │ CCW Addressò │

├──────────────────────────────────────────────┼──────────────────────────────────────┤

│Start-pending (UUUUð/AIPSX)ó │ Unpredictable │

│ │ │

│Start-pending and device-active (UUUUð/AIPSX)ó│ Unpredictable │

│ │ │

│Subchannel-and-device-active (UUUUð/AIPSX)ó │ Unpredictable │

│ │ │

│Device-active only (UUUUð/AIPSX) │ Unpredictable │

│ │ │

│Suspended (YYYYY/AIPSX)ó │ See note 1 │

│ │ │

│Status-pending (1ððð1/AIPSX) because of │ Channel-program address + 8 │

│unsolicited alert status from the device while│ │

│the subchannel was start-pendingó │ │

│ │ │

│Status-pending (ðY111/AIPSX) because the │ Channel-program address + 8 │

│device appeared not operational on all pathsó │ │

│ │ │

│Status-pending (1ðð11/AIPSX) because of │ Channel-program address + 8 │

│solicited alert status from the device while │ │

│the subchannel was start─pending and device─ │ │

│activeó │ │

│ │ │

│Status-pending (1ð111/AIPSX) because of │ See note 2 │

│solicited alert status generated by the │ │

│channel subsystem while the subchannel was │ │

│start-pendingó or start-pending and device─ │ │

│activeó │ │

│ │ │

│Status-pending (ð1ðð1/AIPSX) for the program─│ CCW + 8 of the CCW that contained the│

│controlled─interruption condition while the │ last recognized PCI, or 8 higher than│

│subchannel was subchannel-and-device activeó │ a CCW which has subsequently become │

│ │ current │

│ │ │

│Status-pending (ð1ðð1/AIPSX) for the initial─ │ CCW + 8 of the CCW causing the │

│status─interruption condition while the │ intermediate interruption condition, │

│subchannel was subchannel─and─device activeó │ or a CCW which has subsequently │

│ │ become current │

│ │ │

│Status-pending (1Y1Y1/AIPSX); termination │ │

│occurred because of program check caused by │ │

│one of the following conditions:ó │ │

│ │ │

│ Bit 24, word 1 of ORB set to one; │ Channel-program address + 8 │

│ incorrect─length─indication─suppression │ │

│ facility not installed │ │

│ │ │

│ Unused bits in ORB not set to zeros │ Channel-program address + 8 │

│ │ │

│ Invalid CCW-address specification in │ Address of TIC + 8 │

│ transfer in channel (TIC) │ │

│ │ │

│ Invalid CCW-address specification in the │ Channel-program address + 8ô │

│ channel-program address in the ORB │ │

└──────────────────────────────────────────────┴──────────────────────────────────────┘

Figure 16-4 (Part 1 of 4). CCW Address as Function of Subchannel State
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┌──────────────────────────────────────────────┬──────────────────────────────────────┐

│ Subchannel Stateñ │ CCW Addressò │

├──────────────────────────────────────────────┼──────────────────────────────────────┤

│ Invalid CCW address in TIC │ Address of TIC + 8 │

│ │ │

│ Invalid CCW address in the channel-program │ Channel-program address + 8ô │

│ address in the ORB │ │

│ │ │

│ Invalid CCW address while chaining │ Invalid CCW address + 8 │

│ │ │

│ Invalid command code │ Address of invalid CCW + 8õ │

│ │ │

│ Invalid count │ Address of invalid CCW + 8õ │

│ │ │

│ Invalid IDAW-address specification │ Address of invalid CCW + 8õ │

│ │ │

│ Invalid IDAW address in a CCW │ Address of invalid CCW + 8õ │

│ │ │

│ Invalid IDAW address while sequentially │ Address of current CCW + 8 │

│ fetching IDAWs │ │

│ │ │

│ Invalid data-address specification, │ Address of invalid CCW + 8õ │

│ format 1 │ │

│ │ │

│ Invalid data address in a CCW │ Address of invalid CCW + 8õ │

│ │ │

│ Invalid data address while sequentially │ Address of current CCW + 8 │

│ accessing storage │ │

│ │ │

│ Invalid data address in IDAW │ Address of current CCW + 8 │

│ │ │

│ Invalid IDAW specification │ Address of current CCW + 8 │

│ │ │

│ Invalid CCW, format ð or 1, for a CCW other│ Address of invalid CCW + 8õ │

│ than a TIC │ │

│ │ │

│ Invalid suspend flag — CCW fetched during │ Address of invalid CCW + 8 │

│ data chaining has suspend flag set to one │ │

│ │ │

│ Invalid suspend flag — CCW has suspend │ Address of invalid CCW + 8 │

│ flag set to one, but suspend control was │ │

│ not specified in the ORB │ │

│ │ │

│ Invalid CCW, format 1, for a TIC │ Address of TIC + 8 │

│ │ │

│ Invalid sequence — two TICs │ Address of second TIC + 8 │

│ │ │

│ Invalid sequence — 256 or more CCWs │ Address of 256th CCW + 8 │

│ without data transfer │ │

│ │ │

│Status-pending (1Y1Y1/AIPSX); termination │ │

│occurred because of protection check detected │ │

│as follows:ó │ │

│ │ │

│ On a CCW access │ Address of the protected CCW + 8õ │

│ │ │

│ On data or an IDAW access │ Address of current CCW + 8 │

└──────────────────────────────────────────────┴──────────────────────────────────────┘

Figure 16-4 (Part 2 of 4). CCW Address as Function of Subchannel State
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┌──────────────────────────────────────────────┬──────────────────────────────────────┐

│ Subchannel Stateñ │ CCW Addressò │

├──────────────────────────────────────────────┼──────────────────────────────────────┤

│Status-pending (1Y1Y1/AIPSX); termination │ Address of current CCW + 8 │

│occurred because of chaining checkó │ │

│ │ │

│Status-pending (YY1Y1/AIPSX); termination │ Address of current CCW + 8ö │

│occurred under count controló │ │

│ │ │

│Status-pending (1Y1Y1/AIPSX); operation │ Address of current CCW + 8ö │

│prematurely terminated by the device because │ │

│of alert statusó │ │

│ │ │

│Status-pending (YYYY1/AIPSX) after termination│ │

│by HALT SUBCHANNEL and the activity-control- │ │

│field bits indicated below set to ones: │ │

│ │ │

│ Status-pending alone │ Unpredictable │

│ │ │

│ Start-pendingó │ Unpredictable │

│ │ │

│ Device-active and start-pendingó │ Unpredictable │

│ │ │

│ Device-active │ Unpredictable │

│ │ │

│ Subchannel-active and device-activeó │ CCW + 8 of the last executed CCW │

│ │ │

│ Suspended │ CCW + 8 of CCW causing suspension │

│ │ │

│ Suspended and resume-pending │ Unpredictable │

│ │ │

│Status-pending (ðððð1/AIPSX) after termination│ Unpredictable │

│by CLEAR SUBCHANNEL │ │

│ │ │

│Status-pending (YY1Y1/AIPSX); operation │ CCW + 8 of the last executed CCWö │

│completed normally at the subchanneló │ │

│ │ │

│Status-pending (ððð11/AIPSX) │ Unpredictable │

│ │ │

│Status-pending (1ððð1/AIPSX) │ Unpredictable │

│ │ │

│Status-pending (ðððð1/AIPSX) │ Unpredictable │

│ │ │

│Status-pending (1Y111/AIPSX); command chaining│ Address of current CCW + 8ö │

│suppressed because of alert status other than │ │

│channel-control check or interface-control │ │

│checkó │ │

│ │ │

│Status-pending (1YYY1/AIPSX) because of alert │ See note 3ö │

│status for channel-control check or │ │

│interface-control checkó │ │

│ │ │

│Status-pending (1Y1Y1/AIPSX) because of │ Address of current CCW + 8ö │

│channel-data checkó │ │

└──────────────────────────────────────────────┴──────────────────────────────────────┘

Figure 16-4 (Part 3 of 4). CCW Address as Function of Subchannel State
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┌─────────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ ñ The meaning of the notation used in this column is as follows: │

│ A Alert status │

│ I Intermediate status │

│ P Primary status │

│ S Secondary status │

│ X Status-pending │

│ The possible combination of status-control-bit settings is shown to the left of│

│ the “/” symbol by the use of these symbols: │

│ │

│ ð Corresponding condition is not indicated. │

│ 1 Corresponding condition is indicated. │

│ U Unpredictable. The corresponding condition is not meaningful when the │

│ subchannel is not status-pending. │

│ Y The corresponding condition is not significant and is indicated as a │

│ function of the subchannel state. │

│ │

│ ò A CCW becomes current when (1) it is the first CCW of a channel program and │

│ has been fetched, (2) while command chaining, the previous CCW is no longer │

│ current and the new CCW has been fetched, or (3) in the case of data chaining, │

│ the new CCW takes over control of the I/O operation (see the section “Data │

│ Chaining” in Chapter 15, “Basic I/O Functions”). If chaining is not specified │

│ or is suppressed, a CCW is no longer current and becomes the last-executed CCW │

│ when secondary status has been accepted by the channel subsystem. During │

│ command chaining, a CCW is no longer current when device-end status has been │

│ accepted or, in the case of data chaining, when the last byte of data for that │

│ CCW has been accepted. │

│ │

│ ó The subchannel may also be resume-pending. │

│ │

│ ô The stored address is the channel-program address (in the ORB) + 8 even though │

│ it is either invalid or protected. │

│ │

│ õ The stored address is the address of the current CCW + 8 even though it is │

│ either invalid or protected. │

│ │

│ ö Incorrect length is indicated as a function of the setting of the │

│ suppress-length-indication flag in the current CCW (see the section │

│ “Channel-Command Word” in Chapter 15, “Basic I/O Functions”). │

│ │

│Notes: │

│ │

│ 1. Unless the subchannel is also resume-pending, the address stored is the address│

│ of the CCW that caused suspension, plus 8. Otherwise, the address stored is │

│ unpredictable. │

│ 2. The address of the CCW is given as a function of the alert status indicated. │

│ For example, if a program-check or protection-check condition is recognized, │

│ the CCW address stored is the same as for the entry for program check or │

│ protection check, respectively, in this table. Alternatively, if alert status │

│ for interface-control check or channel-control check is indicated, the CCW │

│ address stored is either the channel-program address (in the ORB) + 8 or │

│ invalid as specified by the field-validity flags in the subchannel logout. │

│ 3. Bit 21 of the subchannel-logout information, when stored as one, indicates that│

│ the address is CCW + 8 of the last-fetched CCW if the command for the CCW has │

│ not been accepted by the device. If the command has been accepted by the │

│ device at the time the error condition is recognized, then the address stored │

│ is the address of the CCW + 8 of the last executed CCW. │

└─────────────────────────────────────────────────────────────────────────────────────┘

Figure 16-4 (Part 4 of 4). CCW Address as Function of Subchannel State
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 Device-Status Field
Device-status conditions are generated by the I/O
device and are presented to the channel sub-
system over the channel path. The timing and
causes of these conditions for each type of device
are specified in the System Library publication for
the device. The device-status field is meaningful
whenever the subchannel is status-pending with
any combination of primary, secondary, interme-
diate, or alert status. Whenever the subchannel is
status-pending with intermediate status alone, the
device-status field is zero. When the subchannel-
status field indicates channel-control check,
channel-data check, or interface-control check, the
device-status field is usable for recovery purposes
if the device-status field-validity flag in the ESW is
one. When the subchannel is status-pending with
deferred-condition code 3 indicated, the contents
of the device-status field are not meaningful.

If, within a system, the I/O device is accessible
from more than one channel path, status related
to channel-subsystem-initiated operations in
single-path mode (solicited status) is signaled over
the initiating channel path. Devices operating in
multipath mode may signal solicited status over
any channel path that belongs to the same path
group as the initiating channel path. The handling
of conditions not associated with I/O operations
(unsolicited alert status), such as attention, unit
exception, and device end due to transition from
the not-ready to the ready state, depends on the
type of device and condition and is specified in the
System Library publication for the device.

The channel subsystem does not modify the
status bits received from the I/O device. These
bits appear in the SCSW as received over the
channel path. For more information on the status
bits received from the I/O device, see the publica-
tion ESA/390 Common I/O-Device Commands,
SA22-7204.

 Subchannel-Status Field
Subchannel-status conditions are detected and
indicated in the SCSW by the channel sub-
system. Except for the conditions caused by
equipment malfunctioning, they can occur only
while the channel subsystem is involved with the
performance of a halt, resume, or start function.
The subchannel-status field is meaningful when-
ever the subchannel is status-pending with any

combination of primary, secondary, intermediate,
or alert status. Individual bits contained in the
subchannel-status field may be unpredictable even
when the subchannel-status field is meaningful.
When the subchannel is status-pending with
deferred condition code 3 indicated, the contents
of the subchannel-status field are not meaningful.

 Program-Controlled Interruption
An intermediate interruption condition is generated
after a CCW with the program-controlled-
interruption (PCI) flag set to one becomes the
current CCW. The I/O interruption due to the PCI
flag may be delayed an unpredictable amount of
time because of masking of the interruption
request or other activity in the system. (See
“Program-Controlled Interruption” on page 15-31.)
When the channel subsystem recognizes an alert
interruption condition due to either a channel-
control-check condition or an interface-control-
check condition, then any previously existing
intermediate interruption condition caused by a
PCI flag in a CCW may or may not be recognized
by the channel subsystem.

Detection of the PCI condition does not affect the
progress of the I/O operation.

 Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the
I/O operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following
reasons:

Long Block on Input:  During a read, read-
backward, or sense operation, the device
attempted to transfer one or more bytes to main
storage after the assigned main-storage areas
were filled, or the device indicated that more data
could have been transferred if the count had been
larger. The extra bytes have not been placed in
main storage. The count in the SCSW is zero.

Long Block on Output:  During a write or control
operation, the device requested one or more bytes
from the channel subsystem after the assigned
main-storage areas were exhausted, or the device
indicated that more data could have been trans-
ferred if the count had been larger. The count in
the SCSW is zero.
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Short Block on Input:  The number of bytes
transferred during a read, read-backward, or
sense operation is insufficient to fill the main-
storage areas assigned to the operation. The
count in the SCSW is not zero.

Short Block on Output:  The device terminated
a write or control operation before all information
contained in the assigned main-storage areas was
transferred to the device. The count in the SCSW
is not zero.

The incorrect-length indication is suppressed when
the current CCW has the SLI flag set to one and
the CD flag set to zero. The indication does not
occur for operations rejected during the initiation
sequence. The indication also does not occur for
immediate operations when the count field is
nonzero and the subchannel is in the incorrect-
length-suppression mode. The incorrect-length
indication is not meaningful when the count field of
the SCSW is not meaningful.

Presence of the incorrect-length condition sup-
presses command chaining unless the SLI flag in
the CCW is one or unless the condition occurs in
an immediate operation when the subchannel is in
the incorrect-length-suppression mode.

 Program Check
Program check occurs when programming errors
are detected by the channel subsystem. The con-
dition can be due to the following causes:

 Invalid CCW-Address Specification: The
channel-program address (CPA) or the transfer-in-
channel command does not designate the CCW
on a doubleword boundary, or bit 0 of the CPA or
bit 32 of a format-1 CCW specifying the transfer-
in-channel command is not zero.

Invalid CCW Address:  The channel subsystem
has attempted to fetch a CCW from a main-
storage location which is not available. An invalid
CCW address can occur because the program
has designated an invalid address in the channel-
program-address field of the ORB or in the
transfer-in-channel command or because, on
chaining, the channel subsystem attempts to fetch
a CCW from an unavailable location. A main-
storage location is unavailable either because the
absolute address does not correspond to a phys-
ical location or because a format-0 CCW has been

specified in the ORB and the absolute address
designates a location greater than 16,777,215.

Invalid Command Code:  There are zeros in the
four rightmost bit positions of the command code
in the CCW designated by the CPA or in a CCW
fetched on command chaining. The command
code is not tested for validity during data chaining.

Invalid Count, Format 0:  A CCW, which is other
than a CCW specifying transfer in channel, con-
tains zeros in bit positions 48-63.

Invalid Count, Format 1:  A CCW that specifies
data chaining or a CCW fetched while data
chaining contains zeros in bit positions 16-31.

Invalid IDAW-Address Specification:  Indirect
data addressing is specified, and the contents of
the data-address field in the CCW do not desig-
nate the first IDAW on an integral word boundary;
that is, bits 30-31 (format 0) or bits 62-63 (format
1) are not zeros.

Invalid IDAW Address:  The channel subsystem
has attempted to fetch an IDAW from a main-
storage location which is not available. An invalid
IDAW address can occur because the program
has designated an invalid address in a CCW that
specifies indirect data addressing or because the
channel subsystem, on sequentially fetching
IDAWs, attempts to fetch from an unavailable
location. A main-storage location is unavailable
either because the absolute address does not cor-
respond to a physical location or because a
format-0 CCW has been specified in the ORB and
the absolute address designates a location greater
than 16,777,215.

Invalid Data-Address Specification:  Bit 32 of a
format-1 CCW is not zero.

Invalid Data Address:  When one of the fol-
lowing conditions is detected, an invalid data
address is recognized by the channel subsystem.

1. Use of the data address has caused the
channel subsystem to attempt to wrap from
the maximum storage address to zero.

2. Use of the data address has caused the
channel subsystem to attempt to wrap from
zero to the maximum storage address during
a read-backward operation.
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3. The channel subsystem has attempted to
transfer data to or from a storage location
which is either not available or is outside the
addressing range specified by SET ADDRESS
LIMIT and the limit mode at the subchannel.

An invalid data address can occur because the
program has designated an invalid address in the
CCW or in an IDAW, or because an address-limit
violation is detected when the address exceeds
the boundary address specified by SET
ADDRESS LIMIT, or because the channel sub-
system, on sequentially accessing storage,
attempted to access an unavailable location. A
main-storage location is unavailable either
because the absolute address does not corre-
spond to a physical location or because a format-0
CCW has been specified in the ORB, indirect data
addressing has not been specified, and the abso-
lute address designates a location greater than
16,777,215.

Note:  The maximum storage address is deter-
mined as a function of whether 24-bit or 31-bit
addressing is used. If format-0 CCWs are speci-
fied in the ORB, the maximum storage address
recognized by the channel subsystem is
16,777,215 unless indirect data addressing is
specified. Otherwise, the maximum storage
address is 2,147,483,647. If format-1 CCWs are
specified in the ORB, the maximum storage
address recognized by the channel subsystem is
2,147,483,647.

Invalid IDAW Specification:  Bit 0 of the IDAW
is not zero, or the second or a subsequent IDAW
does not designate the location of the beginning
or, for read-backward operations, the location of
the ending byte of a 2K-byte block.

Invalid CCW, Format 0:  A CCW other than a
CCW specifying transfer in channel does not
contain a zero in bit position 39.

Invalid CCW, Format 1:  A CCW other than a
CCW specifying transfer in channel does not
contain a zero in bit position 15, or a CCW speci-
fying transfer in channel does not contain zeros in
bit positions 0-3 and 8-31.

Invalid Suspend Flag:  A format-0 or format-1
CCW fetched during data chaining, other than a
CCW specifying transfer in channel, does not
contain a zero in bit position 38 or 14, respec-
tively. A CCW other than a CCW specifying

transfer in channel does not contain a zero in bit
position 38 for a format-0 CCW or bit position 14
for a format-1 CCW, and suspend control was not
specified in the ORB (bit 4 of word 1).

Invalid ORB Format:  Word 1 of the ORB does
not contain zeros in bit positions 5-7, 13-15, and
25-31. If the incorrect-length-indication-
suppression facility is not installed, then bit 24 of
word 1 of the ORB must also be zero.

Invalid Sequence:  The channel subsystem has
fetched two successive CCWs both of which
specify transfer in channel, or, depending on the
model, a sequence of 256 or more CCWs with
command chaining specified was executed by the
channel subsystem and did not result in the
transfer of any data to or from an I/O device.

Detection of the program-check condition during
the initiation of an operation at the device causes
the operation to be suppressed and the sub-
channel to be made status-pending with primary,
secondary, and alert status. When the condition
is detected after the I/O operation has been initi-
ated at the device, the device is signaled to con-
clude the operation the next time the device
requests or offers a byte of data or status. In this
situation, the subchannel is made status-pending
as a function of the status received from the
device. The program-check condition causes
command chaining and command retry to be sup-
pressed.

 Protection Check
Protection check occurs when the channel sub-
system attempts a storage access that is prohib-
ited by the protection mechanism. Protection
applies to the fetching of CCWs, IDAWs, and
output data, and to the storing of input data. The
subchannel key provided in the ORB is used as
the access key for storage accesses associated
with an I/O operation.

Detection of the protection-check condition during
the fetching of the first CCW or IDAW causes the
operation to be suppressed and the subchannel to
be made status-pending with primary, secondary,
and alert status. When protection check is
detected after the I/O operation has been initiated
at the device, the device is signaled to conclude
the operation after the available data logically prior
to the protection check has been transferred.
However, if an access violation occurs when the
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channel subsystem is in the process of fetching
either a new IDAW or a new CCW while data
chaining and if the device signals the channel-end
condition before transferring any data designated
by the new CCW or IDAW, then the status is
accepted, and the subchannel becomes status-
pending with primary and alert status and with
protection check indicated. Other indications may
accompany the protection-check indication as a
function of the operation specified by the CCW,
the status received from the device, and the
current state of the subchannel. The protection-
check condition causes command chaining and
command retry to be suppressed.

 Channel-Data Check
Channel-data check indicates that an uncorrected
storage error has been detected in regard to data,
contained in main storage, that is currently used in
the execution of an I/O operation. The condition
may be indicated when detected, even if the data
is not used when prefetched. Channel-data check
is indicated when data or the associated key has
an invalid checking-block code (CBC) in main
storage when that data is referenced by the
channel subsystem.

On an input operation, when the channel sub-
system attempts to store less than a complete
checking block, and invalid CBC is detected on
the checking block in storage, the contents of the
location remain unchanged, with invalid CBC. On
an output operation, whenever channel-data check
is indicated, no bytes from the checking block with
invalid CBC are transferred to the device.

During a storage access, the maximum number of
bytes that can be transferred is model-dependent.
If a channel-data-check condition is recognized
during that storage access, the number of bytes
transferred to or from storage may not be detect-
able by the channel subsystem. Consequently,
the number of bytes transferred to or from storage
may not be correctly reflected by the residual
count. However, the residual count that is stored
in the SCSW, when used in conjunction with the
storage-access code and the CCW address, des-
ignates a byte location within the page in which
the channel-data-check condition was recognized.

A condition indicated as channel-data check
causes the current operation, if any, to be termi-
nated. The subchannel becomes status-pending
with primary and alert status or with primary, sec-

ondary, and alert status as a function of the status
received from the device. The count and address
fields of the SCSW stored by TEST SUB-
CHANNEL pertain to the operation terminated.
The extended-status-word-format bit is one, and
subchannel-logout information is stored in the
ESW when TEST SUBCHANNEL is executed.

Whenever the channel-data-check condition per-
tains to prefetched data, the failing-storage-
address-validity flag (bit 6 of the ERW) is one. An
absolute address of a location within the checking
block for which the channel-data-check condition
is generated is stored in the failing-storage-
address field in word 2 of the ESW.

Uncorrectable storage or key errors detected on
prefetched data while the subchannel is start-
pending cause the operation to be canceled
before initiation at the device. In this case, the
subchannel is made status-pending with primary,
secondary, and alert status, with channel-data
check indicated, and with the failing-storage
address stored in word 2 of the ESW.

Whenever channel-data check is indicated, no
measurement data for the subchannel is stored.

 Channel-Control Check
Channel-control check is caused by any machine
malfunction affecting channel-subsystem controls.
The condition includes invalid CBC on a CCW, an
IDAW, or the respective associated key. The con-
dition may be indicated when an invalid CBC is
detected on a prefetched CCW, IDAW, or the
respective associated key, even if that CCW or
IDAW is not used.

Channel-control check may also indicate that an
error has been detected in the information trans-
ferred to or from main storage during an I/O oper-
ation. However, when this condition is detected,
the error has occurred inboard of the channel
path: in the channel subsystem or in the path
between the channel subsystem and main
storage.

Detection of the channel-control-check condition
causes the current operation, if any, to be termi-
nated immediately. The subchannel is made
status-pending with primary and alert status or
with primary, secondary, and alert status as a
function of the type of termination, the current sub-
channel state, and the device status presented, if
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any. When the channel subsystem recognizes a
channel-control-check condition, any previously
existing intermediate interruption condition caused
by a PCI flag in a CCW may or may not be recog-
nized by the channel subsystem. The count and
data-address fields of the SCSW stored by TEST
SUBCHANNEL pertain to the operation termi-
nated. The extended-status-word-format bit is one
and subchannel-logout information is stored in the
ESW when TEST SUBCHANNEL is executed.

Whenever the channel-control-check condition
pertains to an invalid CBC detected on a pre-
fetched CCW, a prefetched IDAW, or the key
associated with the prefetched CCW or the pre-
fetched IDAW, an extended-report word containing
bit 6 set to one and the failing-storage address is
stored in the ESW when TEST SUBCHANNEL is
executed.

Channel-control-check conditions encountered
while prefetching when the subchannel is start-
pending cause the operation to be canceled
before initiation at the device. In this case, the
subchannel is made status-pending with primary,
secondary, and alert status, with channel-control
check indicated, and with the failing-storage
address stored in the extended-status word.

If a subchannel is halt-pending and the channel
subsystem encounters a channel-control-check
condition while performing the halt function for that
subchannel, the subchannel remains halt-pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel
remains halt-pending even if the channel sub-
system was attempting to issue the halt signal and
is unable to determine if the halt signal was
issued.

If a subchannel is start-pending or resume-
pending and the channel subsystem encounters a
channel-control-check condition while performing
the start function for that subchannel, the sub-
channel remains start-pending or resume-pending
unless the channel subsystem can determine that
the first command was accepted. The subchannel
remains start-pending or resume-pending even if
the channel subsystem was attempting to initiate
the I/O operation for the first command and is
unable to determine if the command was
accepted. If the channel subsystem is unable to
determine whether the first command was

accepted, the subchannel is made status-pending
with at least alert and primary status.

In some situations in which a channel-subsystem
malfunction exists, the channel-control-check con-
dition may be reported as a machine-check condi-
tion.

Whenever channel-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note:   If the status-control field of
the SCSW indicates that the subchannel is status-
pending with alert status but the field-validity flags
of the SCSW indicate that the device-status field
is not usable for error-recovery purposes, the
program should assume that the channel-control-
check condition occurred while the channel sub-
system was accepting alert status from the device
and take the appropriate action for alert status,
even though the status itself has been lost.

 Interface-Control Check
Interface-control check indicates that an invalid
signal has occurred on the channel path. The
condition is detected by the channel subsystem
and usually indicates malfunctioning of an I/O
device. Interface-control check can occur for the
following reasons:

1. A data or status byte received from a device
while the subchannel is subchannel-and-
device-active or device-active has an invalid
checking-block code.

2. The status byte received from a device while
the subchannel is idle, start-pending, sus-
pended, or halt-pending has an invalid
checking-block code.

3. A device responded with an address other
than the address designated by the channel
subsystem during initiation of an operation.

4. During command chaining, the device
appeared not operational.

5. A signal from an I/O device either did not
occur or occurred at an invalid time or had an
invalid duration.

6. The channel subsystem recognized the
I/O-error-alert condition (see “I/O-Error Alert
(A)” on page 16-35).

7. ESW bit 26, device-status check, is set to
one.
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Detection of the interface-control-check condition
causes the current operation, if any, to be termi-
nated immediately, and the subchannel is made
status-pending with alert status, primary and alert
status, secondary and alert status, or primary,
secondary, and alert status as a function of the
type of termination, the current subchannel state,
and the device status presented, if any. When the
channel subsystem recognizes an interface-
control-check condition, any previously existing
intermediate interruption condition caused by a
PCI flag in a CCW may or may not be recognized
by the channel subsystem. The extended-status-
word-format bit is one and subchannel-logout
information is stored in the ESW when TEST
SUBCHANNEL is executed.

If a subchannel is halt-pending and the channel
subsystem encounters an interface-control-check
condition while performing the halt function for that
subchannel, the subchannel remains halt-pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel
remains halt-pending even if the channel sub-
system was attempting to issue the halt signal and
is unable to determine if the halt signal was
issued.

If a subchannel is start-pending or resume-
pending and the channel subsystem encounters
an interface-control-check condition while per-
forming the start function for that subchannel, the
subchannel remains start-pending or resume-
pending unless the channel subsystem can deter-
mine that the first command was accepted. The
subchannel remains start-pending or resume-
pending even if the channel subsystem was
attempting to initiate the I/O operation for the first
command and is unable to determine if the
command was accepted. If the channel sub-
system is unable to determine whether the first
command was accepted, the subchannel is made
status-pending with at least alert and primary
status.

If, while initiating a signaling sequence with the
channel subsystem for the purpose of presenting
status or transferring data, the device presents an
address with invalid parity, the error condition is
not made available to the program since the iden-

tity of the device and associated subchannel are
unknown.

Whenever interface-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note:   If the status-control field of
the SCSW indicates that the subchannel is status-
pending with alert status but the field-validity flags
of the SCSW indicate that the device-status field
is not usable for error-recovery purposes, the
program should assume that the interface-control-
check condition occurred while the channel sub-
system was accepting alert status from the device
and take the appropriate action for alert status,
even though the status itself has been lost.

 Chaining Check
Chaining check is caused by channel-subsystem
overrun during data chaining on input operations.
The condition occurs when the I/O-data rate is too
high for the particular resolution of data
addresses. Chaining check cannot occur on
output operations.

Detection of the chaining-check condition causes
the I/O device to be signaled to conclude the
operation. It causes command chaining to be
suppressed.

 Count Field
Bits 16-31 of word 2 contain the residual count.
The count is to be used in conjunction with the ori-
ginal count specified in the last CCW and,
depending upon existing conditions (see
Figure 16-4 on page 16-20), indicates the number
of bytes transferred to or from the area designated
by the CCW. The count field is meaningful when-
ever the subchannel is status-pending with
primary status which consists of either (1) device
status only or (2) device status together with sub-
channel status of incorrect length only, PCI only,
or both.

In Figure 16-5 on page 16-30, the contents of the
count field are listed for all cases where the sub-
channel is either start-pending, subchannel-and-
device-active, device-active, suspended, or
status-pending.
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┌───────────────────────────────────────────────┬──────────────────────────────────────┐

│ Subchannel Stateñ │ Count │

├───────────────────────────────────────────────┼──────────────────────────────────────┤

│Start-pending (UUUUð/AIPSX)ò │Not meaningfuló │

│ │ │

│Start-pending and status-pending │Not meaningfuló │

│(1ðYY1/AIPSX)ò │ │

│ │ │

│Start-pending and status-pending (ðð111/AIPSX) │Not meaningfuló │

│because the device appeared not operational on │ │

│all pathsò │ │

│ │ │

│Start-pending and device active (UUUUð/AIPSX)ò │Not meaningfuló │

│ │ │

│Suspended (YYYYY/AIPSX)ò │Not meaningfuló │

│ │ │

│Subchannel-and-device-active (UUUUð/AIPSX)ò │Not meaningfuló │

│ │ │

│Device-active (UUUUð/AIPSX) │Not meaningfuló │

│ │ │

│Status-pending (ð1ðð1/AIPSX) because of │Not meaningfuló │

│program-controlled-interruption condition or │ │

│initial-status interruption │ │

│ │ │

│Status-pending (1Y1Y1/AIPSX); termination │ │

│occurred because of:ò │ │

│ │ │

│ Program check │Not meaningfuló │

│ Protection check │Not meaningfuló │

│ Chaining check │Not meaningfuló │

│ Channel-control check │See note 1 │

│ Interface control check │Not meaningfuló │

│ Channel-data check │See note 2 │

│ │ │

│Status-pending (YY1Y1/AIPSX); termination │Correct │

│occurred under count controlò │ │

│ │ │

│Status-pending (Yðð11/AIPSX)ò │Not meaningfuló │

│ │ │

│Status-pending (1Y1Y1/AIPSX)ò │Correct; residual count of last used │

│ │CCW │

│ │ │

│Status-pending (1Y111/AIPSX); command chaining │Correct; residual count of last used │

│suppressed because of alert statusò │CCW │

│ │ │

│Status-pending (YYYY1/AIPSX); after termination│Unpredictable │

│by HALT SUBCHANNELò │ │

│ │ │

│Status-pending (ðððð1/AIPSX); after termination│Not meaningfuló │

│by CLEAR SUBCHANNEL │ │

│ │ │

│Status-pending (YY1Y1/AIPSX); operation │Correct; indicates the residual count │

│completed normally at the subchannelò │ │

└───────────────────────────────────────────────┴──────────────────────────────────────┘

Figure 16-5 (Part 1 of 2). Contents of Count Field in the SCSW
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┌───────────────────────────────────────────────┬──────────────────────────────────────┐

│ Subchannel Stateñ │ Count │

├───────────────────────────────────────────────┼──────────────────────────────────────┤

│Status-pending (1Y111/AIPSX); command chaining │Correct; original count of CCW │

│terminated because of alert statusò │specifying the new I/O operation │

│ │ │

│Status-pending (1ððð1/AIPSX) because of alert │Not meaningfuló │

│status │ │

├───────────────────────────────────────────────┴──────────────────────────────────────┤

│Explanation: │

│ │

│ ñ In situations where more than a single condition exists because of, for example,│

│ alert status that is described by program check and unit check, the entry │

│ appearing first in the table takes precedence. │

│ │

│ The meaning of the notation in this column is as follows: │

│ │

│ A Alert status │

│ I Intermediate status │

│ P Primary status │

│ S Secondary status │

│ X Status-pending │

│ │

│ The allowed combination of status-control-bit settings is shown to the left of │

│ the “/” symbol. │

│ │

│ Bit settings are specified as follows: │

│ │

│ ð Corresponding condition is not indicated. │

│ 1 Corresponding condition is indicated. │

│ U Unpredictable. The corresponding condition is not meaningful when the │

│ subchannel is not status-pending. │

│ Y Corresponding condition is not significant and is indicated as a function │

│ of the subchannel state. │

│ │

│ ò The subchannel may also be resume-pending. │

│ │

│ ó The contents of the count field are not meaningful because the count field is │

│ not valid when the SCSW is stored and the subchannel is in the given state. │

│ │

│Notes: │

│ │

│ 1. The count is unpredictable unless IDAW check is indicated, in which case the │

│ count may not correctly reflect the number of bytes transferred to or from main │

│ storage but will (when used in conjunction with the CCW address) designate a │

│ byte location within the page in which the channel-control-check condition was │

│ recognized. │

│ │

│ 2. During a storage access, the maximum number of bytes that can be stored by a │

│ channel subsystem is model-dependent. If a channel-data-check condition is │

│ recognized during that access, the number of bytes transferred to or from │

│ storage may not be detectable by the channel subsystem. Consequently, the │

│ number of bytes transferred to or from storage may not be correctly reflected by│

│ the residual count. However, the residual count that is stored when used in │

│ conjunction with the storage-access code and the CCW address designates a byte │

│ location within the page in which the channel-data-check condition was │

│ recognized. │

└──────────────────────────────────────────────────────────────────────────────────────┘

Figure 16-5 (Part 2 of 2). Contents of Count Field in the SCSW
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 Extended-Status Word
The extended-status word (ESW) provides addi-
tional information to the program about the sub-
channel and its associated device. The ESW is
placed in words 3-7 of the IRB designated by the
second operand of TEST SUBCHANNEL when
TEST SUBCHANNEL is executed and the sub-
channel designated is operational. If the sub-
channel is status-pending or status-pending with
any combination of primary, secondary, interme-
diate, or alert status (except as noted in the next
paragraph) when TEST SUBCHANNEL is exe-
cuted, the ESW may have one of the following
types of extended-status formats:

Format 0 Subchannel logout in word 0, an ERW in
word 1, a failing-storage address or
zeros in word 2, and zeros in words 3-4

Format 1 Zeros in bytes 0 and 2-3 of word 0, the
LPUM in byte 1 of word 0, an ERW in
word 1, and zeros in words 2-4

Format 2 Zeros in byte 0, the LPUM in byte 1, and
the device-connect time in bytes 2-3 of
word 0; an ERW in word 1; zeros in
words 2-4

Format 3 Zeros in byte 0, the LPUM in byte 1, and
unpredictable values in bytes 2 and 3 of
word 0; an ERW in word 1; zeros in
words 2-4

Words 0-4 of the ESW contain unpredictable
values if any of the following conditions is met:

1. The subchannel is not status-pending.

2. The subchannel is status-pending alone, and
the extended-status-word-format bit is zero.

3. The subchannel is status-pending with inter-
mediate status alone for other than the inter-
mediate interruption condition due to
suspension.

The type of extended-status format stored
depends upon conditions existing at the sub-
channel at the time TEST SUBCHANNEL is exe-
cuted. The conditions under which each of the
types of formats is stored are described in the
remainder of this section.

Extended-Status Format 0
The ESW stored by TEST SUBCHANNEL is a
format-0 ESW when the extended-status-word-
format bit (bit 5, word 0 of the SCSW) is one and
the subchannel is status-pending with any combi-
nation of status as defined in Figure 16-6 on
page 16-36. In this case, subchannel-logout infor-
mation and an ERW are stored in the extended-
status word. Subchannel logout provides detailed
model-independent information, relating to a sub-
channel and describing equipment errors detected
by the channel subsystem. The information is
provided to aid the recovery of an I/O operation, a
device, or both. Whenever subchannel logout is
provided, the error conditions relate only to the
subchannel reporting the error. If I/O operations
involving other subchannels have been affected by
the error condition, those subchannels also
provide similar subchannel-logout information. An
extended-report word provides additional informa-
tion relating to the cause of the malfunction.

A format-0 ESW has this format:

 ┌───────────────────────────────────────────┐

ð │ Subchannel Logout │

 ├───────────────────────────────────────────┤

1 │ Extended-Report Word │

 ├───────────────────────────────────────────┤

2 │ Failing-Storage Address │

 ├───────────────────────────────────────────┤

3 │ │

│ Zeros │

4 │ │

 └───────────────────────────────────────────┘

 Subchannel Logout
The subchannel logout has this format:

┌─┬─────────┬──────────┬─┬─────┬──┬──┬─┬─┬─┬───┐

│ð│ ESF │ LPUM │R│ FVF │SA│TC│D│E│A│ SC│

└─┴─────────┴──────────┴─┴─────┴──┴──┴─┴─┴─┴───┘

ð 1 8 16 22 24 26 31

Extended-Status Flags (ESF):  Any of the bits
1-7, when one, specifies that an error-check con-
dition has been detected by the channel sub-
system. The following indications are provided in
the ESF field:

Key Check. Bit 1, when one, indicates that
the channel subsystem, when accessing data,
when attempting to update the measurement
block, or when attempting to fetch either a
CCW or an IDAW, has detected an invalid
checking-block code (CBC) on the associated
storage key. The channel-data-check bit (bit
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12 of word 2 of the SCSW), the
measurement-block data-check bit (bit 3 of
word 0 of the ESW), the CCW-check bit (bit 5
of word 0 of the ESW), or the IDAW-check bit
(bit 6 of word 0 of the ESW) identifies the
source of the key error.

Note:  This condition may be indicated to the
program when an invalid checking-block code
on a key is detected but the data, CCW, or
IDAW is not used when prefetching. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.

Measurement-Block Program Check. Bit 2,
when one, indicates that the channel sub-
system, in attempting to update the measure-
ment block, has detected an invalid absolute
address when combining the measurement-
block origin with the measurement-block index
for this subchannel.

Measurement-Block Data Check. Bit 3, when
one, indicates that a malfunction has been
detected involving the data of the measure-
ment block in main storage. (See “Measure-
ment Block” on page 17-3.)
Measurement-block data check is indicated
when the measurement block is updated and
an invalid checking-block code (CBC) is
detected on the storage used to contain the
measurement data or on the associated key.
When invalid CBC on the associated key is
detected, the key-check bit, bit 1 of the ESF
field, is also stored as one.

Measurement-Block Protection Check. Bit 4,
when one, indicates that the channel sub-
system, when attempting to update the meas-
urement block, has been prohibited from
accessing the measurement block because
the storage key does not match the
measurement-block key (see “Measurement
Block” on page 17-3.) The key provided by
SET CHANNEL MONITOR is used for the
access of storage associated with
measurement-block-update operations (see
“SET CHANNEL MONITOR” on page 14-11).

Note:  Whenever any of the measurement-
check conditions, bits 2-4, is indicated, the
channel subsystem sets the subchannel
measurement-block-update-enable bit to zero,
disabling the storing of measurement data for

the subchannel (see “Measurement Mode
Enable (MM)” on page 15-3).

CCW Check. Bit 5, when one, indicates that
an invalid CBC on the contents of the CCW or
its associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated, the subchannel
becomes status-pending with primary and
alert status, the extended-status-word-format
bit in the SCSW is stored as one, and
channel-control check is indicated in the
subchannel-status field. The subchannel also
becomes status-pending with secondary
status as a function of the type of termination
or status received from the device. When
invalid CBC on the associated key is detected,
the key-check bit, bit 1 of the ESF field, is
also stored as one.

Note:  This condition may be indicated to the
program when an invalid checking-block code
on the contents of a prefetched CCW is
detected but the CCW is not used. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.

IDAW Check. Bit 6, when one, indicates that
an invalid CBC on the contents of an IDAW or
its associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated with the device, the
subchannel becomes status-pending with
primary and alert status, the extended-status-
word-format bit in the SCSW is one, and
channel-control check is indicated in the
subchannel-status field. The subchannel also
becomes status-pending with secondary
status as a function of the type of termination
or status received from the device. When
invalid CBC on the associated key is detected,
the key-check bit, bit 1 of the ESF field, is
also one.

Note:   This condition may be indicated to the
program when an invalid checking-block code
on the contents of a prefetched IDAW is
detected but the IDAW is not used. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.
Detection of a channel-data-check condition
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does not cause the CCW-check and
IDAW-check bits to be stored as ones.

Reserved. Bit 7 is stored as zero.

Last-Path-Used Mask (LPUM):  Bits 8-15 indi-
cate the channel path that was last used for com-
municating or transferring information between the
channel subsystem and the device. The bit corre-
sponding to the channel path in use is set when-
ever one of the following occurs:

1. The first command of a start-subchannel func-
tion is accepted by the device (see “Activity
Control (AC)” on page 16-13).

2. The device and channel subsystem are
actively communicating when the channel sub-
system performs the suspend function for the
channel program in execution.

3. The channel subsystem accepts status from
the device that is recognized as an inter-
ruption condition, or a condition has been
recognized that suppresses command
chaining (see “Interruption Conditions” on
page 16-1).

4. The channel subsystem recognizes an
interface-control-check condition (see
“Interface-Control Check” on page 16-28), and
no subchannel-logout information is currently
present at the subchannel.

The LPUM field contains the most recent setting
and is valid whenever the ESW contains informa-
tion in one of the formats 0-3 (see “Extended-
Status Word” on page 16-32) and the SCSW is
stored. When subchannel-logout information is
present in the ESW, a zero LPUM-field-validity
flag indicates that the LPUM setting is not con-
sistent with the other subchannel-logout indi-
cations.

Ancillary Report (R):  Bit 16, when one, indi-
cates that a malfunction of a system component
has occurred which has been recognized previ-
ously or which has affected the activities of mul-
tiple subchannels. When the malfunction affects
the activities of multiple subchannels, an ancillary-
report condition is recognized for all of the
affected subchannels except one. This bit, when
zero, indicates that this malfunction of a system
component has not been recognized previously.
This bit is meaningful only when a channel-control
check, channel-data check, or an interface-control

check is indicated in bits 12-14 of word 2 of the
SCSW.

Depending on the model, recognition of an
ancillary-report condition may not be provided or it
may not be provided for all system malfunctions
that effect subchannel activity. When ancillary-
report recognition is not provided, bit 16 is set to
zero.

Field-Validity Flags (FVF):  Bits 17-21 indicate
the validity of the information stored in the corre-
sponding fields of either the SCSW or the
extended-status word. When the validity bit is
one, the corresponding field has been stored and
is usable for recovery purposes. When the validity
bit is zero, the corresponding field is not usable.

This bit-significant field has meaning when
channel-data check, channel-control check, or
interface-control check is indicated in the SCSW.
When these checks are not indicated, this field, as
well as the termination-code and sequence-code
fields, has no meaning. Further, when these
checks are not indicated, the last-path-used-mask,
device-status, and CCW-address fields are all
valid. The fields are defined as follows:

17 Last-path-used mask
18 Termination code
19 Sequence code
20 Device status
21 CCW address

Storage-Access Code (SA):  Bits 22-23 indicate
the type of storage access that was being per-
formed by the channel subsystem at the time of
error. The SA field pertains only to the access of
storage for the purpose of fetching or storing data
during execution of an I/O operation. This
encoded field has meaning only when channel-
data check, channel-control check, or interface-
control check is indicated in the subchannel
status. The access-code assignments are as
follows:

00 Access type unknown
01 Read
10 Write
11 Read backward

Termination Code (TC):  Bits 24-25 indicate the
type of termination that has occurred. This
encoded field has meaning only when channel-
data check, channel-control check, or interface-
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control check is indicated in the SCSW. The
types of termination are as follows:

00 Halt signal issued
01 Stop, stack, or normal termination
10 Clear signal issued
11 Reserved

When at least one channel check is indicated in
the SCSW but the termination-code-field-validity
flag is zero, it is unpredictable which, if any, termi-
nation has been signaled to the device. If more
than one channel-check condition is indicated in
the SCSW, the device may have been signaled
one or more termination codes that are the same
or different. In this situation, if the termination-
code-field-validity flag is one, the termination code
indicates the most severe of the terminations sig-
naled to the device. The termination codes, in
order of increasing severity, are: stop, stack, or
normal termination (01); halt signal issued (00);
and clear signal issued (10).

Device-Status Check (D):  When the status-
verification facility is installed, bit 26, when one,
indicates that the subchannel logout in the ESW
resulted from the channel subsystem detecting
device status that had valid CBC but that con-
tained a combination of bits that was inappropriate
when the status byte was presented to the
channel subsystem. When the device-status-
check bit is one, the interface-control-check status
bit is set to one. If, additionally, bit 20 of the
subchannel-logout field has been stored as one,
then the status byte in error has been stored in
the device-status field of the SCSW. If the status-
verification facility is not installed, bit 26 is stored
as zero.

Secondary Error (E):  Bit 27, when one, indi-
cates that a malfunction of a system component
which may or may not have been directly related
to any activity involving subchannels or I/O
devices has occurred. Subsequent to this occur-
rence, the activity related to this subchannel and
the associated I/O device was affected and
caused the subchannel to be set status-pending
with either channel-control check or interface-
control check.

I/O-Error Alert (A):  Bit 28, when one, indicates
that subchannel logout in the ESW resulted from
the signaling of I/O-error alert. The I/O-error-alert
signal indicates that the control unit or device has
detected a malfunction that must be reported to

the channel subsystem. The channel subsystem,
in response, issues a clear signal and, except as
described in the next paragraph, causes interface-
control check to be set and
extended-status-format-0 (logout) information to be
stored in the ESW.

When I/O-error alert is signaled and the sub-
channel has previously been set disabled or no
subchannel is associated with the device, the
clear signal is issued to the device, and the
I/O-error-alert indication is ignored by the channel
subsystem.

Sequence Code (SC):  Bits 29-31 identify the I/O
sequence in progress at the time of error. The
sequence code pertains only to I/O operations ini-
tiated by execution of START SUBCHANNEL or
RESUME SUBCHANNEL. This encoded field has
meaning only when channel-data check, channel-
control check, or interface-control check is indi-
cated in the SCSW.

The sequence-code assignments are:

000 Reserved.

001 A nonzero command byte has been sent by
the channel subsystem, but a response
(device status) has not yet been analyzed by
the channel subsystem. This code is set
during the initiation sequence.

010 The command has been accepted by the
device, but no data has been transferred.
This code is set during the initiation
sequence if the initial status is (1) channel
end alone, (2) channel end and device end,
(3) channel end, device end, and status
modifier, or (4) all zeros.

011 At least one byte of data has been trans-
ferred between the channel subsystem and
the device. This code may be used when
the channel path is in an idle or polling state.

100 The command in the current CCW (1) has
not yet been sent to the device, (2) was sent
but not accepted by the device, or (3) was
sent and accepted but command-retry status
was presented. This code is set when one
of the following conditions occurs:

1. When the command address is updated
during command chaining or during the
initiation of a start function or resume
function at the device.

  Chapter 16. I/O Interruptions 16-35



  
 

2. When, during the initiation sequence, the
status includes attention, control-unit
end, unit check, unit exception, busy,
status modifier (without channel end and
device end), or device end (without
channel end).

3. When command retry is signaled.

4. When the channel subsystem interro-
gates the device in the process of
clearing an interruption condition.

5. When the channel subsystem signals the
conclusion of the chain of operations to
the device during command chaining
while performing the suspend function.

101 The command in the current CCW has been
accepted, but data transfer is unpredictable.
This code applies from the time a device is
logically connected to a channel path until
the time it is determined that a new
sequence code applies. This code may also
be used when the channel subsystem places
a channel path in the polling or idle state and
it is impossible to determine that code 010 or
011 applies. It may also be used at other
times when a channel path cannot distin-
guish between code 010 or 011.

110 Reserved.

111 Reserved.

Figure 16-6 defines the relationship between indi-
cations provided as subchannel-logout data and
the appropriate SCSW bits.

┌──────────────────────────────────────┬──────────────────┐

│ │ Logout Condition │

│ │ for SCSW │

│ │ Indication ofñ │

│ ├─────┬─────┬──────┤

│ Subchannel-Logout Condition Indicated│ CDC │ CCC │ IFCC │

├──────────────────────────────────────┼─────┼─────┼──────┤

│ Key check │ V │ V │ - │

│ Measurement-block-program checkò │ - │ - │ - │

│ Measurement-block-data checkò │ - │ - │ - │

│ Measurement-block-protection checkò │ - │ - │ - │

│ CCW check │ - │ V │ - │

│ IDAW check │ - │ V │ - │

│ Last-path-used maskó │ V │ V │ V │

│ Field-validity flags │ V │ V │ V │

│ Termination codeó │ V │ V │ V │

│ Device-status check │ - │ - │ V │

│ Secondary error │ - │ V │ V │

│ I/O-error alert │ - │ - │ V │

│ Sequence codeó │ V │ V │ V │

├──────────────────────────────────────┴─────┴─────┴──────┤

│Explanation: │

│ │

│ - No relationship. │

│ │

│ ñ When more than one SCSW indication is signaled, │

│ the subchannel-logout conditions that are valid │

│ are the logical OR for each of the respective SCSW│

│ indications. │

│ │

│ ò Only one measurement-block check may be indicated │

│ in a specific subchannel logout. │

│ │

│ ó This field has a field-validity flag. │

│ │

│ CCC Channel-control check. │

│ │

│ CDC Channel-data check. │

│ │

│ IFCC Interface-control check. │

│ │

│ V Bit setting valid. │

└─────────────────────────────────────────────────────────┘

Figure 16-6. Relationship between Subchannel-Logout
Data and SCSW Bits

 Extended-Report Word
The extended-report word (ERW) provides infor-
mation to the program describing specific condi-
tions that may exist at the device, subchannel, or
channel subsystem. The ERW is stored whenever
the extended-status word is stored. When the
extended-status-word-format bit (bit 5, word 0 of
the SCSW) and the extended-control bit (bit 14,
word 0 of the SCSW) are both zeros, the ERW
contains all zeros. When the extended-status-
word-format bit or the extended-control bit or both
are ones, the ERW has this format:

┌───┬─┬─┬─┬─┬─┬───┬────┬───────────────────┐

│ððð│A│P│T│F│S│ ðð│SCNT│ ðððððððð ðððððððð │

└───┴─┴─┴─┴─┴─┴───┴────┴───────────────────┘

ð 3 8 1ð 16 31

Authorization Check (A): Bit 3, when one, indi-
cates that the start or resume function was termi-
nated because the channel subsystem has been
placed in the isolated state in which pending I/O
operations are not initiated and currently executing
I/O operations are either in the process of being
terminated or have been terminated.
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Path-Verification-Required Flag (P): Bit 4, when
one, indicates that the program must verify the
identity of the device. The LPUM, when valid,
indicates the channel path for which device verifi-
cation is to be performed. When a valid LPUM is
not available, the identity of the device must be
verified for each available channel path.

Channel-Path Timeout (T):  Bit 5, when one,
indicates that, during a signaling sequence, an
appropriate signal from the device did not occur
within a predetermined time interval. Bit 5 is
meaningful when the extended-status-word-format
bit (bit 5, word 0 of the SCSW) and the interface-
control check bit (bit 14, word 2 of the SCSW) are
both ones.

Failing-Storage-Address-Validity Flag (F):  Bit
6, when one, and when the extended-status-
word-format bit (bit 5, word 0 of the SCSW) is also
one, indicates that the channel subsystem has
detected an invalid CBC on a CCW, a data
address, an IDAW, or the respective associated
key and has stored, in word 2 of the ESW, an
absolute address of a location within the invalid
CBC. When an ERW is stored with bit 6 set to
zero, the channel subsystem has not detected an
invalid CBC while prefetching data, a CCW, or an
IDAW, and zeros are stored in word 2 of the
ESW.

Concurrent-Sense (S):  Bit 7, when one, indi-
cates that the concurrent-sense facility has placed
sense information accepted from the device in the
extended-control word and has stored a value in
bits 10-15 of the ERW which specifies the number
of sense bytes that have been stored in the
extended-control word. When bit 7 is one, bit 14
of word 0 of the SCSW is also one.

Concurrent-Sense Count (SCNT):  When bit 7 is
one, bits 10-15 contain a value in the range 1-32
which specifies the number of sense bytes placed
in the extended-control word by the concurrent-
sense facility. When bit 7 is zero, bits 10-15
contain zeros.

The remaining bits of the ERW are currently
reserved and are stored as zeros when the ERW
is stored.

 Failing-Storage Address
Word 2 of the extended-status word forms an
absolute address. When the failing-storage-
address-validity flag (bit 6 of the ERW) is one, the
failing-storage-address field designates a byte
location within the checking block associated with
the invalid CBC. When the failing-storage-
address-validity flag is zero, this field contains
zeros.

Extended-Status Format 1
The ESW stored by TEST SUBCHANNEL is a
format-1 ESW when all of the following conditions
are met:

1. The extended-status-word-format bit (bit 5,
word 0 of the SCSW) is zero.

2. The subchannel status-control field has the
status-pending bit (bit 31, word 0 of the
SCSW) set to one, together with:

a. The primary-status bit (bit 29, word 0 of
the SCSW) alone, or

b. The primary-status bit and other status-
control bits, or

c. The intermediate-status bit (bit 28, word 0
of the SCSW) and the suspended bit (bit
26, word 0 of the SCSW).

3. At least one of the following conditions is indi-
cated:

 a. The device-connect-time-measurement
mode is inactive.

b. The channel-subsystem-timing facility is
not available for the subchannel.

c. The subchannel is not enabled for the
device-connect-time-measurement mode.

Zeros are stored in bytes 0 and 2-3 of word 0, and
the LPUM is stored in byte 1 of word 0; an ERW
is stored in word 1; zeros are stored in words 2-4.

The device-connect-time-measurement mode is
made inactive when SET CHANNEL MONITOR is
executed and bit 31 of general register 1 is zero.

A format-1 ESW has this format:
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 ┌──────────┬──────────┬─────────────────────┐

ð │ Zeros │ LPUM │ Zeros │

 ├──────────┴──────────┴─────────────────────┤

1 │ Extended-Report Word │

 ├───────────────────────────────────────────┤

2 │ │

3 │ Zeros │

4 │ │

 └──────────┴──────────┴─────────────────────┘

 ð 8 16 31

Last-Path-Used Mask (LPUM):  For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

Extended-Report Word (ERW):  For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Extended-Status Format 2
The ESW stored by TEST SUBCHANNEL is a
format-2 ESW when all of the following conditions
are met:

1. The extended-status-word-format bit (bit 5,
word 0 of the SCSW) is zero.

2. The channel-subsystem-timing facility is avail-
able for the subchannel.

3. The subchannel is enabled for the device-
connect-time-measurement mode.

4. The device-connect-time-measurement mode
is active.

5. The subchannel status-control field has the
status-pending bit (bit 31, word 0 of the
SCSW) set to one, together with:

a. The primary-status bit (bit 29, word 0 of
the SCSW) alone, or

b. The primary-status bit and other status-
control bits, or

c. The intermediate-status bit (bit 28, word 0
of the SCSW) and the suspended bit (bit
26, word 0 of the SCSW).

Zeros are stored in byte 0 of word 0, the LPUM is
stored in byte 1 of word 0, and the device-connect
time is stored in bytes 2-3 of word 0; an ERW is
stored in word 1; zeros are stored in words 2-4.

A format-2 ESW has this format:

 ┌──────────┬──────────┬─────────────────────┐

ð │ Zeros │ LPUM │ DCTI │

 ├──────────┴──────────┴─────────────────────┤

1 │ Extended-Report Word │

 ├───────────────────────────────────────────┤

2 │ │

3 │ Zeros │

4 │ │

 └──────────┴──────────┴─────────────────────┘

 ð 8 16 31

Last-Path-Used Mask (LPUM):  For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

Device-Connect-Time Interval (DCTI):  Bits
16-31 contain the binary count of time increments
accumulated by the channel subsystem during the
time that the channel subsystem and the device
were actively communicating and the subchannel
was subchannel-active. The time increment of the
DCTI is 128 microseconds.

If the above conditions for the storing of the DCTI
value in the ESW are met but the device-connect-
time-measurement mode was made active by SET
CHANNEL MONITOR subsequent to execution of
START SUBCHANNEL for this subchannel, the
DCTI value stored is greater than or equal to zero
and less than or equal to the correct DCTI value.

Note:  The DCTI value stored in the ESW is the
same as that used to update the corresponding
measurement-block data for the subchannel if the
measurement-block-update mode is in use for the
subchannel. If the measurement-block-update
mode for the channel subsystem is active and the
subchannel is enabled for the device-connect-
time-measurement mode but no DCTI value is
stored in the ESW (because of the presence of
subchannel-logout information), or if the DCTI is
zero, then nothing is added to the corresponding
measurement-block data.

Extended-Report Word (ERW):  For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Extended-Status Format 3
The ESW stored by TEST SUBCHANNEL is a
format-3 ESW when the extended-status-word-
format bit (bit 5, word 0 of the SCSW) is zero and
the subchannel is status-pending with (1) sec-
ondary status, alert status, or both when primary
status is not also present, or (2) intermediate
status when the subchannel is not suspended.
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Zeros are stored in byte 0 of word 0, and the
LPUM is stored in byte 1 of word 0. Bytes 2-3 of
word 0 contain unpredictable values; an ERW is
stored in word 1; zeros are stored in words 2-4.

A format-3 ESW has this format:

 ┌──────────┬──────────┬─────────────────────┐

ð │ Zeros │ LPUM │ XXXXXXXX │ XXXXXXXX │

 ├──────────┴──────────┴─────────────────────┤

1 │ Extended-Report Word │

 ├───────────────────────────────────────────┤

2 │ │

3 │ Zeros │

4 │ │

 └──────────┴──────────┴─────────────────────┘

 ð 8 16 31

Last-Path-Used Mask (LPUM):  For a definition
of the LPUM, see “Last-Path-Used Mask (LPUM)”
on page 16-34.

An “X” in the format indicates the bit may be zero
or one.

Extended-Report Word (ERW):  For a definition
of the ERW, see “Extended-Report Word” on
page 16-36.

Figure 16-7 summarizes the conditions at the sub-
channel under which each type of information is
stored in the ESW.

┌───────────────────────────────────────────┬─────────────┐

│Subchannel Conditions When IRB Is Stored │ │

├────────────────┬────────┬─────────────────┤ │

│Subchannel- │ │Path-Management- │ Extended- │

│Status Word │ │Control Word │ Status │

├───────┬───┬────┤ ├────────┬────────┤ Word (ESW),│

│ │ │ │ │ │Device- │ Word ð │

│ │ │ │ │ │Connect-│ │

│Status-│ │ │Device- │ │Time- ├────┬────────┤

│Control│ │Sus-│Connect-│ │Msrmnt- │ │Contents│

│Field │ │pen-│Time- │Timing- │Mode- │ │ │

│ │ L │ded │Msrmnt │Facility│Enable │For-│ Bytes │

│ AIPSX │Bit│Bit │Mode │Bit │Bit │mat │ð,1,2,3 │

├───────┼───┴────┴────────┴────────┴────────┼────┼────────┤

│ ----ð │///////////////////////////////////│ │ │

├───────┼───┐///////////////////////////////│ │ │

│ ðððð1 │ ð │///////////////////////////////│ U │ \\\\ │

├───────┼───┼────┐//////////////////////////│ │ │

│ │ │ ð │//////////////////////////│ │ │

│ │ ├────┼────────┬─────────────────┼────┼────────┤

│ │ │ │Inactive│/////////////////│ │ │

│ │ │ ├────────┼────────┐////////│ │ │

│ ð1ðð1 │ ð │ │ │ ð │////////│ 1 │ ZMZZ │

│ │ │ 1 │ ├────────┼────────┤ │ │

│ │ │ │ Active │ │ ð │ │ │

│ │ │ │ │ 1 ├────────┼────┼────────┤

│ │ │ │ │ │ 1 │ 2 │ ZMDD │

├───────┼───┼────┼────────┼────────┴────────┼────┼────────┤

│ │ │////│Inactive│/////////////////│ │ │

│ │ │////├────────┼────────┐////////│ │ │

│ │ │////│ │ ð │////////│ 1 │ ZMZZ │

│ \\1\1 │ ð │////│ ├────────┼────────┤ │ │

│ │ │////│ Active │ │ ð │ │ │

│ │ │////│ │ 1 ├────────┼────┼────────┤

│ │ │////│ │ │ 1 │ 2 │ ZMDD │

├───────┼───┼────┴────────┴────────┴────────┼────┼────────┤

│ \\ð11 │ ð │///////////////////////////////│ │ │

├───────┼───┤///////////////////////////////│ 3 │ ZM\\ │

│ 1\ðð1 │ ð │///////////////////////////////│ │ │

├───────┼───┼───────────────────────────────┼────┼────────┤

│ \\\\1 │ 1 │///////////////////////////////│ ð │ RRRR │

├───────┴───┴───────────────────────────────┴────┴────────┤

│Explanation: │

│ │

│ - Defined to be not meaningful when X is zero. │

│ \ Bits may be zeros or ones. │

│ / Information not relevant in this situation. │

│ A Alert status. │

│ D Accumulated device-connect-time-interval (DCTI) │

│ value stored in bytes 2 and 3. │

│ I Intermediate status. │

│ L Extended-status-word format. │

│ M Last-path-used mask (LPUM) stored in byte 1. │

│ P Primary status. │

│ R Subchannel-logout information stored in word ð. │

│ S Secondary status. │

│ U No format defined. │

│ X Status-pending. │

│ Z Bits are stored as zeros. │

└─────────────────────────────────────────────────────────┘

Figure 16-7. Information Stored in ESW

 Extended-Control Word
The extended-control word provides additional
information to the program describing conditions
that may exist at the channel subsystem, sub-
channel, or device. The extended-control (E) bit
(bit 14, word 0 of the SCSW), when one, indicates
that model-dependent information or concurrent-
sense information has been stored in the
extended-control word.

The information provided in the extended-control
word is as follows:
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┌──────┬─────┬────────┬──────────────────────────────┐

│ SCSW │ ERW │ ERW │ │

│ Bits │ Bit │ Bits │ ECW │

│ 5 14 │ 7 │ 1ð-15 │ Words ð-7 │

├──────┼─────┼────────┼──────────────────────────────┤

│ ð ð │ ð │ Zeros │ Unpredictableñ │

│ ð 1 │ ð │ (õ) │ (õ) │

│ ð 1 │ 1 │ (ó) │ Concurrent-sense informationô│

│ 1 ð │ ð │ Zeros │ Unpredictableñ │

│ 1 1 │ ð │ Zeros │ Model-dependent informationò │

│ 1 1 │ 1 │ (ó) │ Concurrent-sense informationô│

├──────┴─────┴────────┴──────────────────────────────┤

│ ñ If stored, the value of these words is │

│ unpredictable. │

│ │

│ ò Unused bits in the model-dependent information │

│ are stored as zeros. │

│ │

│ ó Bits 1ð-15 contain a value equal to the number │

│ of sense bytes returned. │

│ │

│ ô Unused bytes in the concurrent-sense information │

│ are stored as zeros. │

│ │

│ õ The combination of SCSW bit 5 as ð, SCSW bit 14 │

│ as one, and ERW bit 7 as zero does not occur. │

└────────────────────────────────────────────────────┘
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The I/O support functions are those functions of
the channel subsystem that are not directly related
to the initiation or control of I/O operations. The
following I/O support functions are described in
this chapter: channel-subsystem monitoring,
signals and resets, externally initiated functions,
status verification, address-limit checking, config-
uration alert, incorrect-length-indication sup-
pression, concurrent sense, and
channel-subsystem recovery.

 Channel-Subsystem Monitoring
Monitoring facilities are provided in the channel
subsystem so that the program can retrieve meas-
ured values on performance for a designated sub-
channel. The use of these facilities is under
program control by means of the execution of the
SET CHANNEL MONITOR instruction. Addi-
tionally, each subchannel can be selectively
enabled to use the facilities by means of the exe-
cution of the MODIFY SUBCHANNEL instruction.

The channel-subsystem-monitoring facilities
include the channel-subsystem-timing facility,
measurement-block-update facility, control-unit-
queuing-measurement facility, and device-connect-
time-measurement facility. The

measurement-block-update facility and the device-
connect-time-measurement facility are logically
distinct and operate independently of one another.
Each of the facilities that constitute the channel-
subsystem-monitoring facilities is described in this
chapter.

 Channel-Subsystem Timing
The channel-subsystem-timing facility provides the
channel subsystem with the capability of meas-
uring the elapsed time required for performing
several different phases in processing a start func-
tion initiated by START SUBCHANNEL. These
elapsed-time measurements are used by both the
measurement-block-update facility and the device-
connect-time-measurement facility to provide sub-
channel performance information to the program.

While every channel subsystem has a channel-
subsystem-timing facility, it may or may not be
provided for use with all subchannels. Subchan-
nels for which the facility is provided have the
timing-facility bit (bit 14 of word 1) stored as one
in the associated subchannel-information block.
(See “Timing Facility (T)” on page 15-4.) If the
channel-subsystem-timing facility is not provided
for the subchannel, its timing-facility bit is stored
as zero.
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Subchannels that do not have the channel-
subsystem-timing facility provided are those for
which the characteristics of the associated device,
the manner in which it is attached to the channel
subsystem, or the channel-subsystem resources
required to support the device are such that use of
the channel-subsystem-timing facility is precluded.

The channel-subsystem-timing facility consists of
at least one channel-subsystem timer and the
associated logic and storage required for com-
puting and recording the elapsed-time intervals for
use by the two measurement facilities. The
aspects of the channel-subsystem-timing facility
that are of importance to the program are
described below.

 Channel-Subsystem Timer
Each channel-subsystem timer is a binary counter
that is not accessible to the program. The
channel-subsystem timer is incremented by adding
a one to the rightmost bit position every 128
microseconds. When incrementing the channel-
subsystem timer causes a carry out of the leftmost
bit position, the carry is ignored, and counting con-
tinues from zero. No indications are generated as
a result of the overflow.

Just as every CPU has access to a TOD clock,
every channel subsystem has access to at least
one channel-subsystem timer. When multiple
channel-subsystem timers are provided, synchro-
nization among these timers is also provided, cre-
ating the effect that all the timing facilities of the
channel subsystem share a single timer. Synchro-
nization among these timers may be supplied
either through some TOD clock or independently
by the channel subsystem.

If the TOD clocks are not synchronized, the
elapsed times measured by the channel-
subsystem-timing facility may, depending upon the
model, have unpredictable values for some or all
of the subchannels, depending on the particular
channel-subsystem timer and the way the associ-
ated devices are physically attached to the
system. The values are unpredictable for those
devices attached to the system by separately
configurable channel paths whose associated
CPU TOD clocks are not synchronized.

Synchronization:  If either the measurement-
block-update mode or device-connect-time-
measurement mode is active and any of the

channel-subsystem timers are found to be out of
synchronization, a channel-subsystem-timer-sync
check is recognized, and a channel report is gen-
erated to alert the program (see “Channel-
Subsystem Recovery” on page 17-17). If neither
of these modes is active, the lack of synchroniza-
tion is not recognized.

 Measurement-Block Update
The measurement-block-update facility provides
the program with the capability of accumulating
performance information for subchannels that are
enabled for the measurement-block-update mode
when the measurement-block-update mode is
active. A subchannel is enabled for
measurement-block-update mode by setting bit 11
of word 1 of the SCHIB operand to one and then
executing MODIFY SUBCHANNEL. The
measurement-block-update mode is made active
by executing SET CHANNEL MONITOR when bit
30 of general register 1 is one.

When the measurement-block-update mode is
active and the subchannel is enabled for the
measurement-block-update mode, information is
accumulated in a measurement block associated
with the subchannel. A measurement block is a
32-byte area in main storage that is associated
with a subchannel for the purpose of accumulating
measurement data. The program specifies a con-
tiguous area of absolute storage, referred to as
the measurement-block area, and subdivides this
area into 32-byte blocks, one block for each sub-
channel for which measurement data is to be
accumulated. The measurement-block-update
facility uses the measurement-block index con-
tained at the subchannel in conjunction with the
measurement-block origin established by the exe-
cution of SET CHANNEL MONITOR to compute
the absolute address of the measurement block
associated with a subchannel. Measurement data
is stored in the measurement block associated
with the subchannel each time an I/O operation or
chain of I/O operations initiated by START SUB-
CHANNEL is suspended or completed. The com-
pletion of an I/O operation or chain of I/O
operations is normally signaled by the primary
interruption condition. Six fields are defined in the
measurement block in which measurement data is
accumulated by the measurement-block-update
facility: SSCH+RSCH count, sample count,
device-connect time, function-pending time,
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device-disconnect time, and control-unit-queuing
time.

 Measurement Block
The measurement block is a 32-byte area at the
location designated by the program, using the
measurement-block origin in conjunction with the
measurement-block index. The measurement
block contains the accumulated values of the
measurement data described below. When the
measurement-block-update mode is active and the
subchannel is enabled for measurement-block
update, the measurement-block-update facility
accumulates the values for the measurement data
that accrue during the execution of an I/O opera-
tion or chain of I/O operations initiated by START
SUBCHANNEL.

When the I/O operation or chain of I/O operations
is suspended or completed at the subchannel and
no error condition is encountered, the accrued
values are added to the accumulated values in the
measurement block for that subchannel. If an
error condition is detected and subchannel-logout
information is stored in the extended-status word
(ESW), the accrued values are not added to the
accumulated values in the measurement block for
the subchannel, and the two count fields are not
incremented.

If any of the accrued time values is detected to
exceed the internal storage provided for accruing
these values, or if the control-unit-queuing-
measurement facility is installed and either the
control unit indicates it cannot provide an accurate
queuing time for the current operation, or the
channel subsystem successfully recovers from
certain error conditions, none of the accrued
values are added to the measurement block for
the subchannel, the sample count is not incre-
mented, but the SSCH+RSCH count is incre-
mented.

Accesses to the measurement block by the
measurement-block-update facility, in order to
accumulate measurement data at the suspension
or completion of an I/O function, appear block-
concurrent to CPUs. CPU accesses to the block,
either fetches or stores, are inhibited during the
time the measurement-block update is being per-
formed by the measurement-block-update facility.

The measurement block has the following format:

 ┌───────────────┬────────────────┐

Word ð│SSCH+RSCH Count│ Sample Count │

 ├───────────────┴────────────────┤

 1│ Device-Connect Time │

 ├────────────────────────────────┤

 2│ Function-Pending Time │

 ├────────────────────────────────┤

 3│ Device-Disconnect Time │

 ├────────────────────────────────┤

 4│ Control-Unit-Queuing Time │

 ├────────────────────────────────┤

 5│ │

 │ │

6│ Reserved │

 │ │

 7│ │

 └────────────────────────────────┘

 ð 16 31

SSCH+RSCH Count:  Bits 0-15 of word 0 are
used as a binary counter. When either the
suspend function is performed or the primary inter-
ruption condition is recognized during the perform-
ance of a start function, the counter is
incremented by adding one in bit position 15, and
the measurement data is stored. The counter
wraps around from the maximum value of 65,535
to 0. The program is not alerted when counter
overflow occurs.

If the measurement-block-update mode is active
and the subchannel is enabled for measuring, the
SSCH+RSCH count is incremented even when
the lack of measured values for an individual start
function precludes the updating of the remaining
fields of the measurement block or when the
timing-facility bit for the subchannel is zero. The
SSCH+RSCH count is not incremented if the
measurement-block-update mode is inactive, if the
subchannel is not enabled for the measurement-
block update, or if subchannel-logout information
has been generated for the start function.

Sample Count:  Bits 16-31 of word 0 are used as
a binary counter. When the time-accumulation
fields following word 0 of the measurement block
are updated, the counter is incremented by adding
one in bit position 31. On some models, certain
conditions may preclude the measurement-block-
update facility obtaining the accrued values of the
measurement data for an individual start function,
even when the measurement-block-update mode
is active and the subchannel is enabled for that
mode. When the control-unit-queuing-
measurement facility is installed, the control unit
may also signal that it was not able to accumulate
an accurate queuing time. In these situations, the
sample-count field is not incremented.
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The counter wraps around from the maximum
value of 65,535 to 0. The program is not alerted
when counter overflow occurs. This field is not
updated if the channel-subsystem-timing facility is
not provided for the subchannel.

The System Library publication for the system
model specifies the conditions, if any, that pre-
clude the updating of the sample count and time-
accumulation fields of the measurement block.

Device-Connect Time:  Bits 0-31 of word 1
contain the accumulation of measured device-
connect-time intervals. The device-connect-time
interval (DCTI) is the sum of the time intervals
measured whenever the device is logically con-
nected to a channel path for purposes of trans-
ferring information between it and the channel
subsystem.

The time intervals are measured using a resol-
ution of 128 microseconds. The accumulated
value is modulo approximately 152.71 hours, and
the program is not alerted when an overflow
occurs. This field is not updated if (1) the
channel-subsystem-timing facility is not provided
for the subchannel, (2) the measurement-block-
update mode is inactive, or (3) any of the time
values accrued for the current start function has
been detected to exceed the internal storage in
which it was accrued.

Accumulation of device-connect-time intervals for
a subchannel and storing this data in the ESW are
not affected by whether the measurement-block-
update mode is active. (See “Device-Connect-
Time Measurement” on page 17-6.)

Function-Pending Time:  Bits 0-31 of word 2
contain the accumulated SSCH- and
RSCH-function-pending time. Function-pending
time is the time interval between acceptance of
the start function (or resume function if the sub-
channel is in the suspended state) at the sub-
channel and acceptance of the first command
associated with the initiation or resumption of
channel-program execution at the device.

When channel-program execution is suspended
because of a suspend flag in the first CCW of a
channel program, the suspension occurs prior to
transferring the first command to the device. In
this case, the function-pending time accumulated
up to that point is added to the value in the

function-pending-time field of the measurement
block. Function-pending time is not accrued while
the subchannel is suspended. Function-pending
time begins to be accrued again, in this case,
when RESUME SUBCHANNEL is subsequently
executed while the designated subchannel is in
the suspended state.

The function-pending-time interval is measured
using a resolution of 128 microseconds. The
accumulated value is modulo approximately
152.71 hours, and the program is not alerted
when an overflow occurs. This field is not
updated if the channel-subsystem-timing facility is
not provided for the subchannel.

Device-Disconnect Time:  Bits 0-31 of word 3
contain the accumulated device-disconnect time.
Device-disconnect time is the sum of the time
intervals measured whenever the device is log-
ically disconnected from the channel subsystem
while the subchannel is subchannel-active.

Device-disconnect time is not accrued while the
subchannel is in the suspended state. Device-
disconnect time begins to be accrued again, in
this case, on the first device disconnection after
channel-program execution has been resumed at
the device (the subchannel is again subchannel-
active).

The device-disconnect-time interval is measured
by using a resolution of 128 microseconds. The
accumulated value is modulo approximately
152.71 hours; the program is not alerted when an
overflow occurs. This field is not updated if the
channel-subsystem-timing facility is not provided
for the subchannel.

Control-Unit-Queuing Time:  Bits 0-31 of word 4
contain the accumulated control-unit-queuing time.
Control-unit-queuing time is the sum of the time
intervals measured by the control unit whenever
the device is logically disconnected from the
channel subsystem during an I/O operation while
the device is busy with an operation initiated from
a different system.

Control-unit-queuing time is not accrued while the
subchannel is in the suspended state. Control-
unit-queuing time may be accrued for the channel
program after the subchannel becomes
subchannel-active following a successful
resumption.
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The control-unit-queuing-time field is updated such
that bit 31 represents 128 microseconds. The
accumulated value is modulo approximately
152.71 hours; the program is not alerted when an
overflow occurs. This field is not updated if the
channel-subsystem-timing facility is not provided
for the subchannel, if the control-unit-queuing-
measurement facility is not installed, or if the
control unit does not provide a queuing time.

Reserved:  The remaining words of the 32-byte
measurement block, along with any words associ-
ated with facilities that are not provided by the
channel subsystem or the subchannel, are
reserved for future use. They are not updated by
the measurement-block-update facility.

 Measurement-Block Origin
The measurement-block origin specifies the abso-
lute address of the beginning of the measurement-
block area on a 32-byte boundary in main storage.
The measurement-block origin is passed from
general register 2 to the measurement-block-
update facility when SET CHANNEL MONITOR is
executed with bit 30 of general register 1 set to
one.

 Measurement-Block Key
Bits 0-3 of general register 1 form the four-bit
access key to be used for subsequent
measurement-block updates when SET CHANNEL
MONITOR causes the measurement-block-update
mode to be made active. The measurement-block
key is passed to the measurement-block-update
facility whenever the measurement-block origin is
passed.

 Measurement-Block Index
The measurement-block index is set at the sub-
channel by means of the execution of MODIFY
SUBCHANNEL. The measurement-block index
designates which 32-byte measurement block, rel-
ative to the measurement-block origin, is to be
used for accumulating the measurement data for
the designated subchannel. The location of the
measurement block of a subchannel is computed
by the measurement-block-update facility by
appending five rightmost zeros to the
measurement-block index of the subchannel and
adding the result to the measurement-block origin.
The result is the absolute address of the 32-byte
measurement block for that subchannel. When
the computed measurement-block address

exceeds 2óñ - 1, a measurement-block program-
check condition is recognized, and measurement-
block updating does not occur for the preceding
subchannel-active period.

Programming Note:  The initial value of the
measurement-block index is zero. The program is
responsible for setting the measurement-block
index to the proper value prior to enabling the
subchannel for the measurement-block-update
mode and making the mode active. To preclude
the possibility of unpredictable results for the
measured values in the measurement block, each
subchannel for which measured values are to be
accumulated must have a different value for its
measurement-block index.

 Measurement-Block-Update Mode
The measurement-block-update mode is made
active by executing SET CHANNEL MONITOR
when bit 30 of general register 1 is one. If bit 30
of general register 1 is zero when SET CHANNEL
MONITOR is executed, the mode is made inac-
tive. When the measurement-block-update mode
is inactive, no measurement values are accumu-
lated in main storage. When the measurement-
block-update mode is made active, the contents of
general register 2 are passed to the
measurement-block-update facility as the absolute
address of the measurement-block origin. Bits 0-3
of general register 1 are also passed to the
measurement-block-update facility as the access
key to be used when updating the measurement
block for each subchannel. When the
measurement-block-update mode is active, meas-
urements are accumulated in individual measure-
ment blocks within the measurement-block area
for subchannels whose measurement-block-
update-enable bit is one. (See “Measurement
Block” on page  17-3  for a description of the
measurement data that is accumulated.)

If the measurement-block-update mode is already
active when SET CHANNEL MONITOR is exe-
cuted, the values for the measurement-block origin
and measurement-block key that are used for a
subchannel enabled for measuring depend on
whether SET CHANNEL MONITOR is executed
prior to, during, or subsequent to execution of
START SUBCHANNEL for that subchannel. If
SET CHANNEL MONITOR is executed prior to
START SUBCHANNEL, the current measurement-
block origin and measurement-block key are in
control. If SET CHANNEL MONITOR is executed
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during or subsequent to execution of START SUB-
CHANNEL, it is unpredictable whether the
measurement-block origin and measurement-block
key that are in control are old or current.

 Measurement-Block-Update Enable
Bit 11, word 1, of the SCHIB is the measurement-
block-update-enable bit. This bit provides the
capability of controlling the accumulation of meas-
urement data for designated subchannels. The
initial value of this enable bit is zero. When
MODIFY SUBCHANNEL is executed with this
enable bit set to one in the SCHIB, the sub-
channel is enabled for the measurement-block-
update mode. If the measurement-block-update
mode is active, the measurement-block-update
facility begins accumulating measurement data for
the designated subchannel when START SUB-
CHANNEL is next executed for that subchannel.
Conversely, if MODIFY SUBCHANNEL is exe-
cuted with this enable bit set to zero, the sub-
channel is disabled for the
measurement-block-update mode, and no addi-
tional measurement data is accumulated for that
subchannel.

 Control-Unit-Queuing Measurement

The control-unit-queuing-measurement facility
allows the channel subsystem to accept queuing
times from control units and, in conjunction with
the measurement-block-update facility, to accumu-
late those times in the measurement block.

The System Library publication for the control-unit
model specifies its ability to supply queuing time.
If a control-unit model is capable of supplying
queuing time, the publication specifies the condi-
tions that prevent the control unit from accumu-
lating an accurate control-unit-queuing time.

 Time-Interval-Measurement Accuracy
On some models, when time intervals are to be
measured and condition code 0 is set for START
SUBCHANNEL (or RESUME SUBCHANNEL in
the case of a suspended subchannel), a period of
latency may occur prior to the initiation of the
function-pending time measurement. The System
Library publication for the system model specifies
the mean latency value and variance for each of
the measured time intervals.

Programming Notes:

1. Excessive delays may be encountered by the
channel subsystem when attempting to update
measurement data if the program is concur-
rently accessing the same measurement-block
area. A programming convention should
ensure that the storage block designated by
SET CHANNEL MONITOR is made read-only
while the measurement-block-update mode is
active.

2. To ensure that programs written to support
measurement functions are executed properly,
the program should initialize all the measure-
ment blocks to zeros prior to making the
measurement-block-update mode active. Only
zeros should appear in the reserved and
unused words of the measurement blocks.

3. When the incrementing of an accumulated
value causes a carry to be propagated out of
bit position 0, the carry is ignored, and accu-
mulating continues from zero on.

 Device-Connect-Time
Measurement
The device-connect-time-measurement facility pro-
vides the program with the capability of retrieving
the length of time that a device is actively commu-
nicating with the channel subsystem while exe-
cuting a channel program. The measured length
of time that the device is actively communicating
on a channel path during the execution of a
channel program is called the device-connect-time
interval (DCTI). If the channel-subsystem-timing
facility is available for the subchannel, the DCTI
value is passed to the program in the extended-
status word (ESW) at the completion of the opera-
tion when TEST SUBCHANNEL (1) clears the
primary interruption condition or (2) clears the
intermediate interruption condition alone while the
subchannel is suspended. The DCTI value
passed in the ESW pertains to the previous
subchannel-active period. The storing of the DCTI
value in the ESW is under program control by
means of the measurement-mode-control bit for
device-connect time as specified by the execution
of SET CHANNEL MONITOR, and by the device-
connect-time-measurement-enable bit as specified
by the execution of MODIFY SUBCHANNEL.
However, the DCTI value is not stored in the ESW
if the start function initiated by START SUB-
CHANNEL is terminated because of an error con-
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dition that is described by subchannel logout (see
“Extended-Status Format 0” on page 16-32). In
this case, the extended-status-word-format bit of
the SCSW is stored as one, indicating that the
ESW contains subchannel-logout information
describing the error condition. If the accrued
DCTI value exceeded 8.388608 seconds during
the previous subchannel-active period, then the
maximum value (FFFF hex) is passed in the ESW.

 Device-Connect-Time-Measurement
Mode
The device-connect-time-measurement mode is
made active by executing SET CHANNEL
MONITOR when bit 31 of general register 1 is
one. If bit 31 of general register 1 is zero when
SET CHANNEL MONITOR is executed, the mode
is made inactive, and DCTIs are not passed to the
program. If the channel-subsystem-timing facility
is available for the subchannel, the device-
connect-time-measurement mode is active, and
the subchannel is enabled for the mode, the DCTI
value is passed to the program in the ESW stored
when TEST SUBCHANNEL (1) clears the
primary-interruption condition with no subchannel-
logout information indicated in the SCSW
(extended-status-word-format bit is zero) or
(2) clears the intermediate-status condition alone
while the subchannel is suspended.

If a start function is currently being executed with
a subchannel enabled for the device-connect-time-
measurement mode when SET CHANNEL
MONITOR makes this mode active for the channel
subsystem, the value of the DCTI stored under the
appropriate conditions may be zero, a partial
result, or the full and correct value, depending on
the model and the progress of the start function at
the time the mode was activated.

Provision of the DCTI value in the measurement-
block area is not affected by whether the device-
connect-time-measurement mode is active.

 Device-Connect-Time-Measurement
Enable
Bit 12, word 1, of the SCHIB is the device-
connect-time measurement-mode enable bit. This
bit provides the program with the capability of con-
trolling the storing of DCTI values for a sub-
channel when the

device-connect-time-measurement mode is active.
The initial value of this enable bit is zero. When
this enable bit is one in the SCHIB and MODIFY
SUBCHANNEL is executed, the subchannel is
enabled for the device-connect-time-measurement
mode. If the device-connect-time-measurement
mode is active, the device-connect-time-
measurement facility begins providing DCTI values
for the subchannel when START SUBCHANNEL
is next executed for the subchannel. In this situ-
ation, the DCTI values are provided in the ESW
(see “Extended-Status Format 2” on page 16-38).
Conversely, if MODIFY SUBCHANNEL is exe-
cuted with this enable bit set to zero, the sub-
channel is disabled for the
device-connect-time-measurement mode, and no
further DCTI values are passed to the program for
that subchannel.

Signals and Resets
During system operation, it may become neces-
sary to terminate an I/O operation or to reset
either the I/O system or a portion of the I/O
system. (The I/O system consists of the channel
subsystem plus all of the attached control units
and devices.) Various signals and resets are pro-
vided for this purpose. Three signals are provided
for the channel subsystem to notify an I/O device
to terminate an operation or perform a reset func-
tion or both. Two resets are provided to cause
the channel subsystem to reinitialize certain infor-
mation contained either at the I/O device or at the
channel subsystem.

 Signals
The request that the channel subsystem initiate a
signaling sequence is made by one of the fol-
lowing:

1. The program executing the CLEAR SUB-
CHANNEL, HALT SUBCHANNEL, or RESET
CHANNEL PATH instruction

2. The I/O device signaling I/O-error alert

3. The channel subsystem itself upon detecting
certain error conditions or equipment malfunc-
tions

The three signals are the halt signal, the clear
signal, and the reset signal.
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 Halt Signal
The halt signal is provided so the channel sub-
system can terminate an I/O operation. The halt
signal is issued by the channel subsystem as part
of the halt function performed subsequent to the
execution of HALT SUBCHANNEL. The halt
signal is also issued by the channel subsystem
when certain error conditions are encountered.

For the parallel-I/O-interface type of channel path,
the halt signal results in the channel subsystem
using the interface-disconnect sequence control
defined in the System Library publication IBM
System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974.

For the serial-I/O-interface type of channel path,
the halt signal results in the channel subsystem
using the cancel function defined in the System
Library publication IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202.

 Clear Signal
The clear signal is provided so the channel sub-
system can terminate an I/O operation and reset
status and control information contained at the
device. The clear signal is issued as part of the
clear function performed subsequent to the exe-
cution of CLEAR SUBCHANNEL. The clear signal
is also issued by the channel subsystem when
certain error conditions or equipment malfunctions
are detected by the I/O device or the channel sub-
system.

For the parallel-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset sequence control defined
in the System Library publication IBM System/360
and System/370 I/O Interface Channel to Control
Unit OEMI, GA22-6974.

For the serial-I/O-interface type of channel path,
the clear signal results in the channel subsystem
using the selective-reset function defined in the
System Library publication IBM Enterprise
Systems Architecture/390 ESCON I/O Interface,
SA22-7202.

If an I/O operation is in progress at the device and
the device is actively communicating over a
channel path in the execution of that I/O operation
when a clear signal is received on that channel
path, the device disconnects from that channel

path upon receiving the clear signal. Data transfer
and any operation using the facilities of the control
unit are immediately concluded, and the I/O
device is not necessarily positioned at the begin-
ning of a block. Mechanical motion not involving
the use of the control unit, such as rewinding
magnetic tape or positioning a disk-access mech-
anism, proceeds to the normal stopping point, if
possible. The device may appear busy until termi-
nation of the mechanical motion or the inherent
cycle of operation, if any, whereupon it becomes
available. Status information in the device and
control unit is reset, but an interruption condition
may be generated upon the completion of any
mechanical operation.

 Reset Signal
The reset signal is provided so the channel sub-
system can reset all I/O devices on a channel
path. The reset signal is issued by the channel
subsystem as part of the channel-path-reset func-
tion performed subsequent to the execution of
RESET CHANNEL PATH. The reset signal is
also issued by the channel subsystem as part of
the I/O-system-reset function.

For the parallel-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset sequence control defined
in the System Library publication IBM System/360
and System/370 I/O Interface Channel to Control
Unit OEMI, GA22-6974.

For the serial-I/O-interface type of channel path,
the reset signal results in the channel subsystem
using the system-reset function defined in the
System Library publication IBM Enterprise
Systems Architecture/390 ESCON I/O Interface,
SA22-7202.

 Resets
Two resets are provided so the channel sub-
system can reinitialize certain information con-
tained at either the I/O device or the channel
subsystem. The request that the channel sub-
system initiate one of the reset functions is made
by one of the following:

1. The program executing the RESET CHANNEL
PATH instruction

2. The operator activating a system-reset-clear
or system-reset-normal key or a load-clear or
load-normal key
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3. The channel subsystem itself upon detecting
certain error conditions or equipment malfunc-
tions

The resets are channel-path reset and I/O-system
reset.

 Channel-Path Reset
The channel-path-reset facility provides a mech-
anism to reset certain indications that pertain to a
designated channel path at all associated sub-
channels. Channel-path reset occurs when the
channel subsystem performs the channel-path-
reset function initiated by RESET CHANNEL
PATH. (See “RESET CHANNEL PATH” on
page 14-7.) All internal indications of dedicated
allegiance, control unit busy, and device busy that
pertain to the designated channel path are cleared
in all subchannels, and reset is signaled on that
channel path. The receipt of the reset signal by
control units attached to that channel path causes
all operations in progress and all status, mode set-
tings, and allegiance pertaining to that channel
path of the control unit and its attached devices to
be reset. (See also the description of the system-
reset-signal actions in “I/O-System Reset.”)

The results of the channel-path-reset function on
the designated channel path are communicated to
the program by means of a subsequent machine-
check-interruption condition generated by the
channel subsystem (see “Channel-Subsystem
Recovery” on page 17-17).

 I/O-System Reset

The I/O-system-reset function is performed when
the channel subsystem is powered on, when initial
program loading is initiated manually (see “Initial
Program Loading” on page 17-13), and when the
system-reset-clear or system-reset-normal key is
activated. The I/O-system-reset function cannot
be initiated under program control; it must be initi-
ated manually. I/O-system reset may fail to com-
plete due to malfunctions detected at the channel
subsystem or at a channel path. I/O-system reset
is performed as part of subsystem reset, which
also resets all floating interruption requests,
including pending I/O interruptions. (See “Sub-
system Reset” on page 4-38.) Detailed
descriptions of the effects of I/O-system reset on
the various components of the I/O system appear
later in this chapter.

I/O-system reset provides a means for placing the
channel subsystem and its attached I/O devices in
the initialized state. I/O-system reset affects only
the channel-subsystem configuration in which it is
performed, including all channel-subsystem com-
ponents configured to that channel subsystem.
I/O-system reset has no effect on any system
components that are not part of the channel-
subsystem configuration that is being reset. The
effects of I/O-system reset on the configured com-
ponents of the channel subsystem are described
in the following sections.

 Channel-Subsystem State: I/O-system reset
causes the channel subsystem to be placed in the
initialized state, with all the channel-subsystem
components in the states described in the fol-
lowing sections. All operations in progress are
terminated and reset, and all indications of prior
conditions are reset. These indications include
status information, interruption conditions (but not
pending interruptions), dedicated-allegiance condi-
tions, pending channel reports, and all internal
information regarding prior conditions and opera-
tions. In the initialized state, the channel sub-
system has no activity in progress and is ready to
perform the initial-program-loading (IPL) function
or respond to I/O instructions, as described in
Chapter 14, “I/O Instructions.”

Control Units and Devices:  I/O-system reset
causes a reset signal to be sent on all configured
channel paths, including those which are not phys-
ically available (as indicated by the PAM bit being
zero) because of a permanent error condition
detected earlier. When the reset signal is
received by a control unit, control-unit functions in
progress, control-unit status, control-unit alle-
giance, and control-unit modes for the resetting
channel path are reset. Device operations in
progress, device status, device allegiance, and the
device mode for the resetting channel path are
also reset. Control-unit and device mode, alle-
giance, status, and I/O functions in progress for
other channel paths are not affected.

For devices that are operating in single-path
mode, an operation can be in progress for, at
most, one channel path. Therefore, if the reset
signal is received on that channel path, the opera-
tion in progress is reset. Devices that have the
dynamic-reconnection feature and are operating in
multipath mode, however, have the capability to
establish an allegiance to a group of channel
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paths during an I/O operation, where all the
channel paths of the path group are configured to
the same channel subsystem. If an operation is in
progress for a device that is operating in multipath
mode and the reset signal is received on one of
the channel paths of that path group, then the
operation in progress is reset for the resetting
channel path only. Although the operation in
progress cannot continue on the resetting channel
path, it can continue on the other channel paths of
the path group, subject to the following
restrictions:

1. If the device is actively communicating with
the channel subsystem on a channel path
when it receives the reset signal on that
channel path, then the operation is reset
unconditionally, regardless of path groups.

2. If the operation is in progress in multipath
mode but the path group consists only of the
resetting path, then the operation is reset.

3. Except as noted in item 2, if the operation in
progress is currently in a disconnected state
(device not actively communicating with the
channel subsystem) or is active on another
channel path of a path group, system reset
has no effect upon continued execution of the
operation.

A control unit is completely reset after the reset
signal has been received on all its channel paths,
provided no new activity is initiated at the control
unit between the receipt of the first and last reset
signal. “Completely reset” means that the current
operation, if any, at the control unit is terminated
and that control-unit allegiance, control-unit status,
and the control-unit mode, if any, are reset.

An I/O device is completely reset after the reset
signal has been received on all channel paths of
all control units by which the device is accessible,
provided no new activity is initiated at the device
between the receipt of the first and last reset
signal. “Completely reset” means that the current
operation, if any, at the device is terminated and
that device allegiance, device status, and the
device mode are reset.

In summary, system reset always causes an oper-
ation in progress to be reset for the channel path
on which the reset signal is received. If the reset-
ting channel path is the only channel path for
which the operation is in progress, then the opera-
tion is completely reset. If a device is actively

communicating on a channel path over which the
reset signal is received, then the operation in
progress is unconditionally and completely reset.

The reset signal is not received by control units
and devices on channel paths from which the
control unit has been partitioned. A control unit is
partitioned from a channel path by means of an
enable/disable switch on the control unit for each
channel path by which it is accessible. Multi-
tagged, unsolicited status, if any, remains pending
at the control unit for such a channel path in this
case. However, from the point of view of the
program, the control unit and device appear to be
completely reset if the reset signal is received by
the control unit on all the channel paths by which
it is currently accessible.

The resultant reset state of individual control units
and devices is described in the System Library
publication for the control unit.

Channel Paths:  I/O-system reset causes a reset
signal to be sent on all configured channel paths
and causes the channel subsystem to be placed
in the reset and initialized state, as described in
the previous sections. As a result of these
actions, all communication between the channel
subsystem and its attached control units and
devices is terminated and the components reset,
and all configured channel paths are made
quiescent or are deconfigured.

Subchannels:  I/O-system reset causes all oper-
ations on all subchannels to be concluded. Status
information, all interruption conditions (but not
pending interruptions), dedicated-allegiance condi-
tions, and internal indications regarding prior con-
ditions and operations at all subchannels are
reset, and all valid subchannels are placed in the
initialized state.

In the initialized state, the subchannel parameters
of all valid subchannels have their initial values.
The initial values of the following subchannel
parameters are zeros:

 � Interruption parameter
� I/O-interruption subclass code (ISC)

 � Enabled
 � Limit mode
 � Measurement mode
 � Multipath mode
 � Path-not-operational mask
 � Last-path-used mask
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 � Measurement-block index
 � Concurrent sense

The initial values of the following subchannel
parameters are assigned as part of the installation
procedure for the device associated with each
valid subchannel:

 � Timing facility
 � Device number
� Logical-path mask (same value as path-

installed mask)
 � Path-installed mask
 � Path-available mask
� Channel-path ID 0-7

The values assigned may depend upon the partic-
ular system model and the configuration; depend-
encies, if any, are described in the System Library
publication for the system model. Programming
considerations may further constrain the values
assigned.

The initial value of the path-operational mask is all
ones.

The device-number-valid bit is one for all subchan-
nels having an assigned I/O device.

The initial value of the model-dependent area of
the subchannel-information block is described in
the System Library publication for the system
model.

The initial value of the subchannel-status word
and extended-status word is all zeros.

The initialized state of the subchannel is the state
specified by the initial values for the subchannel
parameters described above. The description of
the subchannel parameters can be found in
“Subchannel-Information Block” on page 15-1;
“Subchannel-Status Word” on page 16-6; and in
“Extended-Status Word” on page 16-32.

 Channel-Path-Reset Facility: I/O-system reset
causes the channel-path-reset facility to be reset.
A channel-path-reset function initiated by RESET
CHANNEL PATH, either pending or in progress, is
overridden by I/O-system reset. The machine-
check-interruption condition, which normally
signals the completion of a channel-path-reset
function, is not generated for a channel-path-reset
function that is pending or in progress at the time
I/O-system reset occurs.

 Address-Limit-Checking Facility: I/O-system
reset causes the address-limit-checking facility to
be reset. The address-limit value is initialized to
all zeros and validated.

 Channel-Subsystem-Monitoring Facilities: 
I/O-system reset causes the channel-subsystem-
monitoring facilities to be reset. The
measurement-block-update mode and the device-
connect-time-measurement mode, if active, are
made inactive. The measurement-block origin and
the measurement-block key are both initialized to
zeros and validated.

Pending Channel Reports:  I/O-system reset
causes pending channel reports to be reset.

Channel-Subsystem Timer:  I/O-system reset
does not necessarily affect the contents of the
channel-subsystem timer. In models that provide
channel-subsystem-timer checking, I/O-system
reset may cause the channel-subsystem timer to
be validated.

Pending I/O Interruptions:  I/O-system reset
does not affect pending I/O interruptions.
However, during subsystem reset, I/O interruptions
are cleared concurrently with the performance of
I/O-system reset. (See “Subsystem Reset” on
page 4-38.)
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┌────────────────────────────────────────┬─────────────────────────────────────┐

│ Area Affected │ Effect of I/O-System Resetñ │

├────────────────────────────────────────┼─────────────────────────────────────┤

│ Channel-subsystem state │ Reset and initialized │

│ Control units and devices │ Reset │

│ Channel paths │ Quiescent or deconfiguredò │

│ Subchannels │ Reset and initialized │

│ Interruption parameter │ Zerosó │

│ I/O-interruption subclass code (ISC) │ Zerosó │

│ Enabled bit │ Zeroó │

│ Limit-mode bits │ Zerosó │

│ Timing-facility bit │ Installed valueó │

│ Multipath-mode bit │ Zeroó │

│ Measurement-mode bits │ Zerosó │

│ Device-number-valid bit │ Installed valueó │

│ Device number │ Installed valueó │

│ Logical-path mask │ Equal to path-installed mask valueó │

│ Path-not-operational mask │ Zerosó │

│ Last-path-used mask │ Zerosó │

│ Path-installed mask │ Installed valueó │

│ Measurement-block index │ Zerosó │

│ Path-operational mask │ Onesó │

│ Path-available mask │ Installed valueó ô │

│ Channel-path ID ð-7 │ Installed valueó │

│ Concurrent-sense bit │ Zeroó │

│ Subchannel-status word │ Zerosó │

│ Extended-status word │ Zerosó │

│ Model-dependent area │ Model-dependentó │

│ Channel-path-reset facility │ Reset │

│ Address-limit-checking facility │ Reset and initialized │

│ Address-limit value │ Zerosó │

│ Channel-subsystem-monitoring facility │ Reset and initialized │

│ Measurement-block-update mode │ Inactiveó │

│ Device-connect-time-measurement mode │ Inactiveó │

│ Measurement-block origin │ Zerosó │

│ Measurement-block key │ Zerosó │

│ Pending channel-report words │ Cleared │

│ Channel-subsystem timer │ Unchanged/validated │

├────────────────────────────────────────┴─────────────────────────────────────┤

│Explanation: │

│ │

│ ñ For a detailed description of the effect of I/O-system reset on each │

│ area, see the text. │

│ │

│ ò Channel-path malfunctions may cause a channel path to be deconfigured. │

│ │

│ ó Initialized value. │

│ │

│ ô Also subject to model-dependent configuration controls, if any. │

└──────────────────────────────────────────────────────────────────────────────┘

Figure 17-1. Summary of I/O-System-Reset Actions
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Externally Initiated Functions
I/O-system reset, which is an externally initiated
function, is described in “I/O-System Reset” on
page 17-9.

Initial Program Loading
Initial program loading (IPL) provides a manual
means for causing a program to be read from a
designated device and for initiating execution of
that program.

Some models may provide additional controls and
indications relating to IPL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to desig-
nate an input device and by subsequently
activating the load-clear or load-normal key.

Activating the load-clear key causes a clear reset
to be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU
reset to be propagated to all other CPUs in the
configuration, and a subsystem reset to be per-
formed on the remainder of the configuration.

In the loading part of the operation, after the
resets have been performed, this CPU enters the
load state. This CPU does not necessarily enter
the stopped state during performance of the reset.
The load indicator is on while the CPU is in the
load state.

Subsequently, if conditions allow, a read operation
is initiated from the designated input device and
associated subchannel. The read operation is
executed as if a START SUBCHANNEL instruc-
tion were executed that designated (1) the sub-
channel corresponding to the device number
specified by the load-unit-address controls and
(2) an ORB containing all zeros, except for a byte
of all ones in the logical-path mask field. The
ORB parameters are interpreted by the channel
subsystem as follows:

Interruption parameter:
all zeros

Subchannel key:
all zeros

Suspend control:
zero (suspension not allowed)

CCW format:
zero

CCW prefetch:
zero (prefetching not allowed)

Initial-status-interruption control:
zero (no request)

Address-limit-checking control:
zero (no checking)

Suppress suspended interruption:
zero (suppression not allowed)

Logical-path mask:
ones (all channel paths logically available)

Incorrect-length-suppression mode:
zero (ignored because format-0 CCWs are
specified)

Channel-program address:
absolute address 0

The first CCW to be executed may be either an
actual CCW stored at absolute location 0, or the
first CCW to be executed may be implied. In
either case, the effect is as if a format-0 CCW
were executed that had this format:

Loc.

 ┌────────┬─────────────────────────┐

 ðð │ðððððð1ð│ðððððððð ðððððððððððððððð│

 ├────────┼────────┬────────────────┤

 ð4 │ð11ððððð│////////│ððððððððððð11ððð│

 └────────┴────────┴────────────────┘

 ð 8 16 31

In the illustration above, the CCW specifies a read
command with the modifier bits zeros, a data
address of 0, a byte count of 24, the chain-
command flag one, the suppress-incorrect-length-
indication flag one, the chain-data flag zero, the
skip flag zero, the program-controlled-interruption
(PCI) flag zero, the indirect-data-address (IDA)
flag zero, and the suspend flag zero. The CCW
fetched, as a result of command chaining, from
location 8 or 16, as well as any subsequent CCW
in the IPL sequence, is interpreted the same as a
CCW in any I/O operation, except that any PCI
flags that are specified in the IPL channel program
are ignored.

At the time the subchannel is made start-pending
for the IPL read, it is also enabled, which ensures
proper handling of subsequent status from the
device by the channel subsystem and facilitates
subsequent I/O operations using the IPL device.
(Except for the subchannel used by the IPL I/O
operation, each subchannel must first be made
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enabled by MODIFY SUBCHANNEL before it can
accept a start function or any status from the
device.)

When the IPL subchannel becomes status-
pending for the last operation of the IPL channel
program, no I/O-interruption condition is gener-
ated. Instead, the subsystem ID is stored in abso-
lute locations 184-187, zeros are stored in
absolute locations 188-191, and the subchannel is
cleared of the pending status as if TEST SUB-
CHANNEL had been executed, but without storing
information usually stored in an IRB. If the
subchannel-status field is all zeros and the device-
status field contains only the channel-end indi-
cation, with or without the device-end indication,
the IPL I/O operation is considered to be com-
pleted successfully. If the device-end status for
the IPL I/O operation is provided separately after
channel-end status, it causes an I/O-interruption
condition to be generated. When the IPL I/O
operation is completed successfully, a new PSW
is loaded from absolute locations 0-7. If the PSW
loading is successful and if no malfunctions are
recognized which preclude the completion of IPL,
then the CPU leaves the load state, and the load
indicator is turned off. If the rate control is set to
the process position, the CPU enters the operating
state, and CPU operation proceeds under control
of the new PSW. If the rate control is set to the
instruction-step position, the CPU enters the
stopped state, with the manual indicator on, after
the new PSW has been loaded.

If the IPL I/O operation or the PSW loading is not
completed successfully, the CPU remains in the
load state, and the load indicator remains on.

IPL does not complete when any of the following
occurs:

� No subchannel contains a valid device
number equal to the IPL device number speci-
fied by the load-unit-address controls.

� A malfunction is detected in the CPU, main
storage, or channel subsystem which pre-
cludes the completion of IPL.

� Unsolicited alert status is presented by the
device subsequent to the subchannel
becoming start-pending for the IPL read and
before the IPL subchannel becomes
subchannel-active. The IPL read operation is
not initiated in this case.

� The IPL device appeared not operational on
all available channel paths to the device, or
there were no available channel paths.

� The IPL device presented a status byte con-
taining indications other than channel end,
device end, status modifier, control-unit end,
control unit busy, device busy, or retry status
during the IPL I/O operation. Whenever
control-unit end, control unit busy, or device
busy is presented in the status byte, normal
path-management actions are taken.

� A subchannel-status indication other than PCI
was generated during the IPL I/O operation.

� The PSW loaded from absolute locations 0-7
has a PSW-format error of the type that is
recognized early.

Except in the cases of no corresponding sub-
channel for the device number entered or a
machine malfunction, the subsystem ID of the IPL
device is stored in absolute locations 184-187;
otherwise, the contents of these locations are
unpredictable. In all cases of unsuccessful IPL,
the contents of absolute locations 0-7 are unpre-
dictable.

Subsequent to a successful IPL, the subchannel
parameters contain the normal values as if an
actual START SUBCHANNEL had been executed,
designating the ORB as described above.

Programming Notes:

1. The information read and placed at absolute
locations 8-15 and 16-23 may be used as
CCWs for reading additional information
during the IPL I/O operation: the CCW at
location 8 may specify reading additional
CCWs elsewhere in storage, and the CCW at
absolute location 16 may specify the transfer-
in-channel command, causing transfer to
these CCWs.

2. The status-modifier bit has its normal effect
during the IPL I/O operation, causing the
channel subsystem to fetch and chain to the
CCW whose address is 16 higher than that of
the current CCW. This applies also to the
initial chaining that occurs after completion of
the read operation specified by the implicit
CCW.

3. The PSW that is loaded at the completion of
the IPL operation may be provided by the first
eight bytes of the IPL I/O operation or may be
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placed at absolute locations 0-7 by a subse-
quent CCW.

4. Activating the load-normal key implicitly speci-
fies the use of the first 24 bytes of main
storage and the eight bytes at absolute
locations 184-191. Since the remainder of the
IPL program may be placed in any part of
storage, it is possible to preserve such areas
of storage as may be helpful in debugging or
recovery. The IPL program should not be
placed in the low 512 bytes of storage since
that area is reserved as described in a pro-
gramming note under “Compatibility among
ESA/390, ESA/370, 370-XA, and System/370”
on page 1-9. When the load-clear key is acti-
vated, the IPL program starts with a cleared
machine in a known state, except that infor-
mation on external storage remains
unchanged.

5. When the PSW at absolute location 0 has bit
14 set to one, the CPU is placed in the wait
state after the IPL operation is completed; at
that point, the load and manual indicators are
off, and the wait indicator is on.

Reconfiguration of the I/O
System
Reconfiguration of the I/O system is handled in a
model-dependent manner. For example, changes
may be made under program control, by using the
model-dependent DIAGNOSE instruction; or man-
ually, by using system-operator configuration con-
trols; or by using a combination of DIAGNOSE
and manual controls. The method used depends
on the system model. The System Library publi-
cation for the system model specifies how the
changes are made. The partitioning of channel
paths because of reconfiguration is indicated by
the setting of the PAM bits in the SCHIB stored
when STORE SUBCHANNEL is executed (see
“Path-Available Mask (PAM)” on page 15-7).

 Status Verification
The status-verification facility provides the channel
subsystem with a means of indicating that a
device has presented a device-status byte that
has valid CBC but that contained a combination of
bits that was inappropriate when the status byte
was presented to the channel subsystem. The
indication provided to the program in the ESW by
the channel subsystem is called device-status

check. When the channel subsystem recognizes
a device-status-check condition, an interface-
control-check condition is also recognized. For a
summary of the status combinations considered to
be appropriate or inappropriate, see the System
Library publications IBM Enterprise Systems
Architecture/390 ESCON I/O Interface,
SA22-7202, and IBM System/360 and System/370
I/O Interface Channel to Control Unit OEMI,
GA22-6974.

 Address-Limit Checking
The address-limit-checking facility provides a
storage-protection mechanism for I/O data
accesses to storage that augments key-controlled
protection. When address-limit checking is used,
absolute storage is divided into two parts by a
program-controlled address-limit value. I/O data
accesses can then be optionally restricted to only
one of the two parts of absolute storage by the
limit mode at each subchannel. The address-limit
constraint operates at a higher priority than key-
controlled protection so that I/O data accesses to
the protected part of main storage are prevented
even when the subchannel key is zero or matches
the key in storage.

The address-limit-checking facility consists of the
following elements:

� The I/O instruction SET ADDRESS LIMIT.

� The limit mode at each subchannel.

� The address-limit-checking-control bit in the
ORB.

Execution of SET ADDRESS LIMIT passes the
contents of general register 1 to the address-limit-
checking facility to be used as the address-limit
value. Bits 0 and 16-31 of general register 1 must
contain zeros to designate a valid absolute
address on a 64K-byte boundary; otherwise, an
operand exception is recognized, and execution of
the instruction is suppressed.

The limit mode at each subchannel indicates the
manner in which address-limit checking is to be
performed. The limit mode is set by placing the
desired value in bits 9-10 of word 1 in the SCHIB
and executing MODIFY SUBCHANNEL. The set-
tings of these bits in the SCHIB have the following
meanings:

00 No limit checking (initialized value).
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01 Data address must be equal to or greater
than the current address limit.

10 Data address must be less than the current
address limit.

11 Reserved. This combination of limit-mode
bits causes an operand exception to be
recognized when MODIFY SUBCHANNEL is
executed.

The address-limit-checking-control bit in the ORB
(bit 11 of word 1) specifies whether address-limit
checking is to be used for the start function that is
accepted when execution of START SUB-
CHANNEL causes the contents of the ORB to be
passed to the subchannel. If the address-limit-
checking-control bit is zero when the contents of
the ORB are passed, address-limit checking is not
specified for that start function. If the bit is one,
address-limit checking is specified and is under
the control of the current address limit and the
current setting of the limit mode at the sub-
channel.

During the performance of the start function, an
attempt to access an absolute storage location for
data that is protected by an address limit (either
high or low) is recognized as an address-limit vio-
lation, and the access is not allowed. A program-
check condition is recognized, and
channel-program execution is terminated, just as
when an attempt is made to access an invalid
address.

 Configuration Alert
The configuration-alert facility provides a detection
mechanism for devices that are not associated
with a subchannel in the configuration. The
configuration-alert facility notifies the program by
means of a channel report that a device which is
not associated with a subchannel has attempted
to communicate with the program.

Each device must be assigned to a subchannel
during an installation procedure; otherwise, the
channel subsystem is unable to generate an
I/O-interruption condition for the device. This is
because the I/O-interruption code contains the
subchannel number which identifies the particular
device causing the I/O-interruption condition.

When a device that is not associated with a sub-
channel attempts to communicate with the channel
subsystem, the configuration-alert facility gener-
ates a channel report in which the unassociated
device is identified. For a description of the
means by which the program is notified of a
pending channel report and how the information in
the channel report is retrieved, see “Channel
Report” on page 17-17.

 Incorrect-Length-Indication
Suppression
The incorrect-length-indication-suppression facility
allows the indication of incorrect length for imme-
diate operations to be suppressed in the same
manner when using format-1 CCWs as when
using format-0 CCWs or CCWs in the System/370
mode. When the incorrect-length-indication-
suppression facility is installed, bit 24, word 1 of
the ORB specifies whether the channel subsystem
is to suppress the indication of incorrect length for
an immediate operation when format-1 CCWs are
used or whether this indication will remain under
the control of the SLI flag of the current CCW (as
is the case for CCWs not executed as immediate
operations). This bit provides the capability for a
channel program to operate in the same manner
regarding the indication of incorrect length regard-
less of whether format-0 or format-1 CCWs are
used.

 Concurrent Sense
The concurrent-sense facility provides a mech-
anism whereby sense information that is provided
by the device can be presented by the channel
subsystem to the program in the same IRB that
contains the unit-check indication when the sub-
channel is in concurrent-sense mode. Concurrent-
sense mode is made active at a subchannel for
which the concurrent-sense facility is applicable
when MODIFY SUBCHANNEL is executed and bit
31 of word 6 of the SCHIB operand is set to one.
The concurrent-sense facility is applicable to sub-
channels that are associated with channel paths
by which the channel subsystem can attempt to
retrieve sense information from the device without
requiring program intervention.
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 Channel-Subsystem Recovery
The channel subsystem provides a recovery
mechanism for extensive detection of malfunctions
and other conditions to ensure the integrity of
channel-subsystem operation and to achieve auto-
matic recovery of some malfunctions. Various
reporting methods are used by the channel-
subsystem recovery mechanism to assist in
program recovery, maintenance, and repair.

The method used to report a particular malfunction
or other condition is dependent upon the severity
of the malfunction or other condition and the
degree to which the malfunction or other condition
can be isolated. A malfunction or other condition
in the channel subsystem may be indicated to the
program by information being stored by one of the
following methods:

1. Information is provided in the IRB describing a
condition that has been recognized by either
the channel subsystem or device that must be
brought to the attention of the program. Gen-
erally, this information is made available to the
program by the execution of TEST SUB-
CHANNEL, which is usually executed in
response to the occurrence of an I/O inter-
ruption. (See “Interruption Action” on
page 16-5, for a definition of the information
stored, as well as Chapter 6, “Interruptions”
on page 6-1.)

2. Information is provided in a channel report
describing a machine malfunction affecting the
identified facility within the channel subsystem.
This information is made available to the
program by the execution of STORE
CHANNEL REPORT WORD, which is usually
executed in response to the occurrence of a
machine-check interruption. (See Chapter 11,
“Machine-Check Handling” on page  11-1 for
a description of the machine-check-
interruption mechanism and the contents of
the machine-check-interruption code.)

3. Information is provided in a channel report
describing a malfunction or other condition
affecting a collection of channel-subsystem
facilities. This information is made available
to the program as indicated in item 2.

4. Information is provided in the machine-check-
interruption code (MCIC) describing a mal-
function affecting the continued operational
integrity of the channel subsystem. (See

“Channel-Subsystem Damage” on
page 11-19.)

5. Information is provided in the MCIC describing
a malfunction affecting the continued opera-
tional integrity of a process or of the system.
(See “Instruction-Processing Damage” on
page 11-17 and “System Damage” on
page 11-16.)

Channel reports are used to report malfunctions or
other conditions only when the use of the
I/O-interruption facility is not appropriate and in
preference to reporting channel-subsystem
damage, instruction-processing damage, or
system damage.

 Channel Report
When a malfunction or other condition affecting
elements of the channel subsystem has been
recognized, a channel report is generated. Exe-
cution of recovery actions by the program or by
external means may be required to gain recovery
from the error condition. The channel report indi-
cates the source of the channel report and the
recovery state to the extent necessary for deter-
mining the proper recovery action. A channel
report consists of one or more channel-report
words (CRWs) that have been generated from an
analysis of the malfunction or other condition. The
inclusion of two or more CRWs within a channel
report is indicated by the chaining flag being
stored as one in all of the CRWs of the channel
report except the last one in the chain.

When a channel report is made pending by the
channel subsystem for retrieval and analysis by
the program (by means of the execution of
STORE CHANNEL REPORT WORD), a malfunc-
tion or other condition that affects the normal
operation of one or more of the channel-
subsystem facilities has been recognized. If the
channel report that is made pending is an initial
channel report, a machine-check-interruption con-
dition is generated that indicates one or more
CRWs are pending at the channel subsystem. A
channel report is initial either if it is the first
channel report to be generated after the most
recent I/O-system reset or if no previously gener-
ated reports are pending and the last STORE
CHANNEL REPORT WORD instruction that was
executed resulted in the setting of condition code
1, indicating that no channel report was pending.
When the machine-check interruption occurs and
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bit 9 of the machine-check-interruption code
(channel report pending) is one, a channel report
is pending. If the program clears the first CRW of
a channel report before the associated machine-
check interruption has occurred, some models
may reset the machine-check-interruption condi-
tion, and the associated machine-check inter-
ruption does not occur. A machine-check
interruption indicating that a channel report is
pending occurs only if the machine-check mask
(PSW bit 13) and the channel-report-pending sub-
class mask (bit 3 of control register 14) are both
ones.

If the channel report that is made pending is not
an initial channel report, a machine-check-
interruption condition is not generated. The CRW
that is presented to the program in response to
the first STORE CHANNEL REPORT WORD
instruction that is executed after a machine-check
interruption may or may not be part of the initial
channel report that caused the machine-check
condition to be generated. A pending channel-
report word is cleared by any CPU executing
STORE CHANNEL REPORT WORD, regardless
of whether a machine-check interruption has
occurred in any CPU. If a CRW is not pending
and STORE CHANNEL REPORT WORD is exe-
cuted, condition code 1 is set, and zeros are
stored at the location designated by the second-
operand address. During execution of STORE
CHANNEL REPORT WORD as a result of
receiving a machine-check interruption, condition
code 1 may be set, and zeros may be stored
because (1) the related channel report has been
cleared by another CPU or (2) a malfunction
occurred during the generation of a channel
report. In the latter case, if, during a subsequent
attempt, a valid channel report can be made
pending, an additional machine-check-interruption
condition is generated.

When a channel report consists of multiple
chained CRWs, they are presented to the program
in the same order that they are placed in the chain
by the channel subsystem as the result of consec-
utive executions of STORE CHANNEL REPORT
WORD. If, for example, the first CRW of a chain
is presented to the program as a result of exe-
cuting STORE CHANNEL REPORT WORD, then
the CRW that is presented as a result of the next
execution of STORE CHANNEL REPORT WORD
is the second CRW of the same chain, and not a
CRW that is part of another channel report.

Channel reports are not presented to the program
in any special order, except for channel reports
whose first or only CRW indicates the same
reporting-source code and the same reporting-
source ID. These channel reports are presented
to the program in the same order that they are
generated by the channel subsystem, but they are
not necessarily presented consecutively. For
example, suppose the channel subsystem gener-
ates channel reports A, B, and C, in that order.
The first CRW of channel reports B and C indi-
cates the same reporting-source code and the
same reporting-source ID. Channel report B is
presented to the program before channel report C
is presented, but channel report A may be pre-
sented after channel report B and before channel
report C.

Programming Notes:

1. The information that is provided in a single
CRW may be made obsolete by another CRW
that is subsequently generated for the same
channel-subsystem facility. Therefore, the
information that is provided in one channel
report should be interpreted in light of the
information provided by all of the channel
reports that are pending at a given instant.

2. A machine-check-interruption condition is not
always generated when a channel report is
made pending. The conditions that result in a
machine-check-interruption condition being
generated are described earlier in this section.

3. After a machine-check interruption has
occurred with bit 9 of the machine-check-
interruption code set to one, STORE
CHANNEL REPORT WORD should be exe-
cuted repeatedly until all of the pending
channel reports have been cleared and condi-
tion code 1 has been set.

4. A CRW-overflow condition can occur if the
program does not execute successive STORE
CHANNEL REPORT WORD instructions in a
timely manner after the machine-check inter-
ruption occurs.

5. The number of CRWs that can be pending at
the same time is model-dependent. During
the existence of an overflow condition, CRWs
that would have otherwise been made
pending are lost and are never presented to
the program.
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 Channel-Report Word
The channel-report word (CRW) provides informa-
tion to the program that can be used to facilitate
the recovery of an I/O operation, a device, or
some element of the channel subsystem, such as
a channel path or subchannel. The format of the
CRW is as follows.

┌─┬─┬─┬─┬────┬─┬─┬──────┬─────────────────────────┐

│ð│S│R│C│RSC │A│ð│ ERC │ Reporting-source ID │

└─┴─┴─┴─┴────┴─┴─┴──────┴─────────────────────────┘

ð 1 2 3 4 8 1ð 16 31

Bits 0 and 9 are reserved and are always stored
as zeros.

Solicited CRW (S):  Bit 1, when one, indicates a
solicited CRW. A CRW is considered by the
channel subsystem to be solicited if it is made
pending as the direct result of some action that is
taken by the program. When bit 1 is zero, the
CRW is unsolicited and has been made pending
as the result of an action taken by the channel
subsystem that is independent of the program.

Overflow (R):  Bit 2, when one, indicates that a
CRW-overflow condition has been recognized
since this CRW became pending and that one or
more CRWs have been lost. This bit is one in the
CRW that has most recently been set pending
when the overflow condition is recognized. When
bit 2 is zero, a CRW-overflow condition has not
been recognized.

A CRW that is part of a channel report is not
made pending, even though the overflow condition
does not exist, if an overflow condition prevented
a previous CRW of that report from being made
pending.

Chaining (C):  Bit 3, when one, and when the
overflow flag is zero, indicates chaining of associ-
ated CRWs. Chaining of CRWs is indicated
whenever a malfunction or other condition is
described by more than a single CRW. The
chaining flag is zero if the channel report is
described by a single CRW or if the CRW is the
last CRW of a channel report.

The chaining flag is not meaningful if the overflow
bit, bit 2, is one.

Reporting-Source Code (RSC):  Bits 4-7 identify
the channel-subsystem facility that has been asso-
ciated with the malfunction or other condition.
Some facilities are further identified in the
reporting-source-identification field (see below).
The following combinations of bits identify the
facilities:

All other bit combinations in the reporting-source-
code field are reserved.

Ancillary Report (A):  Bit 8, when one, indicates
that a malfunction of a system component has
occurred which has been recognized previously or
which has affected the activities of multiple
channel-subsystem facilities. When the malfunc-
tion affects the activities of multiple channel-
subsystem facilities, an ancillary-report condition is
recognized for all of the affected facilities except
one. This bit, when zero, indicates that this mal-
function of a system component has not been
recognized previously. This bit is meaningful for
all channel reports.

Depending on the model, recognition of an
ancillary-report condition may not be provided, or
it may not be provided for all system malfunctions
that affect channel-subsystem facilities. When
ancillary-report recognition is not provided, bit 8 is
set to zero.

Error-Recovery Code (ERC):  Bits 10-15, when
zero, indicate that the channel subsystem has
event information, and the program can store that
information. Otherwise, bits 10-15 contain the
error-recovery code which defines the recovery
state of the channel-subsystem facility identified in
the reporting-source code. This field, when used
in conjunction with the reporting-source code, can
be used by the program to determine whether the
identified facility has already been recovered and
is available for use or whether recovery actions
are still required. The following error-recovery
codes are defined:

Bits  
4 5 6 7 Designation
0 0 1 0 Monitoring facility
0 0 1 1 Subchannel
0 1 0 0 Channel path
1 0 0 1 Configuration-alert facility
1 0 1 1 Channel subsystem
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All other bit combinations in the error-recovery-
code field are reserved.

The specific meaning of each error-recovery code
depends on the particular reporting-source code
that accompanies it in a CRW. The error-recovery
codes are defined as follows:

Event Information Pending:  Event information for
the identified facility is available for retrieval by the
program. This CRW does not indicate the state of
the identified facility.

Available:  The identified facility is in the same
state that the program would expect if the CRW
had not been generated.

Initialized:  The identified facility is in the same
state that existed immediately following the
I/O-system reset that was part of the most recent
system IPL.

Temporary:  The identified facility is not operating
in a normal manner or has recognized the occur-
rence of an abnormal event. It is expected that
subsequent actions either will restore the facility to
normal operation or will record the appropriate
information describing the abnormal event.

Installed Parameters Initialized:  This state is the
same as the initialized state, except that one or
more parameters that are associated with the

Bits  facility and that are not modifiable by the program
may have been changed.

Terminal:  The identified facility is in a state such
that an operation which was in progress can
neither be completed nor terminated in the normal
manner.

Permanent Error with Facility Not Initialized:  The
identified facility is in a state of malfunction, and
the channel subsystem has not caused a reset
function to be performed for that facility.

Permanent Error with Facility Initialized:  The
identified facility is in a state of malfunction, and
the channel subsystem has caused or may have
caused a reset function to be performed for that
facility.

Installed Parameters Modified:  One or more
parameters of the specified facility have been
changed.

Reporting-Source ID (RSID):  Bits 16-31 contain
the reporting-source ID which may, depending
upon the condition that caused the channel report
and on the reporting-source code, either further
identify the affected channel-subsystem facility or
provide additional information describing the con-
dition that caused the channel report. The RSID
field has the following format as a function of the
bit settings of the reporting-source code.

10 11 12 13 14 15 State
0 0 0 0 0 0 Event information pending
0 0 0 0 0 1 Available
0 0 0 0 1 0 Initialized
0 0 0 0 1 1 Temporary error
0 0 0 1 0 0 Installed parameters initial-

ized
0 0 0 1 0 1 Terminal
0 0 0 1 1 0 Permanent error with facility

not initialized
0 0 0 1 1 1 Permanent error with facility

initialized
0 0 1 0 0 0 Installed parameters modi-

fied

Reporting-Source
Code Reporting-Source ID

4 5 6 7 Bits 16-31
0 0 1 0 0000 0000 0000 0000
0 0 1 1 xxxx xxxx xxxx xxxx
0 1 0 0 0000 0000 yyyy yyyy
1 0 0 1 0000 0000 yyyy yyyy
1 0 1 1 0000 0000 0000 0000

Note: 

xxxx xxxx xxxx xxxx Subchannel number
yyyy yyyy Channel-path ID

(CHPID)
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 HFP Arithmetic

HFP Number Representation
A hexadecimal-floating-point (HFP) number con-
sists of a sign bit, a hexadecimal fraction, and an
unsigned seven-bit binary integer called the char-
acteristic. The characteristic represents a signed
exponent and is obtained by adding 64 to the
exponent value (excess-64 notation). The range
of the characteristic is 0 to 127, which corre-
sponds to an exponent range of −64 to +63. The
magnitude of an HFP number is the product of its
fraction and the number 16 raised to the power of
the exponent that is represented by its character-
istic. The number is positive or negative
depending on whether the sign bit is zero or one,
respectively.

The fraction of an HFP number is treated as a
hexadecimal number because it is considered to
be multiplied by a number which is a power of 16.
The name, fraction, indicates that the radix point is
assumed to be immediately to the left of the left-
most fraction digit.

When an HFP operation would cause the result
exponent to exceed 63, the characteristic wraps
around from 127 to 0, and an
HFP-exponent-overflow condition exists. The
result characteristic is then too small by 128.
When an operation would cause the exponent to
be less than −64, the characteristic wraps around
from 0 to 127, and an HFP-exponent-underflow
condition exists. The result characteristic is then

too large by 128, except that a zero characteristic
is produced when a true zero is forced.

A true zero is an HFP number with a zero charac-
teristic and zero fraction. A true zero may arise
as the normal result of an arithmetic operation
because of the particular magnitude of the oper-
ands. For HFP operations, the result is forced to
be a positive true zero when:

1. An HFP exponent underflow occurs and the
HFP-exponent-underflow mask bit in the PSW
is zero.

2. The result fraction of an addition or sub-
traction operation is zero and the
HFP-significance mask bit in the PSW is zero.

3. The operand of the CONVERT FROM FIXED
instruction is zero.

4. The dividend in the DIVIDE instruction has a
zero fraction.

5. The operand of the HALVE, LOAD FP
INTEGER, or SQUARE ROOT instruction has
a zero fraction.

6. One or both operands of a multiplication oper-
ation has a zero fraction.

Item 2, above, applies to normalized and unnor-
malized instructions.

When a program interruption for HFP exponent
underflow occurs, a true zero is not forced;
instead, the fraction and sign remain correct, and
the characteristic is too large by 128. When a
program interruption for HFP significance occurs,
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Figure 18-1. Normalization and Zero Handling for Instructions with HFP Results

Instruction

Nonzero
Result

Normalized

Zero Result
Forced to True Zero

Zero Result
Made Positive

Short and
Long Extended

Short and
Long Extended

ADD NORMALIZED Yes Y/N Y/N Yes Yes

ADD UNNORMALIZED No Y/N - Yes -

CONVERT BFP TO
HFPñ

Yes Yes - No -

CONVERT FROM
FIXED

Yes Yes Yes Yes Yes

DIVIDE Yes Yes Yes Yes Yes

HALVE Yes Yes - Yes -

LOADñ No No No No No

LOAD AND TEST No No Yes No No

LOAD COMPLEMENT No No Yes No No

LOAD FP INTEGER Yes Yes Yes Yes Yes

LOAD LENGTHENED No No Yes No No

LOAD NEGATIVE No No Yes No No

LOAD POSITIVE No No Yes Yes Yes

LOAD ROUNDED No No - No -

LOAD ZEROñ - Yes Yes Yes Yes

MULTIPLY Yes Yes Yes Yes Yes

SQUARE ROOT Yes Yes Yes Yes Yes

STOREñ No No - No -

SUBTRACT NORMAL-
IZED

Yes Y/N Y/N Yes Yes

SUBTRACT UNNOR-
MALIZED

No Y/N - Yes -

Explanation: 

 - Not applicable.
 ñ Floating-point-support instruction.
Y/N When the HFP-significance mask bit (PSW bit 23) is zero, a true zero is forced.

When the HFP-significance mask bit is one, the characteristic remains unchanged,
and a program interruption for HFP significance occurs.

the fraction remains zero, the sign is positive, and
the characteristic remains correct.

The sign of a sum, difference, product, quotient,
square root, the result of CONVERT FROM

FIXED, or the result of LOAD FP INTEGER with a
zero fraction is positive. The sign for a zero frac-
tion resulting from other HFP operations is estab-
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lished from the operand sign, the same as for
nonzero fractions.

 Normalization
A quantity can be represented with the greatest
precision by an HFP number of a given fraction
length when that number is normalized. A normal-
ized HFP number has a nonzero leftmost
hexadecimal fraction digit. If one or more leftmost
fraction digits are zeros, the number is said to be
unnormalized.

Unnormalized numbers are normalized by shifting
the fraction left, one digit at a time, until the left-
most hexadecimal digit is nonzero and reducing
the characteristic by the number of hexadecimal
digits shifted. A number with a zero fraction
cannot be normalized; either its characteristic
remains unchanged or its characteristic is made
zero when the result is forced to be a true zero.

Addition and subtraction with extended operands,
as well as the MULTIPLY, DIVIDE, CONVERT
FROM FIXED, HALVE, LOAD FP INTEGER, and
SQUARE ROOT operations, are performed only
with normalization. Addition and subtraction with
short or long operands may be specified as either
normalized or unnormalized. For all other opera-
tions, the result is produced without normalization.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result
may or may not be in normalized form, depending
upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiply, divide, and
square-root operations are normalized before the
arithmetic process. For other normalized opera-
tions, normalization takes place when the interme-
diate arithmetic result is changed to the final
result.

When the intermediate result of addition, sub-
traction, or rounding causes the fraction to over-
flow, the fraction is shifted right by one
hexadecimal-digit position, and the value one is
supplied to the vacated leftmost digit position.
The fraction is then truncated to the final result
length, while the characteristic is increased by
one. This adjustment is made for both normalized
and unnormalized operations.

Figure 18-1 on page 18-2 summarizes, for all
instructions producing HFP results, the handling of
zero results and whether normalization occurs for
nonzero results.

Programming Note:  Up to three leftmost bits of
the fraction of a normalized number may be zeros,
since the nonzero test applies to the entire left-
most hexadecimal digit.

HFP Data Format
HFP numbers have a 32-bit (short) format, a
64-bit (long) format, or a 128-bit (extended)
format. Numbers in the short and long formats
may be designated as operands both in storage
and in the floating-point registers, whereas oper-
ands having the extended format can be desig-
nated only in the floating-point registers.

In all formats, the first bit (bit 0) is the sign bit (S).
The next seven bits are the characteristic. In the
short and long formats, the remaining bits consti-
tute the fraction, which consists of six or 14
hexadecimal digits, respectively.

Short HFP Number
┌─┬──────────────┬──────────/─────────┐

│S│Characteristic│ 6-Digit Fraction │

└─┴──────────────┴──────────/─────────┘

ð 1 8 31

Long HFP Number
┌─┬──────────────┬─────────/───────────┐

│S│Characteristic│ 14-Digit Fraction │

└─┴──────────────┴─────────/───────────┘

ð 1 8 63

Extended HFP Number
 High-Order Part

┌─┬──────────────┬────────/────────────┐

│ │ High-Order │ Leftmost 14 Digits │

│S│Characteristic│of 28-Digit Fraction │

└─┴──────────────┴────────/────────────┘

ð 1 8 63

 Low-Order Part

┌─┬──────────────┬────────/────────────┐

│ │ Low-Order │Rightmost 14 Digits │

│S│Characteristic│of 28-Digit Fraction │

└─┴──────────────┴────────/────────────┘

64 72 127

An extended HFP number has a 28-digit fraction
and consists of two long HFP numbers that are
called the high-order and low-order parts. The
high-order part may be any long HFP number.
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The fraction of the high-order part contains the
leftmost 14 hexadecimal digits of the 28-digit frac-
tion. The characteristic and sign of the high-order
part are the characteristic and sign of the
extended HFP number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the low-
order part of an extended operand are ignored.

When a result is generated in the extended format
and placed in a register pair, the sign of the low-
order part is made the same as that of the high-
order part, and, unless the result is a true zero,
the low-order characteristic is made 14 less than
the high-order characteristic. When the sub-
traction of 14 would cause the low-order charac-
teristic to become less than zero, the
characteristic is made 128 greater than its correct
value. (Thus, the subtraction is performed modulo
128.) HFP exponent underflow is indicated only
when the high-order characteristic underflows.

When an extended result is made a true zero,
both the high-order and low-order parts are made
a true zero.

The range covered by the magnitude (M) of a nor-
malized HFP number depends on the format.

In the short format:

16-65 ≤ M ≤ (1 - 16-6) x 1663

In the long format:

16-65 ≤ M ≤ (1 - 16-14) x 1663

In the extended format:

16-65 ≤ M ≤ (1 - 16-28) x 1663

In all formats, approximately:

5.4 x 1ð-79 ≤ M ≤ 7.2 x 1ð75

Although the final result of an HFP operation has
six hexadecimal fraction digits in the short format,
14 fraction digits in the long format, and 28 frac-
tion digits in the extended format, intermediate
results have one additional hexadecimal digit on
the right. This digit is called the guard digit. The
guard digit may increase the precision of the final
result because it participates in addition, sub-
traction, and comparison operations and in the left
shift that occurs during normalization.

The entire set of HFP operations with normalized
results is available for short, long, and extended
operands in register-register versions; and for
short and long operands in register-storage ver-
sions. Most instructions generate a result that has
the same format as the source operands, except
that there are multiplication operations which can
generate a long product from short operands or an
extended product from long operands. Other
exceptions are instructions which convert oper-
ands from one floating-point format to another or
between floating-point and fixed-point (binary-
integer) formats.

Programming Notes:

1. In the absence of an HFP exponent overflow
or HFP exponent underflow, the long HFP
number constituting the low-order part of an
extended result correctly expresses the value
of the low-order part of the extended result
when the characteristic of the high-order part
is 14 or higher. This applies also when the
result is a true zero. When the high-order
characteristic is less than 14 but the number
is not a true zero, the low-order part, when
considered as a long HFP number, does not
express the correct characteristic value.

2. The entire fraction of an extended result par-
ticipates in normalization. The low-order part
alone may or may not appear to be a normal-
ized long HFP number, depending on whether
the 15th digit of the normalized 28-digit frac-
tion is nonzero or zero.

 Instructions
The HFP instructions and their mnemonics and
operation codes are listed in the figure “Summary
of HFP Instructions.” The figure indicates, in the
column labeled “Characteristics,” the instruction
format, when the condition code is set, the instruc-
tion fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

All HFP instructions are subject to the
AFP-register-control bit, bit 13 of control register 0.
The AFP registers can be used only when the
AFP-register-control bit is one; otherwise an
AFP-register data exception, DXC 1, is recog-
nized. An operation exception is recognized when
the CPU attempts to execute an instruction which
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is part of the HFP-extensions facility or square-
root facility when the facility is not installed.

Mnemonics for the HFP instructions have an R as
the last letter when the instruction is in the RR,
RRE, or RRF format. Certain letters are used for
HFP instructions to represent operand-format
length and normalization, as follows:

F Thirty-two-bit fixed point
D Long normalized
E Short normalized
U Short unnormalized
W Long unnormalized
X Extended normalized

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler
language are shown with each instruction. For a
register-to-register operation using COMPARE
(short), for example, CER is the mnemonic and
R±,R² the operand designation.

Programming Notes:

1. The HFP instruction SQUARE ROOT (SQDR,
SQER) is available in ESA/390 when the
square-root facility is installed.

2. The following additional HFP instructions are
available in ESA/390 when the
HFP-extensions facility is installed:

 � COMPARE (CXR)
� CONVERT FROM FIXED
� CONVERT TO FIXED
� LOAD AND TEST (LTXR)
� LOAD COMPLEMENT (LCXR)
� LOAD FP INTEGER

 � LOAD LENGTHENED
� LOAD NEGATIVE (LNXR)
� LOAD POSITIVE (LPXR)
� LOAD ROUNDED (LEXR)
� MULTIPLY (MEER, MEE)
� SQUARE ROOT (SQXR, SQD, SQE)
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │36 │

│ADD NORMALIZED (long HFP) │ADR │RR C │ SP│Da EU EO LS │ │ │2A │

│ADD NORMALIZED (long HFP) │AD │RX C │ A SP│Da EU EO LS │ │ B²│6A │

│ADD NORMALIZED (short HFP) │AER │RR C │ SP│Da EU EO LS │ │ │3A │

│ADD NORMALIZED (short HFP) │AE │RX C │ A SP│Da EU EO LS │ │ B²│7A │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│ADD UNNORMALIZED (long HFP) │AWR │RR C │ SP│Da EO LS │ │ │2E │

│ADD UNNORMALIZED (long HFP) │AW │RX C │ A SP│Da EO LS │ │ B²│6E │

│ADD UNNORMALIZED (short HFP) │AUR │RR C │ SP│Da EO LS │ │ │3E │

│ADD UNNORMALIZED (short HFP) │AU │RX C │ A SP│Da EO LS │ │ B²│7E │

│COMPARE (extended HFP) │CXR │RRE C HX│ SP│Da │ │ │B369│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│COMPARE (long HFP) │CDR │RR C │ SP│Da │ │ │29 │

│COMPARE (long HFP) │CD │RX C │ A SP│Da │ │ B²│69 │

│COMPARE (short HFP) │CER │RR C │ SP│Da │ │ │39 │

│COMPARE (short HFP) │CE │RX C │ A SP│Da │ │ B²│79 │

│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE HX│ SP│Da │ │ │B3B6│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE HX│ │Da │ │ │B3B5│

│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE HX│ │Da │ │ │B3B4│

│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C HX│ SP│Da │ R │ │B3BA│

│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C HX│ SP│Da │ R │ │B3B9│

│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C HX│ SP│Da │ R │ │B3B8│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │B22D│

│DIVIDE (long HFP) │DDR │RR │ SP│Da EU EO FK │ │ │2D │

│DIVIDE (long HFP) │DD │RX │ A SP│Da EU EO FK │ │ B²│6D │

│DIVIDE (short HFP) │DER │RR │ SP│Da EU EO FK │ │ │3D │

│DIVIDE (short HFP) │DE │RX │ A SP│Da EU EO FK │ │ B²│7D │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│HALVE (long HFP) │HDR │RR │ SP│Da EU │ │ │24 │

│HALVE (short HFP) │HER │RR │ SP│Da EU │ │ │34 │

│LOAD AND TEST (extended HFP) │LTXR │RRE C HX│ SP│Da │ │ │B362│

│LOAD AND TEST (long HFP) │LTDR │RR C │ SP│Da │ │ │22 │

│LOAD AND TEST (short HFP) │LTER │RR C │ SP│Da │ │ │32 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C HX│ SP│Da │ │ │B363│

│LOAD COMPLEMENT (long HFP) │LCDR │RR C │ SP│Da │ │ │23 │

│LOAD COMPLEMENT (short HFP) │LCER │RR C │ SP│Da │ │ │33 │

│LOAD FP INTEGER (extended HFP) │FIXR │RRE HX│ SP│Da │ │ │B367│

│LOAD FP INTEGER (long HFP) │FIDR │RRE HX│ │Da │ │ │B37F│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD FP INTEGER (short HFP) │FIER │RRE HX│ │Da │ │ │B377│

│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE HX│ SP│Da │ │ │B325│

│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE HX│ A SP│Da │ │ B²│ED25│

│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE HX│ SP│Da │ │ │B326│

│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE HX│ A SP│Da │ │ B²│ED26│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 18-2 (Part 1 of 3). Summary of HFP Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│LOAD LENGTHENED (short to long HFP) │LDER │RRE HX│ │Da │ │ │B324│

│LOAD LENGTHENED (short to long HFP) │LDE │RXE HX│ A │Da │ │ B²│ED24│

│LOAD NEGATIVE (extended HFP) │LNXR │RRE C HX│ SP│Da │ │ │B361│

│LOAD NEGATIVE (long HFP) │LNDR │RR C │ SP│Da │ │ │21 │

│LOAD NEGATIVE (short HFP) │LNER │RR C │ SP│Da │ │ │31 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD POSITIVE (extended HFP) │LPXR │RRE C HX│ SP│Da │ │ │B36ð│

│LOAD POSITIVE (long HFP) │LPDR │RR C │ SP│Da │ │ │2ð │

│LOAD POSITIVE (short HFP) │LPER │RR C │ SP│Da │ │ │3ð │

│LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │25 │

│LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │25 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD ROUNDED (extended to short HFP)│LEXR │RRE HX│ SP│Da EO │ │ │B366│

│LOAD ROUNDED (long to short HFP) │LEDR │RR │ SP│Da EO │ │ │35 │

│LOAD ROUNDED (long to short HFP) │LRER │RR │ SP│Da EO │ │ │35 │

│MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │26 │

│MULTIPLY (long HFP) │MDR │RR │ SP│Da EU EO │ │ │2C │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY (long HFP) │MD │RX │ A SP│Da EU EO │ │ B²│6C │

│MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │27 │

│MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B²│67 │

│MULTIPLY (short HFP) │MEER │RRE HX│ │Da EU EO │ │ │B337│

│MULTIPLY (short HFP) │MEE │RXE HX│ A │Da EU EO │ │ B²│ED37│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY (short to long HFP) │MDER │RR │ SP│Da EU EO │ │ │3C │

│MULTIPLY (short to long HFP) │MER │RR │ SP│Da EU EO │ │ │3C │

│MULTIPLY (short to long HFP) │MDE │RX │ A SP│Da EU EO │ │ B²│7C │

│MULTIPLY (short to long HFP) │ME │RX │ A SP│Da EU EO │ │ B²│7C │

│SQUARE ROOT (extended HFP) │SQXR │RRE HX│ SP│Da SQ │ │ │B336│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SQUARE ROOT (long HFP) │SQDR │RRE QR│ SP│Da SQ │ │ │B244│

│SQUARE ROOT (long HFP) │SQD │RXE HX│ A │Da SQ │ │ B²│ED35│

│SQUARE ROOT (short HFP) │SQER │RRE QR│ SP│Da SQ │ │ │B245│

│SQUARE ROOT (short HFP) │SQE │RXE HX│ A │Da SQ │ │ B²│ED34│

│SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │37 │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ SP│Da EU EO LS │ │ │2B │

│SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A SP│Da EU EO LS │ │ B²│6B │

│SUBTRACT NORMALIZED (short HFP) │SER │RR C │ SP│Da EU EO LS │ │ │3B │

│SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A SP│Da EU EO LS │ │ B²│7B │

│SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ SP│Da EO LS │ │ │2F │

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A SP│Da EO LS │ │ B²│6F │

│SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ SP│Da EO LS │ │ │3F │

│SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A SP│Da EO LS │ │ B²│7F │

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 18-2 (Part 2 of 3). Summary of HFP Instructions
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┌────────────────────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ A Access exceptions for logical addresses. │

│ B² B² field designates an access register in the access-register mode. │

│ C Condition code is set. │

│ Da AFP-register data exception. │

│ EO HFP-exponent-overflow exception. │

│ EU HFP-exponent-underflow exception. │

│ FK HFP-divide exception. │

│ HX HFP-extensions facility. │

│ LS HFP-significance exception. │

│ QR Square-root facility. │

│ R PER general-register-alteration event. │

│ RR RR instruction format. │

│ RRE RRE instruction format. │

│ RRF RRF instruction format. │

│ RX RX instruction format. │

│ RXE RXE instruction format. │

│ SP Specification exception. │

│ SQ HFP-square-root exception. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 18-2 (Part 3 of 3). Summary of HFP Instructions

 ADD NORMALIZED
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
AER '3A' Short HFP

ADR '2A' Long HFP

AXR '36' Extended HFP

Mnemonic2 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic2 Op Code Operands
AE '7A' Short HFP

AD '6A' Long HFP

The second operand is added to the first operand,
and the normalized sum is placed at the first-
operand location.

Addition of two HFP numbers consists in charac-
teristic comparison, fraction alignment, and signed
fraction addition. The characteristics of the two
operands are compared, and the fraction accom-
panying the smaller characteristic is aligned with
the other fraction by a right shift, with its charac-
teristic increased by one for each hexadecimal
digit of shift until the two characteristics agree.

When a fraction is shifted right during alignment,
the leftmost hexadecimal digit shifted out is
retained as a guard digit. The fraction that is not
shifted is considered to be extended with a zero in
the guard-digit position. When no alignment shift
occurs, both operands are considered to be
extended with zeros in the guard-digit position.
The fractions with signs are then added algebra-
ically to form a signed intermediate sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present,
the sum is shifted right one digit position so that
the carry becomes the leftmost digit of the frac-
tion, and the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as neces-
sary to eliminate any leading hexadecimal zero
digits resulting from the addition, provided the
fraction is not zero. Zeros are supplied to the
vacated rightmost digits, and the characteristic is
reduced by the number of hexadecimal digits of
shift. The fraction thus normalized is then trun-
cated on the right to six (short format), 14 (long
format), or 28 (extended format) hexadecimal
digits. In the extended format, a characteristic is
generated for the low-order part, which is 14 less
than the high-order characteristic.
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The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the result is made
a positive true zero.

An HFP-exponent-overflow exception exists when
a carry from the leftmost position of the
intermediate-sum fraction would cause the charac-
teristic of the normalized sum to exceed 127. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a
program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. For extended results,
the characteristic of the low-order part remains
correct.

An HFP-exponent-underflow exception exists
when the characteristic of the normalized sum
would be less than zero and the fraction is not
zero. If the HFP-exponent-underflow mask bit in
the PSW is one, the operation is completed by
making the result characteristic 128 greater than
the correct value, and a program interruption for
HFP exponent underflow occurs. The result is
normalized, and the sign and fraction remain
correct. If the HFP-exponent-underflow mask bit
in the PSW is zero, a program interruption does
not occur; instead, the operation is completed by
making the result a positive true zero. For
extended results, HFP exponent underflow is not
recognized when the low-order characteristic is
less than zero but the high-order characteristic is
equal to or greater than zero.

The result fraction is zero when the
intermediate-sum fraction, including the guard
digit, is zero. With a zero result fraction, the
action depends on the setting of the
HFP-significance mask bit in the PSW. If the
HFP-significance mask bit in the PSW is one, no
normalization occurs, the intermediate and final
result characteristics are the same, and a program
interruption for HFP significance occurs. If the
HFP-significance mask bit in the PSW is zero, the
program interruption does not occur; instead, the
result is made a positive true zero.

For AXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-

extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of AE and AD only)
� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow

 � HFP significance
 � Specification

Programming Notes:

1. An example of the use of the ADD NORMAL-
IZED instruction (AE) is given in Appendix A.

2. Interchanging the two operands in an HFP
addition does not affect the value of the sum.

3. The ADD NORMALIZED instruction normal-
izes the sum but not the operands. Thus, if
one or both operands are unnormalized, preci-
sion may be lost during fraction alignment.

 ADD UNNORMALIZED
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
AUR '3E' Short HFP

AWR '2E' Long HFP

Mnemonic2 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic2 Op Code Operands
AU '7E' Short HFP

AW '6E' Long HFP

The second operand is added to the first operand,
and the unnormalized sum is placed at the first-
operand location.
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The execution of ADD UNNORMALIZED is iden-
tical to that of ADD NORMALIZED, except that:

1. When no carry is present after the addition,
the intermediate-sum fraction is truncated to
the proper result-fraction length without a left
shift to eliminate leading hexadecimal zeros
and without the corresponding reduction of the
characteristic.

2. HFP exponent underflow cannot occur.

3. The guard digit does not participate in the
recognition of a zero result fraction. A zero
result fraction is recognized when the fraction
(that is, the intermediate-sum fraction,
excluding the guard digit) is zero.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of AU and AW only)
� Data with DXC 1, AFP register
� HFP exponent overflow

 � HFP significance
 � Specification

Programming Notes:

1. An example of the use of the ADD UNNOR-
MALIZED instruction (AU) is given in
Appendix A.

2. Except when the result is made a true zero,
the characteristic of the result of ADD
UNNORMALIZED is equal to the greater of
the two operand characteristics, increased by
one if the fraction addition produced a carry,
or set to zero if HFP exponent overflow
occurred.

 COMPARE
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
CER '39' Short HFP

CDR '29' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
CXR 'B369' Extended HFP

Mnemonic3 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic3 Op Code Operands
CE '79' Short HFP

CD '69' Long HFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the pro-
cedure for normalized subtraction, except that the
difference is discarded after setting the condition
code and both operands remain unchanged.
When the difference, including the guard digit, is
zero, the operands are equal. When a nonzero
difference is positive or negative, the first operand
is high or low, respectively.

An HFP-exponent-overflow, HFP-exponent-under-
flow, or HFP-significance exception cannot occur.

For CXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

18-10 ESA/390 Principles of Operation  



  
 

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of CE and CD only)
� Data with DXC 1, AFP register
� Operation (for CXR, if the HFP-extensions

facility is not installed)
 � Specification

Programming Notes:

1. Examples of the use of the COMPARE
instruction (CDR) are given in Appendix A.

2. An exponent inequality alone is not sufficient
to determine the inequality of two operands
with the same sign, because the fractions may
have different numbers of leading
hexadecimal zeros.

3. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

CONVERT FROM FIXED
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
CEFR 'B3B4' 32-bit binary-integer

operand, short HFP result

CDFR 'B3B5' 32-bit binary-integer

operand, long HFP result

CXFR 'B3B6' 32-bit binary-integer

operand, extended HFP

 result

The fixed-point second operand is converted to
the HFP format, and the normalized result is
placed at the first-operand location.

A nonzero result is normalized. A zero result is
made a positive true zero.

The second operand is a 32-bit signed binary
integer that is located in the general register des-
ignated by R².

The result is normalized and rounded toward zero
(truncated) before it is placed at the first-operand
location.

For CXFR, the R± field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the HFP-extensions facility is not

installed)
� Specification (CXFR only)

CONVERT TO FIXED
Mnemonic R±,M³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ M³ │////│ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic Op Code Operands
CFER 'B3B8' Short HFP operand, 32-bit

 binary-integer result

CFDR 'B3B9' Long HFP operand, 32-bit

 binary-integer result

CFXR 'B3BA' Extended HFP operand, 32-

bit binary-integer result

The HFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a 32-bit signed binary integer that is
placed in the general register designated by R±.

The second operand is rounded to an integer
value by rounding as specified by the modifier in
the M³ field:

M³ Rounding Method
0 Round toward 0
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

The sign of the result is the sign of the second
operand, except that a zero result has a plus sign.
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If the rounded result would have a value
exceeding the range that can be represented in
the result format, the largest (in magnitude) repre-
sentable number of the same sign as the source
is placed at the target location, and condition code
3 is set.

HFP exponent underflow is not recognized
because small values are rounded to one (with the
appropriate sign) or to zero, depending on the
rounding mode.

The M³ field must designate a valid modifier; oth-
erwise, a specification exception is recognized.
For CFXR, the R² field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the HFP-extensions facility is not

installed)
 � Specification

 DIVIDE
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
DER '3D' Short HFP

DDR '2D' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B22D' │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
DXR 'B22D' Extended HFP

Mnemonic3 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic3 Op Code Operands
DE '7D' Short HFP

DD '6D' Long HFP

The first operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed at the first-operand location. No
remainder is preserved.

HFP division consists in characteristic subtraction
and fraction division. The operands are first nor-
malized to eliminate leading hexadecimal zeros.
The difference between the dividend and divisor
characteristics of the normalized operands, plus
64, is used as the characteristic of an intermediate
quotient.

All dividend and divisor fraction digits participate in
forming the fraction of the intermediate quotient.
The intermediate-quotient fraction can have no
leading hexadecimal zeros, but a right shift of one
digit position may be necessary with an increase
of the characteristic by one. The fraction is then
truncated to the proper result-fraction length.

An HFP-exponent-overflow exception exists when
the characteristic of the final quotient would
exceed 127 and the fraction is not zero. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a
program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. If, for extended
results, the low-order characteristic would also
exceed 127, it too is decreased by 128.

An HFP-exponent-underflow exception exists
when the characteristic of the final quotient would
be less than zero and the fraction is not zero. If
the HFP-exponent-underflow mask bit in the PSW
is one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero. For extended results,
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HFP exponent underflow is not recognized when
the low-order characteristic is less than zero but
the high-order characteristic is equal to or greater
than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than
zero during normalization of the operands or when
the intermediate-quotient characteristic is less than
zero, as long as the final quotient can be repres-
ented with the correct characteristic.

When the divisor fraction is zero, an HFP-divide
exception is recognized. This includes the case of
division of zero by zero.

When the dividend fraction is zero but the divisor
fraction is nonzero, the quotient is made a positive
true zero. No HFP exponent overflow or HFP
exponent underflow occurs.

The sign of the quotient is the EXCLUSIVE OR of
the operand signs, except that the sign is always
plus when the quotient is made a positive true
zero.

For DXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of DE and DD only)
� Data with DXC 1, AFP register

 � HFP divide
� HFP exponent overflow
� HFP exponent underflow

 � Specification

Programming Note:  Examples of the use of the
DIVIDE instruction (DER) are given in Appendix A.

 HALVE
Mnemonic R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic Op Code Operands
HER '34' Short HFP

HDR '24' Long HFP

The second operand is divided by 2, and the nor-
malized quotient is placed at the first-operand
location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the right-
most bit position in the leftmost bit position of the
guard digit, and a zero is supplied to the leftmost
bit position of the fraction. The intermediate
result, including the guard digit, is then normal-
ized, and the final result is truncated to the proper
length.

An HFP-exponent-underflow exception exists
when the characteristic of the final result would be
less than zero and the fraction is not zero. If the
HFP-exponent-underflow mask bit in the PSW is
one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero.

When the fraction of the second operand is zero,
the result is made a positive true zero, and no
HFP exponent underflow occurs.

The sign of the result is the same as that of the
second operand, except that the sign is always
plus when the quotient is made a positive true
zero.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Data with DXC 1, AFP register
� HFP exponent underflow

 � Specification

Programming Notes:

1. An example of the use of the HALVE instruc-
tion (HDR) is given in Appendix A.

2. With short and long operands, the halve oper-
ation is identical to a divide operation with the
number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier, and the result of HER
is identical to that of MEE or MEER with one-
half as a multiplier.

LOAD AND TEST
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LTER '32' Short HFP

LTDR '22' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LTXR 'B362' Extended HFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The
condition code is set the same as for a compar-
ison of the second operand with zero.

For short and long operands, the second operand
is placed unchanged in the first-operand location.

For extended operands, the high-order sign and
the entire fraction of the source are placed
unchanged in the result, and the low-order sign is
set equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result
high-order characteristic, and the low-order char-
acteristic is set to 14 less than the high-order

characteristic, modulo 128. If the extended-
operand fraction is zero, the result is made a true
zero with the same sign as the source (the high-
order and low-order sign bits of the result are the
same as the high-order sign bit of the source).

For LTXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (LTXR if the HFP-extensions facility

is not installed)
 � Specification

Programming Note:  When, for LTER and LTDR,
the same register is designated as the first-
operand and second-operand location, the opera-
tion is equivalent to a test without data movement.

 LOAD COMPLEMENT
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LCER '33' Short HFP

LCDR '23' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LCXR 'B363' Extended HFP

The second operand is placed at the first-operand
location with the sign bit inverted.
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The sign bit is inverted even if the operand is
zero. For all operand lengths, the source fraction
is placed unchanged in the result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result
high-order characteristic, and the low-order char-
acteristic is set to 14 less than the high-order
characteristic, modulo 128. If the extended-
operand fraction is zero, the result is made a true
zero with the sign inverted from the source (the
high-order and low-order sign bits of the result are
inverted from the high-order sign bit of the
source).

For LCXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (LCXR if the HFP-extensions facility

is not installed)
 � Specification

LOAD FP INTEGER
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
FIER 'B377' Short HFP

FIDR 'B37F' Long HFP

FIXR 'B367' Extended HFP

The second operand is truncated (rounded toward
zero) to an integer value in the same floating-point
format, and the normalized result is placed at the
first-operand location.

A nonzero result is normalized. A zero result is
made a positive true zero.

For FIXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (if the HFP-extensions facility is not

installed)
 � Specification (FIXR)

Programming Notes:

1. LOAD FP INTEGER truncates (rounds toward
zero) an HFP number to an integer value.
These integers, which remain in the HFP
format, should not be confused with binary
integers, which use a fixed-point format.

2. If the HFP operand is numeric with a large
enough exponent so that it is already an
integer, the result value remains the same,
except that an unnormalized operand is nor-
malized, and an operand with a zero fraction
is changed to a positive true zero.

 LOAD LENGTHENED
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
LDER 'B324' Short HFP operand 2,

long HFP operand 1

LXDR 'B325' Long HFP operand 2,

extended HFP operand 1

LXER 'B326' Short HFP operand 2,

extended HFP operand 1
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Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
LDE 'ED24' Short HFP operand 2,

long HFP operand 1

LXD 'ED25' Long HFP operand 2,

extended HFP operand 1

LXE 'ED26' Short HFP operand 2,

extended HFP operand 1

The second operand is extended to a longer
format, and the result is placed at the first-operand
location.

For all operand lengths, the source fraction is
extended with zeros and placed in the result. The
sign bit of the result is set the same as the sign of
the source even when the result is made a true
zero.

For long results, the source characteristic is
placed unchanged in the result.

For extended results, the low-order sign is set
equal to the high-order sign. If the fraction is
nonzero, the source characteristic is placed
unchanged in the result high-order characteristic,
and the low-order characteristic is set to 14 less
than the high-order characteristic, modulo 128. If
the fraction is zero, the result is made a true zero
with the same sign as the source (the high-order
and low-order sign bits of the result are the same
as the sign bit of the source).

For LXD, LXDR, LXE, and LXER, the R± field
must designate a valid floating-point-register pair;
otherwise, a specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of LDE, LXE, and
LXD only)

� Data with DXC 1, AFP register
� Operation (if the HFP-extensions facility is not

installed)
� Specification (LXE, LXER, LXD, LXDR)

 LOAD NEGATIVE
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LNER '31' Short HFP

LNDR '21' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LNXR 'B361' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is
zero. For all operand lengths, the source fraction
is placed unchanged in the result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result
high-order characteristic, and the low-order char-
acteristic is set to 14 less than the high-order
characteristic, modulo 128. If the extended-
operand fraction is zero, the result is made a neg-
ative true zero (the high-order and low-order sign
bits of the result are set to one).

For LNXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.
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Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 --
3 --

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (LNXR if the HFP-extensions facility

is not installed)
 � Specification

 LOAD POSITIVE
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LPER '3ð' Short HFP

LPDR '2ð' Long HFP

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LPXR 'B36ð' Extended HFP

The second operand is placed at the first-operand
location with the sign bit made zero.

For all operand lengths, the sign bit is made zero,
and the source fraction is placed unchanged in the
result.

For short and long operands, the source charac-
teristic is placed unchanged in the result.

For extended operands, the low-order sign is set
equal to the high-order sign. If the extended-
operand fraction is nonzero, the high-order char-
acteristic is placed unchanged in the result
high-order characteristic, and the low-order char-
acteristic is set to 14 less than the high-order
characteristic, modulo 128. If the extended-
operand fraction is zero, the result is made a posi-
tive true zero (the high-order and low-order sign
bits of the result are set to zero).

For LPXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 --
2 Result is greater than zero
3 --

 Program Exceptions: 

� Data with DXC 1, AFP register
� Operation (LPXR if the HFP-extensions facility

is not installed)
 � Specification

 LOAD ROUNDED
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
LEDR '35' Long HFP operand 2,

short HFP operand 1

LDXR '25' Extended HFP operand 2,

long HFP operand 1

The above mnemonics are alternatives to the

following older mnemonics that are less

descriptive of operand lengths:

LRER '35' Long HFP operand 2,

short HFP operand 1

LRDR '25' Extended HFP operand 2,

long HFP operand 1

Mnemonic2 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic2 Op Code Operands
LEXR 'B366' Extended HFP operand 2

short HFP operand 1

The second operand is rounded to a shorter
format, and the result is placed at the first-operand
location.
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Rounding consists in adding a one to the leftmost
bit position of the second operand that is to be
dropped and propagating any carry through the
fraction. The sign of the second operand is
ignored, and addition is performed as if the frac-
tion were positive.

If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the frac-
tion is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

The intermediate fraction is then truncated to the
proper result-fraction length.

The sign of the result is the same as the sign of
the second operand. There is no normalization to
eliminate leading zeros.

An HFP-exponent-overflow exception exists when
shifting the fraction right would cause the charac-
teristic to exceed 127. The operation is completed
by making the result characteristic 128 less than
the correct value, and a program interruption for
HFP exponent overflow occurs. The result is nor-
malized, and the sign and fraction remain correct.

HFP-exponent-underflow and HFP-significance
exceptions cannot occur.

For LDXR and LEXR, the R² field must designate
a valid floating-point-register pair; otherwise, a
specification exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Data with DXC 1, AFP register
� HFP exponent overflow
� Operation (LEXR if the HFP-extensions facility

is not installed)
 � Specification

Programming Note:  The sign of the rounded
result is the same as the sign of the operand,
even when the result is zero.

 MULTIPLY
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
MEER 'B337' Short HFP

Mnemonic2 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic2 Op Code Operands
MDR '2C' Long HFP

MXR '26' Extended HFP

MDER '3C' Short HFP multiplier and

multiplicand, long HFP

 product

MXDR '27' Long HFP multiplier and

 multiplicand, extended

 HFP product

The above mnemonic MDER is an alternative to

the following older mnemonic that is less

descriptive of operand lengths:

MER '3C' Short HFP multiplier and

multiplicand, long HFP

 product

Mnemonic3 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic3 Op Code Operands
MEE 'ED37' Short HFP

Mnemonic4 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic4 Op Code Operands
MD '6C' Long HFP

MDE '7C' Short HFP multiplier and

multiplicand, long HFP

 product

MXD '67' Long HFP multiplier and

 multiplicand, extended

 HFP product
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The above mnemonic MDE is an alternative to

the following older mnemonic that is less

descriptive of operand lengths:

ME '7C' Short HFP multiplier and

multiplicand, long HFP

 product

The normalized product of the second operand
(the multiplier) and the first operand (the multipli-
cand) is placed at the first-operand location.

Multiplication of two HFP numbers consists in
exponent addition and fraction multiplication. The
operands are first normalized to eliminate leading
hexadecimal zeros. The sum of the character-
istics of the normalized operands, less 64, is used
as the characteristic of the intermediate product.

The fraction of the intermediate product is the
exact product of the normalized operand fractions.
If the intermediate-product fraction has one
leading hexadecimal zero digit, the fraction is
shifted left one digit position, bringing the contents
of the guard-digit position into the rightmost posi-
tion of the result fraction, and the intermediate-
product characteristic is reduced by one. The
fraction is then truncated to the proper result-
fraction length.

For MDE and MDER, the multiplier and multipli-
cand fractions have six hexadecimal digits; the
product fraction has the full 14 digits of the long
format, with the two rightmost fraction digits
always zeros. For MEE and MEER, the multiplier
and multiplicand fractions have six digits, and the
final product fraction is truncated to six digits. The
result, as for all short-format results, replaces the
leftmost 32 bits of the target register, and the
rightmost 32 bit positions of the target register
remain unchanged.

For MD and MDR, the multiplier and multiplicand
fractions have 14 digits, and the final product frac-
tion is truncated to 14 digits. For MXD and
MXDR, the multiplier and multiplicand fractions
have 14 digits, with the multiplicand occupying the
high-order part of the first operand; the final
product fraction contains 28 digits and is an exact
product of the operand fractions. For MXR, the
multiplier and multiplicand fractions have 28 digits,
and the final product fraction is truncated to 28
digits.

An HFP-exponent-overflow exception exists when
the characteristic of the final product would
exceed 127 and the fraction is not zero. The
operation is completed by making the result char-
acteristic 128 less than the correct value, and a
program interruption for HFP exponent overflow
occurs. The result is normalized, and the sign
and fraction remain correct. If, for extended
results, the low-order characteristic would also
exceed 127, it too is decreased by 128.

HFP exponent overflow is not recognized when
the intermediate-product characteristic is initially
128 but is brought back within range by normaliza-
tion.

An HFP-exponent-underflow exception exists
when the characteristic of the final product would
be less than zero and the fraction is not zero. If
the HFP-exponent-underflow mask bit in the PSW
is one, the operation is completed by making the
result characteristic 128 greater than the correct
value, and a program interruption for HFP expo-
nent underflow occurs. The result is normalized,
and the sign and fraction remain correct. If the
HFP-exponent-underflow mask bit in the PSW is
zero, a program interruption does not occur;
instead, the operation is completed by making the
result a positive true zero. For extended results,
HFP exponent underflow is not recognized when
the low-order characteristic is less than zero but
the high-order characteristic is equal to or greater
than zero.

HFP exponent underflow does not occur when the
characteristic of an operand becomes less than
zero during normalization of the operands, as long
as the final product can be represented with the
correct characteristic.

If either or both operand fractions are zero, the
result is made a positive true zero, and no HFP
exponent overflow or HFP exponent underflow
occurs.

The sign of the product is the EXCLUSIVE OR of
the operand signs, except that the sign is always
plus when the result is made a true zero.

The R± field for MXD, MXDR, and MXR, and the
R² field for MXR must designate valid floating-
point-register pairs. Otherwise, a specification
exception is recognized.
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The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.

 Program Exceptions: 

� Access (fetch, operand 2 of MDE, MEE, MD,
and MXD only)

� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow
� Operation (MEE and MEER if the

HFP-extensions facility is not installed)
 � Specification

Programming Notes:

1. An example of the use of the MULTIPLY
instruction (MDR) is given in Appendix A.

2. Interchanging the two operands in an HFP
multiplication does not affect the value of the
product.

 SQUARE ROOT
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
SQER 'B245' Short HFP

SQDR 'B244' Long HFP

SQXR 'B336' Extended HFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
SQE 'ED34' Short HFP

SQD 'ED35' Long HFP

The normalized and rounded square root of the
second operand is placed at the first-operand
location.

When the fraction of the second operand is zero,
the sign and characteristic of the second operand

are ignored, and the operation is completed by
placing a positive true zero in the first-operand
location.

If the second operand is less than zero, an
HFP-square-root exception is recognized.

If the second operand is normalized and greater
than zero, the characteristic, fraction, and sign of
the result are produced as follows:

� The result characteristic is one-half of the sum
of the operand characteristic and either 64, if
the operand characteristic is even, or 65, if it
is odd.

� If the operand characteristic is odd, the
operand fraction is shifted right one digit posi-
tion, the rightmost digit entering the guard-digit
position.

� An intermediate-result fraction is produced by
computing without rounding the square root of
the operand fraction, after any right shift as
described. The intermediate-result fraction
consists of the 29 most significant
hexadecimal digits of the square-root result in
the extended format, 15 in the long format, or
seven in the short format, where all three
formats include a guard digit on the right.

� A one is added to the leftmost bit of the guard
digit of the intermediate result, any carry is
propagated to the left, and the guard digit is
dropped to produce the result fraction.

� The result sign is made plus.

If the second operand is unnormalized and greater
than zero, the operand is first normalized. The
operation then proceeds as for normalized oper-
ands.

For SQXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Condition Code:  The code remains unchanged.
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 Program Exceptions: 

� Access (fetch, operand 2 of SQE and SQD
only)

� Data with DXC 1, AFP register
� HFP square root
� Operation (SQER and SQDR if the square-

root facility is not installed; SQE, SQD, and
SQXR if the HFP-extensions facility is not
installed)

 � Specification

Programming Notes:

1. The use of the SQUARE ROOT instruction
with short operands (SQER) is illustrated by
the examples in the following table:

┌─────────┬───────┬─────────┬─────────┐

│ Operand │Decimal│ Result │ Decimal │

│ (hex) │ Value │ (hex) │ Value │

├─────────┼───────┼─────────┼─────────┤

│42 19ðððð│25.ð │41 5ððððð│5.ð │

│4ð 4ððððð│ ð.25ð │4ð 8ððððð│ð.5ð │

│4ð 8ððððð│ ð.5ð │4ð B5ð4F3│ð.7ð71...│

│41 8ððððð│ 8.ð │41 2D413D│2.8284...│

└─────────┴───────┴─────────┴─────────┘

2. The result fraction is correctly normalized
without any further left or right shifts of the
intermediate-result fraction and without any
further exponent adjustment. Rounding
cannot cause a carry out of the leftmost digit.

3. Although a characteristic greater than 127 or
less than zero may temporarily be generated
during the operation, the result characteristic
is always within the representable range, and
no HFP exponent overflow or underflow
occurs.

Specifically, the smallest nonzero operand in
the long format consists of a one bit, preceded
on the left by 63 zeros. This operand is an
unnormalized number with a value of 16-78,
and its square root is 16-39. The normalized
representation of this result has a character-
istic of 26 (decimal). Similarly, the square root
of the largest representable operand has a
characteristic of 96 (decimal). The instruction,
therefore, cannot produce a nonzero result
with a characteristic outside the range of 26 to
96.

 SUBTRACT NORMALIZED
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
SER '3B' Short HFP

SDR '2B' Long HFP

SXR '37' Extended HFP

Mnemonic2 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic2 Op Code Operands
SE '7B' Short HFP

SD '6B' Long HFP

The second operand is subtracted from the first
operand, and the normalized difference is placed
at the first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except
that the second operand participates in the opera-
tion with its sign bit inverted.

For SXR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of SE and SD only)
� Data with DXC 1, AFP register
� HFP exponent overflow
� HFP exponent underflow

 � HFP significance
 � Specification
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 SUBTRACT UNNORMALIZED
Mnemonic1 R±,R² [RR]

┌────────┬────┬────┐

│Op Code │ R± │ R² │

└────────┴────┴────┘

ð 8 12 15

Mnemonic1 Op Code Operands
SUR '3F' Short HFP

SWR '2F' Long HFP

Mnemonic2 R±,D²(X²,B²) [RX]

┌────────┬────┬────┬────┬────────────┐

│Op Code │ R± │ X² │ B² │ D² │

└────────┴────┴────┴────┴────────────┘

ð 8 12 16 2ð 31

Mnemonic2 Op Code Operands
SU '7F' Short HFP

SW '6F' Long HFP

The second operand is subtracted from the first
operand, and the unnormalized difference is
placed at the first-operand location.

The execution of SUBTRACT UNNORMALIZED is
identical to that of ADD UNNORMALIZED, except
that the second operand participates in the opera-
tion with its sign bit inverted.

The R fields may designate the additional floating-
point registers only when the basic-floating-point-
extensions facility is installed; otherwise, a
specification exception is recognized.

Resulting Condition Code:  

0 Result fraction zero
1 Result less than zero
2 Result greater than zero
3 --

 Program Exceptions: 

� Access (fetch, operand 2 of SU and SW only)
� Data with DXC 1, AFP register
� HFP exponent overflow

 � HFP significance
 � Specification
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 Binary-Floating-Point Facility
The binary-floating-point (BFP) facility provides
instructions to operate on binary (radix-2) floating-
point data.

BFP provides a number of important advantages
over hexadecimal floating point (HFP):

� Greater precision and exponent range (except
for numbers in the short format where HFP
has the greater range).

� Automatic rounding to the nearest value for all
arithmetic operations. There are directed-
rounding options that may be used instead.

� Special entities of “infinity” and
“Not-a-Number” (NaN), which are accepted
and handled by arithmetic operations in a rea-
sonable fashion. They provide better defaults
for exponent overflow and invalid operations
(such as division of zero by zero). This allows
most programs to continue running without
hiding such errors and without using special-
ized exception handlers.

� Exponent underflow gives “denormalized”
numbers as the default, which provides more
consistent results than the abrupt result of
zero produced by the HFP instructions.

� The greater exponent range makes exponent
overflow and underflow in correctly written
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programs very unlikely, so that programmers
may often be able to ignore these conditions.

� Both mask and flag bits are provided for all
arithmetic exception conditions. The mask
bits enable or disable interruptions. When
interruptions are disabled, the flag bits keep
track of exception conditions during execution
so that warning messages may be issued.

� Programs can be migrated from and to work-
stations and other systems using different
architectures and still give consistent results,
provided that floating-point operations on the
other systems also conform to the IEEE
standard. This does not mean, however, that
bit-wise compatible results can be guaranteed,
because the standard allows implementation
flexibility, especially in the presence of
exceptions.

Programming Note:  The bit representation of
the BFP data formats in storage is defined to be
left-to-right in a manner that is uniform for all
numeric operands in the ESA/390 architecture.
Although the format diagrams in the IEEE floating-

point standard appear to use the same left-to-right
bit sequence, the standard only defines the
meaning of the bits without specifying how they
appear in storage; the storage arrangement is left
to the implementation. Several implementations in
fact use other sequences; this may affect pro-
grams which are dependent on the bit represen-
tation of floating-point data in storage.

 Floating-Point-Control (FPC)
Register
The floating-point-control (FPC) register is a 32-bit
register that contains mask bits, flag bits, a data-
exception code, and rounding-mode bits. An over-
view of the FPC register is shown in Figure 19-1.
Details are shown in Figure 19-2 on page 19-3
and in Figure 19-3 on page 19-3. (In
Figure 19-2, the abbreviations “IM” and “SF” are
based on the terms “interruption mask” and “status
flag,” respectively.)

The bits of the FPC register are often referred to
as, for example, FPC 1.0, meaning bit 0 of byte 1
of the register.

│%─masks─5│ │%─flags─5│ │%─────DXC─────5│

┌─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐

│I I I I I│ │S S S S S│ │ │ │ │

│M M M M M│ð ð ð│F F F F F│ð ð ð│i z o u x y │ð ð ð ð ð ð│RM │

│i z o u x│ │i z o u x│ │ │ │ │

└─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘

│%─── Byte ð ──5│%─── Byte 1 ──5│%─── Byte 2 ──5│%─── Byte 3 ──5│

Figure 19-1. FPC Register Overview
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Figure 19-2. FPC-Register Bit Assignments

Figure 19-3. Rounding Mode

IEEE Masks and Flags
The FPC register contains five IEEE mask bits
and five IEEE flag bits that each correspond to
one of the five arithmetic exception conditions that
may occur when a BFP instruction is executed.
The masks bits, when one, cause an interruption
to occur if an exception condition is recognized. If
the mask bit for an exception condition is zero, the
recognition of the condition causes the corre-
sponding flag bit to be set to one. Thus, a flag bit
indicates whether the corresponding exception
condition has been recognized at least once since

the program last set the flag bit to zero. The
mask bits are ignored, and the flag bits remain
unchanged, when arithmetic exceptions are recog-
nized for floating-point-support (FPS) and HFP
instructions.

The IEEE flag bits in the FPC register are set to
zero only by explicit program action, clear reset, or
power-on reset.

FPC DXC Byte
Byte 2 of the FPC register contains the data-
exception code (DXC), which is an eight-bit code
indicating the specific cause of a data exception.
When the AFP-register-control bit, bit 13 of control
register 0, is one and a program interruption
causes the DXC to be placed at real location 147,
the DXC is also placed in the DXC field of the
FPC register. The DXC field in the FPC register
remains unchanged when the AFP-register-control
bit is zero or when any other program exception is
reported.

The DXC is a code, meaning it should be treated
as an integer rather than as individual bits.
However, when bits 6 and 7 are zero, bits 0-5 are
bit significant; bits 0-4 (i,z,o,u,x) are trap flags and
correspond to the same bits in bytes 0 and 1 of
the FPC register (IEEE masks and IEEE flags),
and bit 5 (y) is used in conjunction with bit 4,
inexact (x), to indicate that the result has been
incremented in magnitude. The trap flag for an
exception, instead of the IEEE flag, is set to one
when an interruption for the exception is enabled
by the corresponding IEEE mask bit.

Operations on the FPC Register
The following unprivileged BFP instructions allow
problem-state programs to operate on the FPC
register:

 EXTRACT FPC
 LOAD FPC
 SET FPC

SET ROUNDING MODE
 STORE FPC

These instructions are subject to the
AFP-register-control bit, bit 13 of control register 0.
An attempt to execute any of the above
instructions when the AFP-register-control bit is
zero results in a BFP-instruction data exception,
DXC 2.

Byte Bit(s) Name Abbr.

0 0 IEEE-invalid-operation mask IMi

0 1 IEEE-division-by-zero mask IMz

0 2 IEEE-overflow mask IMo

0 3 IEEE-underflow mask IMu

0 4 IEEE-inexact mask IMx

0 5-7 (Reserved) 0

1 0 IEEE-invalid-operation flag SFi

1 1 IEEE-division-by-zero flag SFz

1 2 IEEE-overflow flag SFo

1 3 IEEE-underflow flag SFu

1 4 IEEE-inexact flag SFx

1 5-7 (Reserved) 0

2 0-7 Data-exception code DXC

3 0-5 (Reserved) 0

3 6-7 Rounding mode RM

FPC
Byte 3

Bits 6-7 Rounding Mode

00 Round to nearest

01 Round toward 0

10 Round toward +∞

11 Round toward −∞
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 BFP Arithmetic

BFP Data Formats
Binary-floating-point numbers and NaNs may be
represented in any of three formats: short, long, or
extended.

BFP Short Format

┌─┬──────────────┬─────────/─────────┐

│ │Exponent + 127│ Fraction │

│S│ (8 bits) │ (23 bits) │

└─┴──────────────┴─────────/─────────┘

 ð 1 9 31

Figure 19-4. BFP Short Format (4 bytes)

When a number or NaN in the BFP short format is
loaded into a floating-point register, it occupies the
left half of the register, and the right half remains
unchanged.

BFP Long Format

┌─┬─────────────────┬─────────/─────────┐

│ │ Exponent + 1ð23 │ Fraction │

│S│ (11 bits) │ (52 bits) │

└─┴─────────────────┴─────────/─────────┘

 ð 1 12 63

Figure 19-5. BFP Long Format (8 bytes)

When a number or NaN in the BFP long format is
loaded into a floating-point register, it occupies the
entire register.

BFP Extended Format

┌─┬────────────────────┬───────────/───────────┐

│ │ Exponent + 16383 │ Fraction │

│S│ (15 bits) │ (112 bits) │

└─┴────────────────────┴───────────/───────────┘

 ð 1 16 127

Figure 19-6. BFP Extended Format (16 bytes)

A number or NaN in the BFP extended format
occupies a register pair. The sign and biased
exponent are in the leftmost 16 bits of the left reg-
ister and are followed by the leftmost 48 bits of
the fraction. The rightmost 64 bits of the fraction
are in the right register of the pair.

The properties of the three formats are tabulated
in Figure 19-7 on page 19-5.

 Biased Exponent
For each format, the bias that is used to allow all
exponents to be expressed as unsigned numbers
is shown in the Figure 19-7 on page 19-5.
Biased exponents are similar to the characteristics
of the HFP format, except that special meanings
are attached to biased exponents of all zeros and
all ones, which are discussed in the section
“Classes of BFP Data” on page 19-5.

 Significand
In each format, the binary point of a BFP number
is considered to be to the left of the leftmost frac-
tion bit. To the left of the binary point there is an
implied unit bit, which is considered to be one for
normalized numbers and zero for zeros and
denormalized numbers. The fraction with the
implied unit bit appended on the left is the
significand of the number.

The value of a normalized BFP number is the
significand multiplied by the radix 2 raised to the
power of the unbiased exponent. The value of a
denormalized BFP number is the significand multi-
plied by the radix 2 raised to the power of the
minimum exponent.

A value of one in the rightmost bit position of the
significand in each format is sometimes referred to
as one ulp (unit in the last place).

Values of Nonzero Numbers
The values of nonzero numbers in the various
formats are shown in Figure 19-8.

Figure 19-8. Values of Nonzero Numbers

Programming Note:  The IEEE standard speci-
fies minimum requirements for the extended

Number Class Format Value

Normalized Short ±2e−127×(1.f)

Long ±2e−1023×(1.f)

Extended ±2e−16383×(1.f)

Denormalized Short ±2−126×(0.f)

Long ±2−1022×(0.f)

Extended ±2−16382×(0.f)

Explanation: 

e Biased exponent (shown in decimal).
f Fraction (in binary).
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Figure 19-7. Summary of BFP Data Formats

Property

Format

Short Long Extended

Format length (bits) 32 64 128

Biased-exponent length
(bits)

8 11 15

Fraction length (bits) 23 52 112

Precision (p) 24 53 113

Maximum exponent (Emax) 127 1023 16383

Minimum exponent (Emin) -126 -1022 -16382

Exponent bias 127 1023 16383

Nmax (1-2-24)×2128

º3.4×1038

(1-2-53)×21024

º1.8×10308

(1-2-113)×216384

º1.2×104932

Nmin 1.0×2-126

º1.2×10-38

1.0×2-1022

º2.2×10-308

1.0×2-16382

º3.4×10-4932

Dmin 1.0×2-149

º1.4×10-45

1.0×2-1074

º4.9×10-324

1.0×2-16494

º6.5×10-4966

Explanation: 

º Value is approximate.
Dmin Smallest (in magnitude) representable denormalized number.
Nmax Largest (in magnitude) representable number.
Nmin Smallest (in magnitude) representable normalized number.

format but does not include details. The BFP
extended format meets these requirements, far
exceeding them in the area of precision.

Classes of BFP Data
There are six classes of BFP data, which include
numeric and related nonnumeric entities. Each
data item consists of a sign, an exponent, and a
significand. The exponent is biased such that all
biased exponents are nonnegative unsigned
numbers and the minimum biased exponent is
zero. The significand consists of an explicit frac-
tion and an implicit unit bit to the left of the binary
point. The sign bit is zero for plus and one for
minus.

All finite nonzero numbers within the range per-
mitted by a given format are normalized and have
a unique BFP representation. There are no
unnormalized numbers, which numbers might
allow multiple representations for the same values,
and there are no unnormalized arithmetic opera-
tions. Tiny numbers of a magnitude below the
minimum normalized number in a given format are
represented as denormalized numbers, but those
values are also represented uniquely. The implied
unit bit of a normalized number is one, and that of
a a denormalized number or a zero is zero.

The six classes of BFP data are summarized in
Figure 19-9 on page 19-6.
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Figure 19-9. Classes of BFP Data

The instruction TEST DATA CLASS may be used
to determine the class of a BFP operand.

 Zeros
Zeros have a biased exponent of zero and a zero
fraction. The implied unit bit is zero. A +0 is dis-
tinct from −0, except that comparison treats them
as equal.

 Denormalized Numbers
Denormalized numbers are numbers which are
smaller than the smallest normalized number and
greater than zero in magnitude. They have a
biased exponent of zero and a nonzero fraction.
The biased exponent is treated arithmetically as if
it were one, which causes the exponent to be the
minimum exponent. The implied unit bit is zero.

 Normalized Numbers
Normalized numbers have a biased exponent
greater than zero but less than all ones. The
implied unit bit is one, and the fraction may have
any value.

 Infinities
An infinity is represented by a biased exponent of
all ones and a zero fraction. Infinities can partic-
ipate in most arithmetic operations and give a con-
sistent result, usually infinity. In comparisons, +∞
compares greater than any finite number, and −∞
compares less than any finite number.

Signaling and Quiet NaNs
A NaN (not-a-number) entity is represented by a
biased exponent of all ones and a nonzero frac-
tion. NaNs are produced in place of a numeric
result after an invalid operation when there is no
interruption. NaNs may also be used by the
program to flag special operands, such as the
contents of an uninitialized storage area.

There are two types of NaNs, signaling and quiet.
A signaling NaN (SNaN) is distinguished from the
corresponding quiet NaN (QNaN) by the leftmost
fraction bit: zero for the SNaN and one for the
QNaN. A special QNaN is supplied as the default
result for an IEEE-invalid-operation condition; it
has a plus sign and a leftmost fraction bit of one,
with the remaining fraction bits being set to zeros.

Normally, QNaNs are just propagated during com-
putations so that they will remain visible at the
end. An SNaN operand causes an
IEEE-invalid-operation exception. If the
IEEE-invalid-operation mask (FPC 0.0) is zero, the
result is the corresponding QNaN, which is
produced by setting the leftmost fraction bit to
one, and the IEEE-invalid-operation flag (FPC 1.0)
is set to one. If the IEEE-invalid-operation mask
(FPC 0.0) is one, the operation is suppressed, and
a data exception for IEEE-invalid operation occurs.

Programming Notes:

1. The program can generate and assign
meanings to any nonzero fraction values of a
NaN. The CPU propagates those values
unchanged, except that an SNaN is changed
to the corresponding QNaN if the
IEEE-invalid-operation mask bit is zero, and
conversion to a narrower format may truncate
significant bits on the right.

2. The standard requires SNaNs to signal the
invalid-operation exception for the arithmetic,
comparison, and conversion operations that
are part of the standard, but it makes it an
implementation option whether copying an
SNaN without a change of format signals the

Data Class Sign
Biased

Exponent Unit Bit* Fraction

Zero ± 0 0 0

Denormalized
numbers

± 0** 0 Not 0

Normalized
numbers

± Not 0, not
all ones

1 Any

Infinity ± All ones — 0

Quiet NaN ± All ones — F0=1,
Fr=any

Signaling NaN ± All ones — F0=0,
Fr≠0

Explanation: 

— Does not apply.
* The unit bit is implied.
** The biased exponent is treated arithmetically

as if it had the value one.
F0 Leftmost bit of fraction.
Fr Remaining bits of fraction.

 NaN Not-a-number.
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exception. In the appendix, the standard also
makes it an implementation option whether
SNaNs should signal the invalid-operation
exception for the recommended functions of
copying the sign, taking the absolute value,
reversing the sign, and testing the data class
of a number.

The above functions generally correspond to
the instructions LOAD, LOAD COMPLEMENT,
LOAD NEGATIVE, LOAD POSITIVE, and
TEST DATA CLASS. These instructions do
not signal the invalid-operation exception but,
instead, treat SNaNs like any other data;
giving an exception would be disruptive when
the intention is to include SNaNs. TEST
DATA CLASS does not give an exception
since it is the instruction with which to test for
the presence of SNaNs.

3. LOAD AND TEST signals the invalid-operation
exception when the operand is an SNaN.
This instruction, in conjunction with the above
instructions, gives the program the choice of
either option permitted by the standard.

4. Load-type instructions which change the preci-
sion signal the invalid-operation exception
when the operand is an SNaN, as this is
required by the standard.

 BFP-Format Conversion
The instructions LOAD LENGTHENED and LOAD
ROUNDED perform conversions of numbers
between the short, long, and extended formats.
For BFP formats, conversion involves adjustments
to both the fraction and the exponent. When con-
verting a normalized number to a wider format
(short to long, long to extended, or short to
extended), the fraction is adjusted by appending
sufficient zeros on the right. Conversion to a nar-
rower format requires rounding of the fraction
before dropping excess bits on the right.

The exponent is adjusted by adding or subtracting
the difference in the biases of the two formats.
When converting to a narrower format, this adjust-
ment causes IEEE underflow if the resultant
biased exponent would be less than one, or IEEE
overflow if the resultant exponent would be equal
to or greater than the maximum exponent for the
new format.

When a denormalized number is converted to a
wider format, the biased exponent of the source

operand is treated as if it had the value one. The
result is normalized.

Programming Notes:

1. When a NaN is converted to a narrower
format, the appropriate number of fraction bits
on the right are simply dropped with no indi-
cation. This is unlike the conversion of
nonzero numbers, where the loss of nonzero
fraction bits causes an IEEE-inexact condition.
Thus, programs which encode NaN fraction
bits for specific purposes must ensure that the
distinguishing bits are placed in the left part of
the fraction.

2. Converting a NaN from a wide format to a
narrower format cannot turn the NaN into an
infinity because an SNaN either causes an
interruption or turns into a QNaN, and all
QNaNs have a leftmost fraction bit of one.

 BFP Rounding
Arithmetic and conversion operations are per-
formed as if they first produced an intermediate
result correct to infinite precision and with
unbounded range. If this intermediate result can
be represented exactly in the target format, then it
is given exactly. Otherwise, the intermediate
result is replaced by one of the two closest values
that can be represented, the choice depending on
the rounding mode.

Rounding is performed automatically as part of
every arithmetic and conversion operation. The
precision of the target (short, long, or extended) is
specified by the operation code.

 Rounding Mode
There are four rounding modes. The current
rounding mode is specified by the value of two
rounding-mode bits in the FPC register, as follows:

00 Round to nearest (default). Round the inter-
mediate result up or down to the nearest
representable value; that is, add, ignoring
the sign, a one to the bit just beyond the last
result bit to be retained, propagate the carry,
and discard the bits beyond the last one to
be retained. If the difference was exactly
one-half ulp (a one in the bit position just
beyond the last place, with all zeros beyond
that), the nearest even number is chosen;
that is, after the rounding addition, the last
result bit retained is set to zero.
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If the absolute value of the intermediate
result is equal to or greater than the largest
representable number plus one-half ulp, that
is, if the absolute value is equal to or greater
than 2Emax × (2 − 2− p), the result is rounded to
infinity with the same sign as the interme-
diate result.

01 Round toward 0. Discard all bits to the right
of the last intermediate-result bit to be
retained.

10 Round toward +∞. If the intermediate result
is positive and there are any ones to the
right of the last result bit to be retained, add
one to that bit. Then, for either sign, discard
the bits beyond the last one to be retained.

11 Round toward −∞. If the intermediate result
is negative and there are any ones to the
right of the last result bit to be retained, sub-
tract one from that bit (that is, add one to the
magnitude). Then, for either sign, discard
the bits beyond the last one to be retained.

Programming Notes:

1. Rounding a finite result toward zero cannot
give infinity.

2. Rounding a result toward +∞ can give +∞ but
not −∞.

3. Rounding a result toward −∞ can give −∞ but
not +∞.

 Normalization and
Denormalization
Every arithmetic or conversion operation is consid-
ered to produce an intermediate result as if the
precision and exponent range were unbounded,
unless the result is defined to be zero, infinity, or
NaN. The final result is produced by normalizing
and then rounding this intermediate result. When
there is exponent underflow, that is, the biased
exponent of the normalized intermediate result is
less than one, then the intermediate result is
denormalized to produce the final result, as
described below.

Denormalization consists in shifting the
significand, including the units bit, to the right
while introducing zero bits on the left, and in
increasing the exponent by one for each bit of
shift. When the biased exponent reaches +1, the
significand is rounded according to the current

rounding mode. If all bits of the rounded
significand are zeros, the result is made zero. If
rounding produces a carry into the units bit posi-
tion of the significand, the biased exponent
remains +1, since this result is a normalized
number (±2Emin). Otherwise, the units bit remains
zero, the biased exponent is set to zero, and the
result is considered denormalized.

Arithmetic operations on denormalized operands
are performed as if the operands had first been
normalized.

Intermediate results are first normalized or denor-
malized, as required, and then rounded. This
avoids double rounding of a single operation,
which might increase the rounding error. (Any
right shift required after a carry from rounding to
renormalize the result does not require a second
rounding, because the bit shifted off on the right is
always zero.)

 BFP Comparison
Comparisons are always exact and cannot cause
an IEEE-inexact condition.

Comparison ignores the sign of zero, that is, +0
equals −0.

Infinities with like sign compare equal, that is, +∞
equals +∞, and −∞ equals −∞.

A NaN compares as unordered with any other
operand, whether a finite number, an infinity, or
another NaN, including itself.

Two sets of instructions are provided: COMPARE
and COMPARE AND SIGNAL. In the absence of
QNaNs, these instructions work the same. These
instructions work differently only when both of the
following are true:

� Neither operand of the instruction is an SNaN

� At least one operand of the instruction is a
QNaN

In this case, COMPARE simply sets condition
code 3, but COMPARE AND SIGNAL recognizes
the IEEE-invalid-operation condition. If any
operand is an SNaN, both instructions recognize
the IEEE-invalid-operation condition.

The action when the IEEE-invalid-operation condi-
tion is recognized depends on the
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IEEE-invalid-operation mask bit in the FPC reg-
ister. If the mask bit is zero, then the instruction
execution is completed by setting condition code
3, and the IEEE-invalid-operation flag in the FPC
register is set to one. If the mask bit is one, then
the condition is reported as a program interruption
for a data exception with DXC 80 hex (IEEE
invalid operation).

Programming Note:  A compiler can select either
COMPARE or COMPARE AND SIGNAL for a
comparison, depending on whether the IEEE
standard or a relevant language standard requires
a QNaN to be recognized as an exception condi-
tion.

Condition Codes for BFP
Instructions
For arithmetic operations with finite or infinite
numeric results, condition codes 0, 1, and 2 are
set to indicate that the result is a zero of either
sign, less than zero, or greater than zero, respec-
tively. The condition-code setting depends only
on an inspection of the rounded result. For com-
parison operations, condition codes 0, 1, and 2
indicate equal, low, or high, respectively. These
settings are the same as for the HFP instructions.

Condition code 3 can also be set. After an arith-
metic operation, condition code 3 indicates a NaN
result of either sign. After a comparison, it indi-
cates that a NaN was involved in the comparison
(the unordered condition). See Figure 19-10.

Figure 19-10. Condition Codes

 Remainder
The instruction DIVIDE TO INTEGER produces
two floating-point results, an exact integer quotient
and the corresponding remainder. The remainder
is defined as follows:

Let

a = Dividend

b = Divisor

q = Exact quotient (a÷b)

r = Remainder

in the selected floating-point format. Then

r = a−b¸n

where n is an integer. If q is an integer, then n
equals q. Otherwise, n is obtained by rounding q
according to a specified quotient rounding mode.

When the specified quotient rounding mode is
round to nearest or round toward zero, the
remainder is exact for any finite dividend and any
nonzero divisor. The remainder cannot overflow.

If the integer quotient has a value that lies outside
the range of the operand format, a wrapped result
is provided.

In certain cases where the number of bits in the
integer quotient exceeds or may exceed the
maximum number of bits provided in the precision
of the operand format, partial results are
produced, and more than one execution of the
instruction is required to obtain the final result; this
may be done with a simple instruction loop.

Partial results are produced when the precise quo-
tient is not an integer and the two integers closest
to this precise quotient cannot both be repres-
ented exactly in the precision of the quotient. This
situation exists when the precise quotient is
greater than 2P, where P is the precision of the
operand format, and the remainder is not zero.
When the remainder is zero, then the quotient is
an integer, and the number of bits required to rep-
resent the quotient is never more than the preci-
sion of the target.

Programming Note:  The remainder result of
DIVIDE TO INTEGER with a specified quotient
rounding mode of round to nearest corresponds to
the Remainder function in the IEEE standard.
This function is similar to the MOD function found
in some languages and to the mathematical
modulo function, but they are not the same. They
differ in the definition of n:

Remainder n is q rounded to nearest.
modulo n is q rounded toward −∞.
MOD n is q rounded toward 0.

CC Arithmetic Comparison

0 ±0 Equal
1 <0 Low
2 >0 High
3 ±NaN Unordered
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Another important difference is that implementa-
tions of modulo and MOD may put range
restrictions on the result because they may simply
use the DIVIDE instruction and accept its range
restrictions.

The MOD definition provides an exact result, as
does Remainder, but the modulo definition may
result in rounding errors.

The differences between the various methods may
be illustrated by the simple example of computing
a divided by b to obtain an integer quotient n,
where a is a series of integers, and b is +4 or −4.
Figure 19-11 on page 19-11 shows the results for
the three definitions.

The result of Remainder lies in the range of zero
to one-half the divisor, inclusive, in magnitude. A
zero result is defined to have the sign of the divi-
dend. A zero divisor is invalid.

The modulo and MOD results can both be com-
puted from the Remainder result; the reverse may
not be true, because of rounding errors and,
depending on the implementation, range
restrictions.

An extreme example of the rounding error that can
occur with the modulo definition is the following,
where the result is restricted to two significant
decimal digits:

modulo(ð.ð1,-95) = -94.99, which rounds to -95

Remainder(ð.ð1,-95) = ð.ð1

The properly rounded modulo result is completely
wrong since it is equal to the divisor instead of
being smaller in magnitude. The Remainder result
is exact and can be used to compute the theore-
tical result of modulo.

Remainder is included as an arithmetic operation
because of its usefulness in argument reduction
when computing elementary transcendental func-
tions. Thus, SIN(X) can be computed to full preci-
sion for any value of X in degrees by first reducing
the argument to Remainder(X,360).

IEEE Exception Conditions
The results of each of the IEEE exception condi-
tions are controlled by a mask bit in the FPC reg-
ister. When an IEEE exception condition is
recognized, one of two actions is taken:

� If the corresponding mask bit in the FPC reg-
ister is zero, a default action is taken, as
specified for each condition, and the corre-
sponding flag bit in the FPC register is set to
one. Program execution then continues
normally.

� If the corresponding mask bit in the FPC reg-
ister is one, a program interruption for a data
exception occurs, the operation is suppressed
or completed, depending on the condition, and
the data-exception code (DXC) assigned for
that condition is provided.

IEEE Invalid Operation
An IEEE-invalid-operation condition is recognized
when, in the execution of a BFP instruction, any of
the following occurs:

1. An SNaN is encountered in any BFP arith-
metic, comparison, or conversion operation or
by LOAD AND TEST.

2. A QNaN is encountered in a BFP comparison
by COMPARE AND SIGNAL.

3. A BFP difference is undefined (addition of
infinities of opposite sign, or subtraction of
infinities of like sign).

4. A BFP product is undefined (zero times
infinity).

5. A BFP quotient is undefined (DIVIDE instruc-
tion with both operands zero or both operands
infinity).

6. A BFP remainder is undefined (DIVIDE TO
INTEGER with a dividend of infinity or a
divisor of zero).

7. A BFP square root is undefined (negative
nonzero operand).

If the IEEE-invalid-operation mask bit in the FPC
register is zero, the IEEE-invalid-operation flag bit
in the FPC register is set to one. The completion
of the operation depends on the type of operation
and the operands.
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┌─────────┬───────────────────────────────────────────────────────┐

│ │ a │

│ │ -8 -7 -6 -5 -4 -3 -2 -1 -ð +ð +1 +2 +3 +4 +5 +6 +7 +8 │

├─────────┼───────────────────────────────────────────────────────┤

│ │ Remainder │

│ b=+4: n │ -2 -2 -2 -1 -1 -1 -ð -ð -ð +ð +ð +ð +1 +1 +1 +2 +2 +2 │

│ r │ -ð +1 +2 -1 -ð 1 -2 -1 -ð +ð +1 +2 -1 +ð +1 -2 -1 +ð │

│ b=-4: n │ +2 +2 +2 +1 +1 +1 +ð +ð +ð -ð -ð -ð -1 -1 -1 -2 -2 -2 │

│ r │ -ð +1 +2 -1 -ð +1 -2 -1 -ð +ð +1 +2 -1 +ð +1 -2 -1 +ð │

├─────────┼───────────────────────────────────────────────────────┤

│ │ MOD │

│ b=+4: n │ -2 -1 -1 -1 -1 ð ð ð ð ð ð ð +1 +1 +1 +1 +2 │

│ r │ ð -3 -2 -1 ð -3 -2 -1 ð +1 +2 +3 ð +1 +2 +3 ð │

│ b=-4: n │ +2 +1 +1 +1 +1 ð ð ð ð ð ð ð -1 -1 -1 -1 -2 │

│ r │ ð -3 -2 -1 ð -3 -2 -1 ð +1 +2 +3 ð +1 +2 +3 ð │

├─────────┼───────────────────────────────────────────────────────┤

│ │ modulo │

│ b=+4: n │ -2 -2 -2 -2 -1 -1 -1 -1 ð ð ð ð +1 +1 +1 +1 +2 │

│ r │ ð +1 +2 +3 ð +1 +2 +3 ð +1 +2 +3 ð +1 +2 +3 ð │

│ b=-4: n │ +2 +1 +1 +1 +1 ð ð ð ð -1 -1 -1 -1 -2 -2 -2 -2 │

│ r │ ð -3 -2 -1 ð -3 -2 -1 ð -3 -2 -1 ð -3 -2 -1 ð │

├─────────┴───────────────────────────────────────────────────────┤

│Explanation: │

│ │

│ a Dividend. │

│ b Divisor. │

│ n Integer quotient. │

│ r Result (Remainder, MOD, or modulo). │

└─────────────────────────────────────────────────────────────────┘

Figure 19-11. Comparison of Remainder with MOD and Modulo

If the instruction performs a comparison and no
program interruption occurs, the comparison result
is unordered.

If the instruction is one that produces a BFP
result, if no program interruption occurs, and if
none of the operands is a NaN, the result is the
default QNaN. If one of the operands is a NaN,
that operand becomes the result unchanged,
except that an SNaN is first converted to the cor-
responding QNaN by setting the leftmost fraction
bit to one.

If the IEEE-invalid-operation mask bit in the FPC
register is one, the operation is suppressed, and
the condition is reported as a program interruption
for a data exception with DXC 80 hex.

 IEEE Division-By-Zero
An IEEE-division-by-zero condition is recognized
when in BFP division the divisor is zero and the
dividend is a finite nonzero number.

If the IEEE-division-by-zero mask bit in the FPC
register is zero, the IEEE-division-by-zero flag bit
in the FPC register is set to one. The operation is
completed using as the result an infinity with a

sign that is the EXCLUSIVE OR of the dividend
and divisor signs.

If the IEEE-division-by-zero mask bit in the FPC
register is one, the operation is suppressed, and
the condition is reported as a program interruption
for a data exception with DXC 40 hex.

 IEEE Overflow
An IEEE-overflow condition is recognized when
the exponent of the rounded result of a BFP oper-
ation would be greater than the maximum expo-
nent of the target format if the exponent range
were unbounded.

If the IEEE-overflow mask bit in the FPC register
is zero, the IEEE-overflow flag bit in the FPC reg-
ister is set to one. The result of the operation
depends on the sign of the intermediate result and
on the current rounding mode:

1. When rounding to nearest, the result is infinity
with the sign of the intermediate result.

2. When rounding toward 0, the result is the
largest finite number of the format, with the
sign of the intermediate result.
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3. When rounding toward +∞, the result is +∞ if
the sign is plus, or it is the finite negative
number with the largest magnitude if the sign
is minus.

4. When rounding toward −∞, the result is the
largest finite positive number if the sign is plus
or −∞ if the sign is minus.

If the IEEE-overflow mask bit in the FPC register
is one, the operation is completed by producing a
wrapped result, and the condition is reported as a
program interruption for a data exception with
DXC 20, 28, or 2C hex, depending on whether the
wrapped result is exact, inexact and truncated, or
inexact and incremented, respectively.

 IEEE Underflow
An IEEE-underflow condition is recognized when
the exponent of the exact result of a BFP opera-
tion would be less than the minimum exponent of
the target format.

If the IEEE-underflow mask bit in the FPC register
is zero, then the action depends on whether the
result can be represented exactly and, if not, also
on the setting of the IEEE-inexact mask bit in the
FPC register. If the result can be represented
exactly, the operation is completed by denormal-
izing the intermediate result. If the result cannot
be represented exactly and the IEEE-inexact mask
bit in the FPC register is zero, the operation is
completed by denormalizing and rounding the
intermediate result, and the IEEE-underflow and
IEEE-inexact flag bits in the FPC register are set
to ones. If the result cannot be represented
exactly and the IEEE-inexact mask bit in the FPC
register is one, the IEEE-underflow flag bit in the
FPC register is set to one, and the inexact condi-
tion is reported as a program interruption for a
data exception with DXC 08 or 0C hex, depending
on whether the result is inexact and truncated or
inexact and incremented, respectively.

If the IEEE-underflow mask bit in the FPC register
is one, then, regardless of whether the result
could have been represented exactly, the opera-
tion is completed by producing a wrapped result,
and the condition is reported as a program inter-
ruption for a data exception with DXC 10, 18, or
1C hex, depending on whether the wrapped result
is exact, inexact and truncated, or inexact and
incremented, respectively.

 IEEE Inexact
An IEEE-inexact condition is recognized when the
rounded result of a BFP operation differs in value
from the intermediate result computed as if expo-
nent range and precision were unbounded. The
condition is also recognized if rounding the result
causes IEEE overflow and the IEEE-overflow
mask bit is zero. The operation is completed
using the rounded result or, in case of overflow or
underflow, the result specified for IEEE overflow or
IEEE underflow.

If the IEEE-inexact mask bit in the FPC register is
zero, the IEEE-inexact flag bit in the FPC register
is set to one.

If the IEEE-inexact mask bit in the FPC register is
one, the operation is completed, and the condition
is reported as a program interruption for a data
exception with DXC 08 or 0C hex, depending on
whether the result is inexact and truncated or
inexact and incremented, respectively.

Programming Notes:

1. All IEEE traps are reported by means of a
program interruption for a data exception with
a data-exception code. The use of data
exception provides the application program
with a convenient interface since this excep-
tion is one of the original 15 exceptions in the
System/360 architecture and is supported by
most control programs that support the
ESA/390 architecture.

2. The IEEE standard includes recommendations
for the trap handler. When a system traps,
the trap handler should be able to determine:

a. Which exception(s) occurred on this oper-
ation.

b. The kind of operation that was being per-
formed.

c. The destination's format.

d. For overflow, underflow, and inexact
exceptions, the correctly rounded result,
including information that might not fit in
the destination's format.

e. For invalid-operation and divide-by-zero
exceptions, the operand values.

Items a and d are supplied as part of the
interruption action. Items b, c, and e can be
obtained starting with the instruction address
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in the old PSW and from this finding the
instruction (which indicates the operation and
format) and then the operands.

3. The description of underflow is one of the
most difficult parts of the standard to under-
stand. This is because:

a. The condition is described as two “corre-
lated events” — “tininess” and “loss of
accuracy.”

b. For tininess, the standard provides two
options for detection: “after rounding” or
“before rounding.”

c. For loss of accuracy, the standard pro-
vides two options for detection: “denormal-
ization loss” or “inexact result.”

d. Implementation of the trap is optional.

e. The conditions to signal underflow are dif-
ferent depending on whether or not the
trap is taken.

Each of the above items is discussed below.

a. Tininess refers to a nonzero number
strictly between ±2Emin. (All denormalized
numbers are in this range.) Loss of accu-
racy means that the result cannot be
represented exactly.

b. Detection of tininess after or before
rounding differs only for the case when
“rounding” would increase the magnitude
of the result to exactly ±2Emin. It must be
noted, however, that the action which the
standard here calls “rounding” is not the
rounding to produce the delivered result
but rounding to compute an intermediate
value having the precision of the result but
“as though the exponent range were
unbounded.” In fact, it is possible that the
delivered result may not be tiny even
though the intermediate value “after
rounding” is tiny.

The option selected in the ESA/390 BFP
architecture (and the RS/6000) is to detect
tininess before rounding.

c. The difference between detection of loss
of accuracy as a denormalization loss or
as an inexact result can best be under-
stood by considering two intermediate
values: (1) a precise intermediate value,
which has unbounded precision and
unbounded exponent range, and (2) a

rounded intermediate value, which is
obtained by rounding the precise interme-
diate value to the precision of the result
but with unbounded exponent range.
Inexact result is said to occur when the
delivered result differs from the precise
intermediate value. Denormalization loss
is said to occur when the delivered result
differs from the rounded intermediate
value. The two options differ in the case
when the delivered result is equal in value
to the rounded intermediate value but
these are not equal to the precise interme-
diate value. Although the standard uses
the term “denormalization loss,” this condi-
tion includes a case in which the delivered
result is normalized.

The option selected in the ESA/390 BFP
architecture (and the RS/6000) is to detect
“loss of accuracy” as an inexact result.

d. Although the standard does not require
traps to be implemented for underflow or
the other arithmetic exceptions, it does
state that “with each exception should be
associated a trap under user control.”
Since it also defines “should” as “that
which is strongly recommended as being
in keeping with the intent of the standard,”
the ESA/390 BFP architecture provides
traps by means of program interruptions.

e. When the underflow trap is enabled,
underflow is to be signaled when tininess
is detected regardless of loss of accuracy.
When the underflow trap is not enabled,
the underflow flag bit is to be set only
when both tininess and loss of accuracy
have been detected. Add and subtract
can result in tiny or inexact results, but not
both. Thus, when underflow is disabled,
add and subtract never set the underflow
flag bit.

 Result Figures
Concise descriptions of the results produced by
many of the BFP instructions are made by means
of figures which contain columns and rows repres-
enting all possible combinations of BFP data class
for the source operands of an instruction. The
information shown at the intersection of a row and
a column is one or more symbols representing the
result or results produced for that particular combi-
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nation of source-operand data classes. Explana-
tions of the symbols used are contained in each
figure. In many cases, the explanation of a partic-
ular result is in the form of a cross reference to
another figure. In many cases, the information
shown at the intersection consists of several
symbols separated by commas. All such results
are produced unless one of the results is a
program interruption. In the case of a program
interruption, the operation is suppressed or com-
pleted as shown in Figure 19-13 on page 19-15.

Data-Exception Codes (DXC) and
Abbreviations
Figure 19-12 shows IEEE exception-condition and
flag abbreviations that are used in the result
figures, and it explains the symbols “Xi:” and “Xz:”
that are used in the figures.

Figure 19-12. IEEE Exception-Condition and Flag
Abbreviations

Bits 0-4 (i,z,o,u,x) of the eight-bit data-exception
code (DXC) in byte 2 of the FPC register are trap
flags and correspond to the same bits in bytes 0
and 1 of the register (IEEE masks and IEEE
flags). The trap flag for an exception, instead of
the IEEE flag, is set to one when an interruption
for the exception is enabled by the corresponding
IEEE mask bit. Bit 5 of byte 2 (y) is used in con-
junction with bit 4, inexact (x), to indicate that the
result has been incremented in magnitude.

Figure 19-13 on page 19-15 shows the various
DXCs that can be indicated, the associated
instruction endings, and abbreviations that are
used for the DXCs in the result figures. (The
abbreviation “PID” stands for “program interruption
for a data exception.”)

Exception Condition FPC
IEEE
Mask

Bit

IEEE Flag

Name Abbr.
FPC
Bit Abbr.

IEEE invalid operation Xiñ 0.0 1.0 SFi

IEEE division by zero Xzò 0.1 1.1 SFz

IEEE overflow Xo 0.2 1.2 SFo

IEEE underflow Xu 0.3 1.3 SFu

IEEE inexact Xx 0.4 1.4 SFx

Explanation: 

ñ The symbol “Xi:” followed by a list of results
in a figure indicates that, when FPC 0.0 is
zero, then instruction execution is completed
by setting SFi (FPC 1.0) to one and
producing the indicated results; and when
FPC 0.0 is one, then instruction execution is
suppressed, the data exception code (DXC)
is set to 80 hex, and a program interruption
for a data exception occurs.

ò The symbol “Xz:” followed by a list of results
in a figure indicates that, when FPC 0.1 is
zero, then instruction execution is completed
by setting SFz (FPC 1.1) to one and
producing the indicated results; and when
FPC 0.1 is one, then instruction execution is
suppressed, the data exception code (DXC)
is set to 40 hex, and a program interruption
for a data exception occurs.
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Figure 19-13. IEEE Data-Exception Codes (DXC) and Abbreviations

Abbr.
DXC
(Hex) Data-Exception-Code Name Instruction Ending

PIDx 08 IEEE inexact and truncated Complete

PIDy 0C IEEE inexact and incremented Complete

PIDu 10 IEEE underflow, exact Complete, wrap exponent

PIDux 18 IEEE underflow, inexact and truncated Complete, wrap exponent

PIDuy 1C IEEE underflow, inexact and incremented Complete, wrap exponent

PIDo 20 IEEE overflow, exact Complete, wrap exponent

PIDox 28 IEEE overflow, inexact and truncated Complete, wrap exponent

PIDoy 2C IEEE overflow, inexact and incremented Complete, wrap exponent

PIDz 40 IEEE division by zero Suppress

PIDi 80 IEEE invalid operation Suppress

 Instructions
The BFP instructions and their mnemonics and
operation codes are listed in the figure “Summary
of BFP Instructions.” The figure indicates, in the
column labeled “Characteristics,” the instruction
format, when the condition code is set, the instruc-
tion fields that designate access registers, and the
exceptional conditions in operand designations,
data, or results that cause a program interruption.

All BFP instructions are subject to the
AFP-register-control bit, bit 13 of control register 0.
The BFP instructions can be used only when the
AFP-register-control bit is one; otherwise a
BFP-instruction data exception, DXC 2, is recog-
nized. An operation exception is recognized when
the CPU attempts to execute a BFP instruction
when the BFP facility is not installed.

Mnemonics for the BFP instructions are distin-
guished from the corresponding HFP instructions

by a B in the mnemonic. Mnemonics for the BFP
instructions have an R as the last letter when the
instruction is in the RRE or RRF format. Certain
letters are used for BFP instructions to represent
operand-format length, as follows:

F Thirty-two-bit fixed point
D Long
E Short
X Extended

Note:  In the detailed descriptions of the indi-
vidual instructions, the mnemonic and the sym-
bolic operand designation for the assembler
language are shown with each instruction. For a
register-to-register operation using COMPARE
(short), for example, CEBR is the mnemonic and
R±,R² the operand designation.

Programming Note:  All of the instructions
shown in Figure 19-14 on page 19-16 are avail-
able in ESA/390 when the BFP facility is installed.
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│ADD (extended BFP) │AXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34A│

│ADD (long BFP) │ADBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31A│

│ADD (long BFP) │ADB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1A│

│ADD (short BFP) │AEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðA│

│ADD (short BFP) │AEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðA│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│COMPARE (extended BFP) │CXBR │RRE C BF│ SP│Db Xi │ │ │B349│

│COMPARE (long BFP) │CDBR │RRE C BF│ │Db Xi │ │ │B319│

│COMPARE (long BFP) │CDB │RXE C BF│ A │Db Xi │ │ B²│ED19│

│COMPARE (short BFP) │CEBR │RRE C BF│ │Db Xi │ │ │B3ð9│

│COMPARE (short BFP) │CEB │RXE C BF│ A │Db Xi │ │ B²│EDð9│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C BF│ SP│Db Xi │ │ │B348│

│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C BF│ │Db Xi │ │ │B318│

│COMPARE AND SIGNAL (long BFP) │KDB │RXE C BF│ A │Db Xi │ │ B²│ED18│

│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C BF│ │Db Xi │ │ │B3ð8│

│COMPARE AND SIGNAL (short BFP) │KEB │RXE C BF│ A │Db Xi │ │ B²│EDð8│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE BF│ SP│Db │ │ │B396│

│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE BF│ │Db │ │ │B395│

│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE BF│ │Db Xx│ │ │B394│

│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C BF│ SP│Db Xi Xx│ R │ │B39A│

│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C BF│ SP│Db Xi Xx│ R │ │B399│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C BF│ SP│Db Xi Xx│ R │ │B398│

│DIVIDE (extended BFP) │DXBR │RRE BF│ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│

│DIVIDE (long BFP) │DDBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B31D│

│DIVIDE (long BFP) │DDB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│ED1D│

│DIVIDE (short BFP) │DEBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B3ðD│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│DIVIDE (short BFP) │DEB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│EDðD│

│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │B35B│

│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │B353│

│EXTRACT FPC │EFPC │RRE BF│ │Db │ │ │B38C│

│LOAD AND TEST (extended BFP) │LTXBR│RRE C BF│ SP│Db Xi │ │ │B342│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD AND TEST (long BFP) │LTDBR│RRE C BF│ │Db Xi │ │ │B312│

│LOAD AND TEST (short BFP) │LTEBR│RRE C BF│ │Db Xi │ │ │B3ð2│

│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C BF│ SP│Db │ │ │B343│

│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C BF│ │Db │ │ │B313│

│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C BF│ │Db │ │ │B3ð3│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD FP INTEGER (extended BFP) │FIXBR│RRF BF│ SP│Db Xi Xx│ │ │B347│

│LOAD FP INTEGER (long BFP) │FIDBR│RRF BF│ SP│Db Xi Xx│ │ │B35F│

│LOAD FP INTEGER (short BFP) │FIEBR│RRF BF│ SP│Db Xi Xx│ │ │B357│

│LOAD FPC │LFPC │S BF│ A SP│Db │ │ B²│B29D│

│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE BF│ SP│Db Xi │ │ │B3ð5│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 19-14 (Part 1 of 3). Summary of BFP Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE BF│ A SP│Db Xi │ │ B²│EDð5│

│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE BF│ SP│Db Xi │ │ │B3ð6│

│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE BF│ A SP│Db Xi │ │ B²│EDð6│

│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE BF│ │Db Xi │ │ │B3ð4│

│LOAD LENGTHENED (short to long BFP) │LDEB │RXE BF│ A │Db Xi │ │ B²│EDð4│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C BF│ SP│Db │ │ │B341│

│LOAD NEGATIVE (long BFP) │LNDBR│RRE C BF│ │Db │ │ │B311│

│LOAD NEGATIVE (short BFP) │LNEBR│RRE C BF│ │Db │ │ │B3ð1│

│LOAD POSITIVE (extended BFP) │LPXBR│RRE C BF│ SP│Db │ │ │B34ð│

│LOAD POSITIVE (long BFP) │LPDBR│RRE C BF│ │Db │ │ │B31ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│LOAD POSITIVE (short BFP) │LPEBR│RRE C BF│ │Db │ │ │B3ðð│

│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B345│

│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B346│

│LOAD ROUNDED (long to short BFP) │LEDBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │B344│

│MULTIPLY (extended BFP) │MXBR │RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B34C│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY (long BFP) │MDBR │RRE BF│ │Db Xi Xo Xu Xx│ │ │B31C│

│MULTIPLY (long BFP) │MDB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1C│

│MULTIPLY (long to extended BFP) │MXDBR│RRE BF│ SP│Db Xi │ │ │B3ð7│

│MULTIPLY (long to extended BFP) │MXDB │RXE BF│ A SP│Db Xi │ │ B²│EDð7│

│MULTIPLY (short BFP) │MEEBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │B317│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY (short BFP) │MEEB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED17│

│MULTIPLY (short to long BFP) │MDEBR│RRE BF│ │Db Xi │ │ │B3ðC│

│MULTIPLY (short to long BFP) │MDEB │RXE BF│ A │Db Xi │ │ B²│EDðC│

│MULTIPLY AND ADD (long BFP) │MADBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B31E│

│MULTIPLY AND ADD (long BFP) │MADB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1E│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY AND ADD (short BFP) │MAEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðE│

│MULTIPLY AND ADD (short BFP) │MAEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðE│

│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B31F│

│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1F│

│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðF│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðF│

│SET FPC │SFPC │RRE BF│ SP│Db │ │ │B384│

│SET ROUNDING MODE │SRNM │S BF│ │Db │ │ │B299│

│SQUARE ROOT (extended BFP) │SQXBR│RRE BF│ SP│Db Xi Xx│ │ │B316│

│SQUARE ROOT (long BFP) │SQDBR│RRE BF│ │Db Xi Xx│ │ │B315│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│SQUARE ROOT (long BFP) │SQDB │RXE BF│ A │Db Xi Xx│ │ B²│ED15│

│SQUARE ROOT (short BFP) │SQEBR│RRE BF│ │Db Xi Xx│ │ │B314│

│SQUARE ROOT (short BFP) │SQEB │RXE BF│ A │Db Xi Xx│ │ B²│ED14│

│STORE FPC │STFPC│S BF│ A │Db │ ST│ B²│B29C│

│SUBTRACT (extended BFP) │SXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34B│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┘

Figure 19-14 (Part 2 of 3). Summary of BFP Instructions
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┐

│ │Mne- │ │Op │

│ Name │monic│ Characteristics │Code│

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┤

│SUBTRACT (long BFP) │SDBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31B│

│SUBTRACT (long BFP) │SDB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1B│

│SUBTRACT (short BFP) │SEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðB│

│SUBTRACT (short BFP) │SEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðB│

│TEST DATA CLASS (extended BFP) │TCXB │RXE C BF│ SP│Db │ │ │ED12│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┤

│TEST DATA CLASS (long BFP) │TCDB │RXE C BF│ │Db │ │ │ED11│

│TEST DATA CLASS (short BFP) │TCEB │RXE C BF│ │Db │ │ │ED1ð│

├────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┤

│Explanation: │

│ │

│ A Access exceptions for logical addresses. │

│ B² B² field designates an access register in the access-register mode. │

│ BF BFP facility. │

│ C Condition code is set. │

│ Db BFP-instruction data exception. │

│ R PER general-register-alteration event. │

│ RRE RRE instruction format. │

│ RRF RRF instruction format. │

│ RXE RXE instruction format. │

│ RXF RXF instruction format. │

│ SP Specification exception. │

│ ST PER storage-alteration event. │

│ Xi IEEE invalid-operation condition. │

│ Xo IEEE overflow condition. │

│ Xu IEEE underflow condition. │

│ Xx IEEE inexact condition. │

│ Xz IEEE division-by-zero condition. │

└────────────────────────────────────────────────────────────────────────────────────────────────┘

Figure 19-14 (Part 3 of 3). Summary of BFP Instructions

 ADD
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
AEBR 'B3ðA' Short BFP

ADBR 'B31A' Long BFP

AXBR 'B34A' Extended BFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
AEB 'EDðA' Short BFP

ADB 'ED1A' Long BFP

The second operand is added to the first operand,
and the sum is placed at the first-operand
location.

If both operands are numeric and finite, they are
added algebraically, forming an intermediate sum.
The intermediate sum, if nonzero, is normalized
and rounded to the operand format according to
the current rounding mode. The sum is then
placed at the result location.

The sign of the sum is determined by the rules of
algebra. This also applies to a result of zero:

� If the result of rounding a nonzero interme-
diate sum is zero, the sign of the zero result is
the sign of the intermediate sum.

� If the sum of two operands with opposite signs
is exactly zero, the sign of the result is plus in
all rounding modes except round toward −∞,
in which mode the sign is minus.

� The sign of the sum x plus x is the sign of x,
even when x is zero.
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If one operand is an infinity and the other is finite
and numeric, the result is that infinity. If both
operands are infinities of the same sign, the result
is the same infinity. If the two operands are infin-
ities of opposite signs, an IEEE-invalid-operation
condition is recognized.

See Figure 19-16 on page 19-20 for a detailed
description of the results of this instruction.
(Figure 19-15 is referred to by Figure 19-16.)

For AXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:  

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions: 

� Access (fetch, operand 2 of AEB and ADB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (AXBR only)

Programming Note:  Interchanging the two oper-
ands in a BFP addition does not affect the value
of the sum when the result is numeric. This is not
true, however, when both operands are QNaNs, in
which case the result is the first operand; or when
both operands are SNaNs and the
IEEE-invalid-operation mask bit in the FPC reg-
ister is zero, in which case the result is the QNaN
derived from the first operand.

Figure 19-15. Condition Code for Resultant Sum

Value of Result (r) Condition Code

r=0 cc0

r<0 cc1

r>0 cc2

Explanation: 

ccn Condition code is set to n.
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Figure 19-16. Results: ADD

First
Operand

(a) Is

Results for ADD (a+b)
when Second Operand (b) Is

−∞ −Nn −Dn −0 +0 +Dn +Nn +∞ QNaN SNaN

−∞ T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

T(−∞),
cc1

Xi:
T(dNaN),

cc3

T(b),
cc3

Xi:
T(b*),
cc3

−Nn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
cc1

T(a),
cc1

T(a),
cc1

R(a+b),
cc1

R(a+b),
ccrs

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

−Dn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
cc1

R(a),
cc1

R(a),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

−0 T(−∞),
cc1

T(b),
cc1

R(b),
cc1

T(−0),
cc0

Rezd,
cc0

R(b),
cc2

T(b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+0 T(−∞),
cc1

T(b),
cc1

R(b),
cc1

Rezd,
cc0

T(+0),
cc0

R(b),
cc2

T(b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+Dn T(−∞),
cc1

R(a+b),
cc1

R(a+b),
ccrs

R(a),
cc2

R(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+Nn T(−∞),
cc1

R(a+b),
ccrs

R(a+b),
cc2

T(a),
cc2

T(a),
cc2

R(a+b),
cc2

R(a+b),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

+∞ Xi:
T(dNaN),

cc3

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(+∞),
cc2

T(b),
cc3

Xi:
T(b*),
cc3

QNaN T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

T(a),
cc3

Xi:
T(b*),
cc3

SNaN Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Xi:
T(a*),
cc3

Explanation: 

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

ccn Condition code is set to n.
ccrs Condition code is set according to the resultant sum. See Figure 19-15 on page 19-19.
dNaN Default quiet NaN.

 Dn Denormalized number.
Nn Normalized nonzero number.
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rezd Exact zero-difference result. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
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Figure 19-17 (Part 1 of 2). Action for R(v): Rounding and Range Function

Range of v Case

Normal Result (r)
when Rounding Mode Is

To
Nearest

Toward
0

Toward
+∞

Toward
−∞

v < −Nmax, p < −Nmax Overflow −∞ñ −Nmax −Nmax −∞ñ

v < −Nmax, p = −Nmax Normal −Nmax −Nmax −Nmax –

−Nmax ≤ v ≤ −Nmin Normal p p p p

−Nmin < v ≤ −Dmin Tiny d* d d d*

−Dmin < v < −Dmin/2 Tiny −Dmin −0 −0 −Dmin

−Dmin/2 ≤ v < 0 Tiny −0 −0 −0 −Dmin

v = 0 Exact zero differenceò +0 +0 +0 −0

0 < v ≤ +Dmin/2 Tiny +0 +0 +Dmin +0

+Dmin/2 < v < +Dmin Tiny +Dmin +0 +Dmin +0

+Dmin ≤ v < +Nmin Tiny d* d d* d

+Nmin ≤ v ≤ +Nmax Normal p p p p

+Nmax < v, p = +Nmax Normal +Nmax +Nmax – +Nmax

+Nmax < v, +Nmax < p Overflow +∞ñ +Nmax +∞ñ +Nmax

Explanation: 

– This situation cannot occur.
* The rounded value, in the extreme case, may be Nmin. In this case, the exception condi-

tions are underflow, inexact and incremented.
ñ The normal result r is considered to have been incremented.
ò The exact-zero-difference case applies only to ADD, SUBTRACT, MULTIPLY AND ADD,

and MULTIPLY AND SUBTRACT. For all other operations, a zero result is detected by
inspection of the source operands without use of the R(v) function.

d The value derived when the exact result v is rounded to the format of the target, including
both precision and bounded exponent range. Except as explained in note *, this is a
denormalized number.

p The value derived when the exact result v is rounded to the precision of the target, but
assuming an unbounded exponent range.

v Exact result before rounding, assuming unbounded precision and an unbounded exponent
range. For LOAD ROUNDED, v is the source value a.

Dmin Smallest (in magnitude) representable denormalized number in the target format.
Nmax Largest (in magnitude) representable finite number in the target format.
Nmin Smallest (in magnitude) representable normalized number in the target format.
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Figure 19-17 (Part 2 of 2). Action for R(v): Rounding and Range Function

Case

Is r
Inexact

(r≠v)

Overflow
Mask

(FPC 0.2)

Underflow
Mask

(FPC 0.3)

Inexact
Mask

(FPC 0.4)

Is r Inc-
remented
(|r|>|v|)

Is p
Inexact
(p≠v)

Is p Inc-
remented
(|p|>|v|) Results

Overflow Yesñ 0 – 0 – – – T(r), SFo←1, SFx←1

Overflow Yesñ 0 – 1 No – – T(r), SFo←1, PIDx(08)

Overflow Yesñ 0 – 1 Yes – – T(r), SFo←1, PIDy(0C)

Overflow Yesñ 1 – – – No Noñ Tw(p÷β), PIDo(20)

Overflow Yesñ 1 – – – Yes No Tw(p÷β), PIDox(28)

Overflow Yesñ 1 – – – Yes Yes Tw(p÷β), PIDoy(2C)

Normal No – – – – – – T(r)

Normal Yes – – 0 – – – T(r), SFx←1

Normal Yes – – 1 No – – T(r), PIDx(08)

Normal Yes – – 1 Yes – – T(r), PIDy(0C)

Tiny No – 0 – – – – T(r)

Tiny No – 1 – – Noñ Noñ Tw(p¸β), PIDu(10)

Tiny Yes – 0 0 – – – T(r), SFu←1, SFx←1

Tiny Yes – 0 1 No – – T(r), SFu←1, PIDx(08)

Tiny Yes – 0 1 Yes – – T(r), SFu←1, PIDy(0C)

Tiny Yes – 1 – – No Noñ Tw(p¸β), PIDu(10)

Tiny Yes – 1 – – Yes No Tw(p¸β), PIDux(18)

Tiny Yes – 1 – – Yes Yes Tw(p¸β), PIDuy(1C)

Explanation: 

– The results do not depend on this condition or mask bit.
ñ This condition is true by virtue of the state of some condition to the left of this column.
β Wrap adjust, which depends on the type of operation and operand format. For all operations except

LOAD ROUNDED, the wrap adjust depends on the target format: β = 2α, where α is 192 for short, 1536
for long, and 24576 for extended. For LOAD ROUNDED, the wrap adjust depends on the source format:
β = 2κ, where κ is 512 for long and 8192 for extended.

p The value derived when the exact result v is rounded to the precision of the target, but assuming an
unbounded exponent range.

r Normal result as defined in Part 1 of this figure.
v Exact result before rounding, assuming unbounded precision and unbounded exponent range.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13 on

page 19-15.
SFo IEEE overflow flag, FPC 1.2.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
Tw(x) The wrapped result x is placed at the target operand location. For all operations except LOAD

ROUNDED, the wrapped result is in the same format and length as normal results at the target location.
For LOAD ROUNDED, the wrapped result is in the same format and length as the source, but rounded to
the precision of the target.
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 COMPARE
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
CEBR 'B3ð9' Short BFP

CDBR 'B319' Long BFP

CXBR 'B349' Extended BFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
CEB 'EDð9' Short BFP

CDB 'ED19' Long BFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

If both operands are numeric and finite, the com-
parison is algebraic and follows the procedure for
BFP subtraction, except that the difference is dis-
carded after setting the condition code, and both
operands remain unchanged. If the difference is
exactly zero with either sign, the operands are
equal; this includes zero operands (so +0 equals
−0). If a nonzero difference is positive or nega-
tive, the first operand is high or low, respectively.

+∞ compares greater than any finite number, and
all finite numbers compare greater than −∞. Two
infinity operands of like sign compare equal.

Numeric comparison is exact, and the condition
code is determined for finite operands as if range
and precision were unlimited. No overflow or
underflow condition can occur.

If either or both operands are QNaNs and neither
operand is an SNaN, the comparison result is
unordered, and condition code 3 is set.

If either or both operands are SNaNs, an
IEEE-invalid-operation condition is recognized. If
the IEEE invalid-operation mask bit is one, a
program interruption for a data exception with
DXC 80 hex (IEEE invalid operation) occurs. If
the IEEE-invalid-operation mask bit is zero, the
IEEE-invalid-operation flag bit is set to one, and
instruction execution is completed by setting con-
dition code 3.

See Figure 19-18 on page 19-24 for a detailed
description of the results of this instruction.

For CXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exception Conditions:  

 � Invalid operation

 Program Exceptions: 

� Access (fetch, operand 2 of CEB and CDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (CXBR only)

Programming Notes:

1. COMPARE may be used by a compiler to
implement those comparisons which are
required by the IEEE standard to not recog-
nize an exception condition when the result is
unordered due to a QNaN.

2. The IEEE standard requires that it be possible
to compare BFP operands in different formats.
To accomplish this, LOAD LENGTHENED
may be used before COMPARE to convert the
shorter operand to the same format as the
longer.
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Figure 19-18. Results: COMPARE

First
Operand

(a) Is

Results for COMPARE (a:b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ cc0 cc1 cc1 cc1 cc1 cc1 cc3 Xi: cc3

−Fn cc2 C(a:b) cc1 cc1 cc1 cc1 cc3 Xi: cc3

−0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 cc3 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 cc3 Xi: cc3

+∞ cc2 cc2 cc2 cc2 cc2 cc0 cc3 Xi: cc3

QNaN cc3 cc3 cc3 cc3 cc3 cc3 cc3 Xi: cc3

SNaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation: 

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-19.
Fn Finite nonzero number (includes both denormalized and normalized).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

Figure 19-19. Basic Compare Results

COMPARE AND SIGNAL
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
KEBR 'B3ð8' Short BFP

KDBR 'B318' Long BFP

KXBR 'B348' Extended BFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
KEB 'EDð8' Short BFP

KDB 'ED18' Long BFP

The first operand is compared with the second
operand, and the condition code is set to indicate
the result. The operation is the same as for
COMPARE except that QNaN operands cause an
IEEE-invalid-operation condition to be recognized.
Thus, QNaN operands are treated as if they were
SNaNs.

See Figure 19-20 on page 19-25 for a detailed
description of the results of this instruction.

For KXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Relation of Value
(a) to Value (b)

Condition Code
for C(a:b)

a=b cc0

a<b cc1

a>b cc2

Explanation: 

ccn Condition code is set to n.
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Resulting Condition Code:  

0 Operands equal
1 First operand low
2 First operand high
3 Operands unordered

IEEE Exception Conditions:  

 � Invalid operation

 Program Exceptions: 

� Access (fetch, operand 2 of KEB and KDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition

� Operation (if the BFP facility is not installed)
� Specification (KXBR only)

Programming Notes:

1. COMPARE AND SIGNAL may be used by a
compiler to implement those comparisons
which are required by the IEEE standard to
recognize an exception condition when the
result is unordered due to a QNaN.

2. The IEEE standard requires that it be possible
to compare BFP operands in different formats.
To accomplish this, LOAD LENGTHENED
may be used before COMPARE AND SIGNAL
to convert the shorter operand to the same
format as the longer.

Figure 19-20. Results: COMPARE AND SIGNAL

First
Operand

(a) Is

Results for COMPARE AND SIGNAL (a:b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ NaN

−∞ cc0 cc1 cc1 cc1 cc1 cc1 Xi: cc3

−Fn cc2 C(a:b) cc1 cc1 cc1 cc1 Xi: cc3

−0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+0 cc2 cc2 cc0 cc0 cc1 cc1 Xi: cc3

+Fn cc2 cc2 cc2 cc2 C(a:b) cc1 Xi: cc3

+∞ cc2 cc2 cc2 cc2 cc2 cc0 Xi: cc3

NaN Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3 Xi: cc3

Explanation: 

ccn Condition code is set to n.
C(a:b) Basic compare results. See Figure 19-19 on page 19-24.
Fn Finite nonzero number (includes both denormalized and normalized).
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
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CONVERT FROM FIXED
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
CEFBR 'B394' 32-bit binary-integer

operand, short BFP result

CDFBR 'B395' 32-bit binary-integer

operand, long BFP result

CXFBR 'B396' 32-bit binary-integer

operand, extended BFP

 result

The fixed-point second operand is converted to
the BFP format, and the result is placed at the
first-operand location.

The second operand is a 32-bit signed binary
integer that is located in the general register des-
ignated by R².

The result is rounded according to the current
rounding mode before it is placed at the first-
operand location.

See Figure 19-21 for a detailed description of the
results of this instruction.

For CXFBR, the R± field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

� Inexact (CEFBR only)

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (CXFBR only)

Figure 19-21. Results: Single-Operand Instructions

Instruction

Results for Instructions with a Single Operand (a)
when Operand (a) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

CONVERT FROM
FIXED

– Rf(a) – T(+0) Rf(a) – – –

LOAD AND TEST T(−∞) T(a) T(−0) T(+0) T(a) T(+∞) T(a) Xi: T(a*)

LOAD LENGTHENED T(−∞) T(a)ñ T(−0) T(+0) T(a)ñ T(+∞) T(a)ñ Xi: T(a*)ñ

LOAD ROUNDED T(−∞) R(a) T(−0) T(+0) R(a) T(+∞) T(a)ò Xi: T(a*)ò

SQUARE ROOT Xi:
T(dNaN)

Xi:
T(dNaN)

T(−0) T(+0) R(√ a) T(+∞) T(a) Xi: T(a*)

Explanation: 

– This situation cannot occur.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand

location.
ñ The operand is extended to the longer format by appending zeros on the right before it is

placed at the target operand location.
ò The NaN is shortened to the target format by truncating the rightmost bits.
dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rf(a) The value a is converted to the exact floating-point number v, and then action R(v) is per-

formed.
T(x) The value x is placed in the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
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CONVERT TO FIXED
Mnemonic R±,M³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ M³ │////│ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic Op Code Operands
CFEBR 'B398' Short BFP operand, 32-bit

 binary-integer result

CFDBR 'B399' Long BFP operand, 32-bit

 binary-integer result

CFXBR 'B39A' Extended BFP operand, 32-

bit binary-integer result

The BFP second operand is rounded to an integer
value and then converted to the fixed-point format.
The result is placed at the first-operand location.

The result is a 32-bit signed binary integer that is
placed in the general register designated by R±.

If the second operand is numeric and finite, it is
rounded to an integer value by rounding as speci-
fied by the modifier in the M³ field:

M³ Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding is con-
trolled by the current rounding mode specified in
the FPC register. When the field is not zero,

rounding is performed as specified by the modifier,
regardless of the current rounding mode.
Rounding for modifiers 4-7 is the same as for
rounding modes 0-3 (binary 00-11), respectively.
Biased round to nearest (modifier 1) is the same
as round to nearest (modifier 4), except when the
second operand is exactly halfway between two
integers, in which case the result for biased
rounding is the next integer that is greater in mag-
nitude.

The sign of the result is the sign of the second
operand, except that a zero result has a plus sign.

See Figure 19-22 on page 19-28 for a detailed
description of the results of this instruction.

The M³ field must designate a valid modifier; oth-
erwise, a specification exception is recognized.
For CFXBR, the R² field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Source was zero
1 Source was less than zero
2 Source was greater than zero
3 Special case

IEEE Exception Conditions:  

 � Invalid operation
 � Inexact

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification
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Operand (a)

Is n
Inexact
(n≠a)

Inv.-Op.
Mask
(FPC
0.0)

Inexact
Mask
(FPC
0.4)

Is n Inc-
remented
(|n|>|a|) Results

−∞ ≤ a < MN, p < MN – 0 0 – T(MN), SFi←1, SFx←1, cc3

−∞ ≤ a < MN, p < MN – 0 1 – T(MN), SFi←1, cc3, PIDx(08)

−∞ ≤ a < MN, p < MN – 1 – – PIDi(80)

−∞ < a < MN, p = MN – – 0 – T(MN), SFx←1, cc1

−∞ < a < MN, p = MN – – 1 – T(MN), cc1, PIDx(08)

MN ≤ a < 0 No – – – T(n), cc1

MN ≤ a < 0 Yes – 0 – T(n), SFx←1, cc1

MN ≤ a < 0 Yes – 1 No T(n), cc1, PIDx(08)

MN ≤ a < 0 Yes – 1 Yes T(n), cc1, PIDy(0C)

−0 Noñ – – – T(0), cc0

+0 Noñ – – – T(0), cc0

0 < a ≤ MP No – – – T(n), cc2

0 < a ≤ MP Yes – 0 – T(n), SFx←1, cc2

0 < a ≤ MP Yes – 1 No T(n), cc2, PIDx(08)

0 < a ≤ MP Yes – 1 Yes T(n), cc2, PIDy(0C)

MP < a < +∞, p = MP – – 0 – T(MP), SFx←1, cc2

MP < a < +∞, p = MP – – 1 – T(MP), cc2, PIDx(08)

MP < a ≤ +∞, p > MP – 0 0 – T(MP), SFi←1, SFx←1, cc3

MP < a ≤ +∞, p > MP – 0 1 – T(MP), SFi←1, cc3, PIDx(08)

MP < a ≤ +∞, p > MP – 1 – – PIDi(80)

NaN – 0 0 – T(MN), SFi←1, SFx←1, cc3

NaN – 0 1 – T(MN), SFi←1, cc3, PIDx(08)

NaN – 1 – – PIDi(80)

Explanation: 

– The results do not depend on this condition or mask bit.
ñ This condition is true by virtue of the state of some condition to the left of this column.
ccn Condition code is set to n.
n The value p converted to a fixed-point result.
p The value derived when the source value a is rounded to an integer using the specified

rounding mode.
MN Maximum negative number representable in the target fixed-point format.
MP Maximum positive number representable in the target fixed-point format.
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13

on page 19-15.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.
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Figure 19-22. Results: CONVERT TO FIXED

 DIVIDE
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
DEBR 'B3ðD' Short BFP

DDBR 'B31D' Long BFP

DXBR 'B34D' Extended BFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
DEB 'EDðD' Short BFP

DDB 'ED1D' Long BFP

The first operand (the dividend) is divided by the
second operand (the divisor), and the quotient is
placed at the first-operand location. No remainder
is preserved.

If the divisor is nonzero and both the dividend and
divisor are numeric and finite, the first operand is
divided by the second operand to form an interme-
diate quotient. The intermediate quotient, if
nonzero, is normalized and rounded to the target
format according to the current rounding mode.

The sign of the quotient is the EXCLUSIVE OR of
the operand signs. This includes the sign of a
zero quotient.

If the divisor is zero but the dividend is nonzero
and finite, an IEEE-division-by-zero condition is
recognized. If the dividend and divisor are both
zero, or if both are infinite, regardless of sign, an
IEEE-invalid-operation condition is recognized.

See Figure 19-23 on page 19-30 for a detailed
description of the results of this instruction.

For DXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
� Division by zero

 � Overflow
 � Underflow
 � Inexact

 Program Exceptions: 

� Access (fetch, operand 2 of DEB and DDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (DXBR only)
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Figure 19-23. Results: DIVIDE

Dividend
(a)

Results for DIVIDE (a÷b)
when Divisor (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ Xi:
T(dNaN)

T(+∞) T(+∞) T(−∞) T(−∞) Xi:
T(dNaN)

T(b) Xi: T(b*)

−Fn T(+0) R(a÷b) Xz: T(+∞) Xz: T(−∞) R(a÷b) T(−0) T(b) Xi: T(b*)

−0 T(+0) T(+0) Xi:
T(dNaN)

Xi:
T(dNaN)

T(−0) T(−0) T(b) Xi: T(b*)

+0 T(−0) T(−0) Xi:
T(dNaN)

Xi:
T(dNaN)

T(+0) T(+0) T(b) Xi: T(b*)

+Fn T(−0) R(a÷b) Xz: T(−∞) Xz: T(+∞) R(a÷b) T(+0) T(b) Xi: T(b*)

+∞ Xi:
T(dNaN)

T(−∞) T(−∞) T(+∞) T(+∞) Xi:
T(dNaN)

T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation: 

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
Xz: IEEE division-by-zero exception. The results shown are produced only when FPC 0.1 is zero.

DIVIDE TO INTEGER
Mnemonic R±,R³,R²,M´ [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ R³ │ M´ │ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic Op Code Operands
DIEBR 'B353' Short BFP

DIDBR 'B35B' Long BFP

The first operand (the dividend) is divided by the
second operand (the divisor). An integer quotient
in BFP form is produced and placed at the third-
operand location. The remainder replaces the div-
idend at the first-operand location. The first,
second, and third operands must be in different
registers. The condition code indicates whether
partial or complete results have been produced
and whether the quotient is numeric and finite.

The remainder result is

r = a−b¸n

where a is the dividend, b the divisor, and n an
integer obtained by rounding the precise quotient

q = a÷b.

The first-operand result is r with the sign deter-
mined by the above expression. The third-
operand result is n with a sign that is the
EXCLUSIVE OR of the dividend and divisor signs.

If the precise quotient is not an integer and the
two integers closest to this precise quotient cannot
both be represented exactly in the precision of the
quotient, then a partial quotient and partial
remainder are formed. This partial quotient n and
the corresponding partial remainder

r = a−b¸n

are used as the results. The sign of a partial
remainder is the same as the sign of the dividend.
The sign of a partial quotient is the EXCLUSIVE
OR of the dividend and divisor signs.
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If the remainder is zero, then the precise quotient
is an integer and can be represented exactly in
the precision of the quotient.

The M´ field, called the modifier field, specifies
rounding of the final quotient. This rounding is
called the “specified quotient rounding mode” as
contrasted to the “current rounding mode” speci-
fied by the rounding-mode bits in the FPC register.
The final quotient is rounded according to the
specified quotient rounding mode. The specified
quotient rounding mode affects only the final quo-
tient; partial quotients are rounded toward zero.

Since the partial quotient is rounded toward zero,
the partial remainder is always exact. For the
specified quotient rounding modes of round toward
0, round to nearest, and biased round to nearest,
the final remainder is exact. For the specified
quotient rounding modes of round toward +∞ and
round toward −∞, the final remainder may not be
exact.

The final quotient is rounded to an integer by
rounding as specified by the modifier in the M´

field:

M´ Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding of the
final quotient is controlled by the current rounding
mode specified in the FPC register. When the
field is not zero, rounding is performed as speci-
fied by the modifier, regardless of the current
rounding mode. Rounding for modifiers 4-7 is the
same as for rounding modes 0-3 (binary 00-11),
respectively. Biased round to nearest (modifier 1)
is the same as round to nearest (modifier 4),
except when the final quotient is exactly halfway
between two integers, in which case the result for
biased rounding is the next integer that is greater
in magnitude.

Underflow is recognized only on the final
remainder, not on the partial remainder.

For the specified quotient rounding modes of
round toward +∞ and round toward −∞, the final
remainder may not be exact. When, in these
cases, the final remainder is inexact, it is rounded
according to the current rounding mode specified
in the FPC register.

The sign of a zero quotient is the EXCLUSIVE OR
of the divisor and dividend signs.

A zero remainder has the sign of the dividend.

See Figure 19-24 on page 19-33 for a detailed
description of the results of this instruction.

If the quotient exponent is greater than the largest
exponent that can be represented in the operand
format, the correct remainder or partial remainder
still is produced, and the third-operand result is
the correct value, but with the exponent reduced
by 192 or 1536 for short or long operands, respec-
tively. The condition code indicates this out-of-
range condition.

The M´ field must designate a valid modifier, and
the R±, R², and R³ fields must designate different
registers; otherwise, a specification exception is
recognized.

Resulting Condition Code:  

0 Remainder complete; normal quotient
1 Remainder complete; quotient overflow or

NaN
2 Remainder incomplete; normal quotient
3 Remainder incomplete; quotient overflow or

NaN

IEEE Exception Conditions:  

 � Invalid operation
 � Underflow
 � Inexact

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification
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Programming Notes:

1. The Remainder operation, as defined in the
IEEE standard, is produced by issuing DIVIDE
TO INTEGER in an iterative loop, with the M´

field set to 4.

2. The rounding specifications of round to
nearest, round toward 0, and round toward −∞
permit the instruction to be used directly to
produce the Remainder, MOD, and modulo
functions, respectively.

3. When DIVIDE TO INTEGER is used in an iter-
ative loop, all quotients are produced in BFP

format but may be considered as portions of a
multiple-precision fixed-point number.

4. In the case when the resulting remainder is
denormalized, the IEEE standard requires that
if traps are implemented and the underflow
mask is one, then an underflow trap must
occur. To accomplish this, DIVIDE TO
INTEGER recognizes underflow on the final
remainder but not on the partial remainder.
Since in all cases when underflow occurs on
the partial remainder it will occur again on the
final remainder, recognizing overflow on only
the final remainder avoids two underflow traps
to be reported for what the standard considers
a single Remainder operation.
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Figure 19-24 (Part 1 of 2). Results: DIVIDE TO INTEGER

Dividend
(a)

Results for DIVIDE TO INTEGER (a÷b)
when Divisor (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(b), cc1 Xi: T(b*),
cc1

−Fn T(a,+0),
cc0

D(a,b) Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

D(a,b) T(a,−0),
cc0

T(b), cc1 Xi: T(b*),
cc1

−0 T(−0,+0),
cc0

T(−0,+0),
cc0

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(−0,−0),
cc0

T(−0,−0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+0 T(+0,−0),
cc0

T(+0,−0),
cc0

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(+0,+0),
cc0

T(+0,+0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+Fn T(a,−0),
cc0

D(a,b) Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

D(a,b) T(a,+0),
cc0

T(b), cc1 Xi: T(b*),
cc1

+∞ Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

Xi:
T(dNaN),

cc1

T(b), cc1 Xi: T(b*),
cc1

QNaN T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 T(a), cc1 Xi: T(b*),
cc1

SNaN Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Xi: T(a*),
cc1

Explanation: 

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

ccn Condition code is set to n.
D(a,b) Basic divide-to-integer results. See Part 2 of this figure.
Fn Finite nonzero number (includes both denormalized and normalized).
T(r,q) Results r (the remainder) and q (the quotient) are placed in target operands 1 and 3, respec-

tively.
T(x) Value x is placed in both target operands 1 and 3.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
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|q| < 2P

r =
0 Case

Is r
Tiny

Is r
Inexact

Underflow
Mask

(FPC 0.3)

Inexact
mask
(FPC
0.4)

Quotient
Overflow

Is r
Incre-

mented Results for D(a,b)

Yes Yes Final Noñ Noñ – – Noñ – T(r,n), cc0

Yes No Final No No – – Noñ – T(r,n), cc0

Yes No Final Yes Noñ 0 – Noñ – T(r,n), cc0

Yes No Final Yes Noñ 1 – Noñ Noñ T(r¸β, n), cc0,
PIDu(10)

Yes No Final No Yes – 0 Noñ – T(r,n), SFx←1, cc0

Yes No Final No Yes – 1 Noñ No T(r,n), cc0, PIDx(08)

Yes No Final No Yes – 1 Noñ Yes T(r,n), cc0, PIDy(0C)

No Yes Final Noñ Noñ – – No – T(r,n), cc0

No Yes Final Noñ Noñ – – Yes – T(r,n÷β), cc1

No No Partial –ò Noñ – – No – T(r,n), cc2

No No Partial –ò Noñ – – Yes – T(r, n÷β), cc3
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Figure 19-24 (Part 2 of 2). Results: DIVIDE TO INTEGER

Explanation: 

– The results do not depend on this condition or mask bit.
ñ This condition is true by virtue of the state of some condition to the left of this column. That

is, when |q| < 2P, there cannot be a quotient overflow; the cases of remainder is zero, tiny, or
inexact are mutually exclusive; and when r is exact, it is not incremented.

ò Underflow is not recognized for a partial remainder.
β Wrap adjust, which depends on the target format: β = 2α, where α is 192 for short and 1536

for long.
|q| The absolute value of q., where q is the exact result of a÷b before rounding, assuming

unbounded precision and unbounded exponent range.
cc0 Condition code is set to 0 (remainder complete; normal quotient).
cc1 Condition code is set to 1 (remainder complete; quotient overflow).
cc2 Condition code is set to 2 (remainder incomplete; normal quotient).
cc3 Condition code is set to 3 (remainder incomplete; quotient overflow).
n Integer quotient. n = q, rounded toward 0 for partial results and rounded according to the

specified quotient rounding mode for final results. The sign of the integer quotient, including
the cases of partial and final, wrapped-around overflow and zero, is the EXCLUSIVE OR of
the signs of the dividend (a) and divisor (b).

r Remainder. r = a−b¸n. A partial remainder is always exact; no rounding is necessary. The
sign of a partial remainder is always the same as the sign of the dividend (a). A final
remainder is rounded according to the current rounding mode (if necessary). The sign of a
zero remainder is the same as the sign of the dividend (a). The sign of a nonzero final
remainder is determined by the rules of algebra.

P Precision of the operand, which depends on the target format: P = 24 for short and 53 for
long.

PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13
on page 19-15.

SFi IEEE invalid-operation flag, FPC 1.0.
SFu IEEE underflow flag, FPC 1.3.
SFx IEEE inexact flag, FPC 1.4.
T(r,n) Results r (the remainder) and n (the integer quotient) are placed in target operands 1 and 3,

respectively.

 EXTRACT FPC
EFPC R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B38C' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of the FPC (floating-point-control)
register are placed in the general register desig-
nated by R±.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
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LOAD AND TEST
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LTEBR 'B3ð2' Short BFP

LTDBR 'B312' Long BFP

LTXBR 'B342' Extended BFP

The second operand is placed at the first-operand
location, and its sign and magnitude are tested to
determine the setting of the condition code. The
condition code is set the same as for a compar-
ison of the second operand with zero.

The second operand is placed unchanged at the
first-operand location. If the second operand is an
SNaN, an IEEE-invalid-operation condition is
recognized; if there is no interruption, the result is
the corresponding QNaN.

See Figure 19-21 on page 19-26 for a detailed
description of the results of this instruction.

For LTXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:  

 � Invalid operation

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LTXBR only)

Programming Note:  The IEEE standard makes
it optional whether operations such as LOAD AND
TEST signal invalid operation when the operand is
an SNaN. TEST DATA CLASS may be used to
test an operand if signaling is not desired.

 LOAD COMPLEMENT
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LCEBR 'B3ð3' Short BFP

LCDBR 'B313' Long BFP

LCXBR 'B343' Extended BFP

The second operand is placed at the first-operand
location with the sign bit inverted.

The sign bit is inverted even if the operand is
zero. The rest of the second operand is placed
unchanged at the first-operand location. The sign
is inverted for any operand, including a QNaN or
SNaN, without causing an arithmetic exception.

For LCXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LCXBR only)

Programming Note:  The IEEE standard makes
it optional whether operations such as LOAD
COMPLEMENT signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be
used in conjunction with this instruction if signal-
ling is desired.
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LOAD FP INTEGER
Mnemonic R±,M³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ M³ │////│ R± │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic Op Code Operands
FIEBR 'B357' Short BFP

FIDBR 'B35F' Long BFP

FIXBR 'B347' Extended BFP

The second operand is rounded to an integer
value in the same floating-point format, and the
result is placed at the first-operand location.

The second operand, if numeric, is rounded to an
integer value as specified by the modifier in the
M³ field:

M³ Rounding Method
0 According to current rounding mode
1 Biased round to nearest
4 Round to nearest
5 Round toward 0
6 Round toward +∞
7 Round toward −∞

A modifier other than 0, 1, or 4-7 is invalid.

When the modifier field is zero, rounding is con-
trolled by the current rounding mode in the FPC
register. When the field is not zero, rounding is
performed as specified by the modifier, regardless
of the current rounding mode. Rounding for modi-
fiers 4-7 is the same as for rounding modes 0-3
(binary 00-11), respectively. Biased round to
nearest (modifier 1) is the same as round to
nearest (modifier 4), except when the second
operand is exactly halfway between two integers,

in which case the result for biased rounding is the
next integer that is greater in magnitude.

In the absence of an interruption, if the second
operand is an infinity or a QNaN, the result is that
operand; if the second operand is an SNaN, the
result is the corresponding QNaN.

The sign of the result is the sign of the second
operand, even when the result is zero.

See Figure 19-25 on page 19-38 for a detailed
description of the results of this instruction.

The M³ field must designate a valid modifier, and,
for FIXBR, the R fields must designate valid
floating-point-register pairs. Otherwise, a specifi-
cation exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
 � Inexact

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

 � Specification

Programming Notes:

1. LOAD FP INTEGER rounds a BFP number to
an integer value. These integers, which
remain in the BFP format, should not be con-
fused with binary integers, which have a fixed-
point format.

2. If the BFP operand is numeric with a large
enough exponent so that it is already an
integer, the result value remains the same.
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Figure 19-25. Results: LOAD FP INTEGER

Operand
(a)

Is n
Inexact
(n≠a)

Inv.-Op.
Mask
(FPC
0.0)

Inexact
Mask
(FPC
0.4)

Is n Inc-
remented
(|n|>|a|) Results

−∞ Noñ – – – T(−∞)

−Fn No – – – T(n)

−Fn Yes – 0 – T(n), SFx←1

−Fn Yes – 1 No T(n), PIDx(08)

−Fn Yes – 1 Yes T(n), PIDy(0C)

−0 Noñ – – – T(−0)

+0 Noñ – – – T(+0)

+Fn No – – – T(n)

+Fn Yes – 0 – T(n), SFx←1

+Fn Yes – 1 No T(n), PIDx(08)

+Fn Yes – 1 Yes T(n), PIDy(0C)

+∞ Noñ – – – T(+∞)

QNaN Noñ – – – T(a)

SNaN Noñ 0 – – T(a*), SFi←1

SNaN Noñ 1 – – PIDi(80)

Explanation: 

– The results do not depend on this condition or mask bit.
* The SNaN is converted to the corresponding QNaN before it is placed at the target operand

location.
ñ This condition is true by virtue of the state of some condition to the left of this column.
n The value derived when the source value, a, is rounded to an integer using the specified

rounding mode.
Fn Finite nonzero number (includes both denormalized and normalized).
PIDc(h) Program interruption for data exception, condition c, with DXC of h in hex. See Figure 19-13

on page 19-15.
SFi IEEE invalid-operation flag, FPC 1.0.
SFx IEEE inexact flag, FPC 1.4.
T(x) The value x is placed at the target operand location.

 LOAD FPC
LFPC D²(B²) [S]

┌───────────────────┬────┬──────────────┐

│ 'B29D' │ B² │ D² │

└───────────────────┴────┴──────────────┘

ð 16 2ð 31

The four-byte second operand in storage is loaded
into the FPC (floating-point-control) register.

Bits corresponding to unassigned bit positions in
the FPC register must be zero; otherwise, a spec-
ification exception is recognized.

Condition Code:  The code remains unchanged.
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IEEE Exception Conditions:  None.

 Program Exceptions: 

� Access (fetch, operand 2)
� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 � Specification

 LOAD LENGTHENED
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
LDEBR 'B3ð4' Short BFP operand 2,

long BFP operand 1

LXDBR 'B3ð5' Long BFP operand 2,

extended BFP operand 1

LXEBR 'B3ð6' Short BFP operand 2,

extended BFP operand 1

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
LDEB 'EDð4' Short BFP operand 2,

long BFP operand 1

LXDB 'EDð5' Long BFP operand 2,

extended BFP operand 1

LXEB 'EDð6' Short BFP operand 2,

extended BFP operand 1

The second operand is extended to a longer
format, and the result is placed at the first-operand
location.

The sign of the result is the same as the sign of
the source. The exponent of the second operand
is converted to the corresponding exponent in the
result format, and the fraction is extended by
appending zeros on the right. If the second
operand is an infinity, the result is an infinity of the
same sign. If the second operand is an SNaN, an
IEEE-invalid-operation condition is recognized; if
there is no interruption, the result is the corre-
sponding QNaN with the fraction extended.

See Figure 19-21 on page 19-26 for a detailed
description of the results of this instruction.

For LXDB, LXDBR, LXEB, and LXEBR, the R±

field must designate a valid floating-point-register
pair; otherwise, a specification exception is recog-
nized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation

 Program Exceptions: 

� Access (fetch, operand 2 of LDEB, LXEB, and
LXDB only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LXEB, LXEBR, LXDB, LXDBR)

 LOAD NEGATIVE
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LNEBR 'B3ð1' Short BFP

LNDBR 'B311' Long BFP

LNXBR 'B341' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made one.

The sign bit is made one even if the operand is
zero. The rest of the second operand is placed
unchanged at the first-operand location. The sign
is set for any operand, including a QNaN or
SNaN, without causing an arithmetic exception.

For LNXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 --
3 Result is a NaN
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IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LNXBR only)

Programming Note:  The IEEE standard makes
it optional whether operations such as LOAD
NEGATIVE signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be
used in conjunction with this instruction if signal-
ling is desired.

 LOAD POSITIVE
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LPEBR 'B3ðð' Short BFP

LPDBR 'B31ð' Long BFP

LPXBR 'B34ð' Extended BFP

The second operand is placed at the first-operand
location with the sign bit made zero.

The sign bit is made zero, and the rest of the
second operand is placed unchanged at the first-
operand location. The sign is set for any operand,
including a QNaN or SNaN, without causing an
arithmetic exception.

For LPXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 --
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (LPXBR only)

Programming Note:  The IEEE standard makes
it optional whether operations such as LOAD
POSITIVE signal invalid operation when the
operand is an SNaN. LOAD AND TEST may be
used in conjunction with this instruction if signal-
ling is desired.

 LOAD ROUNDED
Mnemonic R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic Op Code Operands
LEDBR 'B344' Long BFP source,

short BFP target

LDXBR 'B345' Extended BFP source,

long BFP target

LEXBR 'B346' Extended BFP source,

short BFP target

The second operand, in the format of the source,
is rounded to the precision of the target, and the
result is placed at the first-operand location. The
sign of the result is the same as the sign of the
second operand.

The second operand, if numeric, is rounded to the
precision of the target fraction according to the
current rounding mode. Normally, the result is in
the format and length of the target. However,
when an IEEE overflow or an IEEE underflow
occurs and the corresponding mask bit is one, the
operation is completed by producing a wrapped
result in the same format and length as the source
but rounded to the precision of the target.

See Figure 19-21 on page 19-26 for a detailed
description of the results of this instruction.

For LDXBR and LEXBR, the R± and R² fields
must designate valid floating-point-register pairs;
otherwise, a specification exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact
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 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (LDXBR and LEXBR)

Programming Notes:

1. The sign of the rounded result is the same as
the sign of the operand, even when the result
is zero.

2. The R± field for LDXBR and LEXBR must
designate a valid floating-point-register pair
since in certain cases the result is in the
extended format. In normal operation for
LDXBR and LEXBR, the result format is long
or short, respectively, and this result replaces
the leftmost 32 bits or 64 bits of the target-
register pair. However, when an IEEE over-
flow or an IEEE underflow occurs and the
corresponding mask bit is one, the operation
is completed by placing a result in the
extended format at the target location. Thus,
the program must take into account the fact
that these instructions sometimes update both
registers of the pair.

 MULTIPLY
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
MEEBR 'B317' Short BFP

MDBR 'B31C' Long BFP

MXBR 'B34C' Extended BFP

MDEBR 'B3ðC' Short BFP multiplier and

multiplicand, long BFP

 product

MXDBR 'B3ð7' Long BFP multiplier and

 multiplicand, extended

 BFP product

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
MEEB 'ED17' Short BFP

MDB 'ED1C' Long BFP

MDEB 'EDðC' Short BFP multiplier and

multiplicand, long BFP

 product

MXDB 'EDð7' Long BFP multiplier and

 multiplicand, extended

 BFP product

The product of the second operand (the multiplier)
and the first operand (the multiplicand) is placed
at the first-operand location.

The two BFP operands, if numeric and finite, are
multiplied, forming an intermediate product. For
MDEB, MDEBR, MXDB, and MXDBR, the inter-
mediate product is converted to the longer target
format; the result cannot overflow or underflow
and is exact. For MDB, MDBR, MEEB, MEEBR,
and MXBR, the result is rounded to the operand
format according to the current rounding mode.
For MEEB and MEEBR, the result, as for all short-
format results, replaces the leftmost 32 bits of the
target register, and the rightmost 32 bit positions
of the target register remain unchanged.

The sign of the product, if the product is numeric,
is the EXCLUSIVE OR of the operand signs. This
includes the sign of a zero or infinite product.

If one operand is a zero and the other an infinity,
an IEEE-invalid-operation condition is recognized.

See Figure 19-26 on page 19-42 for a detailed
description of the results of this instruction.

The R± field for MXDB, MXDBR, and MXBR, and
the R² field for MXBR, must designate valid
floating-point-register pairs. Otherwise, a specifi-
cation exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
� Overflow (MDB, MDBR, MEEB, MEEBR,

MXBR)
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� Underflow (MDB, MDBR, MEEB, MEEBR,
MXBR)

� Inexact (MDB, MDBR, MEEB, MEEBR,
MXBR)

 Program Exceptions: 

� Access (fetch, operand 2 of MDEB, MEEB,
MDB, and MXDB only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

� Specification (MXDB, MXDBR, MXBR)

Programming Note:  Interchanging the two oper-
ands in a BFP multiplication does not affect the
value of the product when the result is numeric.
This is not true, however, when both operands are
QNaNs, in which case the result is the first
operand; or when both operands are SNaNs and
the IEEE-invalid-operation mask bit in the FPC
register is zero, in which case the result is the
QNaN derived from the first operand.

Figure 19-26. Results: MULTIPLY

First
Operand

(a) Is

Results for MULTIPLY (a¸b)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ T(+∞) T(+∞) Xi:
T(dNaN)

Xi:
T(dNaN)

T(−∞) T(−∞) T(b) Xi: T(b*)

−Fn T(+∞) R(a¸b) T(+0) T(−0) R(a¸b) T(−∞) T(b) Xi: T(b*)

−0 Xi:
T(dNaN)

T(+0) T(+0) T(−0) T(−0) Xi:
T(dNaN)

T(b) Xi: T(b*)

+0 Xi:
T(dNaN)

T(−0) T(−0) T(+0) T(+0) Xi:
T(dNaN)

T(b) Xi: T(b*)

+Fn T(−∞) R(a¸b) T(−0) T(+0) R(a¸b) T(+∞) T(b) Xi: T(b*)

+∞ T(−∞) T(−∞) Xi:
T(dNaN)

Xi:
T(dNaN)

T(+∞) T(+∞) T(b) Xi: T(b*)

QNaN T(a) T(a) T(a) T(a) T(a) T(a) T(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)

Explanation: 

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.
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MULTIPLY AND ADD
Mnemonic1 R±,R³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ R± │////│ R³ │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic1 Op Code Operands
MAEBR 'B3ðE' Short BFP

MADBR 'B31E' Long BFP

Mnemonic2 R±,R³,D²(X²,B²) [RXF]

┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐

│Op Code │ R³ │ X² │ B² │ D² │ R± │////│Op Code │

└────────┴────┴────┴────┴─/──┴────┴────┴────────┘

ð 8 12 16 2ð 32 36 4ð 47

Mnemonic2 Op Code Operands
MAEB 'EDðE' Short BFP

MADB 'ED1E' Long BFP

MULTIPLY AND SUBTRACT
Mnemonic1 R±,R³,R² [RRF]

┌────────────────┬────┬────┬────┬────┐

│ Op Code │ R± │////│ R³ │ R² │

└────────────────┴────┴────┴────┴────┘

ð 16 2ð 24 28 31

Mnemonic1 Op Code Operands
MSEBR 'B3ðF' Short BFP

MSDBR 'B31F' Long BFP

Mnemonic2 R±,R³,D²(X²,B²) [RXF]

┌────────┬────┬────┬────┬─/──┬────┬────┬────────┐

│Op Code │ R³ │ X² │ B² │ D² │ R± │////│Op Code │

└────────┴────┴────┴────┴─/──┴────┴────┴────────┘

ð 8 12 16 2ð 32 36 4ð 47

Mnemonic2 Op Code Operands
MSEB 'EDðF' Short BFP

MSDB 'ED1F' Long BFP

The third operand is multiplied by the second
operand, and then the first operand is added to or
subtracted from the product. The sum or differ-
ence is placed at the first-operand location. The
MULTIPLY AND ADD and MULTIPLY AND SUB-
TRACT operations may be summarized as:

op± = op³¸op²±op±

When the operands are numeric and finite, the
third and second BFP operands are multiplied,
forming an intermediate product, and the first
operand is then added (or subtracted) algebra-
ically to (or from) the intermediate product, forming
an intermediate sum. The intermediate sum, if
nonzero, is normalized and rounded to the
operand format according to the current rounding
mode and then placed at the first-operand
location. The exponent and fraction of the inter-
mediate product are maintained exactly; rounding
and range checking occur only on the intermediate
sum.

See Figure 19-27 on page 19-44 for a detailed
description of the results of MULTIPLY AND ADD.
The results of MULTIPLY AND SUBTRACT are
the same, except that the first operand partic-
ipates in the operation with its sign bit inverted.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions: 

� Access (fetch, operand 2 of MAEB, MADB,
MSEB, MSDB)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)

Programming Note:  MULTIPLY AND ADD and
MULTIPLY AND SUBTRACT produce a precise
intermediate result, and a single rounding opera-
tion is performed after the addition or subtraction.
This definition is consistent with the RS/6000, and,
in certain applications, can be used to great
advantage, especially in algorithms used in math
libraries.
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Figure 19-27 (Part 1 of 2). Results: MULTIPLY AND ADD

Third
Operand

(a) Is

Results, Part 1, for
MULTIPLY AND ADD (a¸b+c)
when Second Operand (b) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ P(+∞) P(+∞) Xi:
T(dNaN)

Xi:
T(dNaN)

P(−∞) P(−∞) P(b) Xi: T(b*)

−Fn P(+∞) P(a¸b) P(+0) P(−0) P(a¸b) P(−∞) P(b) Xi: T(b*)

−0 Xi:
T(dNaN)

P(+0) P(+0) P(−0) P(−0) Xi:
T(dNaN)

P(b) Xi: T(b*)

+0 Xi:
T(dNaN)

P(−0) P(−0) P(+0) P(+0) Xi:
T(dNaN)

P(b) Xi: T(b*)

+Fn P(−∞) P(a¸b) P(−0) P(+0) P(a¸b) P(+∞) P(b) Xi: T(b*)

+∞ P(−∞) P(−∞) Xi:
T(dNaN)

Xi:
T(dNaN)

P(+∞) P(+∞) P(b) Xi: T(b*)

QNaN P(a) P(a) P(a) P(a) P(a) P(a) P(a) Xi: T(b*)

SNaN Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*) Xi: T(a*)
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Figure 19-27 (Part 2 of 2). Results: MULTIPLY AND ADD

Value
from Part

1
(p) Is

Results, Part 2, for
MULTIPLY AND ADD (a¸b+c)

when First Operand (c) Is

−∞ −Fn −0 +0 +Fn +∞ QNaN SNaN

−∞ T(−∞) T(−∞) T(−∞) T(−∞) T(−∞) Xi:
T(dNaN)

T(c) Xi: T(c*)

−Fn T(−∞) R(p+c) R(p) R(p) R(p+c) T(+∞) T(c) Xi: T(c*)

−0 T(−∞) R(c) T(−0) Rezd R(c) T(+∞) T(c) Xi: T(c*)

+0 T(−∞) R(c) Rezd T(+0) R(c) T(+∞) T(c) Xi: T(c*)

+Fn T(−∞) R(p+c) R(p) R(p) R(p+c) T(+∞) T(c) Xi: T(c*)

+∞ Xi:
T(dNaN)

T(+∞) T(+∞) T(+∞) T(+∞) T(+∞) T(c) Xi: T(c*)

QNaN T(p) T(p) T(p) T(p) T(p) T(p) T(p) Xi: T(c*)

Explanation: 

* The SNaN is converted to the corresponding QNaN before it is placed at the target operand
location.

dNaN Default quiet NaN.
Fn Finite nonzero number (includes both denormalized and normalized).
P(x) The value x is passed to Part 2 of this figure.
R(v) Rounding and range action is performed on the value v. See Figure 19-17 on page 19-21.
Rezd Exact zero-difference result. See Figure 19-17 on page 19-21.
T(x) The value x is placed at the target operand location.
Xi: IEEE invalid-operation exception. The results shown are produced only when FPC 0.0 is zero.

 SET FPC
SFPC R± [RRE]

┌────────────────┬────────┬────┬────┐

│ 'B384' │////////│ R± │////│

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

The contents of the general register designated by
R± are placed in the FPC (floating-point-control)
register.

Bits corresponding to unassigned bit positions in
the FPC must be zero; otherwise, a specification
exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 � Specification

SET ROUNDING MODE
SRNM D²(B²) [S]

┌───────────────────┬────┬──────────────┐

│ 'B299' │ B² │ D² │

└───────────────────┴────┴──────────────┘

ð 16 2ð 31

The rounding-mode bits are set from the second-
operand address.

The second-operand address is not used to
address data; instead, the rounding-mode bits in
the FPC register are set with bits 30 and 31 of the
address.

Bits other than 30 and 31 of the second-operand
address are ignored.
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Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 SQUARE ROOT
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
SQEBR 'B314' Short BFP

SQDBR 'B315' Long BFP

SQXBR 'B316' Extended BFP

Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic2 Op Code Operands
SQEB 'ED14' Short BFP

SQDB 'ED15' Long BFP

The square root of the second operand is placed
at the first-operand location.

The result rounded according to the current
rounding mode is placed at the first-operand
location.

If the second operand is a finite positive number,
the result is the square root of that number with a
plus sign. If the operand is a zero of either sign,
the result is a zero of the same sign. If the
operand is +∞, the result is +∞.

If the second operand is less than zero, an
IEEE-invalid-operation condition is recognized.

See Figure 19-21 on page 19-26 for a detailed
description of the results of this instruction.

For SQXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  

 � Invalid operation
 � Inexact

 Program Exceptions: 

� Access (fetch, operand 2 of SQEB and SQDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (SQXBR only)

 STORE FPC
STFPC D²(B²) [S]

┌───────────────────┬────┬──────────────┐

│ 'B29C' │ B² │ D² │

└───────────────────┴────┴──────────────┘

ð 16 2ð 31

The contents of the FPC (floating-point-control)
register are placed in storage at the second-
operand location.

The operand is four bytes in length. All 32 bits of
the FPC register are stored.

Condition Code:  The code remains unchanged.

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Access (store, operand 2)
� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)

 SUBTRACT
Mnemonic1 R±,R² [RRE]

┌────────────────┬────────┬────┬────┐

│ Op Code │////////│ R± │ R² │

└────────────────┴────────┴────┴────┘

ð 16 24 28 31

Mnemonic1 Op Code Operands
SEBR 'B3ðB' Short BFP

SDBR 'B31B' Long BFP

SXBR 'B34B' Extended BFP
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Mnemonic2 R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic Op Code Operands
SEB 'EDðB' Short BFP

SDB 'ED1B' Long BFP

The second operand is subtracted from the first
operand, and the difference is placed at the first-
operand location.

The execution of SUBTRACT is identical to that of
ADD, except that the second operand participates
in the operation with its sign bit inverted. See
Figure 19-16 on page 19-20 for the detailed
results of ADD.

For SXBR, the R fields must designate valid
floating-point-register pairs; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Result is a NaN

IEEE Exception Conditions:  

 � Invalid operation
 � Overflow
 � Underflow
 � Inexact

 Program Exceptions: 

� Access (fetch, operand 2 of SEB and SDB
only)

� Data with DXC 2, BFP instruction
� Data with DXC for IEEE exception condition
� Operation (if the BFP facility is not installed)
� Specification (SXBR only)

TEST DATA CLASS
Mnemonic R±,D²(X²,B²) [RXE]

┌────────┬────┬────┬────┬─/──┬────────┬────────┐

│Op Code │ R± │ X² │ B² │ D² │////////│Op Code │

└────────┴────┴────┴────┴─/──┴────────┴────────┘

ð 8 12 16 2ð 32 4ð 47

Mnemonic Op Code Operands
TCEB 'ED1ð' Short BFP

TCDB 'ED11' Long BFP

TCXB 'ED12' Extended BFP

The class and sign of the first operand are exam-
ined to select one bit from the second-operand
address. Condition code 0 or 1 is set according to
whether the selected bit is zero or one, respec-
tively.

The second-operand address is not used to
address data; instead, the rightmost 12 bits of the
address, bits 20-31, are used to specify 12 combi-
nations of operand class and sign. Bits 0-19 of
the second-operand address are ignored.

As shown in Figure 19-28, BFP operands are
divided into six classes: zero, normalized number,
denormalized number, infinity, quiet NaN, and sig-
naling NaN.

Figure 19-28. Second-Operand-Address Bits for TEST
DATA CLASS

One or more of the second-operand-address bits
may be set to one. If the second-operand-
address bit corresponding to the class and sign of
the first operand is one, condition code 1 is set;
otherwise, condition code 0 is set.

Operands, including SNaNs and QNaNs, are
examined without causing an arithmetic exception.

BFP Operand Class

Bit Used
when Sign

Is

+ −

Zero 20 21

Normalized number 22 23

Denormalized number 24 25

Infinity 26 27

Quiet NaN 28 29

Signaling NaN 30 31
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For TCXB, the R± field must designate a valid
floating-point-register pair; otherwise, a specifica-
tion exception is recognized.

Resulting Condition Code:  

0 Selected bit is 0 (no match)
1 Selected bit is 1 (match)
2 --
3 --

IEEE Exception Conditions:  None.

 Program Exceptions: 

� Data with DXC 2, BFP instruction
� Operation (if the BFP facility is not installed)
� Specification (TCXB only)

Programming Note:  TEST DATA CLASS pro-
vides a way to test an operand without risk of an
exception or setting the IEEE flags.
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 Number Representation

 Binary Integers

Signed Binary Integers
Signed binary integers are most commonly repres-
ented as halfwords (16 bits) or words (32 bits). In
both lengths, the leftmost bit (bit 0) is the sign of
the number. The remaining bits (bits 1-15 for
halfwords and 1-31 for words) are used to specify
the magnitude of the number. Binary integers are
also referred to as fixed-point numbers, because
the radix point (binary point) is considered to be
fixed at the right, and any scaling is done by the
programmer.

Positive binary integers are in true binary notation
with a zero sign bit. Negative binary integers are
in two's-complement notation with a one bit in the
sign position. In all cases, the bits between the
sign bit and the leftmost significant bit of the
integer are the same as the sign bit (that is, all
zeros for positive numbers, all ones for negative
numbers).

Negative binary integers are formed in two's-
complement notation by inverting each bit of the
positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value +26 is made nega-
tive (-26) in the following manner:

+26 ð ððð ðððð ððð1 1ð1ð

Invert 1 111 1111 111ð ð1ð1

Add 1 1

 ────────────────────

-26 1 111 1111 111ð ð11ð (Two's comple-

 ment form)

(S is the sign bit.)

This is equivalent to subtracting the number:

 ðððððððð ððð11ð1ð

from

1 ðððððððð ðððððððð

Negative binary integers are changed to positive
in the same manner.

The following addition examples illustrate two's-
complement arithmetic and overflow conditions.
Only eight bit positions are used.

1. +57 = ðð11 1ðð1

+35 = ðð1ð ðð11

 ───────────────

+92 = ð1ð1 11ðð

2. +57 = ðð11 1ðð1

-35 = 11ð1 11ð1

 ───────────────

+22 = ððð1 ð11ð No overflow -- carry into

leftmost position and

 carry out

3. +35 = ðð1ð ðð11

-57 = 11ðð ð111

 ───────────────

-22 = 111ð 1ð1ð Sign change only -- no

carry into leftmost posi-

tion and no carry out
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4. -57 = 11ðð ð111

-35 = 11ð1 11ð1

 ───────────────

-92 = 1ð1ð ð1ðð No overflow -- carry into

leftmost position and

 carry out

5. +57 = ðð11 1ðð1

+92 = ð1ð1 11ðð

 ───────────────

+149 =\1ðð1 ð1ð1 \Overflow -- carry into

leftmost position, no

 carry out

6. -57 = 11ðð ð111

-92 = 1ð1ð ð1ðð

 ───────────────

-149 =\ð11ð 1ð11 \Overflow -- no carry into

leftmost position but carry

 out

The presence or absence of an overflow condition
may be recognized from the carries:

� There is no overflow:

1. If there is no carry into the leftmost bit
position and no carry out (examples 1 and
3).

2. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

� There is an overflow:

1. If there is a carry into the leftmost position
but no carry out (example 5).

2. If there is no carry into the leftmost posi-
tion but there is a carry out (example 6).

The following are 16-bit signed binary integers.
The first is the maximum positive 16-bit binary
integer. The last is the maximum negative 16-bit
binary integer (the negative 16-bit binary integer
with the greatest absolute value).

 2ñõ-1 = 32,767 = ð 111 1111 1111 1111

 2ð = 1 = ð ððð ðððð ðððð ððð1

 ð = ð = ð ððð ðððð ðððð ðððð

-2ð = -1 = 1 111 1111 1111 1111

-2ñõ = -32,768 = 1 ððð ðððð ðððð ðððð

Figure A-1 illustrates several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the
maximum negative binary integer that can be
represented by 32 bits.

┌──────────────────────────────────────────────────────────────────────┐

│ 2óñ-1 = 2 147 483 647 = ð 111 1111 1111 1111 1111 1111 1111 1111 │

│ 2ñö = 65 536 = ð ððð ðððð ðððð ððð1 ðððð ðððð ðððð ðððð │

│ 2ð = 1 = ð ððð ðððð ðððð ðððð ðððð ðððð ðððð ððð1 │

│ ð = ð = ð ððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð │

│ -2ð = -1 = 1 111 1111 1111 1111 1111 1111 1111 1111 │

│ -2ñ = -2 = 1 111 1111 1111 1111 1111 1111 1111 111ð │

│ -2ñö = -65 536 = 1 111 1111 1111 1111 ðððð ðððð ðððð ðððð │

│ -2óñ+1 = -2 147 483 647 = 1 ððð ðððð ðððð ðððð ðððð ðððð ðððð ððð1 │

│ -2óñ = -2 147 483 648 = 1 ððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð │

└──────────────────────────────────────────────────────────────────────┘

Figure A-1. 32-Bit Signed Binary Integers

Unsigned Binary Integers
Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as
signed binary integers, except that the leftmost bit
is interpreted as another numeric bit rather than a
sign bit. There is no complement notation
because all unsigned binary integers are consid-
ered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions
are used. The examples are numbered the same
as the corresponding examples for signed binary
integers.

1. 57 = ðð11 1ðð1

35 = ðð1ð ðð11

 ──────────────

92 = ð1ð1 11ðð

2. 57 = ðð11 1ðð1

221 = 11ð1 11ð1

 ───────────────

278 =\ððð1 ð11ð \Carry out of leftmost

 position

3. 35 = ðð1ð ðð11

199 = 11ðð ð111

 ───────────────

234 = 111ð 1ð1ð

4. 199 = 11ðð ð111

221 = 11ð1 11ð1

 ───────────────

42ð =\1ð1ð ð1ðð \Carry out of leftmost

 position
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5. 57 = ðð11 1ðð1

92 = ð1ð1 11ðð

 ──────────────

149 = 1ðð1 ð1ð1

6. 199 = 11ðð ð111

164 = 1ð1ð ð1ðð

 ───────────────

363 =\ð11ð 1ð11 \Carry out of leftmost

 position

A carry out of the leftmost bit position may or may
not imply an overflow, depending on the applica-
tion.

Figure A-2 illustrates several 32-bit unsigned
binary integers arranged in descending order.

┌─────────────────────────────────────────────────────────────────────┐

│ 2óò-1 = 4 294 967 295 = 1111 1111 1111 1111 1111 1111 1111 1111 │

│ 2óñ = 2 147 483 648 = 1ððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð │

│ 2óñ-1 = 2 147 483 647 = ð111 1111 1111 1111 1111 1111 1111 1111 │

│ 2ñö = 65 536 = ðððð ðððð ðððð ððð1 ðððð ðððð ðððð ðððð │

│ 2ð = 1 = ðððð ðððð ðððð ðððð ðððð ðððð ðððð ððð1 │

│ ð = ð = ðððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð │

└─────────────────────────────────────────────────────────────────────┘

Figure A-2. 32-Bit Unsigned Binary Integers

 Decimal Integers
Decimal integers consist of one or more decimal
digits and a sign. Each digit and the sign are
represented by a 4-bit code. The decimal digits
are in binary-coded decimal (BCD) form, with the
values 0-9 encoded as 0000-1001. The sign is
usually represented as 1100 (C hex) for plus and
1101 (D hex) for minus. These are the preferred
sign codes, which are generated by the machine
for the results of decimal-arithmetic operations.
There are also several alternate sign codes (1010,
1110, and 1111 for plus; 1011 for minus). The
alternate sign codes are accepted by the machine
as valid in source operands but are not generated
for results.

Decimal integers may have different lengths, from
one to 16 bytes. There are two decimal formats:
packed and zoned. In the packed format, each
byte contains two decimal digits, except for the
rightmost byte, which contains the sign code in the
right half. For decimal arithmetic, the number of
decimal digits in the packed format can vary from
one to 31. Because decimal integers must consist
of whole bytes and there must be a sign code on
the right, the number of decimal digits is always
odd. If an even number of significant digits is
desired, a leading zero must be inserted on the
left.

In the zoned format, each byte consists of a
decimal digit on the right and the zone code 1111
(F hex) on the left, except for the rightmost byte
where the sign code replaces the zone code.
Thus, a decimal integer in the zoned format can

have from one to 16 digits. The zoned format
may be used directly for input and output in the
extended binary-coded-decimal interchange code
(EBCDIC), except that the sign must be separated
from the rightmost digit and handled as a separate
character. For positive (unsigned) numbers,
however, the sign can simply be represented by
the zone code of the rightmost digit because the
zone code is one of the acceptable alternate
codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign.
As for binary integers, the radix point (decimal
point) of decimal integers is considered to be fixed
at the right, and any scaling is done by the pro-
grammer.

The following are some examples of decimal inte-
gers shown in hexadecimal notation:

Decimal
Value Packed Format Zoned Format

+123 12 3C F1 F2 C3

 or or

12 3F F1 F2 F3

-4321 ð4 32 1D F4 F3 F2 D1

+ðððð5ð ðð ðð ð5 ðC Fð Fð Fð Fð F5 Cð

 or or

ðð ðð ð5 ðF Fð Fð Fð Fð F5 Fð

-7 7D D7

 ððððð ðð ðð ðC Fð Fð Fð Fð Cð

 or or

ðð ðð ðF Fð Fð Fð Fð Fð
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Under some circumstances, a zero with a minus
sign (negative zero) is produced. For example,
the multiplicand:

ðð 12 3D (-123)

times the multiplier:

 ðC (+ð)

generates the product:

ðð ðð ðD (-ð)

because the product sign follows the algebraic
rule of signs even when the value is zero. A neg-
ative zero, however, is equivalent to a positive
zero in that they compare equal in a decimal com-
parison.

 Hexadecimal-Floating-Point
Numbers
A hexadecimal-floating-point (HFP) number is
expressed as a hexadecimal fraction multiplied by
a separate power of 16. The term floating point
indicates that the placement, of the radix
(hexadecimal) point, or scaling, is automatically
maintained by the machine.

The part of an HFP number which represents the
significant digits of the number is called the frac-
tion. A second part specifies the power (expo-
nent) to which 16 is raised and indicates the
location of the radix point of the number. The
fraction and exponent may be represented by 32
bits (short format), 64 bits (long format), or 128
bits (extended format).

Short HFP Number
┌─┬──────────────┬────────/───────┐

│S│Characteristic│6-Digit Fraction│

└─┴──────────────┴────────/───────┘

ð 1 8 31

Long HFP Number
┌─┬──────────────┬─────────/──────────┐

│S│Characteristic│ 14-Digit Fraction │

└─┴──────────────┴─────────/──────────┘

ð 1 8 63

Extended HFP Number
 High-Order Part

┌─┬──────────────┬─────────/──────────┐

│ │ High-Order │ Leftmost 14 Digits │

│S│Characteristic│of 28-Digit Fraction│

└─┴──────────────┴─────────/──────────┘

ð 1 8 63

 Low-Order Part

┌─┬──────────────┬─────────/──────────┐

│ │ Low-Order │Rightmost 14 Digits │

│S│Characteristic│of 28-Digit Fraction│

└─┴──────────────┴─────────/──────────┘

64 72 127

An HFP number has two signs: one for the frac-
tion and one for the exponent. The fraction sign,
which is also the sign of the entire number, is the
leftmost bit of each format (0 for plus, 1 for
minus). The numeric part of the fraction is in true
notation regardless of the sign. The numeric part
is contained in bits 8-31 for the short format, in
bits 8-63 for the long format, and in bits 8-63 fol-
lowed by bits 72-127 for the extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the expo-
nent is added as a signed number to 64. The
resulting number is called the characteristic. It is
located in bits 1-7 for all formats. The character-
istic can vary from 0 to 127, permitting the expo-
nent to vary from -64 through 0 to +63. This
provides a scale multiplier in the range of 16-öô to
16+öó. A nonzero fraction, if normalized, has a
value less than one and greater than or equal to
1/16, so that the range covered by the magnitude
M of a normalized floating-point number is:

16-öõ ≤ M < 16öó

In decimal terms:

16-öõ is approximately 5.4 x 1ð-÷ù

16öó is approximately 7.2 x 1ð÷õ

More precisely,

In the short format:

16-öõ ≤ M ≤ (1 - 16-ö) x 16öó

In the long format:

16-öõ ≤ M ≤ (1 - 16-ñô) x 16öó

In the extended format:

16-öõ ≤ M ≤ (1 - 16-òø) x 16öó

Within a given fraction length (6, 14, or 28 digits),
an HFP operation will provide the greatest preci-
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sion if the fraction is normalized. A fraction is nor-
malized when the leftmost digit (bit positions 8, 9,
10, and 11) is nonzero. It is unnormalized if the
leftmost digit contains all zeros.

If normalization of the operand is desired, the HFP
instructions that provide automatic normalization
are used. This automatic normalization is accom-
plished by left-shifting the fraction (four bits per

shift) until a nonzero digit occupies the leftmost
digit position. The characteristic is reduced by
one for each digit shifted.

Figure A-3 illustrates sample normalized short
HFP numbers. The last two numbers represent
the smallest and the largest positive normalized
numbers.

┌──────────────────────────────────────────────────────────────────────────┐

│ 1.ð = +1/16x16ñ = ð 1ðð ððð1 ððð1 ðððð ðððð ðððð ðððð ðððð² │

│ ð.5 = +8/16x16ð = ð 1ðð ðððð 1ððð ðððð ðððð ðððð ðððð ðððð² │

│ 1/64 = +4/16x16-ñ = ð ð11 1111 ð1ðð ðððð ðððð ðððð ðððð ðððð² │

│ ð.ð = +ð x16-öô = ð ððð ðððð ðððð ðððð ðððð ðððð ðððð ðððð² │

│ -15.ð = -15/16x16ñ = 1 1ðð ððð1 1111 ðððð ðððð ðððð ðððð ðððð² │

│ 5.4x1ð-÷ù º +1/16x16-öô = ð ððð ðððð ððð1 ðððð ðððð ðððð ðððð ðððð² │

│ 7.2x1ð÷õ º (1-16-ö)x16öó = ð 111 1111 1111 1111 1111 1111 1111 1111² │

└──────────────────────────────────────────────────────────────────────────┘

Figure A-3. Normalized Short Hexadecimal-Floating-Point Numbers

 Conversion Example
Convert the decimal number 59.25 to a short HFP
number. (In another appendix are tables for the
conversion of hexadecimal and decimal integers
and fractions.)

1. The number is separated into a decimal
integer and a decimal fraction.

59.25 = 59 plus ð.25

2. The decimal integer is converted to its
hexadecimal representation.

59±° = 3B±¶

3. The decimal fraction is converted to its
hexadecimal representation.

ð.25±° = ð.4±¶

4. The integral and fractional parts are combined
and expressed as a fraction times a power of
16 (exponent).

3B.4±¶ = ð.3B4±¶ x 16ò

5. The characteristic is developed from the expo-
nent and converted to binary.

base + exponent = characteristic

64 + 2 = 66 = 1ðððð1ð

6. The fraction is converted to binary and
grouped hexadecimally.

.3B4±¶ = .ðð11 1ð11 ð1ðð

7. The characteristic and the fraction are stored
in the short format. The sign position contains
the sign of the fraction.

S Char Fraction
ð 1ðððð1ð ðð11 1ð11 ð1ðð ðððð ðððð ðððð

Examples of instruction sequences that may be
used to convert between signed binary integers
and HFP numbers are shown in “Hexadecimal-
Floating-Point-Number Conversion” on page A-41.

 Instruction-Use Examples
The following examples illustrate the use of many
of the unprivileged instructions. Before studying
one of these examples, the reader should consult
the instruction description.

The instruction-use examples are written princi-
pally for assembler-language programmers, to be
used in conjunction with the appropriate
assembler-language publications.

Most examples present one particular instruction,
both as it is written in an assembler-language
statement and as it appears when assembled in
storage (machine format).

 Machine Format
All machine-format values are given in
hexadecimal notation unless otherwise specified.
Storage addresses are also given in hexadecimal.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps
to clarify the example for the reader.
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 Assembler-Language Format
In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X'C', and B'1100' represent the
same value. Whenever the value in a register or
storage location is referred to as “not significant,”
this value is replaced during the execution of the
instruction.

When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field speci-
fies the number of bytes to be added to the field
address to obtain the address of the last byte of
the field. Thus, the machine length is one less
than the assembler-language length. The assem-
bler program automatically subtracts one from the
length specified when the instruction is assem-
bled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic
address is represented as a mnemonic term
written in all capitals, such as FLAGS, which may
denote the address of a storage location con-
taining data or program-control information. When
symbolic addresses are used, the assembler sup-
plies actual base and displacement values
according to the programmer's specifications.
Therefore, the actual values for base and dis-
placement are not shown in the assembler-
language format or in the machine-language
format. For assembler-language formats, in the
labels that designate instruction fields, the letter
“S” is used to indicate the combination of base
and displacement fields for an operand address.
(For example, S2 represents the combination of
B2 and D2.) In the machine-language format, the
base and displacement address components are
shown as asterisks (****).

Addressing Mode in Examples
Except where otherwise specified, the examples
assume the 24-bit addressing mode.

 General Instructions
(See Chapter 7, “General Instructions” for a com-
plete description of the general instructions.)

ADD HALFWORD (AH)
The ADD HALFWORD instruction algebraically
adds the contents of a two-byte field in storage to
the contents of a register. The storage operand is
expanded to 32 bits after it is fetched and before it
is used in the add operation. The expansion con-
sists in propagating the leftmost (sign) bit 16 posi-
tions to the left. For example, assume that the
contents of storage locations 2000-2001 are to be
added to register 5. Initially:

Register 5 contains 00 00 00 19 = 25±°.

Storage locations 2000-2001 contain FF FE =
-2±°.

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 4A │ 5 │ D │ C │ 6Bð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

───────────────────────

 AH 5,X'6Bð'(13,12)

After the instruction is executed, register 5 con-
tains 00 00 00 17 = 23±°. Condition code 2 is set
to indicate a result greater than zero.

AND (N, NC, NI, NR)
When the Boolean operator AND is applied to two
bits, the result is one when both bits are one; oth-
erwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ANDing
two bytes:

First-operand byte: ðð11 ð1ð1²

Second-operand byte: ð1ð1 11ðð²

────────────────────────────────

Result byte: ððð1 ð1ðð²
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 NI Example
A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 0011². To
set the rightmost bit of this byte to zero without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00
00 48 90):

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 94 │ FE │ 8 │ ðð1│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

───────────────────

 NI 1(8),X'FE'

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the I²
field of the instruction):

Location 4891: ð1ðð ðð11²

Immediate byte: 1111 111ð²

───────────────────────────

Result: ð1ðð ðð1ð²

The resulting byte, with bit 7 set to zero, is stored
back in location 4891. Condition code 1 is set.

Linkage Instructions (BAL, BALR,
BAS, BASR, BASSM, BSM)
Four unprivileged instructions (BRANCH AND
LINK, BRANCH AND SAVE, BRANCH AND SAVE
AND SET MODE, and BRANCH AND SET
MODE) are available, together with the uncondi-
tional branch (BRANCH ON CONDITION with a
mask of 15), to provide linkage between subrou-
tines. BRANCH AND LINK (BAL or BALR) is pro-
vided primarily for compatibility with programs
written for System/370; BRANCH AND SAVE
(BAS or BASR) is recommended instead for pro-
grams which are to be executed using ESA/370.
The instructions BRANCH AND SAVE AND SET
MODE (BASSM) and BRANCH AND SET MODE
(BSM) provide subroutine linkage together with
switching between the 24-bit and the 31-bit
addressing modes. The use of these instructions
is discussed in a programming note at the end of
“Subroutine Linkage without the Linkage Stack.”
(See also the semiprivileged instruction BRANCH
AND STACK.)

The following example compares the operation of
these instructions and of the unconditional-branch
instruction BRANCH ON CONDITION (BC or BCR
with a mask of 15). Assume that each instruction
in turn is located at the current instruction
address, ready to be executed next. For the first
set of examples, the addressing-mode bit, PSW
bit 32, is initially zero (24-bit addressing in effect).
For the second set, PSW bit 32 is initially one
(31-bit addressing). Assume also that general
register 5 is to receive the linkage information, and
that general register 6 contains the branch
address.

The format of the BALR instruction is:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ ð5 │ 5 │ 6 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 BALR 5,6

The other linkage instructions in the RR format
have the same format but different op codes:

BASR ðD

BASSM ðC

BSM ðB

For comparison with the RR-format instructions,
the results of two RX-format instructions are also
shown.

The format of the BAL instruction is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 45 │ 5 │ ð │ 6 │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

──────────────────────

 BAL 5,ð(ð,6)

The BAS instruction has the same format, but the
op code is 4D.

The BCR instruction specifies only one register:
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Machine Format
 Op Code M± R²

┌────────┬────┬────┐

│ ð7 │ F │ 6 │

└────────┴────┴────┘

Assembler Format
Op Code M±,R²

──────────────

 BCR 15,6

Assume that:

Register 5 contains BB BB BB BB.

Register 6 contains 82 46 8A CE.

PSW bits 32-63 contain

00 00 10 D6 (for 24-bit addressing).
80 00 10 D6 (for 31-bit addressing).

Condition code is 01².

Program mask is 1100².

The effect of executing each instruction in turn is
as follows:

24-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB ðð ðð 1ð D6

BCR 15,6 BB BB BB BB ðð 46 8A CE

BAL 5,ð(ð,6) 9C ðð 1ð DA ðð 46 8A CE

BAS 5,ð(ð,6) ðð ðð 1ð DA ðð 46 8A CE

BALR 5,6 5C ðð 1ð D8 ðð 46 8A CE

BASR 5,6 ðð ðð 1ð D8 ðð 46 8A CE

BASSM 5,6 ðð ðð 1ð D8 82 46 8A CE

BSM 5,6 3B BB BB BB 82 46 8A CE

31-Bit Mode Initially

Instruction Register 5 PSW (32-63)

Before BB BB BB BB 8ð ðð 1ð D6

BCR 15,6 BB BB BB BB 82 46 8A CE

BAL 5,ð(ð,6) 8ð ðð 1ð DA 82 46 8A CE

BAS 5,ð(ð,6) 8ð ðð 1ð DA 82 46 8A CE

BALR 5,6 8ð ðð 1ð D8 82 46 8A CE

BASR 5,6 8ð ðð 1ð D8 82 46 8A CE

BASSM 5,6 8ð ðð 1ð D8 82 46 8A CE

BSM 5,6 BB BB BB BB 82 46 8A CE

Note that a value of zero in the R² field of any of
the RR-format instructions indicates that the
branching function is not to be performed; it does
not refer to register 0. Likewise, a value of zero in

the R± field of the BSM instruction indicates that
the old value of PSW bit 32 is not to be saved and
that register 0 is to be left unchanged. Register 0
can be designated by the R± field of instructions
BAL, BALR, BAS, BASR, and BASSM, however.
In the RX-format branch instructions, branching
occurs independent of whether there is a value of
zero in the B² field or X² field of the instruction.
However, when the field is zero, instead of using
the contents of general register 0, a value of zero
is used for that component of address generation.

Programming Note:  It should be noted that exe-
cution of BAL in the 24-bit addressing mode
results in bit 0 of register 5 being set to one. This
is because the ILC for an RX-format instruction is
10. This is the only case in which bit zero of the
return register does not correctly reflect the
addressing mode of the caller. Thus, BSM may
be used to return for BALR, BAS, BASR, and
BASSM in both the 24-bit and the 31-bit
addressing modes, but it cannot be used to return
if the program was called by using BAL in the
24-bit addressing mode.

Other BALR and BASR Examples
The BALR or BASR instruction with the R² field
set to zero may be used to load a register for use
as a base register. For example, in the assembler
language, the two statements:

BALR 15,ð

USING \,15

or

BASR 15,ð

USING \,15

indicate that the address of the next sequential
instruction following the BALR or BASR instruction
will be placed in register 15, and that the assem-
bler may use register 15 as a base register until
otherwise instructed. (The USING statement is an
“assembler instruction” and is thus not a part of
the object program.)

BRANCH AND STACK (BAKR)
The semiprivileged BRANCH AND STACK instruc-
tion facilitates linkage between subroutines by
saving status in a linkage-stack state entry (some-
times called a branch state entry to distinguish it
from a program-call state entry). When BRANCH
AND STACK has been used, the return from the
called program is made by means of the
PROGRAM RETURN instruction. PROGRAM
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RETURN restores access registers 2-14, general
registers 2-14, and the PSW with values saved in
the state entry, except that it leaves the PER
mask unchanged and sets the condition code to
an unpredictable value. The use of BRANCH
AND STACK is discussed in “Branching Using the
Linkage Stack” on page 5-59.

BRANCH AND STACK can be used to perform a
calling linkage, or it can be used at or near the
entry point of the called program, depending on
whether the R± field of the instruction is zero or
nonzero, respectively. If the R± field is zero, bits
32-63 of the PSW saved in the state entry indicate
the current addressing mode (24-bit or 31-bit) and
the address of the next sequential instruction after
the BRANCH AND STACK instruction or an
EXECUTE instruction. If the R± field is nonzero,
bits 32-63 of the PSW saved in the state entry are
set with a value generated from the contents of
general register R±: bit 32 of the PSW is set equal
to bit 0 of the register, and bits 1-31 of the PSW
are set with an address generated from bits 1-31
of the register under the control of bit 0 of the reg-
ister. Bits 32-63 of the PSW saved in the state
entry are referred to in the following examples as
the return value.

The branch address for the instruction is gener-
ated from the contents of general register R²

under the control of the current addressing mode.
Bit 0 of general register R² does not affect the
operation. If the R² field of the instruction is zero,
the operation is performed without branching.

In addition to saving a complete PSW (except with
an unpredictable PER mask) in the state entry,
BRANCH AND STACK saves the new value of
bits 32-63 of the current PSW in the state entry.
Bits 32-63 are referred to in the following exam-
ples as the branch value.

The following examples contain cases in which bit
32 of the current PSW is either zero or one (24-bit
or 31-bit addressing) before BRANCH AND
STACK is executed and in which bit 0 of the
general register designated by a nonzero R± or R²

field is either zero or one.

BAKR Example 1
This example shows BAKR used in a calling
program. BAKR performs a branch, and the
return is to be to the next sequential instruction.

The format of the BAKR instruction is:

Machine Format
 Op Code R± R²

┌────────────────┬────────┬────┬────┐

│ B24ð │ │ ð │ 6 │

└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────────────

 BAKR ð,6

Assume four cases of initial values, as follows:

 PSW (32-63) Register 6

1. ðð ðð 1ð D6 ð2 46 8A CE

2. ðð ðð 1ð D6 82 46 8A CE

3. 8ð ðð 1ð D6 ð2 46 8A CE

4. 8ð ðð 1ð D6 82 46 8A CE

The results in the four cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. ðð ðð 1ð DA ðð 46 8A CE

2. ðð ðð 1ð DA ðð 46 8A CE

3. 8ð ðð 1ð DA 82 46 8A CE

4. 8ð ðð 1ð DA 82 46 8A CE

BAKR Example 2
This example shows BAKR used in a called
program. BAKR does not perform a branch, and
the return is to be as specified in general register
R±.

The format of the BAKR instruction is:

Machine Format
 Op Code R± R²

┌────────────────┬────────┬────┬────┐

│ B24ð │ │ 5 │ ð │

└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────────────

 BAKR 5,ð
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Assume four cases of initial values, as follows:

 Register 5 PSW (32-63)

1. ð4 ðð 1ð D6 ðð 46 8A CE

2. ð4 ðð 1ð D6 82 46 8A CE

3. 84 ðð 1ð D6 ðð 46 8A CE

4. 84 ðð 1ð D6 82 46 8A CE

The results in the four cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. ðð ðð 1ð D6 ðð 46 8A D2

2. ðð ðð 1ð D6 82 46 8A D2

3. 84 ðð 1ð D6 ðð 46 8A D2

4. 84 ðð 1ð D6 82 46 8A D2

BAKR Example 3
This example shows BAKR used in a called
program. BAKR performs a branch, and the
return is to be as specified in general register R±.

The format of the BAKR instruction is:

Machine Format
 Op Code R± R²

┌────────────────┬────────┬────┬────┐

│ B24ð │ │ 5 │ 6 │

└────────────────┴────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────────────

 BAKR 5,6

Assume eight cases of initial values, as follows:

 Register 5 Register 6 PSW (32-63)

1. ð4 ðð 1ð D6 ð6 99 99 ðð ðð 46 8A CE

2. ð4 ðð 1ð D6 ð6 99 99 ðð 82 46 8A CE

3. ð4 ðð 1ð D6 86 99 99 ðð ðð 46 8A CE

4. ð4 ðð 1ð D6 86 99 99 ðð 82 46 8A CE

5. 84 ðð 1ð D6 ð6 99 99 ðð ðð 46 8A CE

6. 84 ðð 1ð D6 ð6 99 99 ðð 82 46 8A CE

7. 84 ðð 1ð D6 86 99 99 ðð ðð 46 8A CE

8. 84 ðð 1ð D6 86 99 99 ðð 82 46 8A CE

The results in the eight cases are as follows:

 Return Branch Value
Value and PSW (32-63)

1. ðð ðð 1ð D6 ðð 99 99 ðð

2. ðð ðð 1ð D6 86 99 99 ðð

3. ðð ðð 1ð D6 ðð 99 99 ðð

4. ðð ðð 1ð D6 86 99 99 ðð

5. 84 ðð 1ð D6 ðð 99 99 ðð

6. 84 ðð 1ð D6 86 99 99 ðð

7. 84 ðð 1ð D6 ðð 99 99 ðð

8. 84 ðð 1ð D6 86 99 99 ðð

BRANCH ON CONDITION (BC,
BCR)
The BRANCH ON CONDITION instruction tests
the condition code to see whether a branch should
or should not occur. The branch occurs only if the
current condition code corresponds to a one bit in
a mask specified by the instruction.

For example, assume that an ADD (A or AR)
operation has been performed and that a branch
to address 6050 is desired if the sum is zero or
less (condition code is 0 or 1). Also assume:

Register 10 contains 00 00 50 00.

Register 11 contains 00 00 10 00.

The RX form of the instruction performs the
required test (and branch if necessary) when
written as:

Machine Format
 Op Code M± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 47 │ C │ B │ A │ ð5ð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code M±,D²(X²,B²)

───────────────────────

 BC 12,X'5ð'(11,1ð)

A mask of 12±° means that there are ones in
instruction bits 8 and 9 and zeros in bits 10 and
11, so that branching takes place when the condi-
tion code is either 0 or 1.

Condition
Code

Instruction
(Mask) Bit Mask Value

0 8 8
1 9 4
2 10 2
3 11 1
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A mask of 15 would indicate a branch on any con-
dition (an unconditional branch). A mask of zero
would indicate that no branch is to occur (a no-
operation).

(See also “Linkage Instructions (BAL, BALR, BAS,
BASR, BASSM, BSM)” on page  A-8 for an
example of the BCR instruction.)

BRANCH ON COUNT (BCT,
BCTR)
The BRANCH ON COUNT instruction is often
used to execute a program loop for a specified
number of times. For example, assume that the
following represents some lines of coding in an
assembler-language program:

...

LUPE AR 8,1
...

BACK BCT 6,LUPE
...

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order
to address this location, register 10 is used as a
base register and contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 46 │ 6 │ ð │ A │ ð26│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

──────────────────────

 BCT 6,X'26'(ð,1ð)

The effect of the coding is to execute three times
the loop defined by the instructions labeled LUPE
through BACK, while register 6 is decremented
from three to zero.

BRANCH ON INDEX HIGH (BXH)

BXH Example 1
The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an
index value and an increment value is greater
than some compare value. For example, assume
that:

Register 4 contains 00 00 00 8A = 138±° =
the index.

Register 6 contains 00 00 00 02 = 2±° = the
increment.

Register 7 contains 00 00 00 AA = 170±° =
the compare value.

Register 10 contains 00 00 71 30 = the
branch address.

The format of the BXH instruction is:

Machine Format
 Op Code R± R³ B² D²

┌────────┬────┬────┬────┬────┐

│ 86 │ 4 │ 6 │ A │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,R³,D²(B²)

─────────────────────

 BXH 4,6,ð(1ð)

When the instruction is executed, first the contents
of register 6 are added to register 4, second the
sum is compared with the contents of register 7,
and third the decision whether to branch is made.
After execution:

Register 4 contains 00 00 00 8C = 140±°.

Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet greater
than the value in register 7, the branch to address
7130 is not taken. Repeated use of the instruction
will eventually cause the branch to be taken when
the value in register 4 reaches 172±°.

BXH Example 2
When the register used to contain the increment is
odd, that register also becomes the compare-
value register. The following assembler-language
subroutine illustrates how this may be used to
search a table.

A-12 ESA/390 Principles of Operation  



  
 

┌───────────────────────────────┐

│ Table │

├───────────────┬───────────────┤

│ 2 Bytes │ 2 Bytes │

├───────────────┼───────────────┤

│ ARG1 │ FUNCT1 │

│ ARG2 │ FUNCT2 │

│ ARG3 │ FUNCT3 │

│ ARG4 │ FUNCT4 │

│ ARG5 │ FUNCT5 │

│ ARG6 │ FUNCT6 │

└───────────────┴───────────────┘

Assume that:

Register 8 contains the search argument.

Register 9 contains the width of the table in
bytes (00 00 00 04).

Register 10 contains the length of the table in
bytes (00 00 00 18).

Register 11 contains the starting address of
the table.

Register 14 contains the return address to the
main program.

As the following subroutine is executed, the argu-
ment in register 8 is successively compared with
the arguments in the table, starting with argument
6 and working backward to argument 1. If an
equality is found, the corresponding function
replaces the argument in register 8. If an equality
is not found, zero replaces the argument in reg-
ister 8.

 SEARCH LNR 9,9

NOTEQUAL BXH 1ð,9,LOOP

 NOTFOUND SR 8,8

 BCR 15,14

 LOOP CH 8,ð(1ð,11)

 BC 7,NOTEQUAL

 LH 8,2(1ð,11)

 BCR 15,14

The first instruction (LNR) causes the value in reg-
ister 9 to be made negative. After execution of
this instruction, register 9 contains FF FF FF FC =
-4±°. Considering the case when no equality is
found, the BXH instruction will be executed seven
times. Each time BXH is executed, a value of -4
is added to register 10, thus reducing the value in
register 10 by 4. The new value in register 10 is
compared with the -4 value in register 9. The
branch is taken each time until the value in reg-
ister 10 is -4. Then the branch is not taken, and
the SR instruction sets register 8 to zero.

BRANCH ON INDEX LOW OR
EQUAL (BXLE)
The BRANCH ON INDEX LOW OR EQUAL
instruction performs the same operation as
BRANCH ON INDEX HIGH, except that branching
occurs when the sum is lower than or equal to
(instead of higher than) the compare value. As
the instruction which increments and tests an
index value in a program loop, BXLE is useful at
the end of the loop and BXH at the beginning.
The following assembler-language routines illus-
trate loops with BXLE.

BXLE Example 1
Assume that a group of ten 32-bit signed binary
integers are stored at consecutive locations,
starting at location GROUP. The integers are to
be added together, and the sum is to be stored at
location SUM.

SR 5,5 Set sum to zero

LA 6,GROUP Load first address

SR 7,7 Set index to zero

LA 8,4 Load increment 4

LA 9,39 Load compare value

LOOP A 5,ð(7,6) Add integer to sum

BXLE 7,8,LOOP Test end of loop

 ST 5,SUM Store sum

The two-instruction loop contains an ADD (A)
instruction which adds each integer to the con-
tents of general register 5. The ADD instruction
uses the contents of general register 7 as an
index value to modify the starting address
obtained from register 6. Next, BXLE increments
the index value by 4, the increment previously
loaded into register 8, and compares it with the
compare value in register 9, the odd register of
this even-odd pair. The compare value was previ-
ously set to 39, which is one less than the number
of bytes in the data area; this is also the address,
relative to the starting address, of the rightmost
byte of the last integer to be added. When the
last integer has been added, BXLE increments the
index value to the next relative address (40),
which is found to be greater than the compare
value (39) so that no branching takes place.

BXLE Example 2
The technique illustrated in Example 1 is restricted
to loops containing instructions in the RX instruc-
tion format. That format allows both a base reg-
ister and an index register to be specified (double
indexing).
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For instructions in other formats, where an index
register cannot be specified, the previous tech-
nique may be modified by having the address
itself serve as the index value in a BXLE instruc-
tion and by using as the compare value the
address of the last byte rather than its relative
address. The base register then provides the
address directly at each iteration of the loop, and
it is not necessary to specify a second register to
hold the index value (single indexing).

In the following example, an AND (NI) instruction
in the SI instruction format sets to zero the right-
most bit of each of the same group of integers as
in Example 1, thus making all of them even. The
I² field of the NI instruction contains the byte
X'FE', which consists of seven ones and a zero.
That byte is ANDed into byte 3, the rightmost
byte, of each of the integers in turn.

LA 6,GROUP Load first address

LA 8,4 Load increment 4

LA 9,GROUP+39 Load compare value

LOOP NI 3(6),X'FE' AND immediate

BXLE 6,8,LOOP Test end of loop

The technique shown in Example 2 does not work,
however, on an ESA/370 system when it is in the
31-bit addressing mode and the data is located at
the rightmost end of a 31-bit address space. In
this case, the compare value would be set to
2óñ-1, which is the largest possible 32-bit signed
binary value. The reason the technique does not
work is that the BXLE and BXH instructions treat
their operands as 32-bit signed binary integers.
When the address in general register 6 reaches
the value 2óñ-4, BXLE increments it to a value
that is interpreted as -2óñ, rather than 2óñ, and
the comparison remains low, which causes
looping to continue indefinitely.

This situation can be avoided by not allowing data
areas to extend to the rightmost location in a
31-bit address space or by using other techniques;
these may include double indexing when possible,
as in Example 1, or starting at the end and step-
ping downward through the data area with a nega-
tive increment.

COMPARE AND FORM
CODEWORD (CFC)
See “Sorting Instructions” on page A-51.

COMPARE HALFWORD (CH)
The COMPARE HALFWORD instruction compares
a 16-bit signed binary integer in storage with the
contents of a register. For example, assume that:

Register 4 contains FF FF 80 00 = -32,768±°.

Register 13 contains 00 01 60 50.

Storage locations 16080-16081 contain 8000
= -32,768±°.

When the instruction:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 49 │ 4 │ ð │ D │ ð3ð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

──────────────────────

 CH 4,X'3ð'(ð,13)

is executed, the contents of locations
16080-16081 are fetched, expanded to 32 bits
(the sign bit is propagated to the left), and com-
pared with the contents of register 4. Because the
two numbers are equal, condition code 0 is set.

COMPARE LOGICAL (CL, CLC,
CLI, CLR)
The COMPARE LOGICAL instruction differs from
the signed-binary comparison instructions (C, CH,
CR) in that all quantities are handled as unsigned
binary integers or as unstructured data.

 CLC Example
The COMPARE LOGICAL (CLC) instruction can
be used to perform the byte-by-byte comparison of
storage fields up to 256 bytes in length. For
example, assume that the following two fields of
data are in storage:

Field 1
1886 1891

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│D1│D6│C8│D5│E2│D6│D5│6B│C1│4B│C2│4B│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2
19ðð 19ðB

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│D1│D6│C8│D5│E2│D6│D5│6B│C1│4B│C3│4B│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

A-14 ESA/390 Principles of Operation  



  
 

Also assume:

Register 9 contains 00 00 18 80.

Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D5 │ ðB │ 9 │ ðð6│ 7 │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 CLC 6(12,9),ð(7)

sets condition code 1, indicating that the contents
of field 1 are lower in value than the contents of
field 2.

Because the collating sequence of the EBCDIC
code is determined simply by a logical comparison
of the bits in the code, the CLC instruction can be
used to collate EBCDIC-coded fields. For
example, in EBCDIC, the above two data fields
are:

Field 1: JOHNSON,A.B.

Field 2: JOHNSON,A.C.

Condition code 1 indicates that JOHNSON,A.B.
should precede JOHNSON,A.C. for the fields to
be in alphabetic sequence.

 CLI Example
The COMPARE LOGICAL (CLI) instruction com-
pares a byte from the instruction stream with a
byte from storage. For example, assume that:

Register 10 contains 00 00 17 00.

Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 95 │ AF │ A │ ðð3│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

────────────────────

 CLI 3(1ð),X'AF'

sets condition code 1, indicating that the first
operand (the quantity in main storage) is lower
than the second (immediate) operand.

 CLR Example
Assume that:

Register 4 contains 00 00 00 01 = 1.

Register 7 contains FF FF FF FF = 2óò - 1.

Execution of the instruction:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 15 │ 4 │ 7 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 CLR 4,7

sets condition code 1. Condition code 1 indicates
that the first operand is lower than the second.

If, instead, the signed-binary comparison instruc-
tion COMPARE (CR) had been executed, the con-
tents of register 4 would have been interpreted as
+1 and the contents of register 7 as -1. Thus, the
first operand would have been higher, so that con-
dition code 2 would have been set.

 COMPARE LOGICAL
CHARACTERS UNDER MASK
(CLM)
The COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) instruction provides a
means of comparing bytes selected from a
general register to a contiguous field of bytes in
storage. The M³ field of the CLM instruction is a
four-bit mask that selects zero to four bytes from a
general register, each mask bit corresponding, left
to right, to a register byte. In the comparison, the
register bytes corresponding to ones in the mask
are treated as a contiguous field. The operation
proceeds left to right. For example, assume that:

Storage locations 10200-10202 contain F0 BC
7B.

Register 12 contains 00 01 00 00.

Register 6 contains F0 BC 5C 7B.

Execution of the instruction:
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Machine Format
 Op Code R± M³ B² D²

┌────────┬────┬────┬────┬────┐

│ BD │ 6 │ D │ C │ 2ðð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,M³,D²(B²)

─────────────────────────────

 CLM 6,B'11ð1',X'2ðð'(12)

causes the following comparison:

Register 6: Fð BC 5C 7B

Mask M³: 1 1 ð 1

 -- -- --

 Fð BC 7B

│ └────┐ │

Storage └────┐ │ │

locations ┌─┴──┬─┴──┬─┴──┐

1ð2ðð-1ð2ð2: │ Fð │ BC │ 7B │

 └────┴────┴────┘

Because the selected bytes are equal, condition
code 0 is set.

COMPARE LOGICAL LONG
(CLCL)
The COMPARE LOGICAL LONG instruction is
used to compare two operands in storage, byte by
byte. Each operand can be of any length. Two
even-odd pairs of general registers (four registers
in all) are used to locate the operands and to
control the execution of the CLCL instruction, as
illustrated in the following diagram. The first reg-
ister of each pair must be an even register, and it
contains the storage address of an operand. The
odd register of each pair contains the length of the
operand it covers, and the leftmost byte of the
second-operand odd register contains a padding
byte which is used to extend the shorter operand,
if any, to the same length as the longer operand.

The following illustrates the assignment of regis-
ters in the 24-bit addressing mode:

 ┌────────┬──────────────────────┐

R± │////////│First-Operand Address │

(even) └────────┴──────────────────────┘

 ð 8 31

 ┌────────┬──────────────────────┐

R±+1 │////////│ First-Operand Length │

(odd) └────────┴──────────────────────┘

 ð 8 31

 ┌────────┬──────────────────────┐

R² │////////│Second-Operand Address│

(even) └────────┴──────────────────────┘

 ð 8 31

 ┌────────┬──────────────────────┐

R²+1 │Pad Byte│Second-Operand Length │

(odd) └────────┴──────────────────────┘

 ð 8 31

In the 31-bit addressing mode, the operand
addresses would be in bit positions 1-31 of the
even registers shown above.

Since the CLCL instruction may be interrupted
during execution, the interrupting program must
preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register pairs
to control a text-string comparison. For example,
assume:

 Operand 1

 Address: 2ð8ðð±¶

 Length: 1ðð±°

 Operand 2

 Address: 2ðAðð±¶

 Length: 132±°

 Padding Byte

 Address: 2ððð3±¶

 Length: 1

 Value: 4ð±¶

Register 12 contains 00 02 00 00.

The setup instructions are:

Register pair 4,5 defines the first operand. Bits
8-31 of register 4 contain the storage address of
the start of an EBCDIC text string, and bits 8-31 of
register 5 contain the length of the string, in this
case 100 bytes.

LA 4,X'800'(12) Set register 4 to start of
first operand

LA 5,100 Set register 5 to length
of first operand

LA 8,X'A00'(12) Set register 8 to start of
second operand

LA 9,132 Set register 9 to length
of second operand

ICM 9,B'1000',3(12) Insert padding byte in
leftmost byte position of
register 9
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Register pair 8,9 defines the second operand, with
bits 8-31 of register 8 containing the starting
location of the second operand and bits 8-31 of
register 9 containing the length of the second
operand, in this case 132 bytes. Bits 0-7 of reg-
ister 9 contain an EBCDIC blank character
(X'40') to pad the shorter operand. In this
example, the padding byte is used in the first
operand, after the 100th byte, to compare with the
remaining bytes in the second operand.

With the register pairs thus set up, the format of
the CLCL instruction is:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ ðF │ 4 │ 8 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 CLCL 4,8

When this instruction is executed, the comparison
starts at the left end of each operand and pro-
ceeds to the right. The operation ends as soon as
an inequality is detected or the end of the longer
operand is reached.

If this CLCL instruction is interrupted after 60
bytes have compared equal, the operand lengths
in registers 5 and 9 will have been decremented
to 40 and 72, respectively. The operand
addresses in registers 4 and 8 will have been
incremented to X'2083C' and X'20A3C'; the left-
most byte of registers 4 and 8 will have been set
to zero. The padding byte X'40' remains in reg-
ister 9. When the CLCL instruction is reexecuted
with these register contents, the comparison
resumes at the point of interruption.

Now, assume that the instruction is interrupted
after 110 bytes. That is, the first 100 bytes of the
second operand have compared equal to the first
operand, and the next 10 bytes of the second
operand have compared equal to the padding byte
(blank). The residual operand lengths in registers
5 and 9 are 0 and 22, respectively, and the
operand addresses in registers 4 and 8 are
X'20864' (the value when the first operand was

exhausted) and X'20A6E' (the current value for
the second operand).

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 indicate the bytes that caused
the mismatch.

COMPARE LOGICAL STRING
(CLST)
The COMPARE LOGICAL STRING instruction is
used to compare a first operand designated by
general register R± and a second operand desig-
nated by general register R². The comparison is
made left to right, byte by byte, until unequal bytes
are compared, an ending character specified in
general register 0 is encountered in either
operand, or a CPU-determined number of bytes
have been compared. The condition code is set
to 0 if the two operands are equal, to 1 if the first
operand is low, to 2 if the second operand is low,
or to 3 if a CPU-determined number of bytes have
been compared. If the ending character is found
in both operands simultaneously, the operands are
equal. If it is found in only one operand, that
operand is low.

When condition code 1 or 2 is set, the addresses
of the last bytes processed in the first and second
operands are placed in general registers R± and
R², respectively. These are the addresses of
unequal bytes in the two operands, or they are the
address of an ending character in one operand
and of the byte in the corresponding byte position
in the other operand. When condition code 3 is
set, the addresses of the next bytes to be proc-
essed are placed in the registers. When condition
code 0 is set, the contents of the registers remain
unchanged.

Following are examples of first and second oper-
ands beginning at decimal locations 1000 and
2000, respectively. The addresses in general reg-
isters R± and R² are 1000 and 2000, respectively.
The ending character in general register 0 is 00
hex (as in the C programming language). The
values of the operand bytes are shown in hex,
and the resulting condition code and final contents
of general registers R± and R² are shown.

  Appendix A. Number Representation and Instruction-Use Examples A-17



  
 

Example 1
1ððð 2ððð

C1 C2 C3 ðð C1 C2 C3 ðð

CC: ð; (R±): 1ððð; (R²): 2ððð

Example 2
1ððð 2ððð

4ð 4ð 4ð C1 4ð 4ð 4ð C2

CC: 1; (R±): 1ðð3; (R²): 2ðð3

Example 3
1ððð 2ððð

4ð 4ð 4ð C2 4ð 4ð 4ð C1

CC: 2; (R±): 1ðð3; (R²): 2ðð3

Example 4
1ððð 2ððð

C1 C2 C3 ðð C1 C2 C3 C4

CC: 1; (R±): 1ðð3; (R²): 2ðð3

Example 5
1ððð 2ððð

C1 C2 C3 C4 C1 C2 C3 ðð

CC: 2; (R±): 1ðð3; (R²): 2ðð3

Example 6
Assuming that the CPU-determined number of

bytes compared is 256:

1ððð 1256 2ððð 2256

4ð .. 4ð ðð 4ð .. 4ð ðð

CC: 3; (R±): 1256; (R²): 2256

Example 7
1ððð 2ððð

ðð 4ð 4ð 4ð 4ð 4ð 4ð 4ð

CC: 1; (R±): 1ððð; (R²): 2ððð

Example 8
1ððð 2ððð

4ð 4ð 4ð 4ð ðð 4ð 4ð 4ð

CC: 2; (R±): 1ððð; (R²): 2ððð

Example 9
1ððð 2ððð

ðð 4ð 4ð 4ð ðð 4ð 4ð 4ð

CC: ð; (R±): 1ððð; (R²): 2ððð

CONVERT TO BINARY (CVB)
The CONVERT TO BINARY instruction converts
an eight-byte, packed-decimal number into a
signed binary integer and loads the result into a
general register. After the conversion operation is
completed, the number is in the proper form for
use as an operand in signed binary arithmetic.
For example, assume:

Storage locations 7608-760F contain a
decimal number in the packed format: 00 00
00 00 00 25 59 4C (+25,594).

The contents of register 7 are not significant.

Register 13 contains 00 00 76 00.

The format of the conversion instruction is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 4F │ 7 │ ð │ D │ ðð8│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 CVB 7,8(ð,13)

After the instruction is executed, register 7 con-
tains 00 00 63 FA.

CONVERT TO DECIMAL (CVD)
The CONVERT TO DECIMAL instruction is the
opposite of the CONVERT TO BINARY instruc-
tion. CVD converts a signed binary integer in a
register to packed decimal and stores the eight-
byte result. For example, assume:

Register 1 contains the signed binary integer:
00 00 0F 0F.

Register 13 contains 00 00 76 00.

The format of the instruction is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 4E │ 1 │ ð │ D │ ðð8│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 CVD 1,8(ð,13)

After the instruction is executed, storage locations
7608-760F contain 00 00 00 00 00 03 85 5C
(+3855).

The plus sign generated is the preferred plus sign,
1100².
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DIVIDE (D, DR)
The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register
or in storage. Since the instruction assumes the
dividend to be 64 bits long, it is important first to
extend a 32-bit dividend on the left with bits equal
to the sign bit. For example, assume that:

Storage locations 3550-3553 contain 00 00 08
DE = 2270±° (the dividend).

Storage locations 3554-3557 contain 00 00 00
32 = 50±° (the divisor).

The initial contents of registers 6 and 7 are
not significant.

Register 8 contains 00 00 35 50.

The following assembler-language statements load
the registers properly and perform the divide oper-
ation:

┌─────────────┬────────────────────────────────┐

│ Statement │ Comments │

├─────────────┼────────────────────────────────┤

│L 6,ð(ð,8)│ Places ðð ðð ð8 DE into reg- │

│ │ ister 6. │

│SRDA 6,32(ð) │ Shifts ðð ðð ð8 DE into reg- │

│ │ ister 7. Register 6 is │

│ │ filled with zeros (sign │

│ │ bits). │

│D 6,4(ð,8)│ Performs the division. │

└─────────────┴────────────────────────────────┘

The machine format of the above DIVIDE instruc-
tion is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 5D │ 6 │ ð │ 8 │ ðð4│

└────────┴────┴────┴────┴────┘

After the instructions listed above are executed:

Register 6 contains 00 00 00 14 = 20±° = the
remainder.

Register 7 contains 00 00 00 2D = 45±° = the
quotient.

Note that if the dividend had not been first placed
in register 6 and shifted into register 7, register 6
might not have been filled with the proper
dividend-sign bits (zeros in this example), and the
DIVIDE instruction might not have given the
expected results.

EXCLUSIVE OR (X, XC, XI, XR)
When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either,
but not both, of the two bits is one; otherwise, the
result is zero. When two bytes are EXCLUSIVE
ORed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of the
EXCLUSIVE OR of two bytes:

First-operand byte: ðð11 ð1ð1²

Second-operand byte: ð1ð1 11ðð²

──────────────────────────────────

Result byte: ð11ð 1ðð1²

 XC Example
The EXCLUSIVE OR (XC) instruction can be used
to exchange the contents of two areas in storage
without the use of an intermediate storage area.
For example, assume two three-byte fields in
storage:

 359 35B

 ┌──┬──┬──┐

 Field 1 │ðð│17│9ð│

 └──┴──┴──┘

 36ð 362

 ┌──┬──┬──┐

 Field 2 │ðð│14│ð1│

 └──┴──┴──┘

Execution of the instruction (assume that register
7 contains 00 00 03 58):

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D7 │ ð2 │ 7 │ ðð1│ 7 │ ðð8│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 XC 1(3,7),8(7)

Field 1 is EXCLUSIVE ORed with field 2 as
follows:

Field 1: ðððððððð ððð1ð111 1ðð1ðððð² = ðð 17 9ð±¶

Field 2: ðððððððð ððð1ð1ðð ððððððð1² = ðð 14 ð1±¶

──────────────────────────────────────────────────

Result: ðððððððð ðððððð11 1ðð1ððð1² = ðð ð3 91±¶

The result replaces the former contents of field 1.
Condition code 1 is set to indicate a nonzero
result.

Now, execution of the instruction:
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Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D7 │ ð2 │ 7 │ ðð8│ 7 │ ðð1│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 XC 8(3,7),1(7)

produces the following result:

Field 1: ðððððððð ðððððð11 1ðð1ððð1² = ðð ð3 91±¶

Field 2: ðððððððð ððð1ð1ðð ððððððð1² = ðð 14 ð1±¶

──────────────────────────────────────────────────

Result: ðððððððð ððð1ð111 1ðð1ðððð² = ðð 17 9ð±¶

The result of this operation replaces the former
contents of field 2. Field 2 now contains the ori-
ginal value of field 1. Condition code 1 is set to
indicate a nonzero result.

Lastly, execution of the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D7 │ ð2 │ 7 │ ðð1│ 7 │ ðð8│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 XC 1(3,7),8(7)

produces the following result:

Field 1: ðððððððð ðððððð11 1ðð1ððð1² = ðð ð3 91±¶

Field 2: ðððððððð ððð1ð111 1ðð1ðððð² = ðð 17 9ð±¶

──────────────────────────────────────────────────

Result: ðððððððð ððð1ð1ðð ððððððð1² = ðð 14 ð1±¶

The result of this operation replaces the former
contents of field 1. Field 1 now contains the ori-
ginal value of field 2. Condition code 1 is set to
indicate a nonzero result.

 XI Example
A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a zero bit to a
one or a one bit to a zero). For example, assume
that storage location 8082 contains 0110 1001².
To invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9
contains 00 00 80 80):

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 97 │ 81 │ 9 │ ðð2│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

───────────────────

 XI 2(9),X'81'

When the instruction is executed, the byte in
storage is EXCLUSIVE ORed with the immediate
byte (the I² field of the instruction):

Location 8ð82: ð11ð 1ðð1²

Immediate byte: 1ððð ððð1²

───────────────────────────

Result: 111ð 1ððð²

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero
result.

Notes:

1. With the XC instruction, fields up to 256 bytes
in length can be exchanged.

2. With the XR instruction, the contents of two
registers can be exchanged.

3. Because the X instruction operates storage to
register only, an exchange cannot be made
solely by the use of X.

4. A field EXCLUSIVE ORed with itself is cleared
to zeros.

5. For additional examples of the use of EXCLU-
SIVE OR, see “Hexadecimal-Floating-Point-
Number Conversion” on page A-41.

 EXECUTE (EX)
The EXECUTE instruction causes one target
instruction in main storage to be executed out of
sequence without actually branching to the target
instruction. Unless the R± field of the EXECUTE
instruction is zero, bits 8-15 of the target instruc-
tion are ORed with bits 24-31 of the R± register
before the target instruction is executed. Thus,
EXECUTE may be used to supply the length field
for an SS instruction without modifying the SS
instruction in storage. For example, assume that
a MOVE (MVC) instruction is the target that is
located at address 3820, with a format as follows:
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Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D2 │ ðð │ C │ ðð3│ D │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVC 3(1,12),ð(13)

where register 12 contains 00 00 89 13 and reg-
ister 13 contains 00 00 90 A0.

Further assume that at storage address 5000, the
following EXECUTE instruction is located:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 44 │ 1 │ ð │ A │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 EX 1,ð(ð,1ð)

where register 10 contains 00 00 38 20 and reg-
ister 1 contains 00 0F F0 03.

When the instruction at 5000 is executed, the
rightmost byte of register 1 is ORed with the
second byte of the target instruction:

Instruction byte: ðððð ðððð² = ðð

Register byte: ðððð ðð11² = ð3

───────────────────────────────────

Result: ðððð ðð11² = ð3

causing the instruction at 3820 to be executed as
if it originally were:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D2 │ ð3 │ C │ ðð3│ D │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVC 3(4,12),ð(13)

However, after execution:

Register 1 is unchanged.

The instruction at 3820 is unchanged.

The contents of the four bytes starting at
location 90A0 have been moved to the four
bytes starting at location 8916.

The CPU next executes the instruction at
address 5004 (PSW bits 40-63 contain 00 50
04).

INSERT CHARACTERS UNDER
MASK (ICM)
The INSERT CHARACTERS UNDER MASK
(ICM) instruction may be used to replace all or
selected bytes in a general register with bytes
from storage and to set the condition code to indi-
cate the value of the inserted field.

For example, if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format
 Op Code R± M³ S²

┌────────┬────┬────┬─────────┐

│ BF │ 5 │ 7 │ \ \ \ \ │

└────────┴────┴────┴─────────┘

Assembler Format
Op Code R±,M³,S²

─────────────────────────

 ICM 5,B'ð111',FIELDA

FIELDA: FE DC BA

Register 5 (before): 12 34 56 78

Register 5 (after): 12 FE DC BA

Condition code (after): 1 (leftmost bit of

 inserted field

 is one)

As another example:

Machine Format
 Op Code R± M³ S²

┌────────┬────┬────┬─────────┐

│ BF │ 6 │ 9 │ \ \ \ \ │

└────────┴────┴────┴─────────┘

Assembler Format
Op Code R±,M³,S²

─────────────────────────

 ICM 6,B'1ðð1',FIELDB
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FIELDB: 12 34

Register 6 (before): ðð ðð ðð ðð

Register 6 (after): 12 ðð ðð 34

Condition code (after): 2 (inserted field is

nonzero with left-

most zero bit)

When the mask field contains 1111, the ICM
instruction produces the same result as LOAD (L)
(provided that the indexing capability of the RX
format is not needed), except that ICM also sets
the condition code. The condition-code setting is
useful when an all-zero field (condition code 0) or
a leftmost one bit (condition code 1) is used as a
flag.

LOAD (L, LR)
The LOAD instruction takes four bytes from
storage or from a general register and place them
unchanged into a general register. For example,
assume that the four bytes starting with location
21003 are to be loaded into register 10. Initially:

Register 5 contains 00 02 00 00.

Register 6 contains 00 00 10 03.

The contents of register 10 are not significant.

Storage locations 21003-21006 contain 00 00
AB CD.

To load register 10, the RX form of the instruction
can be used:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 58 │ A │ 5 │ 6 │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 L 1ð,ð(5,6)

After the instruction is executed, register 10 con-
tains 00 00 AB CD.

LOAD ADDRESS (LA)
The LOAD ADDRESS instruction provides a con-
venient way to place a nonnegative binary integer
up to 4095±° in a register without first defining a
constant and then using it as an operand. For
example, the following instruction places the
number 2048±° in register 1:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 41 │ 1 │ ð │ ð │ 8ðð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 LA 1,2ð48(ð,ð)

The LOAD ADDRESS instruction can also be
used to increment a register by an amount up to
4095±° specified in the D² field. Depending on
the addressing mode, only the rightmost 24 or 31
bits of the sum are retained, however. The left-
most bits of the 32-bit result are set to zeros. For
example, assume that register 5 contains 00 12
34 56.

The instruction:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 41 │ 5 │ ð │ 5 │ ððA│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 LA 5,1ð(ð,5)

adds 10 (decimal) to the contents of register 5 as
follows:

Register 5 (old): ðð 12 34 56

D² field: ðð ðð ðð ðA

─────────────────────────────

Register 5 (new): ðð 12 34 6ð

The register may be specified as either B² or X².
Thus, the instruction LA 5,10(5,0) produces the
same result.

As the most general example, the instruction LA
6,10(5,4) forms the sum of three values: the con-
tents of register 4, the contents of register 5, and
a displacement of 10 and places the 24-bit or
31-bit sum with zeros appended on the left in reg-
ister 6.
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LOAD HALFWORD (LH)
The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right
half of a register. The left half of the register is
loaded with zeros or ones according to the sign
(leftmost bit) of the halfword.

For example, assume that the two bytes in
storage locations 1803-1804 are to be loaded into
register 6. Also assume:

The contents of register 6 are not significant.

Register 14 contains 00 00 18 03.

Locations 1803-1804 contain 00 20.

The instruction required to load the register is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 48 │ 6 │ ð │ E │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 LH 6,ð(ð,14)

After the instruction is executed, register 6 con-
tains 00 00 00 20. If locations 1803-1804 had
contained a negative number, for example, A7 B6,
a minus sign would have been propagated to the
left, giving FF FF A7 B6 as the final result in reg-
ister 6.

MOVE (MVC, MVI)

 MVC Example
The MOVE (MVC) instruction can be used to
move data from one storage location to another.
For example, assume that the following two fields
are in storage:

 2ð48 2ð52

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

 1 │C1│C2│C3│C4│C5│C6│C7│C8│C9│CA│CB│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 384ð 3848

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┐

 2 │F1│F2│F3│F4│F5│F6│F7│F8│F9│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes
of field 2 replace the first eight bytes of field 1:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D2 │ ð7 │ 1 │ ððð│ 2 │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVC ð(8,1),ð(2)

After the instruction is executed, field 1 becomes:

 2ð48 2ð52

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

 1 │F1│F2│F3│F4│F5│F6│F7│F8│C9│CA│CB│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2 is unchanged.

MVC can also be used to propagate a byte
through a field by starting the first-operand field
one byte location to the right of the second-
operand field. For example, suppose that an area
in storage starting with address 358 contains the
following data:

358 36ð

┌──┬──┬──┬──┬──┬──┬──┬──┬──┐

│ðð│F1│F2│F3│F4│F5│F6│F7│F8│

└──┴──┴──┴──┴──┴──┴──┴──┴──┘

With the following MVC instruction, the zeros in
location 358 can be propagated throughout the
entire field (assume that register 11 contains 00
00 03 58):

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D2 │ ð7 │ B │ ðð1│ B │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVC 1(8,11),ð(11)

Because MVC is executed as if one byte were
processed at a time, the above instruction, in
effect, takes the byte at address 358 and stores it
at 359 (359 now contains 00), takes the byte at
359 and stores it at 35A, and so on, until the
entire field is filled with zeros. Note that an MVI
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instruction could have been used originally to
place the byte of zeros in location 358.

Notes:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the
assembler format is equal to the number of
moves (one less than the field length).

2. The order of operands is important even
though only one field is involved.

 MVI Example
The MOVE (MVI) instruction places one byte of
information from the instruction stream into
storage. For example, the instruction:

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 92 │ 5B │ 1 │ ððð│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

──────────────────

 MVI ð(1),C'$'

may be used, in conjunction with the instruction
EDIT AND MARK, to insert the EBCDIC code for
a dollar symbol at the storage address contained
in general register 1 (see also the example for
EDIT AND MARK).

MOVE INVERSE (MVCIN)
The MOVE INVERSE (MVCIN) instruction can be
used to move data from one storage location to
another while reversing the order of the bytes
within the field. For example, assume that the fol-
lowing two fields are in storage:

 2ð48 2ð52

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

 1 │C1│C2│C3│C4│C5│C6│C7│C8│C9│CA│CB│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 384ð 3848

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┐

 2 │F1│F2│F3│F4│F5│F6│F7│F8│F9│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┘

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 38 40.

With the following instruction, the first eight bytes
of field 2 replace the first eight bytes of field 1:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ E8 │ ð7 │ 1 │ ððð│ 2 │ ðð7│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVCIN ð(8,1),7(2)

After the instruction is executed, field 1 becomes:

 2ð48 2ð52

Field ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

 1 │F8│F7│F6│F5│F4│F3│F2│F1│C9│CA│CB│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Field 2 is unchanged.

Note:  This example uses the same general reg-
isters, storage locations, and original values as the
first example for MVC. For MVCIN, the second-
operand address must designate the rightmost
byte of the field to be moved, in this case location
3847. This is accomplished by means of the 7 in
the D² field of the instruction.

MOVE LONG (MVCL)
The MOVE LONG (MVCL) instruction can be used
for moving data in storage as in the first example
of the MVC instruction, provided that the two oper-
ands do not overlap. MVCL differs from MVC in
that the address and length of each operand are
specified in an even-odd pair of general registers.
Consequently, MVCL can be used to move more
than 256 bytes of data with one instruction. As an
example, assume:

Register 2 contains 00 0A 00 00.

Register 3 contains 00 00 08 00.

Register 8 contains 00 06 00 00.

Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ ðE │ 8 │ 2 │

└────────┴────┴────┘
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Assembler Format
Op Code R±,R²

──────────────

 MVCL 8,2

moves 2,048±° bytes from locations A0000-A07FF
to locations 60000-607FF. Assuming that the
CPU is in the 24-bit addressing mode, bits 8-31 of
registers 2 and 8 are incremented by 800±¶, and
bits 0-7 of registers 2 and 8 are set to zeros. Bits
8-31 of registers 3 and 9 are decremented to zero.
Condition code 0 is set to indicate that the
operand lengths are equal.

If register 3 had contained F0 00 04 00, only the
1,024±° bytes from locations A0000-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first
operand would have been filled with 1,024 copies
of the padding byte X'F0', as specified by the
leftmost byte of register 3. Bits 8-31 of register 2
would have been incremented by 400±¶, bits 8-31
of register 8 would have been incremented by
800±¶, and bits 0-7 of registers 2 and 8 would
have been set to zeros. Bits 8-31 of registers 3
and 9 would still have been decremented to zero.
Condition code 2 would have been set to indicate
that the first operand was longer than the second.

The technique for setting a field to zeros that is
illustrated in the second example of MVC cannot
be used with MVCL. If the registers were set up
to attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MVCL may be used to clear a storage
area to zeros as follows. Assume register 8 and 9
are set up as before. Register 3 contains only
zeros, specifying zero length for the second
operand and a zero padding byte. Register 2 is
not used to access storage, and its contents are
not significant. Executing the instruction MVCL
8,2 causes locations 60000-607FF to be filled with
zeros. Bits 8-31 of register 8 are incremented by
800±¶, and bits 0-7 of registers 2 and 8 are set to
zeros. Bits 8-31 of register 9 are decremented to
zero, and condition code 2 is set to indicate that
the first operand is longer than the second.

MOVE NUMERICS (MVN)
Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in
the zoned format to operate separately on the
rightmost four bits (the numeric bits) and the left-
most four bits (the zone bits) of each byte. Both
are similar to MOVE (MVC), except that MOVE
NUMERICS moves only the numeric bits and
MOVE ZONES moves only the zone bits.

To illustrate the operation of the MOVE
NUMERICS instruction, assume that the following
two fields are in storage:

 7ð9ð 7ð93

 ┌──┬──┬──┬──┐

Field A │C6│C7│C8│C9│

 └──┴──┴──┴──┘

 7ð41 7ð46

 ┌──┬──┬──┬──┬──┬──┐

Field B │Fð│F1│F2│F3│F4│F5│

 └──┴──┴──┴──┴──┴──┘

Also assume:

Register 14 contains 00 00 70 90.

Register 15 contains 00 00 70 40.

After the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D1 │ ð3 │ F │ ðð1│ E │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVN 1(4,15),ð(14)

is executed, field B becomes:

7ð41 7ð46

┌──┬──┬──┬──┬──┬──┐

│F6│F7│F8│F9│F4│F5│

└──┴──┴──┴──┴──┴──┘

The numeric bits of the bytes at locations
7090-7093 have been stored in the numeric bits of
the bytes at locations 7041-7044. The contents of
locations 7090-7093 and 7045-7046 are
unchanged.
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MOVE STRING (MVST)
The MOVE STRING instruction is used to move a
second operand designated by general register R²

to a first-operand location designated by general
register R±. The movement is made left to right
until an ending character specified in general reg-
ister 0 has been moved or a CPU-determined
number of bytes have been moved. The condition
code is set to 1 if the ending character was moved
or to 3 if a CPU-determined number of bytes were
moved.

When condition code 1 is set, the address of the
ending character in the first operand is placed in
general register R±, and the contents of general
register R² remain unchanged. When condition
code 3 is set, the address of the next byte to be
processed in the first and second operands is
placed in general registers R± and R², respec-
tively.

Following is an example program that sets string
A equal to the concatenation of string B followed
by string C, where the length of each of strings B
and C is unknown, and the end of each of strings
B and C is indicated by an ending character of 00
hex (as in the C programming language). The
program is not written for execution in the access-
register mode.

 L 4,STRAADR

 L 5,STRBADR

 SR ð,ð

LOOP1 MVST 4,5

 BC 1,LOOP1

 L 5,STRCADR

LOOP2 MVST 4,5

 BC 1,LOOP2

 [Any instruction]

MOVE WITH OFFSET (MVO)
MOVE WITH OFFSET may be used to shift a
packed-decimal number an odd number of digit
positions or to concatenate a sign to an unsigned
packed-decimal number.

Assume that the three-byte unsigned packed-
decimal number in storage locations 4500-4502 is
to be moved to locations 5600-5603 and given the
sign of the packed-decimal number ending at
location 5603. Also assume:

Register 12 contains 00 00 56 00.

Register 15 contains 00 00 45 00.

Storage locations 5600-5603 contain 77 88 99
0C.

Storage locations 4500-4502 contain 12 34
56.

After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ F1 │ 3 │ 2 │ C │ ððð│ F │ ððð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 MVO ð(4,12),ð(3,15)

is executed, the storage locations 5600-5603
contain 01 23 45 6C. Note that the second
operand is extended on the left with one zero to
fill out the first-operand field.

MOVE ZONES (MVZ)
The MOVE ZONES instruction can operate on
overlapping or nonoverlapping fields, as can the
instructions MOVE (MVC) and MOVE NUMERICS.
When operating on nonoverlapping fields, MOVE
ZONES works like the MOVE NUMERICS instruc-
tion (see its example), except that MOVE ZONES
moves only the zone bits of each byte. To illus-
trate the use of MOVE ZONES with overlapping
fields, assume that the following data field is in
storage:

8ðð 8ð5

┌──┬──┬──┬──┬──┬──┐

│F1│C2│F3│C4│F5│C6│

└──┴──┴──┴──┴──┴──┘

Also assume that register 15 contains 00 00 08
00. The instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ D3 │ ð4 │ F │ ðð1│ F │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 MVZ 1(5,15),ð(15)
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propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

8ðð 8ð5

┌──┬──┬──┬──┬──┬──┐

│F1│F2│F3│F4│F5│F6│

└──┴──┴──┴──┴──┴──┘

MULTIPLY (M, MR)
Assume that a number in register 5 is to be multi-
plied by the contents of a four-byte field at
address 3750. Initially:

The contents of register 4 are not significant.

Register 5 contains 00 00 00 9A = 154±° =
the multiplicand.

Register 11 contains 00 00 06 00.

Register 12 contains 00 00 30 00.

Storage locations 3750-3753 contain 00 00 00
83 = 131±° = the multiplier.

The instruction required for performing the multipli-
cation is:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 5C │ 4 │ B │ C │ 15ð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

────────────────────────

 M 4,X'15ð'(11,12)

After the instruction is executed, the product is in
the register pair 4 and 5:

Register 4 contains 00 00 00 00.

Register 5 contains 00 00 4E CE = 20,174±°.

Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that
register 7 contains 00 01 00 05. The contents of
register 6 are not significant. The instruction:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 1C │ 6 │ 7 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 MR 6,7

multiplies the number in register 7 by itself and
places the result in the pair of registers 6 and 7:

Register 6 contains 00 00 00 01.

Register 7 contains 00 0A 00 19.

MULTIPLY HALFWORD (MH)
The MULTIPLY HALFWORD instruction is used to
multiply the contents of a register by a two-byte
field in storage. For example, assume that:

Register 11 contains 00 00 00 15 =21±° = the
multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.

Storage locations 2102-2103 contain FF D9 =
-39±° = the multiplier.

The instruction:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 4C │ B │ E │ F │ ðð2│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 MH 11,2(14,15)

multiplies the two numbers. The product, FF FF
FC CD = -819±°, replaces the original contents of
register 11.

Only the rightmost 32 bits of a product are stored
in a register; any significant bits on the left are
lost. No program interruption occurs on overflow.

OR (O, OC, OI, OR)
When the Boolean operator OR is applied to two
bits, the result is one when either bit is one; other-
wise, the result is zero. When two bytes are
ORed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ORing
two bytes:
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First-operand byte: ðð11 ð1ð1²

Second-operand byte: ð1ð1 11ðð²

────────────────────────────────

Result byte: ð111 11ð1²

 OI Example
A frequent use of the OR instruction is to set a
particular bit to one. For example, assume that
storage location 4891 contains 0100 0010². To
set the rightmost bit of this byte to one without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00
00 48 90):

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 96 │ ð1 │ 8 │ ðð1│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

───────────────────

 OI 1(8),X'ð1'

When this instruction is executed, the byte in
storage is ORed with the immediate byte (the I²
field of the instruction):

Location 4891: ð1ðð ðð1ð²

Immediate byte: ðððð ððð1²

────────────────────────────

Result: ð1ðð ðð11²

The resulting byte with bit 7 set to one is stored
back in location 4891. Condition code 1 is set.

 PACK (PACK)
Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be
converted to a packed-decimal number and left in
the same location:

 1ððð 1ðð3

 ┌──┬──┬──┬──┐

Zoned number │F1│F2│F3│C4│

 └──┴──┴──┴──┘

Also assume that register 12 contains 00 00 10
00. After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ F2 │ 3 │ 3 │ C │ ððð│ C │ ððð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 PACK ð(4,12),ð(4,12)

is executed, the result in locations 1000-1003 is in
the packed-decimal format:

 1ððð 1ðð3

 ┌──┬──┬──┬──┐

Packed number │ðð│ð1│23│4C│

 └──┴──┴──┴──┘

Notes:

1. This example illustrates the operation of
PACK when the first- and second-operand
fields overlap completely.

2. During the operation, the second operand was
extended on the left with zeros.

SEARCH STRING (SRST)
The SEARCH STRING instruction is used to
search a second operand designated by general
register R² for a character specified in general
register 0. The length of the second operand is
known -- the address of the first byte after the
second operand is in general register R±.

When the specified character is found, condition
code 1 is set, the address of the character is
placed in general register R±, and the contents of
general register R² remain unchanged. When the
address of the next second-operand byte to be
examined equals the address in general register
R±, condition code 2 is set, and the contents of
general register R± and R² remain unchanged.
When a CPU-determined number of second-
operand bytes have been examined, condition
code 3 is set, the address of the next byte to be
processed in the second operand is placed in
general register R², and the contents of general
register R± remain unchanged.

SRST Example 1
Following is an example program that determines
the end of string A, as indicated by an ending
character equal to 00 hex (as in the C program-
ming language), and then determines the address
of the first character equal to C1 hex in the string.
The program is based on the assumption that the
second operand does not begin at location 0 or
wrap around in storage, and, therefore, condition
code 2 will not be set by the first SEARCH
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STRING instruction because of the address in
general register 0. The program is not written for
execution in the access-register mode.

 L 5,STRAADR

 SR ð,ð

LOOP1 SRST ð,5

 BC 1,LOOP1

 L 5,STRAADR

 LR 4,ð

 LA ð,X'C1'

LOOP2 SRST 4,5

 BC 1,LOOP2

 BC 2,NOTFND

FOUND [Any instruction]

 ...

NOTFND [Any instruction]

SRST Example 2
Following is an example program that determines
the address of the first character equal to C1 hex
in the string A whose length is known. The
program is not written for execution in the access-
register mode.

 L 5,STRAADR

 L 4,STRALEN

 AR 4,5

 LA ð,X'C1'

LOOP1 SRST 4,5

 BC 1,LOOP1

 BC 2,NOTFND

FOUND [Any instruction]

 ...

NOTFND [Any instruction]

In this example, the value in STRALEN may be a
length that either does or does not include an
ending character at the end of the string, provided
that the ending character is not the character for
which the search is made.

SHIFT LEFT DOUBLE (SLDA)
The SHIFT LEFT DOUBLE instruction shifts the
63 numeric bits of an even-odd register pair to the
left, leaving the sign bit unchanged. Thus, the
instruction performs an algebraic left shift of a
64-bit signed binary integer.

For example, if the contents of registers 2 and 3
are:

ðð 7F ðA 72 FE DC BA 98 =

ðððððððð ð1111111 ðððð1ð1ð ð111ðð1ð

1111111ð 11ð111ðð 1ð111ð1ð 1ðð11ððð²

The instruction:

Machine Format
 Op Code R± B² D²

┌────────┬────┬────┬────┬────┐

│ 8F │ 2 │////│ ð │ ð1F│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(B²)

──────────────────

 SLDA 2,31(ð)

results in registers 2 and 3 both being left-shifted
31 bit positions, so that their new contents are:

7F 6E 5D 4C ðð ðð ðð ðð =

ð1111111 ð11ð111ð ð1ð111ð1 ð1ðð11ðð

ðððððððð ðððððððð ðððððððð ðððððððð²

Because significant bits are shifted out of bit posi-
tion 1 of register 2, overflow is indicated by setting
condition code 3, and, if the fixed-point-overflow
mask bit in the PSW is one, a fixed-point-overflow
program interruption occurs.

SHIFT LEFT SINGLE (SLA)
The SHIFT LEFT SINGLE instruction is similar to
SHIFT LEFT DOUBLE, except that it shifts only
the 31 numeric bits of a single register. There-
fore, this instruction performs an algebraic left shift
of a 32-bit signed binary integer.

For example, if the contents of register 2 are:

ðð 7F ðA 72 = ðððððððð ð1111111 ðððð1ð1ð ð111ðð1ð²

The instruction:

Machine Format
 Op Code R± B² D²

┌────────┬────┬────┬────┬────┐

│ 8B │ 2 │////│ ð │ ðð8│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(B²)

──────────────────

 SLA 2,8(ð)

results in register 2 being shifted left eight bit posi-
tions so that its new contents are:

7F ðA 72 ðð = ð1111111 ðððð1ð1ð ð111ðð1ð ðððððððð²

Condition code 2 is set to indicate that the result
is greater than zero.

If a left shift of nine places had been specified, a
significant bit would have been shifted out of bit
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position 1. Condition code 3 would have been set
to indicate this overflow and, if the fixed-point-
overflow mask bit in the PSW were one, a fixed-
point overflow interruption would have occurred.

STORE CHARACTERS UNDER
MASK (STCM)
STORE CHARACTERS UNDER MASK (STCM)
may be used to place selected bytes from a reg-
ister into storage. For example, if it is desired to
store a three-byte address from general register 8
into location FIELD3, assume:

Machine Format
 Op Code R± M³ S²

┌────────┬────┬────┬─────────┐

│ BE │ 8 │ 7 │ \ \ \ \ │

└────────┴────┴────┴─────────┘

Register Format
Op Code R±,M³,S²

─────────────────────────

 STCM 8,B'ð111',FIELD3

Register 8: 12 34 56 78

FIELD3 (before): not significant

FIELD3 (after): 34 56 78

As another example:

Machine Format
 Op Code R± M³ S²

┌────────┬────┬────┬─────────┐

│ BE │ 9 │ 5 │ \ \ \ \ │

└────────┴────┴────┴─────────┘

Register Format
Op Code R±,M³,S²

─────────────────────────

 STCM 9,B'ð1ð1',FIELD2

Register 9: ð1 23 45 67

FIELD2 (before): not significant

FIELD2 (after): 23 67

STORE MULTIPLE (STM)
Assume that the contents of general registers 14,
15, 0, and 1 are to be stored in consecutive four-
byte fields starting with location 4050 and that:

Register 14 contains 00 00 25 63.

Register 15 contains 00 01 27 36.

Register 0 contains 12 43 00 62.

Register 1 contains 73 26 12 57.

Register 6 contains 00 00 40 00.

The initial contents of locations 4050-405F are
not significant.

The STORE MULTIPLE instruction allows the use
of just one instruction to store the contents of the
four registers:

Machine Format
 Op Code R± R³ B² D²

┌────────┬────┬────┬────┬────┐

│ 9ð │ E │ 1 │ 6 │ ð5ð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,R³,D²(B²)

──────────────────────

 STM 14,1,X'5ð'(6)

After the instruction is executed:

Locations 4050-4053 contain 00 00 25 63.

Locations 4054-4057 contain 00 01 27 36.

Locations 4058-405B contain 12 43 00 62.

Locations 405C-405F contain 73 26 12 57.

TEST UNDER MASK (TM)
The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:

Storage location 9999 contains FB.

Register 7 contains 00 00 99 90.

Assume the instruction to be:

Machine Format
 Op Code I² B± D±

┌────────┬────┬────┬────┐

│ 91 │ C3 │ 7 │ ðð9│

└────────┴────┴────┴────┘

Assembler Format
Op Code D±(B±),I²

─────────────────────────

 TM 9(7),B'11ðððð11'

The instruction tests only those bits of the byte in
storage for which the mask bits are ones:

FB = 1111 1ð11²

Mask = 11ðð ðð11²

─────────────────

Test = 11xx xx11²
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Condition code 3 is set: all selected bits in the
test result are ones. (The bits marked “x” are
ignored.)

If location 9999 had contained B9, the test would
have been:

B9 = 1ð11 1ðð1²

Mask = 11ðð ðð11²

─────────────────

Test = 1ðxx xxð1²

Condition code 1 is set: the selected bits are both
zeros and ones.

If location 9999 had contained 3C, the test would
have been:

3C = ðð11 11ðð²

Mask = 11ðð ðð11²

─────────────────

Test = ððxx xxðð²

Condition code 0 is set: all selected bits are
zeros.

Note:  Storage location 9999 remains unchanged.

 TRANSLATE (TR)
The TRANSLATE instruction can be used to trans-
late data from any character code to any other
desired code, provided that each character code
consists of eight bits or fewer. An appropriate
translation table is required in storage.

In the following example, EBCDIC code is trans-
lated to ASCII code. The first step is to create a
256-byte table in storage locations 1000-10FF.
This table contains the characters of the ASCII
code in the sequence of the binary representation
of the EBCDIC code; that is, the ASCII represen-
tation of a character is placed in storage at the
starting address of the table plus the binary value
of the EBCDIC representation of the same char-
acter.

For simplicity, the example shows only the part of
the table containing the decimal digits:

1ðFð 1ðF9

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│3ð│31│32│33│34│35│36│37│38│39│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Assume that the four-byte field at storage location
2100 contains the EBCDIC code for the digits
1984:

Locations 2100-2103 contain F1 F9 F8 F4.

Register 12 contains 00 00 21 00.

Register 15 contains 00 00 10 00.

As the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ DC │ ð3 │ C │ ððð│ F │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 TR ð(4,12),ð(15)

is executed, the binary value of each EBCDIC
byte is added to the starting address of the table,
and the resulting address is used to fetch an
ASCII byte:

Table starting address: 1ððð

First EBCDIC byte: F1

───────────────────────────────

Address of ASCII byte: 1ðF1

After execution of the instruction:

Locations 2100-2103 contain 31 39 38 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

TRANSLATE AND TEST (TRT)
The TRANSLATE AND TEST instruction can be
used to scan a data field for characters with a
special meaning. To indicate which characters
have a special meaning, a table similar to the one
used for the TRANSLATE instruction is set up,
except that zeros in the table indicate characters
without any special meaning and nonzero values
indicate characters with a special meaning.

Figure A-4 on page A-32 has been set up to dis-
tinguish alphameric characters (A to Z and 0 to 9)
from blanks, certain special symbols, and all other
characters which are considered invalid. EBCDIC
coding is assumed. The 256-byte table is
assumed stored at locations 2000-20FF.
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ð 1 2 3 4 5 6 7 8 9 A B C D E F

 ┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

2ðð_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð1_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð2_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð3_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð4_│ð4│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│ð8│4ð│ðC│1ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð5_│14│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│18│1C│2ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð6_│24│28│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│2C│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð7_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│3ð│34│38│3C│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð8_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ð9_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðA_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðB_│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðC_│4ð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðD_│4ð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðE_│4ð│4ð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│4ð│4ð│4ð│4ð│4ð│4ð│

 ├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤

2ðF_│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│ðð│4ð│4ð│4ð│4ð│4ð│4ð│

 └──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

Note : If the character codes in the statement
being translated occupy a range smaller than 00
through FF±¶, a table of fewer than 256 bytes can
be used.

Figure A-4. Translate and Test Table

The table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code C1) corre-
sponds to byte location 20C1, which contains 00.

The 15 special symbols have nonzero entries from
04±¶ to 3C±¶ in increments of 4. Thus, the blank
(code 40) has the entry 04±¶, the period (code 4B)
has the entry 08±¶, and so on.

All other table positions have the entry 40±¶ to
indicate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing
addresses of different routines to be entered for
each special symbol or invalid character encount-
ered during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

Starting at storage location CA80, there is the fol-
lowing sequence of 21±° EBCDIC characters,
where “b” stands for a blank.

 Locations CA80-CA94:
 UNPKbPROUT(9),WORD(5)

Also assume:

Register 1 contains 00 00 CA 7F.

Register 2 contains 00 00 30 00.

Register 15 contains 00 00 20 00.

As the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ DD │ 14 │ 1 │ ðð1│ F │ ððð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────

 TRT 1(21,1),ð(15)

is executed, the value of the first source byte, the
EBCDIC code for the letter U, is added to the
starting address of the table to produce the
address of the table entry to be examined:

Table starting address 2ððð

First source byte (U) E4

────────────────────────────────

Address of table entry 2ðE4

Because zeros were placed in storage location
20E4, no special action occurs. The operation
continues with the second and subsequent source
bytes until it reaches the blank in location CA84.
When this symbol is reached, its value is added to
the starting address of the table, as usual:

Table starting address 2ððð

Source byte (blank) 4ð

─────────────────────────────────

Address of table entry 2ð4ð

Because location 2040 contains a nonzero value,
the following actions occur:

The address of the source byte, 00CA84, is
placed in the rightmost 24 bits of register 1.

The table entry, 04, is placed in the rightmost
eight bits of register 2, which now contains 00
00 30 04.

Condition code 1 is set (scan not completed).

The TRANSLATE AND TEST instruction may be
followed by instructions to branch to the routine at
the address found at location 3004, which corre-
sponds to the blank character encountered in the
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scan. When this routine is completed, program
control may return to the TRANSLATE AND TEST
instruction to continue the scan, except that the
length must first be adjusted for the characters
already scanned.

For this purpose, the TRANSLATE AND TEST
may be executed by the use of an EXECUTE
instruction, which supplies the length specification
from a general register. In this way, a complete
statement scan can be performed with a single
TRANSLATE AND TEST instruction used repeat-
edly by means of EXECUTE, and without modi-
fying any instructions in storage. In the example,
after the first execution of TRANSLATE AND
TEST, register 1 contains the address of the last
source byte translated. It is then a simple matter
to subtract this address from the address of the
last source byte (CA94) to produce a length spec-
ification. This length minus one is placed in the
register that is referenced as the R± field of the
EXECUTE instruction. (Note that the length code
in the machine format is one less than the total
number of bytes in the field.) The second-
operand address of the EXECUTE instruction
points to the TRANSLATE AND TEST instruction,
which is the same as illustrated above, except for
the length (L) which is set to zero.

 UNPACK (UNPK)
Assume that storage locations 2501-2502 contain
a signed, packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:

Register 12 contains 00 00 10 00.

Register 13 contains 00 00 25 00.

Storage locations 2501-2502 contain 12 3D.

The initial contents of storage locations
1000-1004 are not significant.

After the instruction:

Machine Format

 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ F3 │ 4 │ 1 │ C │ ððð│ D │ ðð1│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 UNPK ð(5,12),1(2,13)

is executed, the storage locations 1000-1004
contain F0 F0 F1 F2 D3.

UPDATE TREE (UPT)
See “Sorting Instructions” on page A-51.

 Decimal Instructions
(See Chapter 8, “Decimal Instructions” for a com-
plete description of the decimal instructions.)

ADD DECIMAL (AP)
Assume that the signed, packed-decimal number
at storage locations 500-503 is to be added to the
signed, packed-decimal number at locations
2000-2002. Also assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 05 00.

Storage locations 2000-2002 contain 38 46 0D
(a negative number).

Storage locations 500-503 contain 01 12 34
5C (a positive number).

After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ FA │ 2 │ 3 │ C │ ððð│ D │ ððð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 AP ð(3,12),ð(4,13)

is executed, the storage locations 2000-2002
contain 73 88 5C; condition code 2 is set to indi-
cate that the result is greater than zero. Note
that:

1. Because the two numbers had different signs,
they were in effect subtracted.

2. Although the second operand is longer than
the first operand, no overflow interruption
occurs because the result can be entirely con-
tained within the first operand.
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COMPARE DECIMAL (CP)
Assume that the signed, packed-decimal contents
of storage locations 700-703 are to be algebra-
ically compared with the signed, packed-decimal
contents of locations 500-502. Also assume:

Register 12 contains 00 00 06 00.

Register 13 contains 00 00 03 00.

Storage locations 700-703 contain 17 25 35
6D.

Storage locations 500-502 contain 72 14 2D.

After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ F9 │ 3 │ 2 │ C │ 1ðð│ D │ 2ðð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────────

 CP X'1ðð'(4,12),X'2ðð'(3,13)

is executed, condition code 1 is set, indicating that
the first operand (the contents of locations
700-703) is less than the second.

DIVIDE DECIMAL (DP)
Assume that the signed, packed-decimal number
at storage locations 2000-2004 (the dividend) is to
be divided by the signed, packed-decimal number
at locations 3000-3001 (the divisor). Also
assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 30 00.

Storage locations 2000-2004 contain 01 23 45
67 8C.

Storage locations 3000-3001 contain 32 1D.

After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ FD │ 4 │ 1 │ C │ ððð│ D │ ððð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 DP ð(5,12),ð(2,13)

is executed, the dividend is entirely replaced by
the signed quotient and remainder, as follows:

 2ððð 2ðð4

 ┌──┬──┬──┬──┬──┐

Locations 2ððð-2ðð4 │38│46│ðD│ð1│8C│

 └──┴──┴──┴──┴──┘

quotient │ remainder

 │

Notes:

1. Because the dividend and divisor have dif-
ferent signs, the quotient receives a negative
sign.

2. The remainder receives the sign of the divi-
dend and the length of the divisor.

3. If an attempt were made to divide the dividend
by the one-byte field at location 3001, the
quotient would be too long to fit within the four
bytes allotted to it. A decimal-divide exception
would exist, causing a program interruption.

 EDIT (ED)
Before decimal data in the packed format can be
used in a printed report, digits and signs must be
converted to printable characters. Moreover,
punctuation marks, such as commas and decimal
points, may have to be inserted in appropriate
places. The highly flexible EDIT instruction per-
forms these functions in a single instruction exe-
cution.

This example shows step-by-step one way that
the EDIT instruction can be used. The field to be
edited (the source) is four bytes long; it is edited
against a pattern 13 bytes long. The following
symbols are used:

┌──────────────────────┬───────────────────────┐

│ Symbol │ Meaning │

├──────────────────────┼───────────────────────┤

│ b (Hexadecimal 4ð) │ Blank character │

│ ( (Hexadecimal 21) │ Significance starter │

│ d (Hexadecimal 2ð) │ Digit selector │

└──────────────────────┴───────────────────────┘

Assume that register 12 contains:

ðð ðð 1ð ðð

and that the source and pattern fields are:
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Source
12ðð 12ð3

┌──┬──┬──┬──┐

│ð2│57│42│6C│

└──┴──┴──┴──┘

 &

 │

└─── + 

Pattern
1ððð 1ððC

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│4ð│2ð│2ð│6B│2ð│21│2ð│4B│2ð│2ð│4ð│C3│D9│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 b d d , d ( d . d d b C R

Execution of the instruction:

Machine Format
 Op Code L B± D± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ DE │ ðC │ C │ ððð│ C │ 2ðð│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L,B±),D²(B²)

────────────────────────────

 ED ð(13,12),X'2ðð'(12)

alters the pattern field as follows:

┌───────┬─────┬────────────┬────────┬─────────────┐

│ │ │Significance│ │ │

│ │ │ Indicator │ │ │

│ │ │ (Before/ │ │ Location │

│Pattern│Digit│ After) │ Rule │ 1ððð-1ððC │

├───────┼─────┼────────────┼────────┼─────────────┤

│ b │ │ off/off │leave(1)│bdd,d(d.ddbCR│

│ d │ ð │ off/off │fill │bbd,d(d.ddbCR│

│ d │ 2 │ off/on(2) │digit │bb2,d(d.ddbCR│

│ , │ │ on/on │leave │same │

│ d │ 5 │ on/on │digit │bb2,5(d.ddbCR│

│ ( │ 7 │ on/on │digit │bb2,57d.ddbCR│

│ d │ 4 │ on/on │digit │bb2,574.ddbCR│

│ . │ │ on/on │leave │same │

│ d │ 2 │ on/on │digit │bb2,574.2dbCR│

│ d │ 6+ │ on/off(3) │digit │bb2,574.26bCR│

│ b │ │ off/off │fill │same │

│ C │ │ off/off │fill │bb2,574.26bbR│

│ R │ │ off/off │fill │bb2,574.26bbb│

├───────┴─────┴────────────┴────────┴─────────────┤

│Notes: │

│ │

│1. This character is the fill byte. │

│ │

│2. First nonzero decimal source digit turns on │

│ significance indicator. │

│ │

│3. Plus sign in the four rightmost bits of the │

│ byte turns off significance indicator. │

└─────────────────────────────────────────────────┘

Thus, after the instruction is executed, the pattern
field contains the result as follows:

Pattern
1ððð 1ððC

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│4ð│4ð│F2│6B│F5│F7│F4│4B│F2│F6│4ð│4ð│4ð│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 b b 2 , 5 7 4 . 2 6 b b b

This pattern field prints as:

 2,574.26

The source field remains unchanged. Condition
code 2 is set because the number was greater
than zero.

If the number in the source field is changed to the
negative number 00 00 02 6D and the original
pattern is used, the edited result this time is:

Pattern
1ððð 1ððC

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│4ð│4ð│4ð│4ð│4ð│4ð│Fð│4B│F2│F6│4ð│C3│D9│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 b b b b b b ð . 2 6 b C R

This pattern field prints as:

 ð.26 CR

The significance starter forces the significance
indicator to the on state and hence causes a
leading zero and the decimal point to be pre-
served. Because the minus-sign code has no
effect on the significance indicator, the characters
CR are printed to show a negative (credit)
amount.

Condition code 1 is set (number less than zero).

EDIT AND MARK (EDMK)
The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a cur-
rency symbol, such as a dollar sign, at the appro-
priate position in the edited result. Assume the
same source in storage locations 1200-1203, the
same pattern in locations 1000-100C, and the
same contents of general register 12 as for the
EDIT instruction above. The previous contents of
general register 1 (GR1) are not significant; a
LOAD ADDRESS instruction is used to set up the
first digit position that is forced to print if no signif-
icant digits occur to the left.

The instructions:
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produce the following results for the two examples
under EDIT:

Pattern
1ððð 1ððC

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│4ð│5B│F2│6B│F5│F7│F4│4B│F2│F6│4ð│4ð│4ð│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 b $ 2 , 5 7 4 . 2 6 b b b

This pattern field prints as:

 $2,574.26

Condition code 2 is set to indicate that the number
edited was greater than zero.

Pattern
1ððð 1ððC

┌──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┬──┐

│4ð│4ð│4ð│4ð│4ð│5B│Fð│4B│F2│F6│4ð│C3│D9│

└──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┴──┘

 b b b b b $ ð . 2 6 b C R

This pattern field prints as:

 $ð.26 CR

Condition code 1 is set because the number is
less than zero.

MULTIPLY DECIMAL (MP)
Assume that the signed, packed-decimal number
in storage locations 1202-1204 (the multiplicand)
is to be multiplied by the signed, packed-decimal
number in locations 500-501 (the multiplier).

 12ð2 12ð4

 ┌──┬──┬──┐

Multiplicand │38│46│ðD│

 └──┴──┴──┘

 5ðð 5ð1

 ┌──┬──┐

Multiplier │32│1D│

 └──┴──┘

LA 1,6(0,12) Load address of
forced significant
digit into GR1

The multiplicand must first be extended to have at
least two bytes of leftmost zeros, corresponding to
the multiplier length, so as to avoid a data excep-
tion during the multiplication. ZERO AND ADD
can be used to move the multiplicand into a longer
field. Assume:

Register 4 contains 00 00 12 00.

Register 6 contains 00 00 05 00.

Then execution of the instruction:

ZAP X'1ðð'(5,4),2(3,4)

sets up a new multiplicand in storage locations
1300-1304:

 13ðð 13ð4

 ┌──┬──┬──┬──┬──┐

Multiplicand (new) │ðð│ðð│38│46│ðD│

 └──┴──┴──┴──┴──┘

Now, after the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ FC │ 4 │ 1 │ 4 │ 1ðð│ 6 │ ððð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 MP X'1ðð'(5,4),ð(2,6)

is executed, storage locations 1300-1304 contain
the product: 01 23 45 66 0C.

SHIFT AND ROUND DECIMAL
(SRP)
The SHIFT AND ROUND DECIMAL (SRP)
instruction can be used for shifting decimal
numbers in storage to the left or right. When a
number is shifted right, rounding can also be
done.

Decimal Left Shift
In this example, the contents of storage location
FIELD1 are shifted three places to the left, effec-
tively multiplying the contents of FIELD1 by 1000.
FIELD1 is six bytes long. The following instruction
performs the operation:

EDMK 0(13,12),X'200'(12) Leave address of
first significant digit
in GR1

BCTR 1,0 Subtract 1 from
address in GR1

MVI 0(1),C'$' Store dollar sign at
address in GR1

A-36 ESA/390 Principles of Operation  



  
 

Machine Format
 Op Code L± I³ S± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ Fð │ 5 │ ð │\\\\│ ð │ ðð3│

└────────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code S±(L±),S²,I³

─────────────────────

 SRP FIELD1(6),3,ð

FIELD1 (before): ðð ð1 23 45 67 8C

FIELD1 (after): 12 34 56 78 ðð ðC

The second-operand address in this instruction
specifies the shift amount (three places). The
rounding digit, I³, is not used in a left shift, but it
must be a valid decimal digit. After execution,
condition code 2 is set to show that the result is
greater than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right, effec-
tively dividing the contents of FIELD2 by 10 and
discarding the remainder. FIELD2 is five bytes in
length. The following instruction performs this
operation:

Machine Format
 Op Code L± I³ S± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ Fð │ 4 │ ð │\\\\│ ð │ð3F │

└────────┴────┴────┴────┴────┴─┬┬─┘

 ┌─┘│

 │ │

 ┌─┴┐┌┴─┐

 ðð111111

 └──┬─┘

 │

 │

 6-bit two's

 complement

 for -1

Assembler Format
Op Code S±(L±),S²,I³

────────────────────────

 SRP FIELD2(5),64-1,ð

FIELD 2 (before): ð1 23 45 67 8C

FIELD 2 (after): ðð 12 34 56 7C

In the SRP instruction, shifts to the right are speci-
fied in the second-operand address by negative
shift values, which are represented as a six-bit
value in two's complement form.

The six-bit two's complement of a number, n, can
be specified as 64 - n. In this example, a right
shift of one is represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, in effect dividing by 1000 and rounding
up. FIELD3 is four bytes in length.

Machine Format
 Op Code L± I³ S± B² D²

┌────────┬────┬────┬────┬────┬────┐

│ Fð │ 3 │ 5 │\\\\│ ð │ð3D │

└────────┴────┴────┴────┴────┴─┬┬─┘

 ┌─┘│

 │ │

 ┌─┴┐┌┴─┐

 ðð1111ð1

 └──┬─┘

 │

 │

 6-bit two's

 complement

 for -3

Assembler Format
Op Code S±(L±),S²,I³

────────────────────────

 SRP FIELD3(4),64-3,5

FIELD 3 (before): 12 39 6ð ðD

FIELD 3 (after): ðð ð1 24 ðD

The shift amount (three places) is specified in the
D² field. The I³ field specifies a rounding digit of
5. The rounding digit is added to the last digit
shifted out (which is a 6), and the carry is propa-
gated to the left. The sign is ignored during the
addition.

Condition code 1 is set because the result is less
than zero.
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Multiplying by a Variable Power of 10
Since the shift value specified by the SRP instruc-
tion specifies both the direction and amount of the
shift, the operation is equivalent to multiplying the
decimal first operand by 10 raised to the power
specified by the shift value.

If the shift value is to be variable, it may be speci-
fied by the B² field instead of the displacement D²

of the SRP instruction. The general register des-
ignated by B² should contain the shift value
(power of 10) as a signed binary integer.

A fixed scale factor modifying the variable power
of 10 may be specified by using both the B² field
(variable part in a general register) and the D²

field (fixed part in the displacement).

The SRP instruction uses only the rightmost six
bits of the effective address D²(B²) and interprets
them as a six-bit signed binary integer to control
the left or right shift as in the preceding shift
examples.

ZERO AND ADD (ZAP)
Assume that the signed, packed-decimal number
at storage locations 4500-4502 is to be moved to
locations 4000-4004 with four leading zeros in the
result field. Also assume:

Register 9 contains 00 00 40 00.

Storage locations 4000-4004 contain 12 34 56
78 90.

Storage locations 4500-4502 contain 38 46
0D.

After the instruction:

Machine Format
 Op Code L± L² B± D± B² D²

┌────────┬────┬────┬────┬────┬────┬────┐

│ F8 │ 4 │ 2 │ 9 │ ððð│ 9 │ 5ðð│

└────────┴────┴────┴────┴────┴────┴────┘

Assembler Format
Op Code D±(L±,B±),D²(L²,B²)

────────────────────────────

 ZAP ð(5,9),X'5ðð'(3,9)

is executed, the storage locations 4000-4004
contain 00 00 38 46 0D; condition code 1 is set to
indicate a negative result without overflow.

Note that, because the first operand is not
checked for valid sign and digit codes, it may
contain any combination of hexadecimal digits
before the operation.

 Hexadecimal-Floating-Point
Instructions
(See Chapter 9, “Floating-Point Overview and
Support Instructions” for a complete description of
the hexadecimal-floating-point instructions.)

In this section, the abbreviations FPR0, FPR2,
FPR4, and FPR6 stand for floating-point registers
0, 2, 4, and 6 respectively.

ADD NORMALIZED (AD, ADR,
AE, AER, AXR)
The ADD NORMALIZED instruction performs the
addition of two HFP numbers and places the nor-
malized result in a floating-point register. Neither
of the two numbers to be added must necessarily
be in normalized form before addition occurs. For
example, assume that:

FPR6 contains the unnormalized number C3
08 21 00 00 00 00 00 = -82.1±¶ = -130.06±°
approximately.

Storage locations 2000-2007 contain the nor-
malized number 41 12 34 56 00 00 00 00 =
+1.23456±¶ = +1.14±° approximately.

Register 13 contains 00 00 20 00.

The instruction:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 7A │ 6 │ ð │ D │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 AE 6,ð(ð,13)

performs the short-precision addition of the two
operands, as follows.

The characteristics of the two numbers (43 and
41) are compared. Since the number in storage
has a characteristic that is smaller by 2, it is right-
shifted two hexadecimal digit positions. One
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guard digit is retained on the right. The fractions
of the two numbers are then added algebraically:

 Fraction GDñ

FPR6 -43 ð8 21 ðð

Shifted number from storage +43 ðð 12 34 5

────────────────────────────────────────────

Intermediate sum -43 ð8 ðE CB B

Left-shifted sum -42 8ð EC BB

ñ Guard digit

Because the intermediate sum is unnormalized, it
is left-shifted to form the normalized HFP number
-80.ECBB±¶ = -128.92±° approximately. Com-
bining the sign with the characteristic, the result is
C2 80 EC BB, which replaces the left half of
FPR6. The right half of FPR6 and the contents of
storage locations 2000-2007 are unchanged.
Condition code 1 is set to indicate a result less
than zero.

If the long-precision instruction AD were used, the
result in FPR6 would be C2 80 EC BA A0 00 00
00. Note that use of the long-precision instruction
would avoid a loss of precision in this example.

ADD UNNORMALIZED (AU, AUR,
AW, AWR)
The ADD UNNORMALIZED instruction operates
the same as the ADD NORMALIZED instruction,
except that the final result is not normalized. For
example, using the the same operands as in the
example for ADD NORMALIZED, when the short-
precision instruction:

Machine Format
 Op Code R± X² B² D²

┌────────┬────┬────┬────┬────┐

│ 7E │ 6 │ ð │ D │ ððð│

└────────┴────┴────┴────┴────┘

Assembler Format
Op Code R±,D²(X²,B²)

─────────────────────

 AU 6,ð(ð,13)

is executed, the two numbers are added as
follows:

 Fraction GDñ

FPR6 -43 ð8 21 ðð

Shifted number from storage +43 ðð 12 34 5

────────────────────────────────────────────

Intermediate sum -43 ð8 ðE CB B

ñ Guard digit

The guard digit participates in the addition but is
discarded. The unnormalized sum replaces the
left half of FPR6. Condition code 1 is set because
the result is less than zero.

The truncated result in FPR6 (C3 08 0E CB 00 00
00 00) shows a loss of a significant digit when
compared to the result of short-precision normal-
ized addition.

COMPARE (CD, CDR, CE, CER)
Assume that FPR4 contains 43 00 00 00 00 00 00
00 (zero), and FPR6 contains 35 12 34 56 78 9A
BC DE (a positive number). The contents of the
two registers are to be compared using a long-
precision COMPARE instruction.

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 29 │ 4 │ 6 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 CDR 4,6

The number with the smaller characteristic, which
is in register FPR6, is right-shifted 43 - 35 hex
(67 - 53 decimal) or 14 digit positions, so that the
two characteristics agree. The shifted number is
43 00 00 00 00 00 00 00, with a guard digit of
one. Therefore, when the two numbers are com-
pared, condition code 1 is set, indicating that
operand 1 in FPR4 is less than operand 2 in
FPR6.

If the example is changed to a second operand
with a characteristic of 34 instead of 35, so that
FPR6 contains 34 12 34 56 78 9A BC DE, the
operand is right-shifted 15 positions, leaving all
fraction digits and the guard digit as zeros. Condi-
tion code 0 is set, indicating equality. This
example shows that two HFP numbers with dif-
ferent characteristics or fractions may compare
equal if the numbers are unnormalized or zero.

As another example of comparing unnormalized
HFP numbers, 41 00 12 34 56 78 9A BC com-
pares equal to all numbers of the form 3F 12 34
56 78 9A BC 0X (X represents any hexadecimal
digit). When the COMPARE instruction is exe-
cuted, the two rightmost digits are shifted right two
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places, the 0 becomes the guard digit, and the X
does not participate in the comparison.

However, when two normalized HFP numbers are
compared, the relationship between numbers that
compare equal is unique: each digit in one
number must be the same as the corresponding
digit in the other number.

DIVIDE (DD, DDR, DE, DER)
Assume that the first operand (the dividend) is in
FPR2 and the second operand (the divisor) in
FPR0. If the operands are in the short-precision
format, the resulting quotient is returned to FPR2
by the instruction:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 3D │ 2 │ ð │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 DER 2,ð

Several examples of short-precision HFP division,
with the dividend in FPR2 and the divisor in FPR0,
are shown below. For case A, the result, which
replaces the dividend, is obtained in the following
steps.

 7.2522F

 ┌─────────────

 .1234ðð│.821ððð

 7F6Cðð

 ───────

 2A4ðð ð

 2468ð ð

 ───────

 5D8ð ðð

 5Bð4 ðð

 ───────

 27C ððð

 246 8ðð

 ───────

 35 8ððð

 24 68ðð

 ───────

 11 18ððð

 11 1ðCðð

 ────────

 74ðð

 FPR2 Before FPRð FPR2 After
Case (Dividend) (Divisor) (Quotient)

 A -43 ð821ðð +43 ðð1234 -42 72522F

 B +42 1ð1ð1ð +45 111111 +3D FðFðFð

 C +48 3ððððF +41 4ððððð +47 Cððð3C

 D +48 3ððððF +41 2ððððð +48 18ððð7

 E +48 18ððð7 +41 2ððððð +47 Cððð38

Case C shows a number being divided by 4.0.
Case D divides the same number by 2.0, and
case E divides the result of case D again by 2.0.
The results of cases C and E differ in the right-
most hexadecimal digit position, which illustrates
an effect of result truncation.

HALVE (HDR, HER)
HALVE produces the same result as HFP DIVIDE
with a divisor of 2.0. Assume FPR2 contains the
long-precision number +48 30 00 00 00 00 00 0F.
The following HALVE instruction produces the
result +48 18 00 00 00 00 00 07 in FPR2:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 24 │ 2 │ 2 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 HDR 2,2

MULTIPLY (MD, MDR, MDE,
MDER, MXD, MXDR, MXR)
For this example, the following long-precision
operands are in FPR0 and FPR2:

 FPRð: -33 6ð6ð6ð 6ð6ð6ð6ð

 FPR2: -5A 2ððððð 2ððððð2ð

A long-precision product is generated by the
instruction:

Machine Format
 Op Code R± R²

┌────────┬────┬────┐

│ 2C │ ð │ 2 │

└────────┴────┴────┘

Assembler Format
Op Code R±,R²

──────────────

 MDR ð,2
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If the operands were not already normalized, the
instruction would first normalize them. It then gen-
erates an intermediate result consisting of the full
28-digit hexadecimal product fraction obtained by
multiplying the 14-digit hexadecimal operand frac-
tions, together with the appropriate sign and a
characteristic that is the sum of the operand char-
acteristics less 64 (40 hex):

The fraction multiplication is performed as follows:

 .6ð6ð6ð6ð6ð6ð6ð

 .2ððððð2ððððð2ð

 ───────────────

 CðCðCðCðCðCðCðð

 CðCðCðCðCðCðCð

 CðCðCðCðCðCðCð

 ─────────────────────────────

 .ðCðCðC18181824181818ðCðCðCðð

Attaching the sign and characteristic to the fraction
gives:

+4D ðCðCðC 18181824 181818ðC ðCðCðð

Because this intermediate product has a leading
zero, it is then normalized. The truncated final
result placed in FPR0 is:

+4C CðCðC1 81818241

 Hexadecimal-Floating-Point-Number
Conversion
The following examples illustrate one method of
converting between binary fixed-point numbers
(32-bit signed binary integers) and normalized
HFP numbers. Conversion must provide for the
different representations used with negative
numbers: the two's-complement form for signed
binary integers, and the signed-absolute-value
form for the fractions of HFP numbers.

Fixed Point to Hexadecimal Floating
Point
The method used here inverts the leftmost bit of
the 32-bit signed binary integer, which is equiv-
alent to adding 2óñ to the number and considering
the result to be positive. This changes the
number from a signed integer in the range 2óñ - 1
through -2óñ to an unsigned integer in the range
2óò - 1 through 0. After conversion to the long
HFP format, the value 2óñ is subtracted again.

Assume that general register 9 (GR9) contains the
integer -59 in two's-complement form:

 GR9: FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, for use as temporary storage, and TWO31,
which contains the floating-point constant 2óñ in
the following format:

TWO31: 4E ðð ðð ðð 8ð ðð ðð ðð

This is an unnormalized long HFP number with
the characteristic 4E, which corresponds to a radix
point (hexadecimal point) to the right of the
number.

The following instruction sequence performs the
conversion:

The EXCLUSIVE OR (X) instruction inverts the
leftmost bit in general register 9, using the right
half of the constant as the source for a leftmost
one bit. The next two instructions assemble the
modified number in an unnormalized long HFP
format, using the left half of the constant as the
plus sign, the characteristic, and the leading zeros
of the fraction. LOAD (LD) places the number
unchanged in floating-point register 2. The SUB-
TRACT NORMALIZED (SD) instruction performs
the final two steps by subtracting 2óñ in HFP form
and normalizing the result.

Hexadecimal Floating Point to Fixed
Point
The procedure described here consists basically in
reversing the steps of the previous procedure.
Two additional considerations must be taken into
account. First: the HFP number may not be an
exact integer. Truncating the excess hexadecimal
digits on the right requires shifting the number one
digit position farther to the right than desired for
the final result, so that the units digit occupies the
position of the guard digit. Second: the HFP
number may have to be tested as to whether it is
outside the range of numbers representable as a
32-bit signed binary integer.

  Result
X 9,TWO31+4 GR9:

7FFF FFC5
ST 9,TEMP+4 TEMP:

xxxx xxxx 7FFF FFC5
MVC TEMP(4),TWO31 TEMP:

4E00 0000 7FFF FFC5
LD 2,TEMP FPR2:

4E00 0000 7FFF FFC5
SD 2,TWO31 FPR2:

C23B 0000 0000 0000
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Assume that floating-point register 6 contains the
number 59.25±° = 3B.4±¶ in normalized form:

 FPR6: 42 3B 4ð ðð ðð ðð ðð ðð

Further, assume three eight-byte fields in storage:
TEMP, for use as temporary storage, and the con-
stants 2óò (TWO32) and 2óñ (TWO31R) in the fol-
lowing formats:

TWO32: 4E ðð ðð ð1 ðð ðð ðð ðð

TWO31R: 4F ðð ðð ðð ð8 ðð ðð ðð

The constant TWO31R is shifted right one more
position than the constant TWO31 of the previous
example, so as to force the units digit into the
guard-digit position.

The following instruction sequence performs the
integer truncation, range tests, and conversion to
a signed binary integer in general register 8
(GR8):

The SUBTRACT NORMALIZED (SD) instruction
shifts the fraction of the number to the right until it
lines up with TWO31R, which causes the fraction
digit 4 to fall to the right of the guard digit and be
lost; the result of subtracting 2óñ from the
remaining digits is renormalized. The result

should be less than zero; if not, the original
number was too large in the positive direction.
The first BRANCH ON CONDITION (BC) performs
this test.

The ADD UNNORMALIZED (AW) instruction adds
2óò: 2óñ to correct for the previous subtraction
and another 2óñ to change to an all-positive
range. The second BC tests for a result less than
zero, showing that the original number was too
large in the negative direction. The unnormalized
result is placed in temporary storage by the
STORE (STD) instruction. There the leftmost bit
of the binary integer is inverted by the EXCLU-
SIVE OR (XI) instruction to subtract 2óñ and thus
convert the unsigned number to the signed format.
The final result is loaded into GR8.

 Multiprogramming and
Multiprocessing Examples
When two or more programs sharing common
storage locations are being executed concurrently
in a multiprogramming or multiprocessing environ-
ment, one program may, for example, set a flag
bit in the common-storage area for testing by
another program. It should be noted that the
instructions AND (NI or NC), EXCLUSIVE OR (XI
or XC), and OR (OI or OC) could be used to set
flag bits in a multiprogramming environment; but
the same instructions may cause program logic
errors in a multiprocessing configuration where
two or more CPUs can fetch, modify, and store
data in the same storage locations simultaneously.

Example of a Program Failure
Using OR Immediate
Assume that two independent programs try to set
different bits to one in a common byte in storage.
The following example shows how the use of the
instruction OR immediate (OI) can fail to accom-
plish this, if the programs are executed simultane-
ously on two different CPUs. One of the possible
error situations is depicted.

  Result
SD 6,TWO31R FPR6:

C87F FFFF C500 0000
BC 11,OVERFLOW Branch to overflow

routine if result is
greater than or equal to
zero

AW 6,TWO32 FPR6:
4E00 0000 8000 003B

BC 4,OVERFLOW Branch to overflow
routine if result is less
than zero

STD 6,TEMP TEMP:
4E00 0000 8000 003B

XI TEMP+4,X'80' TEMP:
4E00 0000 0000 003B

L 8,TEMP+4 GR8:
0000 003B
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┌────────────────┬─────────┬────────────────┐

│ Execution of │ │ Execution of │

│ instruction │ │ instruction │

│ OI FLAGS,X'ð1' │ FLAGS │ OI FLAGS,X'8ð' │

│ on CPU A │ │ on CPU B │

├────────────────┼─────────┼────────────────┤

│ │ X'ðð' │ Fetch │

│ │ │ FLAGS X'ðð' │

│ Fetch │ X'ðð' │ │

│ FLAGS X'ðð' │ │ │

│ │ X'ðð' │ OR X'8ð' │

│ │ │ into X'ðð' │

│ OR X'ð1' │ X'ðð' │ │

│ into X'ðð' │ │ │

│ │ X'8ð' │ Store X'8ð' │

│ │ │ into FLAGS │

│ Store X'ð1' │ X'ð1' │ │

│ into FLAGS │ │ │

├────────────────┴─────────┴────────────────┤

│ FLAGS should have value of X'81' follow- │

│ ing both updates. │

└───────────────────────────────────────────┘

The problem shown here is that the value stored
by the OI instruction executed on CPU A overlays
the value that was stored by CPU B. The X'80'
flag bit was erroneously turned off, and the data is
now invalid.

The COMPARE AND SWAP instruction has been
provided to overcome this and similar problems.

 Conditional Swapping
Instructions (CS, CDS)
The COMPARE AND SWAP (CS) and COMPARE
DOUBLE AND SWAP (CDS) instructions can be
used in multiprogramming or multiprocessing envi-
ronments to serialize access to counters, flags,
control words, and other common storage areas.

The following examples of the use of the
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP instructions illustrate the applications
for which the instructions are intended. It is
important to note that these are examples of func-
tions that can be performed by programs while the
CPU is enabled for interruption (multiprogram-
ming) or by programs that are being executed in a
multiprocessing configuration. That is, the routine
allows a program to modify the contents of a
storage location while the CPU is enabled, even
though the routine may be interrupted by another
program on the same CPU that will update the
location, and even though the possibility exists
that another CPU may simultaneously update the
same location.

The COMPARE AND SWAP instruction first
checks the value of a storage location and then
modifies it only if the value is what the program
expects; normally this would be a previously
fetched value. If the value in storage is not what
the program expects, then the location is not mod-
ified; instead, the current value of the location is
loaded into a general register, in preparation for
the program to loop back and try again. During
the execution of COMPARE AND SWAP, no other
CPU can perform a store access or interlocked-
update access at the specified location.

To ensure successful updating of a common
storage field by two or more CPUs, all updates
must be done by means of an interlocked-update
reference. See the programming notes of
COMPARE AND SWAP for an example of how
COMPARE AND SWAP can be unsuccessful due
to an OR IMMEDIATE instruction executed by
another CPU.

Setting a Single Bit
The following instruction sequence shows how the
COMPARE AND SWAP instruction can be used to
set a single bit in storage to one. Assume that the
first byte of a word in storage called “WORD” con-
tains eight flag bits.

LA 6,X'8ð' Put bit to be ORed into GR6

SLL 6,24 Shift left 24 places to

align the byte to be ORed

with the location of the

flag bits within WORD

L 7,WORD Fetch current flag values

RETRY LR 8,7 Load flags into GR8

OR 8,6 Set bit to one

CS 7,8,WORD Store new flags if current

flags unchanged, or re-

fetch current flag values

 if changed

BC 4,RETRY If new flags are not stored,

 try again

The format of the COMPARE AND SWAP instruc-
tion is:

Machine Format
 Op Code R± R³ S²

┌────────┬────┬────┬────┐

│ BA │ 7 │ 8 │\\\\│

└────────┴────┴────┴────┘

Assembler Format
Op Code R±,R³,S²

─────────────────

 CS 7,8,WORD
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The COMPARE AND SWAP instruction compares
the first operand (general register 7 containing the
current flag values) to the second operand in
storage (WORD) while no CPU other than the one
executing the COMPARE AND SWAP instruction
is permitted to perform a store access or
interlocked-update access at the specified storage
location.

If the comparison is successful, indicating that the
flag bits have not been changed since they were
fetched, the modified copy in general register 8 is
stored into WORD. If the flags have been
changed, the compare will not be successful, and
their new values are loaded into general register
7.

The conditional branch (BC) instruction tests the
condition code and reexecutes the flag-modifying
instructions if the COMPARE AND SWAP instruc-
tion indicated an unsuccessful comparison (condi-
tion code 1). When the COMPARE AND SWAP
instruction is successful (condition code 0), the
flags contain valid data, and the program exits
from the loop.

The branch to RETRY will be taken only if some
other program modifies the contents of WORD.
This type of a loop differs from the typical “bit-
spin” loop. In a bit-spin loop, the program con-
tinues to loop until the bit changes. In this
example, the program continues to loop only if the
value does change during each iteration. If a
number of CPUs simultaneously attempt to modify
a single location by using the sample instruction
sequence, one CPU will fall through on the first
try, another will loop once, and so on until all
CPUs have succeeded.

 Updating Counters
In this example, a 32-bit counter is updated by a
program using the COMPARE AND SWAP
instruction to ensure that the counter will be cor-
rectly updated. The original value of the counter
is obtained by loading the word containing the
counter into general register 7. This value is
moved into general register 8 to provide a modifi-
able copy, and general register 6 (containing an
increment to the counter) is added to the modifi-
able copy to provide the updated counter value.

The COMPARE AND SWAP instruction is used to
ensure valid storing of the counter.

The program updating the counter checks the
result by examining the condition code. The con-
dition code 0 indicates a successful update, and
the program can proceed. If the counter had been
changed between the time that the program
loaded its original value and the time that it exe-
cuted the COMPARE AND SWAP instruction, the
execution would have loaded the new counter
value into general register 7 and set the condition
code to 1, indicating an unsuccessful update. The
program must then repeat the update sequence
until the execution of the COMPARE AND SWAP
instruction results in a successful update.

The following instruction sequence performs the
above procedure:

LA 6,1 Put increment (1) into GR6

L 7,CNTR Put original counter value

 into GR7

LOOP LR 8,7 Set up copy in GR8 to modify

 AR 8,6 Increment copy

CS 7,8,CNTR Update counter in storage

BC 4,LOOP If original value had changed,

update new value

The following shows two CPUs, A and B, exe-
cuting this instruction sequence simultaneously:
both CPUs attempt to add one to CNTR.

 CPU A CPU B Comments
GR7 GR8 CNTR GR7 GR8

 16

16 16 CPU A loads GR7 and

GR8 from CNTR

16 16 CPU B loads GR7 and

GR8 from CNTR

17 CPU B adds one to GR8

17 CPU A adds one to GR8

17 CPU A executes CS;

 successful match,

 store

17 CPU B executes CS; no

match, GR7 changed

to CNTR value

18 CPU B loads GR8 from

GR7, adds one to GR8

18 CPU B executes CS;

 successful match,

 store

Bypassing Post and Wait
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Bypass Post Routine
The following routine allows the SVC “POST” as
used in MVS/ESA to be bypassed whenever the
corresponding WAIT has not yet been executed,
provided that the supervisor WAIT and POST rou-
tines use COMPARE AND SWAP to manipulate
event control blocks (ECBs).

Initial Conditions:

GR0 contains the POST code.

GR1 contains the address of the ECB.

GR5 contains 40 00 00 00±¶

HSPOST OR ð,5 Set bit 1 of GRð to

 one

L 3,ð(1) GR3 = contents of ECB

LTR 3,3 ECB marked 'waiting'?

BC 4,PSVC Yes, execute post

 SVC

CS 3,ð,ð(1) No, store post code

BC 8,EXITHP Continue

PSVC POST (1),(ð) ECB address is in GR1,

post code in GRð

EXITHP [Any instruction]

The following routine may be used in place of the
previous HSPOST routine if it is assumed that bit
1 of the contents of GR0 is already set to one and
if the ECB is assumed to contain zeros when it is
not marked “WAITING.”

HSPOST SR 3,3

 CS 3,ð,ð(1)

 BC 8,EXITHP

 POST (1),(ð)

EXITHP [Any instruction]

Bypass Wait Routine
A BYPASS WAIT function, corresponding to the
BYPASS POST, does not use the CS instruction,
but the FIFO LOCK/UNLOCK routines which
follow assume its use.

HSWAIT TM ð(1),X'4ð'

BC 1,EXITHW If bit 1 is one, then

ECB is already posted;

branch to exit

 WAIT ECB=(1)

EXITHW [Any instruction]

 Lock/Unlock
When a common storage area larger than a
doubleword is to be updated, it is usually neces-
sary to provide special interlocks to ensure that a
single program at a time updates the common
area. Such an area is called a serially reusable
resource (SRR).

In general, updating a list, or even scanning a list,
cannot be safely accomplished without first
“freezing” the list. However, the COMPARE AND
SWAP and COMPARE DOUBLE AND SWAP
instructions can be used in certain restricted situ-
ations to perform queuing and list manipulation.
Of prime importance is the capability to perform
the lock/unlock functions and to provide sufficient
queuing to resolve contentions, either in a LIFO or
FIFO manner. The lock/unlock functions can then
be used as the interlock mechanism for updating
an SRR of any complexity.

The lock/unlock functions are based on the use of
a “header” associated with the SRR. The header
is the common starting point for determining the
states of the SRR, either free or in use, and also
is used for queuing requests when contentions
occur. Contentions are resolved using WAIT and
POST. The general programming technique
requires that the program that encounters a
“locked” SRR must “leave a mark on the wall” indi-
cating the address of an ECB on which it will
WAIT. The “unlocking” program sees the mark
and posts the ECB, thus permitting the waiting
program to continue. In the two examples given,
all programs using a particular SRR must use
either the LIFO queuing scheme or the FIFO
scheme; the two cannot be mixed. When more
complex queuing is required, it is suggested that
the queue for the SRR be locked using one of the
two methods shown.

Lock/Unlock with LIFO Queuing for
Contentions
The header consists of a word, that is, a four-byte
field aligned on a word boundary. The word can
contain zero, a positive value, or a negative value.

� A zero value indicates that the serially reus-
able resource (SRR) is free.

� A negative value indicates that the SRR is in
use but no additional programs are waiting for
the SRR.

� A positive value indicates that the SRR is in
use and that one or more additional programs
are waiting for the SRR. Each waiting
program is identified by an element in a
chained list. The positive value in the header
is the address of the element most recently
added to the list.
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Each element consists of two words. The first
word is used as an ECB; the second word is used
as a pointer to the next element in the list. A neg-
ative value in a pointer indicates that the element
is the last element in the list. The element is
required only if the program finds the SRR locked
and desires to be placed in the list.

The following chart describes the action taken for
LIFO LOCK and LIFO UNLOCK routines. The
routines following the chart allow enabled code to
perform the actions described in the chart.
┌─────────────┬───────────────────────────────────────────────┐

│ │ Action │

│ ├───────────────┬───────────────┬───────────────┤

│ │Header Contains│Header Contains│Header Contains│

│ Function │ Zero │Positive Value │Negative Value │

├─────────────┼───────────────┼───────────────┴───────────────┤

│LIFO LOCK │SRR is free. │SRR is in use. Store the │

│(the incoming│Set the header │contents of the header into │

│element is at│to a negative │location A+4. Store address A │

│location A) │value. Use the │into the header. WAIT; the ECB│

│ │SRR. │is at location A. │

├─────────────┼───────────────┼───────────────┬───────────────┤

│LIFO UNLOCK │Error │Some program is│The list is │

│ │ │waiting for the│empty. Store │

│ │ │SRR. Move the │zeros into the │

│ │ │pointer from │header. The SRR│

│ │ │the "last in" │is free. │

│ │ │element into │ │

│ │ │the header. │ │

│ │ │POST; the ECB │ │

│ │ │is in the "last│ │

│ │ │in" element. │ │

└─────────────┴───────────────┴───────────────┴───────────────┘

LIFO LOCK Routine:  

Initial Conditions:

GR1 contains the address of the incoming
element.

GR2 contains the address of the header.

LLOCK SR 3,3 GR3 = ð

ST 3,ð(1) Initialize the ECB

LNR ð,1 GRð = a negative value

TRYAGN CS 3,ð,ð(2) Set the header to a nega-

tive value if the header

 contains zeros

BC 8,USE Did the header contain

 zeros?

ST 3,4(1) No, store the value of the

header into the pointer

in the incoming element

CS 3,1,ð(2) Store the address of the

incoming element into

 the header

LA 3,ð(ð) GR3 = ð

BC 7,TRYAGN Did the header get up-

 dated?

WAIT ECB=(1) Yes, wait for the re-

source; the ECB is in

the incoming element

USE [Any instruction]

LIFO UNLOCK Routine:  

Initial Conditions:

GR2 contains the address of the header.

LUNLK L 1,ð(2) GR1 = the contents of the

 header

A LTR 1,1 Does the header contain a

 BC 4,B negative value?

L ð,4(1) No, load the pointer from

CS 1,ð,ð(2) the "last in" element and

store it in the header

BC 7,A Did the header get updated?

POST (1) Yes, post the "last in"

 element

BC 15,EXIT Continue

B SR ð,ð The header contains a neg-

CS 1,ð,ð(2) ative value; free the

BC 7,A header and continue

EXIT [Any instruction]

Note that the LOAD instruction L 1,0(2) at location
LUNLK would have to be CS 1,1,0(2) if it were not
for the rule concerning storage-operand consist-
ency. This rule requires the LOAD instruction to
fetch a four-byte operand aligned on a word
boundary such that, if another CPU changes the
word being fetched by an operation which is also
at least word-consistent, either the entire new or
the entire old value of the word is obtained, and
not a combination of the two. (See “Storage-
Operand Consistency” on page 5-83.)

Lock/Unlock with FIFO Queuing for
Contentions
The header always contains the address of the
most recently entered element. The header is ori-
ginally initialized to contain the address of a
posted ECB. Each program using the serially
reusable resource (SRR) must provide an element
regardless of whether contention occurs. Each
program then enters the address of the element
which it has provided into the header, while simul-
taneously it removes the address previously con-
tained in the header. Thus, associated with any
particular program attempting to use the SRR are
two elements, called the “entered element” and
the “removed element.” The “entered element” of
one program becomes the “removed element” for
the immediately following program. Each program
then waits on the removed element, uses the
SRR, and then posts the entered element.

When no contention occurs, that is, when the
second program does not attempt to use the SRR
until after the first program is finished, then the
POST of the first program occurs before the WAIT
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of the second program. In this case, the bypass-
post and bypass-wait routines described in the
preceding section are applicable. For simplicity,
these two routines are shown only by name rather
than as individual instructions.

In the example, the element need be only a single
word, that is, an ECB. However, in actual prac-
tice, the element could be made larger to include
a pointer to the previous element, along with a
program identification. Such information would be
useful in an error situation to permit starting with
the header and chaining through the list of ele-
ments to find the program currently holding the
SRR.

It should be noted that the element provided by
the program remains pointed to by the header
until the next program attempts to lock. Thus, in
general, the entered element cannot be reused by
the program. However, the removed element is
available, so each program gives up one element
and gains a new one. It is expected that the
element removed by a particular program during
one use of the SRR would then be used by that
program as the entry element for the next request
to the SRR.

It should be noted that, since the elements are
exchanged from one program to the next, the ele-
ments cannot be allocated from storage that would
be freed and reused when the program ends. It is
expected that a program would obtain its first
element and release its last element by means of
the routines described in “Free-Pool Manipulation”
on page A-48.

The following chart describes the action taken for
FIFO LOCK and FIFO UNLOCK.

┌─────────────────┬────────────────────────────┐

│ Function │ Action │

├─────────────────┼────────────────────────────┤

│FIFO LOCK │Store address A into the │

│ │header. │

│(the incoming │WAIT; the ECB is at the │

│element is at │location addressed by the │

│location A) │old contents of the header. │

├─────────────────┼────────────────────────────┤

│FIFO UNLOCK │POST; the ECB is at loca- │

│ │tion A. │

└─────────────────┴────────────────────────────┘

The following routines allow enabled code to
perform the actions described in the previous
chart.

FIFO Lock Routine:  

Initial conditions:

GR3 contains the address of the header.

GR4 contains the address, A, of the element
currently owned by this program. This
element becomes the entered element.

FLOCK LR 2,4 GR2 now contains address

of element to be

 entered

SR 1,1 GR1 = ð

ST 1,ð(2) Initialize the ECB

L 1,ð(3) GR1 = contents of the

 header

TRYAGN CS 1,2,ð(3) Enter address A into

header while remember-

BC 7,TRYAGN ing old contents of

header into GR1; GR1

now contains address

of removed element

LR 4,1 Removed element becomes

new currently owned

 element

 HSWAIT Perform bypass-wait

routine; if ECB al-

ready posted, con-

tinue; if not, wait;

GR1 contains the ad-

dress of the ECB

USE [Any instruction]

FIFO Unlock Routine:  

Initial conditions:

GR2 contains the address of the removed
element, obtained during the FLOCK routine.

GR5 contains 40 00 00 00±¶

FUNLK LR 1,2 Place address of entered

element in GR1; GR1 = ad-

dress of ECB to be posted

SR ð,ð GRð = ð; GRð has a post code

 of zero

OR ð,5 Set bit 1 of GRð to one

HSPOST Perform bypass-post routine;

if ECB has not been waited

on, then mark posted and

continue; if it has been

waited on, then post

CONTINUE [Any instruction]
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 Free-Pool Manipulation
It is anticipated that a program will need to add
and delete items from a free list without using the
lock/unlock routines. This is especially likely since
the lock/unlock routines require storage elements
for queuing and may require working storage.
The lock/unlock routines discussed previously
allow simultaneous lock routines but permit only
one unlock routine at a time. In such a situation,
multiple additions and a single deletion to the list
may all occur simultaneously, but multiple
deletions cannot occur at the same time. In the
case of a chain of pointers containing free storage
buffers, multiple deletions along with additions can
occur simultaneously. In this case, the removal
cannot be done using the COMPARE AND SWAP
instruction without a certain degree of exposure.

Consider a chained list of the type used in the
LIFO lock/unlock example. Assume that the first
two elements are at locations A and B, respec-
tively. If one program attempted to remove the
first element and was interrupted between the
fourth and fifth instructions of the LUNLK routine,
the list could be changed so that elements A and
C are the first two elements when the interrupted
program resumes execution. The COMPARE
AND SWAP instruction would then succeed in
storing the value B into the header, thereby
destroying the list.

The probability of the occurrence of such list
destruction can be reduced to near zero by
appending to the header a counter that indicates
the number of times elements have been added to
the list. The use of a 32-bit counter guarantees
that the list will not be destroyed unless the fol-
lowing events occur, in the exact sequence:

1. An unlock routine is interrupted between the
fetch of the pointer from the first element and
the update of the header.

2. The list is manipulated, including the deletion
of the element referenced in 1, and exactly
2óò (or an integer multiple of 2óò) additions to
the list are performed. Note that this takes on
the order of days to perform in any practical
situation.

3. The element referenced in 1 is added to the
list.

4. The unlock routine interrupted in 1 resumes
execution.

The following routines use such a counter in order
to allow multiple, simultaneous additions and
removals at the head of a chain of pointers.

The list consists of a doubleword header and a
chain of elements. The first word of the header
contains a pointer to the first element in the list.
The second word of the header contains a 32-bit
counter indicating the number of additions that
have been made to the list. Each element con-
tains a pointer to the next element in the list. A
zero value indicates the end of the list.

The following chart describes the free-pool-list
manipulation.
┌─────────────┬───────────────────────────────────────────┐

│ │ Action │

│ ├──────────────────┬────────────────────────┤

│ Function │ Header = ð,Count │ Header = A,Count │

├─────────────┼──────────────────┴────────────────────────┤

│ADD TO LIST │Store the first word of the header into │

│(the incoming│location A. Store the address A into the │

│element is at│first word of the header. Decrement the │

│location A) │second word of the header by one. │

├─────────────┼──────────────────┬────────────────────────┤

│DELETE FROM │The list is empty.│Set the first word of │

│LIST │ │the header to the value │

│ │ │of the contents of loca-│

│ │ │tion A. Use element A. │

└─────────────┴──────────────────┴────────────────────────┘

The following routines allow enabled code to
perform the free-pool-list manipulation described in
the above chart.

ADD TO FREE LIST Routine:  

Initial Conditions:

GR2 contains the address of the element to
be added.

GR4 contains the address of the header.

ADDQ LM ð,1,ð(4) GRð,GR1 = contents of the

 header

TRYAGN ST ð,ð(2) Point the new element to

the top of the list

LR 3,1 Move the count to GR3

BCTR 3,ð Decrement the count

CDS ð,2,ð(4) Update the header

 BC 7,TRYAGN

DELETE FROM FREE LIST Routine:  

Initial conditions:

GR4 contains the address of the header.
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DELETQ LM 2,3,ð(4) GR2,GR3 = contents of

 the header

TRYAGN LTR 2,2 Is the list empty?

BC 8,EMPTY Yes, get help

L ð,ð(2) No, GRð = the pointer

from the first ele-

 ment

| LR 1,3 Move the count to GR1

CDS 2,ð,ð(4) Update the header

 BC 7,TRYAGN

USE [Any instruction] The address of the re-

moved element is in

 GR2

Note that the LM (LOAD MULTIPLE) instructions
at locations ADDQ and DELETQ would have to be
CDS (COMPARE DOUBLE AND SWAP)
instructions if it were not for the rule concerning
storage-operand consistency. This rule requires
the LOAD MULTIPLE instructions to fetch an
eight-byte operand aligned on a doubleword
boundary such that, if another CPU changes the
doubleword being fetched by an operation which
is also at least doubleword-consistent, either the
entire new or the entire old value of the
doubleword is obtained, and not a combination of
the two. (See “Storage-Operand Consistency” on
page 5-83.)

PERFORM LOCKED OPERATION
(PLO)
The PERFORM LOCKED OPERATION instruction
can be used in a multiprogramming or multiproc-
essing environment to perform compare, load,
compare-and-swap, and store operations on two
or more discontiguous locations that can be words
or doublewords. The operations are performed as
an atomic set of operations under the control of a
lock that is held only for the duration of the exe-
cution of a single PERFORM LOCKED OPERA-
TION instruction, as opposed to across the
execution of multiple instructions. Since lock con-
tention is resolved by the CPU and is very brief,
the program need not include a method for
dealing with the case when the lock to be used is
held by a program being executed by another
CPU. Also, there need be no concern that the
program may be interrupted while it holds a lock,
since PERFORM LOCKED OPERATION will com-
plete its operation and release its lock before an
interruption can occur.

PERFORM LOCKED OPERATION can be thought
of as performing concurrent interlocked updates of
multiple operands. However, the instruction does

not actually perform any interlocked update, and a
serially reusable resource cannot be updated pre-
dictably through the use of both PERFORM
LOCKED OPERATION and conditional-swapping
instructions (CS and CDS).

Following is an example of how PERFORM
LOCKED OPERATION can be used to add an
element at the beginning of a queue.

Assume the following variables associated with
the queue: S, which is a sequence number that is
incremented anytime the queue is changed; H (for
head), which is the address of the first element on
the queue; and C, which is a count of the number
of elements on the queue. Assume a queue
element contains a variable, F (for forward), which
is the address of the next element on the queue.
If a new element, N, is to be enqueued at the
head of the queue, that can be done by setting F
in N to H and then performing the following atomic
set of operations:

 S+1 ──5 S

A(N) ──5 H

 C+1 ──5 C

where A(N) is the address of N.

The enqueueing of N can be done by means of
the following steps:

1. Obtain consistent values of S, H, and C,
meaning obtain S and obtain the H and C that
are consistent with that value of S.

2. Store H in N.F.

3. By means of PLO.csdst (PERFORM LOCKED
OPERATION performing compare and swap
and double store), with S as the swap variable
and H and C as the store variables, add one
to S, set H to A(N), and add one to C, pro-
vided that S still has the value obtained in
step 1. If S has already been changed, go
back to step 1.

Consistent values of S, H, and C cannot neces-
sarily be obtained simply by using three LOAD
instructions because a PERFORM LOCKED
OPERATION instruction being executed by
another CPU may have completed an update of S
but not yet of H or C. In this case, the three
LOAD instructions will obtain the new S but the
old H or C. However, as will be described, it may
be possible to use three LOAD instructions.
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If S is obtained while holding the lock, meaning by
means of PERFORM LOCKED OPERATION, then
H and C can be obtained by LOAD instructions
since no other CPU can subsequently change H
or C without changing S, as observed when the
lock is held.

The parameter list used by the PLO.csdst is as
follows, assuming the access-register mode is not
used:

 ┌─────────────────────────────────┐

 ð │ │

 ├─────────────────────────────────┤

 8 │ │

 / /

 48 │ │

 ├────────────────┬────────────────┤

 56 │ │ A(N) │

 ├────────────────┼────────────────┤

 64 │ │ │

 ├────────────────┼────────────────┤

 72 │ │ A(H) │

 ├────────────────┴────────────────┤

 8ð │ │

 ├────────────────┬────────────────┤

 88 │ │ C+1 │

 ├────────────────┼────────────────┤

 96 │ │ │

 ├────────────────┼────────────────┤

1ð4 │ │ A(C) │

 └────────────────┴────────────────┘

The program is as follows:

LA RT,H Initialize addresses in PL

(T = temp)

ST RT,PL+76 Op4 address (address of H)

 LA RT,C

ST RT,PL+1ð8 Op6 address (address of C)

LA RN,N Address of N

ST RN,PL+6ð Initialize op3 in PL

(address of N)

LA R1,S PLT address = address of S

------------------------------------------------

 SR RS,RS Dummy S. CC1 will

probably be set

SR Rð,Rð Function code ð (compare

 and load)

PLO RS,S,RS,S Obtain S while holding

 lock

------------------------------------------------

LA Rð,16 Function code 16 (csdst)

LOOP L RT,H Consistent H

ST RT,OFSTF(,RN) OFSTF = offset of F

 in N

 L RT,C Consistent C

 LA RT,1(,RT) C+1

ST RT,PL+92 Initialize op5 in PL (C+1)

LA RSP,1(,RS) RS/RSP = even/odd pair.

S+1 in RSP

 PLO RS,S,ð,PL

BNZ LOOP Br if S changed (if CC not

 ð)

Note the following about the first PERFORM
LOCKED OPERATION instruction (PLO.cl). If S is
not zero (which is probably true), S (the second
operand, op2) is loaded into RS (the first-operand
comparison value, op1c). If S is zero, S (the
fourth operand, op4) is loaded into RS (the third
operand, op3). Either of these loads occurs while
the lock is held. It is unnecessary to test the con-
dition code to determine which load occurred.

The above program may be a simplification. If the
queue has associated with it a variable, T (for tail),
that is the address of the last element on the
queue, and the queue is currently empty, T also
must be set when N is added to the queue. This
would require a different program using a
compare-and-swap-and-triple-store operation.

If the queue is added to, deleted from, and rear-
ranged by means of PERFORM LOCKED OPER-
ATION instructions in which the sequence
number, S, is always the second operand, then,
since the definition of PERFORM LOCKED
OPERATION specifies that the second operand is
always stored last, the first PERFORM LOCKED
OPERATION instruction in the above program can
be replaced by a LOAD instruction. The three
instructions within the dashed lines would be
replaced by L RS,S.
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 Sorting Instructions

 Tree Format
Two instructions, COMPARE AND FORM
CODEWORD and UPDATE TREE, refer to a
tree -- a data structure with a specific format. A
tree consists of some number (always odd) of
consecutively numbered nodes. Node 1 is the
root of the tree. Every node except the root has
one parent node in the same tree. Every parent
node has two son nodes. Every even-numbered
node is the leftson of its parent node, and every
odd-numbered node (except node 1) is the
rightson of its parent node. Division by two
(ignoring remainder) of the node number gives the
parent node number. Nodes with sons are also
called internal nodes, and nodes without sons are
called terminal nodes. Figure A-5 on page  A-52
illustrates schematically a 21-node tree with
arrows drawn from each parent node to each son
node.

A tree is used for merging several sorted
sequences of records into a single merged
sequence of records. At each step in the merging
process, there exists the initial part of the merged
sequence and the remaining parts of each of the
sorted sequences that are being merged. Each
step consists in selecting the lowest record (the
record with the lowest key when sorting in
ascending sequence) from all of the as yet
unmerged parts of the sorted sequences and
adding it to the merged sequence. Each terminal
node in the tree represents one of the sorted
sequences. The number of internal nodes in the
tree is one less than the number of sorted
sequences. Each internal node conceptually con-
tains one record from each of the sorted
sequences but one; these are the lowest records,
from all but one of the sorted sequences, that
have not yet been added to the merged sequence.
In addition, there is the lowest record from the one
remaining sorted sequence. This additional record
is compared and interchanged with nodes of the
tree to select the record to be added next to the
merged sequence. This processing begins with
the parent of the terminal node that represents the
one remaining sorted sequence, and it continues
from that node along the path to the root of the
tree. The selected record emerges from the root
of the tree.

The tree may perhaps be most easily explained by
considering each node to represent a comparison
operation in an “elimination tournament” to find the
lowest record. After the tournament has been
completed, each node has an associated “loser”
record which had a higher key in the comparison
represented by that node. Besides a loser record
at each node, there is one record (the “winner”)
which is not associated with any node since it
never compared high. The next step would be to
introduce a new record from the same sorted
sequence from which the winner record originated
and replay the tournament with the new record in
place of the former winner. It can be seen that it
is unnecessary to do all the comparisons repres-
ented by all the nodes in the tree -- most of them
are unaffected by the new record replacing the
former winner. In fact, it is sufficient to redo only
those node comparisons in which the former
winner record participated. Each new record is
inserted into the tree at the terminal node that
represents the sorted sequence containing the
record. The use of the tree assumes that pro-
gramming provides a method of remembering at
which terminal node each winning record origi-
nated. The instruction UPDATE TREE allows for
a new record to be inserted at a terminal node
and the tree to be updated so that a new winner
record is left in the general registers.

Rather than comparing the actual keys of records,
much of the merge logic can be performed using
“codewords” to represent a record key rather than
referring to actual keys. The value of a codeword
at a node in the tree depends not only on the
record's key but also on the key of the winning
record in the last comparison at that node. The
codeword consists of two parts:

1. Bits 16-31 contain the one's complement of
the first halfword in which the record key
differs from that of the node's winning record.

2. Bits 0-15 specify the byte offset of the
halfword in this record's key just beyond the
halfword value (complemented) in bit positions
16-31.

When comparing records in the path of the last
winner record, if the new record is also repres-
ented by a codeword resulting from a comparison
with the last winner, all codewords in the update
path are with respect to the same winner. When
comparing such codewords, a high codeword
represents a low key and vice versa. Thus, when
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codewords are unequal, a node entry with a high
codeword (representing a low actual key) should
move up the tree.

In the case of a tie value of codewords, it is nec-
essary to refer to the actual keys. This is done by
the instruction COMPARE AND FORM
CODEWORD, which resolves the ambiguity and
computes a new codeword for the high-key (loser)
record.

The eight bytes at each node of a tree consist of
(1) a codeword for this record, computed with
respect to the last record which compared low
against this record and (2) a parameter usable to
locate this record, for example, a direct or indirect
address.

The instruction UPDATE TREE is so defined that
tree updating stops after equal codewords are
detected and the tie-breaking instruction
COMPARE AND FORM CODEWORD can be
used, after which UPDATE TREE can resume tree
updating at the point where equal codewords were
previously found.

COMPARE AND FORM CODEWORD may alter-
natively be used for merging in descending
sequence. In that case, bits 16-31 of the
codeword at a node contain the true value of the
first halfword in which the record key differs from
that of the node's winning record. When the
descending option of COMPARE AND FORM
CODEWORD is used, the higher of two
codewords represents the higher key.

┌──┐

│ 1│

└┬┬┘

 ││

 │└──────────────────────────────┐

 │ │

 6 6

┌──┐ ┌──┐

│ 2│ │ 3│

└┬┬┘ └┬┬┘

 ││ ││

 │└──────────────┐ │└──────────────┐

│ │ │ │

6 6 6 6

┌──┐ ┌──┐ ┌──┐ ┌──┐

│ 4│ │ 5│ │ 6│ │ 7│

└┬┬┘ └┬┬┘ └┬┬┘ └┬┬┘

││ ││ ││ ││

│└──────┐ │└──────┐ │└──────┐ │└──────┐

│ │ │ │ │ │ │ │

6 6 6 6 6 6 6 6

┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐ ┌──┐

│ 8│ │ 9│ │1ð│ │11│ │12│ │13│ │14│ │15│

└┬┬┘ └┬┬┘ └┬┬┘ └──┘ └──┘ └──┘ └──┘ └──┘

││ ││ ││

│└──┐ │└──┐ │└──┐

│ │ │ │ │ │

6 6 6 6 6 6

┌──┐┌──┐┌──┐┌──┐┌──┐┌──┐

│16││17││18││19││2ð││21│

└──┘└──┘└──┘└──┘└──┘└──┘

Figure A-5. Schematic Diagram of Merge Control Tree
with 21 Nodes

Example of Use of Sort
Instructions
An example illustrates how the instructions
UPDATE TREE and COMPARE AND FORM
CODEWORD may be used in the merge operation
within a sort program. A five-way merge requires
a tree data structure with four internal nodes and
five terminal-node positions. The schematic
diagram shown later in this section illustrates such
a tree, containing four internal nodes (not counting
the dummy node) and five input sequences for a
merge, one sequence at each terminal-node posi-
tion. Each record in an input sequence in the
diagram is indicated by its address. The actual
record contents are shown in Figure A-7 on
page A-56. Each record contains 16 bytes, con-
sisting of the following fields:

Byte Offset
(hexadecimal) Field

0-5 Six-byte record key.
6-7 Halfword node index specifying

the input sequence of the next
record of this input sequence.

8-B Address of the next record in the
same input sequence.

C-F This chaining field is initially
zero. At the completion of the
merge, this field is to contain the
address of the next record in the
merged sequence.
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The merge process forms a single sorted
sequence from five input sequences, each of
which is in sorted order. This process can be
subdivided into three steps:

1. A priming step takes the first record from each
of the five input sequences and places them
in the tree data structure. For each record to
be introduced into the tree, first its codeword
value is computed with respect to the lowest
possible key value of all zeros. This
codeword, with a second word which contains
the address of the actual record, forms a
doubleword node value that can be placed at
the appropriate node. After priming, the node
values, one each from each of the five input
sequences, will have been placed in the tree
so that each of the four internal nodes con-
tains one node value and the node value for a
winner record has emerged from the root of
the tree.

2. After each winner emerges from the tree, the
main merge process is performed repeatedly.
Each iteration introduces the node value for
one new record into the tree and produces a
node value for a new winner record. The tree
plus the winner must at all times contain pre-
cisely one node value from each input
sequence being merged. Therefore, the new
node value that is introduced into the tree on
each iteration must come from the same input
sequence from which the winner node value in
the preceding iteration originated.

3. When the node value for the last record of an
input sequence emerges as a winner, there is
no successor record from that input sequence
to be introduced into the tree on the next iter-
ation. Hence, the order of the merge must be
reduced by one for each such occurrence.
This runout process will consist of one or
more iterations for each of a four-way,
three-way, two-way, and one-way merge. The
onset of runout occurs in the example when it
is found that the next input record from a
sequence is lower than its predecessor (a
sequence break).

The priming process is discussed next, and the
state of the tree is shown after priming is com-
plete. Then, a short program that uses the
instructions UPDATE TREE and COMPARE AND
FORM CODEWORD to perform the main merge is
described. An abbreviated trace is then presented
to show the status of the tree and certain general

registers for 16 iterations of the main merge. The
runout process is not discussed in this example.

Priming begins by forming the node value for the
first record of each input sequence. The first word
of the node value is the codeword formed by exe-
cuting COMPARE AND FORM CODEWORD on a
record key containing all binary zeros. The
second word of the node value is the address of
the record represented by that node value. The
node values for the first record of each input
sequence are:

 Sequence Index Node Values

28 ððð6 FFFC ðððð 1ð3ð

3ð ððð6 FFFB ðððð 1ð4ð

38 ððð6 FFFA ðððð 1ð5ð

4ð ððð4 FFFE ðððð 1ð8ð

48 ððð6 FFFð ðððð 1ð6ð

In the example, the tree data structure is assumed
to have base address X'1000', which is kept in
general register 4 (to match the expected use in
UPDATE TREE). Similarly, internal-node index
values and input-sequence index values are
always used from general register 5.

Although the tree-priming program is not part of
this example, the UPDATE TREE instruction is
used in creating it as follows. First, the codeword
position for each internal node of the tree is initial-
ized to all ones (X'FFFF FFFF'). This artifice fills
the tree with dummy low records. Then, for each
record in the table, (1) the sequence index is
loaded into general register 5, (2) the node value
is loaded into general registers 0 and 1, and
(3) UPDATE TREE is executed. At the com-
pletion of this priming process, the tree-node con-
tents in the example are as shown on line 0 of
Figure A-9 on page A-58. The contents of the
general registers are as shown on the first line of
Figure A-8 on page A-57.

The figure illustrating the program for the main
merge is divided into three groups of columns,
containing the absolute program, the general-
register trace, and the symbolic program. The first
part of the program extends from symbolic
locations L1 through L2; it introduces a new
record into the tree and executes an UPDATE
TREE instruction. If no tied codewords are
encountered in UPDATE TREE, then the
BRANCH ON CONDITION instruction following
UPDATE TREE loops back to L1 to introduce the
next record into the tree. This BRANCH ON
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CONDITION instruction is suitable for use when
UPDATE TREE operates in accordance with
either its method 1 (setting condition code 1) or its
method 2 (setting condition code 3). (The pre-
ceding sentence applies to 370-XA. In ESA/370
and ESA/390, UPDATE TREE operates in accord-
ance with only method 2, which is not to say that
it cannot set condition code 1. Method 2, but not
method 1, tests for the condition that sets condi-
tion code 3.)

If UPDATE TREE encounters tied codewords,
then the UPDATE TREE instruction is completed,
the subsequent BRANCH ON CONDITION
instruction does not branch, and control falls
through to the second part of the program, which
handles entries with tied codewords. This part
then branches back to UPDATE TREE at L2,
which resumes the tree updating. It is possible for
tied codewords to be encountered at any level in
the tree (or indeed at all levels), so that the tied-
codeword part of the program may be entered up
to three times for each record introduced.

The general-register trace for the first part of the
main merge shows the contents of the first seven
general registers after each instruction is executed
during the first iteration. Note that the merged-
chain field (at 1140) serves as the anchor for the
merged-chain address chain through the records.
The trace shows only the lower half of certain
general registers, whose upper half is always
zero.

Figure A-9 on page A-58 gives an abbreviated
trace of the entire main merge of 16 records. For
each record introduced into the tree, there are one
or more lines (always an odd number) given in the
figure to show the tree updating, which results
finally in a winner in GR0 and GR1. The first line
for each record shows the values of GR5, GR2,
and GR3 before the first or only execution of
UPDATE TREE. For the even-numbered lines,
the storage updating by UPDATE TREE of tree
nodes is shown (read left to right to follow the
order of swapping). For example, consider line 10
and the corresponding UPDATE TREE: since
GR5 contains 28, the first storage node examined
is 1010 (refer to the schematic diagram). Since
the codeword in GR0 is 0004 FFFE (same as for
GR2), which is less than that of the word at 1010
(0006 FFF0), the doubleword at 1010 is swapped

with that in GR0 and GR1. A second comparison
at 1008 in the same execution of UPDATE TREE
causes another register-storage doubleword swap,
which leaves the winner (record 1040) in GR1 at
the completion of UPDATE TREE (see the column
at the far right of Figure A-9 on page A-58).

When a codeword comparison is made which
does not result in a tie or a swap (that is, when
the storage-codeword value is low), an asterisk
appears in the trace for that storage entry.

When equal codewords are found, the execution
of UPDATE TREE is completed. The following
line in each such case shows the result of the
tied-codeword routine, which always stores a new
codeword and may also store a new record
address before branching back to L2 to execute
UPDATE TREE again. In this line, the notation
“loses” or “wins” means that the node loses or
wins, respectively.

The tie-break trace part of Figure A-8 on page
A-57 shows the treatment of the third record (that
is, the first record for which UPDATE TREE
encounters a tied codeword). This corresponds to
line 31 in Figure A-9 on page A-58.

The following is a summary of the steps that are
needed to use this example for verification pur-
poses:

1. Initialize storage as follows:

a. 1008 through 102F from line 0 of
Figure A-9 on page  A-58 

b. 1030 through 114F from Figure A-7 on
page  A-56 

c. 1150 through 1189 from Figure A-8 on
page  A-57 

2. Initialize GRs per first line in Figure A-8 and
trace first record per Figure A-8.

3. Trace to completion of each UPT or BC 15,L2
(once for each line of Figure A-9). A detailed
trace of the GRs for the tied-codeword part of
line 31 of Figure A-9 is given in the lower part
of Figure A-8.

4. Verify that addresses in the chain beginning at
103C and continuing through 114C are as
shown in the right-hand column of Figure A-7.
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 ┌──────────────┐

 ð:│ Dummy Node │

 └──────┬───────┘

 │

 │

 ┌──────┴───────┐

 8:│ Root Node │

 └─┬──────────┬─┘

 │ └──────────────────┐

 │ │

 ┌─────────┴────┐ ┌───────┴──────┐

1ð:│ Node │ 18:│ Node │

 └┬────────────┬┘ └┬────────────┬┘

 │ ' ' '

 │ ' ' '

 │ ' ' '

 │ 28:Input Seq. 3ð:Input Seq. 38:Input Seq.

 │ 1ð3ð 1ð4ð 1ð5ð

 ┌─────────┴────┐ 1ð7ð 1ðBð 1ð9ð

2ð:│ Node │ 1ðDð 1ðCð 1ðEð

 └┬────────────┬┘ 111ð 114ð 113ð

 ' ' 114ð [sequence break]

 ' ' 1ð5ð

 ' '

 ' '

4ð:Input Seq. 48:Input Seq.

 1ð8ð 1ð6ð

 1ðFð 1ðAð

 112ð 11ðð

 114ð 114ð

Note : Each node and input sequence is identified by a number which is the hexadecimal node index.
Each input sequence is given as a list of record addresses (also in hexadecimal).

Figure A-6. Schematic Diagram for Example of Merge to Be Performed
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┌────────┬───────────────────────┬───────────────────────┬───────────────┐

│ │ │ Successor Record │ │

│ │ Record Key ├───────┬───────────────┤ Merged-Chain │

│ │ at Hex Byte Offset │ Index │ Location │ Address │

│ ├───┬───┬───┬───┬───┬───┼───┬───┼───┬───┬───┬───┼───┬───┬───┬───┤

│Location│ ð │ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │ A │ B │ C │ D │ E │ F │

├────────┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┼───┴───┤

│ 1ð3ð │ð ð ð ð│ð ð ð ð│ð ð ð 3│ð ð 2 8│ð ð ð ð│1 ð 7 ð│ð ð ð ð│1 ð 4 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð4ð │ð ð ð ð│ð ð ð ð│ð ð ð 4│ð ð 3 ð│ð ð ð ð│1 ð B ð│ð ð ð ð│1 ð 5 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð5ð │ð ð ð ð│ð ð ð ð│ð ð ð 5│ð ð 3 8│ð ð ð ð│1 ð 9 ð│ð ð ð ð│1 ð 6 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð6ð │ð ð ð ð│ð ð ð ð│ð ð ð F│ð ð 4 8│ð ð ð ð│1 ð A ð│ð ð ð ð│1 ð 8 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð7ð │ð ð ð ð│ð ð ð 1│F F F F│ð ð 2 8│ð ð ð ð│1 ð D ð│ð ð ð ð│1 ð 9 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð8ð │ð ð ð ð│ð ð ð 1│F F F F│ð ð 4 ð│ð ð ð ð│1 ð F ð│ð ð ð ð│1 ð 7 ð│

│ │ │ │ │ │ │ │ │ │

│ 1ð9ð │ð ð ð ð│F F F F│ð ð ð ð│ð ð 3 8│ð ð ð ð│1 ð E ð│ð ð ð ð│1 ð A ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðAð │ð ð ð ð│F F F F│ð ð ð 1│ð ð 4 8│ð ð ð ð│1 1 ð ð│ð ð ð ð│1 ð B ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðBð │ð ð ð ð│F F F F│ð ð ð 2│ð ð 3 ð│ð ð ð ð│1 ð C ð│ð ð ð ð│1 ð C ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðCð │ð ð ð ð│F F F F│ð ð ð 2│ð ð 3 ð│ð ð ð ð│1 1 4 ð│ð ð ð ð│1 ð D ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðDð │ð ð ð 1│ð ð ð ð│ð ð ð ð│ð ð 2 8│ð ð ð ð│1 1 1 ð│ð ð ð ð│1 ð E ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðEð │ð ð 8 ð│ð ð ð ð│ð ð ð ð│ð ð 3 8│ð ð ð ð│1 1 3 ð│ð ð ð ð│1 ð F ð│

│ │ │ │ │ │ │ │ │ │

│ 1ðFð │ð ð 8 ð│ð ð ð 2│ð ð 4 ð│ð ð 4 ð│ð ð ð ð│1 1 2 ð│ð ð ð ð│1 1 ð ð│

│ │ │ │ │ │ │ │ │ │

│ 11ðð │ð ð 8 ð│ð ð ð 2│ð ð 5 ð│ð ð 4 8│ð ð ð ð│1 1 4 ð│ð ð ð ð│1 1 1 ð│

│ │ │ │ │ │ │ │ │ │

│ 111ð │ð ð 8 ð│ð ð ð 3│ð ð ð ð│ð ð 2 8│ð ð ð ð│1 1 4 ð│ð ð ð ð│1 1 2 ð│

│ │ │ │ │ │ │ │ │ │

│ 112ð │ð ð 9 ð│ð ð ð ð│ð ð ð ð│ð ð 4 ð│ð ð ð ð│1 1 4 ð│ð ð ð ð│1 1 3 ð│

│ │ │ │ │ │ │ │ │ │

│ 113ð │F F F F│F F F F│F F F E│ð ð 3 8│ð ð ð ð│1 ð 5 ð│ð ð ð ð│ð ð ð ð│

│ │ │ │ │ │ │ │ │ │

│ 114ð │F F F F│F F F F│F F F F│ð ð ð ð│ð ð ð ð│ð ð ð ð│ð ð ð ð│1 ð 3 ð│

└────────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┴───────┘

Figure A-7. Contents of Records to Be Merged
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┌─────────────┬──────────────────────────────────────────┬─────────────────────────────────────────┐

│ Absolute │ General-Register Trace │ Symbolic Program │

├────┬────────┼────────┬────┬────────┬────┬────┬────┬────┼────┬────────────────────────────────────┤

│Loc │ INSTR │ GRð │GR1 │ GR2 │GR3 │GR4 │GR5 │GR6 │Loc │ Instruction │

├────┼────────┼────────┼────┼────────┼────┼────┼────┼────┼────┼────────────────────────────────────┤

│ │ │ððð6FFFC│1ð3ð│ │ðððð│1ððð│ðððð│114ð│ │ Using X'1ððð',4 │

│ │ │───┬────│─┬──│ │─┬──│─┬──│─┬──│─┬──│ │ │

│115ð│5ð1ð6ððC│ ' │ ' │ │ ' │ ' │ ' │ ' │ L1 │ST 1,12(,6) Store merged-chain │

│ │ │ ' │ ' │ │ ' │ ' │ 6 │ ' │ │ address │

│1154│485ð1ðð6│ ' │ ' │ │ ' │ ' │ðð28│ ' │ │LH 5,6(,1) Load node index of │

│ │ │ ' │ ' │ │ ' │ ' │─┬──│ ' │ │ input sequence of │

│ │ │ ' │ ' │ │ 6 │ ' │ ' │ ' │ │ winner │

│1158│583ð1ðð8│ ' │ ' │ │1ð7ð│ ' │ ' │ ' │ │L 3,8(,1) Load successor-record │

│ │ │ ' │ ' │ │─┬──│ ' │ ' │ 6 │ │ address │

│115C│1861 │ ' │ ' │ │ ' │ ' │ ' │1ð3ð│ │LR 6,1 Save old winner ad- │

│ │ │ ' │ ' │ │ ' │ ' │ ' │─┬──│ │ dress for next │

│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ merged-chain store │

│1153│1B22 │ ' │ ' │ðððððððð│ ' │ ' │ ' │ ' │ │SR 2,2 Zero GR2 as initial │

│ │ │ ' │ ' │────────│ ' │ ' │ ' │ ' │ │ offset │

│116ð│B21Aððð4│ ' │ ' │ððð4FFFE│ ' │ ' │ ' │ ' │ │CFC 4 Compute codeword of │

│ │ │ ' │ ' │───┬────│ ' │ ' │ ' │ ' │ │ new record based │

│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ on last winner │

│1164│472ð418A│ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │BC 2,L3 Exit on CC=2 (sequence│

│ │ │ ' │ 6 │ ' │ ' │ ' │ ' │ ' │ │ ──┐ break │

│1168│1813 │ ' │1ð7ð│ ' │ ' │ ' │ ' │ ' │ │LR 1,3 │ │

│ │ │ 6 │─┬──│ ' │ ' │ ' │ ' │ ' │ │ > Move new record entry │

│116A│18ð2 │ððð4FFFE│ ' │ ' │ ' │ ' │ ' │ ' │ │LR ð,2 │ to GRs ð-1 │

│ │ │────────│ 6 │ ' │ ' │ ' │ 6 │ ' │ │ ──┘ │

│116C│ð1ð2 │ððð6FFFB│1ð4ð│ ' │ ' │ ' │ðððð│ ' │ L2 │UPT Update tree data │

│ │ │───┬────│─┬──│ ' │ ' │ ' │─┬──│ ' │ │ structure │

│116E│475ð415ð│ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │BC 5,L1 If no codeword tie │

│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ found, branch to │

│ │ │ 6 │ 6 │ 6 │ 6 │ ' │ 6 │ 6 │ │ next iteration │

├────┼────────┼────────┼────┼────────┼────┼────┼────┼────┼────┼────────────────────────────────────┤

│ │ │ │ │ │ │ ' │ │ │ \ │Fall through on tied codewords │

│ │ │ððð4ðððð│1ð9ð│ððð4ðððð│1ðBð│ ' │ðð18│1ð5ð│ \ │%───GR values for tie-break trace │

│ │ │───┬────│─┬──│ │─┬──│ ' │─┬──│─┬──│ │ │

│1172│882ððð1ð│ ' │ ' │ððððððð4│ ' │ ' │ ' │ ' │ │SRL 2,16 Shift codeword offset │

│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ to initial offset │

│ │ │ ' │ ' │ │ ' │ ' │ ' │ ' │ │ position for CFC │

│1176│B21Aððð4│ ' │ ' │ððð6FFFD│ ' │ ' │ ' │ ' │ │CFC 4 Compute loser codeword│

│117A│5ð254ððð│ ' │ ' │ [CC=1] │ ' │ ' │ ' │ ' │ │ST 2,ð(5,4) Store loser codeword │

│ │ │ ' │ ' │ ' │ ' │ ' │ ' │ ' │ │ in current storage │

│ │ │ ' │ ' │ 6 │ ' │ ' │ ' │ ' │ │ node │

│117E│47Cð416C│ 6 │ 6 │ branch │ 6 │ ' │ 6 │ 6 │ │BC 12,L2 Resume tree update if │

│ │ │ │ │ taken │ │ ' │ │ │ │ old storage-node │

│ │ │ │ │ │ │ ' │ │ │ │ entry is loser │

│1182│5ð354ðð4│ │ │ │ │ ' │ │ │ │ST 3,4(5,4) Store loser record │

│ │ │ │ │ │ │ ' │ │ │ │ address │

│1186│47Fð416C│ │ │ │ │ ' │ │ │ │BC 15,L2 Resume tree update │

│118A│... │ │ │ │ │ 6 │ │ │ L3 │... Control reaches here │

│ │ │ │ │ │ │ │ │ │ │ at end │

└────┴────────┴────────┴────┴────────┴────┴────┴────┴────┴────┴────────────────────────────────────┘

Figure A-8. Program for Main Merge
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┌───┬────────────────────────┬───────────────────────────────────────────────────────┬─────────────┐

│ │ General Regs │ │ │

│ │ after CFC at │ │General Regs │

│ │ Location 116ð │ Storage Trace of Node Entries │after UPT │

│ ├──┬────────┬────┬───────┤ │or BC 15,L2 │

│ │GR│ │ │ ├─────────────┬─────────────┬─────────────┬─────────────┼────────┬────┤

│ L#│5 │ GR2 │GR3 │Comment│ 1ð2ð │ 1ð18 │ 1ð1ð │ 1ðð8 │ GRð │GR1 │

├───┼──┼────────┼────┼───────┼────────┬────┼────────┬────┼────────┬────┼────────┬────┼────────┼────┤

│ ðñ│ │ │ │ │ððð4FFFE│1ð8ð│ððð6FFFA│1ð5ð│ððð6FFFð│1ð6ð│ððð6FFFB│1ð4ð│ððð6FFFC│1ð3ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 1ð│28│ððð4FFFE│1ð7ð│No tie │ │ │ │ │ððð4FFFE│1ð7ð│ððð6FFFð│1ð6ð│ððð6FFFB│1ð4ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 2ð│3ð│ððð4ðððð│1ðBð│No tie │ │ │ððð4ðððð│1ðBð│ │ │\ │ │ððð6FFFA│1ð5ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 3ð│38│ððð4ðððð│1ð9ð│CC = ð │ │ │ Tie │ │ │ │ │ │ððð4ðððð│1ð9ð│

│ 31│ │ │ │Loses │ │ │ððð6FFFD│ │ │ │ │ │ððð4ðððð│1ð9ð│

│ 32│ │ │ │No tie │ │ │ │ │ │ │ððð4ðððð│1ð9ð│ððð6FFFð│1ð6ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 4ð│48│ððð4ðððð│1ðAð│CC = ð │ððð4ðððð│1ðAð│ │ │ Tie │ │ │ │ððð4FFFE│1ð8ð│

│ 41│ │ │ │Equal │ │ │ │ │8ððð1ð7ð│ │ │ │ððð4FFFE│1ð8ð│

│ 42│ │ │ │No tie │ │ │ │ │ │ │\ │ │ððð4FFFE│1ð8ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 5ð│4ð│ððð2FF7F│1ðFð│No tie │ððð2FF7F│1ðFð│ │ │ððð4ðððð│1ðAð│\\ │ │8ððð1ð7ð│1ð7ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 6ð│28│ððð2FFFE│1ðDð│CC = ð │ │ │ │ │ððð2FFFE│1ðDð│ Tie │ │ððð4ðððð│1ðAð│

│ 61│ │ │ │Wins │ │ │ │ │ │ │ððð6FFFE│1ðAð│ððð4ðððð│1ð9ð│

│ 62│ │ │ │No comp│ │ │ │ │ │ │ │ │ððð4ðððð│1ð9ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 7ð│38│ððð2FF7F│1ðEð│No tie │ │ │ððð2FF7F│1ðEð│ │ │ððð6FFFD│1ðBð│ððð6FFFE│1ðAð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 8ð│48│ððð2FF7F│11ðð│CC = ð │ Tie │ │ │ │ │ │ │ │ððð2FF7F│11ðð│

│ 81│ │ │ │Wins │ððð6FFAF│11ðð│ │ │ │ │ │ │ððð2FF7F│1ðFð│

│ 82│ │ │ │No tie │ │ │ │ │ððð2FF7F│1ðFð│ððð2FFFE│1ðDð│ððð6FFFD│1ðBð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│ 9ð│3ð│8ððð1ðCð│1ðCð│No tie │ │ │\ │ │ │ │\ │ │8ððð1ðCð│1ðCð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│1ðð│3ð│ððð2ðððð│114ð│No tie │ │ │ððð2ðððð│114ð│ │ │ððð2FF7F│1ðEð│ððð2FFFE│1ðDð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│11ð│28│ððð2FF7F│111ð│CC = ð │ │ │ │ │ Tie │ │ │ │ððð2FF7F│111ð│

│111│ │ │ │Wins │ │ │ │ │ððð4FFFC│111ð│ │ │ððð2FF7F│1ðFð│

│112│ │ │ │CC = ð │ │ │ │ │ │ │ Tie │ │ððð2FF7F│1ðFð│

│113│ │ │ │Wins │ │ │ │ │ │ │ððð4FFFD│1ðFð│ððð2FF7F│1ðEð│

│114│ │ │ │No comp│ │ │ │ │ │ │ │ │ððð2FF7F│1ðEð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│12ð│38│ððð2ðððð│113ð│CC = ð │ │ │ Tie │ │ │ │ │ │ððð2ðððð│113ð│

│121│ │ │ │Loses │ │ │ððð6ðððð│ │ │ │ │ │ððð2ðððð│113ð│

│122│ │ │ │No tie │ │ │ │ │ │ │ððð2ðððð│113ð│ððð4FFFD│1ðFð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│13ð│4ð│ððð2FF6F│112ð│No tie │ððð2FF6F│112ð│ │ │\ │ │\ │ │ððð6FFAF│11ðð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│14ð│48│ððð2ðððð│114ð│No tie │ððð2ðððð│114ð│ │ │ððð2FF6F│112ð│\ │ │ððð4FFFC│111ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│15ð│28│ððð2ðððð│114ð│No tie │ │ │ │ │ððð2ðððð│114ð│\ │ │ððð2FF6F│112ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│16ð│4ð│ððð2ðððð│114ð│CC = ð │ Tie │ │ │ │ │ │ │ │ððð2ðððð│114ð│

│161│ │ │ │Equal │8ððð114ð│ │ │ │ │ │ │ │ððð2ðððð│114ð│

│162│ │ │ │CC = ð │ │ │ │ │ Tie │ │ │ │ððð2ðððð│114ð│

│163│ │ │ │Equal │ │ │ │ │8ððð114ð│ │ │ │ððð2ðððð│114ð│

│164│ │ │ │CC = ð │ │ │ │ │ │ │ Tie │ │ððð2ðððð│114ð│

│165│ │ │ │Wins │ │ │ │ │ │ │ððð6ðððð│114ð│ððð2ðððð│113ð│

│166│ │ │ │No comp│ │ │ │ │ │ │ │ │ððð2ðððð│113ð│

├───┼──┼────────┼────┼───────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┼────────┼────┤

│17ð│38│ððð2ðððð│1ð5ð│Branch │ │ │ │ │ │ │ │ │ │ │

└───┴──┴────────┴────┴───────┴────────┴────┴────────┴────┴────────┴────┴────────┴────┴────────┴────┘

Figure A-9 (Part 1 of 2). Abbreviated Trace of Main Merge Processing
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┌──────────────────────────────────────────────────────────────────────────────────┐

│Explanation: │

│ │

│ ñ Line ð shows the values in the tree after it is primed. │

│ │

│ \ Means no swap. │

│ │

│ \\ Means no swap if UPDATE TREE method 1 is used or no examination if │

│ UPDATE TREE method 2 is used. Only method 2 is included in ESA/37ð │

│ and ESA/39ð. │

│ │

│ CC = ð UPDATE TREE finds a tie and sets condition code ð. │

│ │

│ Loses The tied-codeword routine finds that the node loses. │

│ │

│ Wins The tied-codeword routine finds that the node wins. │

│ │

│ Equal The tied-codeword routine finds that the keys are equal. │

│ │

│ Branch Branches to terminate at 118A on sequence break. │

│ │

│ No comp No compare. │

└──────────────────────────────────────────────────────────────────────────────────┘

Figure A-9 (Part 2 of 2). Abbreviated Trace of Main Merge Processing
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Appendix B. Lists of Instructions

The following figures list instructions by name,
mnemonic, and operation code. Some models
may offer instructions that do not appear in the
figures, such as those provided for assists or as
part of special or custom features.

The operation codes for the vector facility, com-
pression facility, and interpretive execution are not
included in this appendix. See the publications
IBM Enterprise Systems Architecture/390 Vector
Operations, SA22-7207, IBM Enterprise Systems
Architecture/390 Data Compression, SA22-7208,
and IBM System/370 Extended Architecture Inter-
pretive Execution, SA22-7095, for operation codes
associated with those facilities.

The operation code 00 hex with a two-byte
instruction format is allocated for use by the
program when an indication of an invalid operation
is required. It is improbable that this operation
code will ever be assigned to an instruction imple-
mented in the CPU.

Explanation of Symbols in “Characteristics”
and “Page” Columns:  

¢ Causes serialization and checkpoint syn-
chronization.

¢ñ Causes serialization and checkpoint syn-
chronization when the M± and R² fields
contain all ones and all zeros, respec-
tively.

¢ò Causes serialization and checkpoint syn-
chronization when the state entry to be
unstacked is a program-call state entry.

$ Causes serialization.
A Access exceptions for logical addresses.
Añ Access exceptions; not all access

exceptions may occur; see instruction
description for details.

AI Access exceptions for instruction
address.

AS ASN-translation-specification and special-
operation exceptions.

AT ASN-translation-specification exception.
B PER branch event.
B± B± field designates an access register in

the access-register mode.
B² B² field designates an access register in

the access-register mode.

BF BFP facility.
BP B² field designates an access register

when PSW bits 16 and 17 have the value
01.

BS Branch-and-set-authority facility.
C Condition code is set.
CK Checksum facility.
CM Compare-and-move-extended facility.
Da AFP-register data exception.
Db BFP-instruction data exception.
Dd Decimal-operand data exception.
DF Decimal-overflow exception.
DK Decimal-divide exception.
DM Depending on the model, DIAGNOSE

may generate various program
exceptions and may change the condition
code.

E E instruction format.
| EK Extended-TOD-clock facility.

EO HFP-exponent-overflow exception.
| ET Extended-translation facility.

EU HFP-exponent-underflow exception.
EX Execute exception.
FK HFP-floating-point-divide exception.
FX Floating-point-support extensions facility.
G0 Instruction execution includes the implied

use of general register 0.
G1 Instruction execution includes the implied

use of general register 1.
G2 Instruction execution includes the implied

use of general register 2.
G4 Instruction execution includes the implied

use of general register 4.
GM Instruction execution includes the implied

use of multiple general registers.
GS Instruction execution includes the implied

use of general register 1 as the
subsystem-identification word.

HX HFP-extensions facility.
IF Fixed-point-overflow exception.
II Interruptible instruction.
IK Fixed-point-divide exception.
IR Immediate-and-relative-instruction facility.
I1 Access register 1 is implicitly designated

in the access-register mode.
I4 Access register 4 is implicitly designated

in the access-register mode.
L New condition code is loaded.
LS HFP-significance exception.
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MD Designation of access registers in the
access-register mode is model-
dependent.

MI Move-inverse facility.
MO Monitor event.
M1 Move-page facility 1.
M2 Move-page facility 2.
OP Operand exception.
P Privileged-operation exception.
PC Program-call-fast facility.
PL Perform-locked-operation facility.
Q Privileged-operation exception for semi-

privileged instructions.
QR Square-root facility.
R PER general-register alteration event.
R± R± field designates an access register in

the access-register mode.
R² R² field designates an access register in

the access-register mode.
RP Resume-program facility.
RR RR instruction format.
RRE RRE instruction format.
RRF RRF instruction format.
RS RS instruction format.
RX RX instruction format.
RXE RXE instruction format.
RXF RXF instruction format.
S S instruction format.
SA Set-address-space-control-fast facility.
SE Special operation, stack-empty, stack-

specification, and stack-type exceptions.
SF Special-operation, stack-full, and stack-

specification exceptions.
SG Subspace-group facility.
SI SI instruction format.

| SN Store-system-information facility.
SO Special-operation exception.
SP Specification exception.
SQ HFP-square-root exception.
SR String-instruction facility.
SS SS instruction format.
SSE SSE instruction format.
ST PER storage-alteration event.
SU PER store-using-real-address event.
SW Special-operation exception and space-

switch event.
T Trace exceptions (which include trace

table, addressing, and low-address pro-
tection).

TR Trap facility
U Condition code is unpredictable.
U± R± field designates an access register

unconditionally.
U² R² field designates an access register

unconditionally.
UB R± and R³ fields designate access regis-

ters unconditionally, and B² field desig-
nates an access register in the
access-register mode.

Xi IEEE invalid-operation condition.
Xo IEEE overflow condition.
Xu IEEE underflow condition.
Xx IEEE inexact condition.
Xz IEEE division-by-zero condition.
Zñ Additional exceptions and events for

PROGRAM CALL (which include
AFX-translation, ASN-translation-
specification, ASX-translation,
EX-translation, LX-translation, PC-
translation-specification, special-
operation, stack-full, and
stack-specification exceptions and space-
switch event).

Zò Additional exceptions and events for
PROGRAM TRANSFER (which include
AFX-translation, ASN-translation-
specification, ASX-translation, primary-
authority, and special-operation
exceptions and space-switch event).

Zó Additional exceptions for SET SEC-
ONDARY ASN (which include AFX trans-
lation, ASN-translation-specification, ASX
translation, secondary authority, and
special operation).

Zô Additional exceptions and events for
PROGRAM RETURN (which include
AFX-translation, ASN-translation-
specification, ASX-translation, secondary-
authority, special-operation, stack-empty,
stack-operation, stack-specification, and
stack-type exceptions and space-switch
event).

Zõ Additional exceptions and events for
PROGRAM CALL FAST (which includ
EX-translation, special-operation, stack-
full, and stack-specification exceptions
and space-switch event).
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│ADD │AR │RR C │ │ IF │ R │ │1A │7-1ð│

│ADD │A │RX C │ A │ IF │ R │ B²│5A │7-1ð│

│ADD HALFWORD │AH │RX C │ A │ IF │ R │ B²│4A │7-1ð│

│ADD HALFWORD IMMEDIATE │AHI │RI C IR│ │ IF │ R │ │A7A │7-1ð│

│ADD LOGICAL │ALR │RR C │ │ │ R │ │1E │7-11│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ADD LOGICAL │AL │RX C │ A │ │ R │ B²│5E │7-11│

│ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B± B²│FA │8-5│

│ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │36 │18-8│

│ADD NORMALIZED (long HFP) │ADR │RR C │ SP│Da EU EO LS │ │ │2A │18-8│

│ADD NORMALIZED (long HFP) │AD │RX C │ A SP│Da EU EO LS │ │ B²│6A │18-8│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ADD NORMALIZED (short HFP) │AER │RR C │ SP│Da EU EO LS │ │ │3A │18-8│

│ADD NORMALIZED (short HFP) │AE │RX C │ A SP│Da EU EO LS │ │ B²│7A │18-8│

│ADD UNNORMALIZED (long HFP) │AWR │RR C │ SP│Da EO LS │ │ │2E │18-9│

│ADD UNNORMALIZED (long HFP) │AW │RX C │ A SP│Da EO LS │ │ B²│6E │18-9│

│ADD UNNORMALIZED (short HFP) │AUR │RR C │ SP│Da EO LS │ │ │3E │18-9│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ADD UNNORMALIZED (short HFP) │AU │RX C │ A SP│Da EO LS │ │ B²│7E │18-9│

│ADD (extended BFP) │AXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34A│19-18│

│ADD (long BFP) │ADBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31A│19-18│

│ADD (long BFP) │ADB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1A│19-18│

│ADD (short BFP) │AEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðA│19-18│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ADD (short BFP) │AEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðA│19-18│

│AND │NR │RR C │ │ │ R │ │14 │7-11│

│AND │N │RX C │ A │ │ R │ B²│54 │7-11│

│AND (character) │NC │SS C │ A │ │ ST│B± B²│D4 │7-11│

│AND (immediate) │NI │SI C │ A │ │ ST│B± │94 │7-11│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BRANCH AND LINK │BALR │RR │ │ T │B R │ │ð5 │7-12│

│BRANCH AND LINK │BAL │RX │ │ │B R │ │45 │7-12│

│BRANCH AND SAVE │BASR │RR │ │ T │B R │ │ðD │7-13│

│BRANCH AND SAVE │BAS │RX │ │ │B R │ │4D │7-13│

│BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B R │ │ðC │7-13│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BRANCH AND SET MODE │BSM │RR │ │ │B R │ │ðB │7-14│

│BRANCH ON CONDITION │BCR │RR │ │ ¢ñ │B │ │ð7 │7-14│

│BRANCH ON CONDITION │BC │RX │ │ │B │ │47 │7-14│

│BRANCH ON COUNT │BCTR │RR │ │ │B R │ │ð6 │7-15│

│BRANCH ON COUNT │BCT │RX │ │ │B R │ │46 │7-15│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BRANCH ON INDEX HIGH │BXH │RS │ │ │B R │ │86 │7-16│

│BRANCH ON INDEX LOW OR EQUAL │BXLE │RS │ │ │B R │ │87 │7-16│

│BRANCH RELATIVE AND SAVE │BRAS │RI IR│ │ │B R │ │A75 │7-17│

│BRANCH RELATIVE ON CONDITION │BRC │RI IR│ │ │B │ │A74 │7-17│

│BRANCH RELATIVE ON COUNT │BRCT │RI IR│ │ │B R │ │A76 │7-18│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BRANCH RELATIVE ON INDEX HIGH │BRXH │RSI IR│ │ │B R │ │84 │7-19│

│BRANCH RELATIVE ON INDEX LOW OR EQ. │BRXLE│RSI IR│ │ │B R │ │85 │7-19│

│BRANCH AND SET AUTHORITY │BSA │RRE BS│Q Añ │SO T │B R │ │B25A│1ð-6│

│BRANCH AND STACK │BAKR │RRE │ Añ │SF T │B ST│ │B24ð│1ð-9│

│BRANCH IN SUBSPACE GROUP │BSG │RRE SG│ Añ │SO T │B R │ R²│B258│1ð-12│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 1 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│CHECKSUM │CKSM │RRE C CK│ A SP│ │ R │ R²│B241│7-2ð│

│CLEAR SUBCHANNEL │CSCH │S C │P │OP ¢ GS │ │ │B23ð│14-4│

│COMPARE │CR │RR C │ │ │ │ │19 │7-23│

│COMPARE │C │RX C │ A │ │ │ B²│59 │7-23│

│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ R │I1 │B21A│7-23│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE AND SWAP │CS │RS C │ A SP│ $ │ R ST│ B²│BA │7-27│

│COMPARE DOUBLE AND SWAP │CDS │RS C │ A SP│ $ │ R ST│ B²│BB │7-27│

│COMPARE HALFWORD │CH │RX C │ A │ │ │ B²│49 │7-29│

│COMPARE HALFWORD IMMEDIATE │CHI │RI C IR│ │ │ │ │A7E │7-29│

│COMPARE LOGICAL │CLR │RR C │ │ │ │ │15 │7-29│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE LOGICAL │CL │RX C │ A │ │ │ B²│55 │7-29│

│COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B± B²│D5 │7-29│

│COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B± │95 │7-29│

│COMPARE LOGICAL C. UNDER MASK │CLM │RS C │ A │ │ │ B²│BD │7-3ð│

│COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ R │R± R²│ðF │7-3ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C CM│ A SP│ │ R │R± R³│A9 │7-32│

│COMPARE LOGICAL STRING │CLST │RRE C SR│ A SP│ Gð │ R │R± R²│B25D│7-34│

│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R± R²│B257│7-36│

│COMPARE DECIMAL │CP │SS C │ A │Dd │ │B± B²│F9 │8-6│

│COMPARE (extended HFP) │CXR │RRE C HX│ SP│Da │ │ │B369│18-1ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE (long HFP) │CDR │RR C │ SP│Da │ │ │29 │18-1ð│

│COMPARE (long HFP) │CD │RX C │ A SP│Da │ │ B²│69 │18-1ð│

│COMPARE (short HFP) │CER │RR C │ SP│Da │ │ │39 │18-1ð│

│COMPARE (short HFP) │CE │RX C │ A SP│Da │ │ B²│79 │18-1ð│

│COMPARE (extended BFP) │CXBR │RRE C BF│ SP│Db Xi │ │ │B349│19-23│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE (long BFP) │CDBR │RRE C BF│ │Db Xi │ │ │B319│19-23│

│COMPARE (long BFP) │CDB │RXE C BF│ A │Db Xi │ │ B²│ED19│19-23│

│COMPARE (short BFP) │CEBR │RRE C BF│ │Db Xi │ │ │B3ð9│19-23│

│COMPARE (short BFP) │CEB │RXE C BF│ A │Db Xi │ │ B²│EDð9│19-23│

│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C BF│ SP│Db Xi │ │ │B348│19-24│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C BF│ │Db Xi │ │ │B318│19-24│

│COMPARE AND SIGNAL (long BFP) │KDB │RXE C BF│ A │Db Xi │ │ B²│ED18│19-24│

│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C BF│ │Db Xi │ │ │B3ð8│19-24│

│COMPARE AND SIGNAL (short BFP) │KEB │RXE C BF│ A │Db Xi │ │ B²│EDð8│19-24│

│CONVERT TO BINARY │CVB │RX │ A │Dd IK │ R │ B²│4F │7-39│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CONVERT TO DECIMAL │CVD │RX │ A │ │ ST│ B²│4E │7-39│

| │CONVERT UNICODE TO UTF-8 │CUUTF│RRE C ET│ A SP│ │ R ST│R± R²│B2A6│7-4ð│

| │CONVERT UTF-8 TO UNICODE │CUTFU│RRE C ET│ A SP│ │ R ST│R± R²│B2A7│7-42│

│CONVERT BFP TO HFP (long) │THDR │RRE C FX│ │Da │ │ │B359│9-1ð│

│CONVERT BFP TO HFP (short to long) │THDER│RRE C FX│ │Da │ │ │B358│9-1ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CONVERT HFP TO BFP (long) │TBDR │RRF C FX│ SP│Da │ │ │B351│9-11│

│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C FX│ SP│Da │ │ │B35ð│9-11│

│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE HX│ SP│Da │ │ │B3B6│18-11│

│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE HX│ │Da │ │ │B3B5│18-11│

│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE HX│ │Da │ │ │B3B4│18-11│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 2 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C HX│ SP│Da │ R │ │B3BA│18-11│

│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C HX│ SP│Da │ R │ │B3B9│18-11│

│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C HX│ SP│Da │ R │ │B3B8│18-11│

│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE BF│ SP│Db │ │ │B396│19-26│

│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE BF│ │Db │ │ │B395│19-26│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE BF│ │Db Xx│ │ │B394│19-26│

│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C BF│ SP│Db Xi Xx│ R │ │B39A│19-27│

│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C BF│ SP│Db Xi Xx│ R │ │B399│19-27│

│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C BF│ SP│Db Xi Xx│ R │ │B398│19-27│

│COPY ACCESS │CPYA │RRE │ │ │ │U± U²│B24D│7-45│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DIAGNOSE │ │ DM │P DM │ │ │ MD│83 │1ð-16│

│DIVIDE │DR │RR │ SP│ IK │ R │ │1D │7-45│

│DIVIDE │D │RX │ A SP│ IK │ R │ B²│5D │7-45│

│DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B± B²│FD │8-6│

│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │B22D│18-12│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DIVIDE (long HFP) │DDR │RR │ SP│Da EU EO FK │ │ │2D │18-12│

│DIVIDE (long HFP) │DD │RX │ A SP│Da EU EO FK │ │ B²│6D │18-12│

│DIVIDE (short HFP) │DER │RR │ SP│Da EU EO FK │ │ │3D │18-12│

│DIVIDE (short HFP) │DE │RX │ A SP│Da EU EO FK │ │ B²│7D │18-12│

│DIVIDE (extended BFP) │DXBR │RRE BF│ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│19-29│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DIVIDE (long BFP) │DDBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B31D│19-29│

│DIVIDE (long BFP) │DDB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│ED1D│19-29│

│DIVIDE (short BFP) │DEBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B3ðD│19-29│

│DIVIDE (short BFP) │DEB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│EDðD│19-29│

│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │B35B│19-3ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │B353│19-3ð│

│EDIT │ED │SS C │ A │Dd │ ST│B± B²│DE │8-7│

│EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ R ST│B± B²│DF │8-11│

│EXCLUSIVE OR │XR │RR C │ │ │ R │ │17 │7-45│

│EXCLUSIVE OR │X │RX C │ A │ │ R │ B²│57 │7-45│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B± B²│D7 │7-45│

│EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B± │97 │7-45│

│EXECUTE │EX │RX │ AI SP│ EX │ │ │44 │7-46│

│EXTRACT ACCESS │EAR │RRE │ │ │ R │ U²│B24F│7-47│

│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ R │ │B226│1ð-17│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ R │ │B227│1ð-17│

│EXTRACT STACKED REGISTERS │EREG │RRE │ Añ │SE │ R │U± U²│B249│1ð-18│

│EXTRACT STACKED STATE │ESTA │RRE C │ Añ SP│SE │ R │ │B24A│1ð-2ð│

│EXTRACT FPC │EFPC │RRE BF│ │Db │ │ │B38C│19-35│

│HALT SUBCHANNEL │HSCH │S C │P │OP ¢ GS │ │ │B231│14-5│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│HALVE (long HFP) │HDR │RR │ SP│Da EU │ │ │24 │18-13│

│HALVE (short HFP) │HER │RR │ SP│Da EU │ │ │34 │18-13│

│INSERT CHARACTER │IC │RX │ A │ │ R │ B²│43 │7-47│

│INSERT CHARACTERS UNDER MASK │ICM │RS C │ A │ │ R │ B²│BF │7-47│

│INSERT PROGRAM MASK │IPM │RRE │ │ │ R │ │B222│7-48│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 3 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ R │ │B224│1ð-21│

│INSERT PSW KEY │IPK │S │Q │ G2 │ R │ │B2ðB│1ð-22│

│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P Añ │ │ │ │B229│1ð-23│

│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q Añ │SO │ R │ R²│B223│1ð-23│

│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P Añ │ $ │ │ │B221│1ð-24│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD │LR │RR │ │ │ R │ │18 │7-48│

│LOAD │L │RX │ A │ │ R │ B²│58 │7-48│

│LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│9A │7-49│

│LOAD ADDRESS │LA │RX │ │ │ R │ │41 │7-49│

│LOAD ADDRESS EXTENDED │LAE │RX │ │ │ R │U± BP│51 │7-49│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD AND TEST │LTR │RR C │ │ │ R │ │12 │7-5ð│

│LOAD COMPLEMENT │LCR │RR C │ │ IF │ R │ │13 │7-5ð│

│LOAD HALFWORD │LH │RX │ A │ │ R │ B²│48 │7-51│

│LOAD HALFWORD IMMEDIATE │LHI │RI IR│ │ │ R │ │A78 │7-51│

│LOAD MULTIPLE │LM │RS │ A │ │ R │ B²│98 │7-51│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD NEGATIVE │LNR │RR C │ │ │ R │ │11 │7-51│

│LOAD POSITIVE │LPR │RR C │ │ IF │ R │ │1ð │7-52│

│LOAD (extended) │LXR │RRE FX│ SP│Da │ │ │B365│9-12│

│LOAD (long) │LDR │RR │ SP│Da │ │ │28 │9-12│

│LOAD (long) │LD │RX │ A SP│Da │ │ B²│68 │9-12│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD (short) │LER │RR │ SP│Da │ │ │38 │9-12│

│LOAD (short) │LE │RX │ A SP│Da │ │ B²│78 │9-12│

│LOAD ZERO (extended) │LZXR │RRE FX│ SP│Da │ │ │B376│9-13│

│LOAD ZERO (long) │LZDR │RRE FX│ │Da │ │ │B375│9-13│

│LOAD ZERO (short) │LZER │RRE FX│ │Da │ │ │B374│9-13│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P Añ SP│AS │ │B± │E5ðð│1ð-26│

│LOAD CONTROL │LCTL │RS │P A SP│ │ │ B²│B7 │1ð-35│

│LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B²│82 │1ð-35│

│LOAD REAL ADDRESS │LRA │RX C │P Añ │AT │ R │ BP│B1 │1ð-36│

│LOAD USING REAL ADDRESS │LURA │RRE │P Añ SP│ │ R │ │B24B│1ð-38│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD AND TEST (extended HFP) │LTXR │RRE C HX│ SP│Da │ │ │B362│18-14│

│LOAD AND TEST (long HFP) │LTDR │RR C │ SP│Da │ │ │22 │18-14│

│LOAD AND TEST (short HFP) │LTER │RR C │ SP│Da │ │ │32 │18-14│

│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C HX│ SP│Da │ │ │B363│18-14│

│LOAD COMPLEMENT (long HFP) │LCDR │RR C │ SP│Da │ │ │23 │18-14│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD COMPLEMENT (short HFP) │LCER │RR C │ SP│Da │ │ │33 │18-14│

│LOAD FP INTEGER (extended HFP) │FIXR │RRE HX│ SP│Da │ │ │B367│18-15│

│LOAD FP INTEGER (long HFP) │FIDR │RRE HX│ │Da │ │ │B37F│18-15│

│LOAD FP INTEGER (short HFP) │FIER │RRE HX│ │Da │ │ │B377│18-15│

│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE HX│ SP│Da │ │ │B325│18-15│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE HX│ A SP│Da │ │ B²│ED25│18-15│

│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE HX│ SP│Da │ │ │B326│18-15│

│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE HX│ A SP│Da │ │ B²│ED26│18-15│

│LOAD LENGTHENED (short to long HFP) │LDER │RRE HX│ │Da │ │ │B324│18-15│

│LOAD LENGTHENED (short to long HFP) │LDE │RXE HX│ A │Da │ │ B²│ED24│18-15│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 4 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│LOAD NEGATIVE (extended HFP) │LNXR │RRE C HX│ SP│Da │ │ │B361│18-16│

│LOAD NEGATIVE (long HFP) │LNDR │RR C │ SP│Da │ │ │21 │18-16│

│LOAD NEGATIVE (short HFP) │LNER │RR C │ SP│Da │ │ │31 │18-16│

│LOAD POSITIVE (extended HFP) │LPXR │RRE C HX│ SP│Da │ │ │B36ð│18-17│

│LOAD POSITIVE (long HFP) │LPDR │RR C │ SP│Da │ │ │2ð │18-17│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD POSITIVE (short HFP) │LPER │RR C │ SP│Da │ │ │3ð │18-17│

│LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │25 │18-17│

│LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │25 │19-4ð│

│LOAD ROUNDED (extended to short HFP)│LEXR │RRE HX│ SP│Da EO │ │ │B366│18-17│

│LOAD ROUNDED (long to short HFP) │LEDR │RR │ SP│Da EO │ │ │35 │18-17│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD ROUNDED (long to short HFP) │LRER │RR │ SP│Da EO │ │ │35 │19-4ð│

│LOAD AND TEST (extended BFP) │LTXBR│RRE C BF│ SP│Db Xi │ │ │B342│19-36│

│LOAD AND TEST (long BFP) │LTDBR│RRE C BF│ │Db Xi │ │ │B312│19-36│

│LOAD AND TEST (short BFP) │LTEBR│RRE C BF│ │Db Xi │ │ │B3ð2│19-36│

│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C BF│ SP│Db │ │ │B343│19-36│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C BF│ │Db │ │ │B313│19-36│

│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C BF│ │Db │ │ │B3ð3│19-36│

│LOAD FP INTEGER (extended BFP) │FIXBR│RRF BF│ SP│Db Xi Xx│ │ │B347│19-37│

│LOAD FP INTEGER (long BFP) │FIDBR│RRF BF│ SP│Db Xi Xx│ │ │B35F│19-37│

│LOAD FP INTEGER (short BFP) │FIEBR│RRF BF│ SP│Db Xi Xx│ │ │B357│19-37│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD FPC │LFPC │S BF│ A SP│Db │ │ B²│B29D│19-38│

│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE BF│ SP│Db Xi │ │ │B3ð5│19-39│

│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE BF│ A SP│Db Xi │ │ B²│EDð5│19-39│

│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE BF│ SP│Db Xi │ │ │B3ð6│19-39│

│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE BF│ A SP│Db Xi │ │ B²│EDð6│19-39│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE BF│ │Db Xi │ │ │B3ð4│19-39│

│LOAD LENGTHENED (short to long BFP) │LDEB │RXE BF│ A │Db Xi │ │ B²│EDð4│19-39│

│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C BF│ SP│Db │ │ │B341│19-39│

│LOAD NEGATIVE (long BFP) │LNDBR│RRE C BF│ │Db │ │ │B311│19-39│

│LOAD NEGATIVE (short BFP) │LNEBR│RRE C BF│ │Db │ │ │B3ð1│19-39│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD POSITIVE (extended BFP) │LPXBR│RRE C BF│ SP│Db │ │ │B34ð│19-4ð│

│LOAD POSITIVE (long BFP) │LPDBR│RRE C BF│ │Db │ │ │B31ð│19-4ð│

│LOAD POSITIVE (short BFP) │LPEBR│RRE C BF│ │Db │ │ │B3ðð│19-4ð│

│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B345│19-4ð│

│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B346│19-4ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LOAD ROUNDED (long to short BFP) │LEDBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │B344│19-4ð│

│MODIFY STACKED STATE │MSTA │RRE │ Añ SP│SE │ ST│ │B247│1ð-38│

│MODIFY SUBCHANNEL │MSCH │S C │P A SP│OP ¢ GS │ │ B²│B232│14-6│

│MONITOR CALL │MC │SI │ SP│ MO │ │ │AF │7-52│

│MOVE (character) │MVC │SS │ A │ │ ST│B± B²│D2 │7-53│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MOVE (immediate) │MVI │SI │ A │ │ ST│B± │92 │7-53│

│MOVE INVERSE │MVCIN│SS MI│ A │ │ ST│B± B²│E8 │7-53│

│MOVE LONG │MVCL │RR C │ A SP│II │ R ST│R± R²│ðE │7-54│

│MOVE LONG EXTENDED │MVCLE│RS C CM│ A SP│ │ R ST│R± R³│A8 │7-57│

│MOVE NUMERICS │MVN │SS │ A │ │ ST│B± B²│D1 │7-6ð│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 5 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│MOVE PAGE (facility 1) │MVPG │RRE C M1│ Añ SP│ Gð │ ST│R± R²│B254│7-6ð│

│MOVE STRING │MVST │RRE C SR│ A SP│ Gð │ R ST│R± R²│B255│7-62│

│MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B± B²│F1 │7-63│

│MOVE ZONES │MVZ │SS │ A │ │ ST│B± B²│D3 │7-64│

│MOVE PAGE (facility 2) │MVPG │RRE C M2│Q Añ SP│ Gð │ ST│R± R²│B254│7-6ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │DA │1ð-43│

│MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │DB │1ð-43│

│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B± B²│E5ðF│1ð-45│

│MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B± B²│D9 │1ð-46│

│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B± B²│E5ðE│1ð-47│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY │MR │RR │ SP│ │ R │ │1C │7-65│

│MULTIPLY │M │RX │ A SP│ │ R │ B²│5C │7-65│

│MULTIPLY HALFWORD │MH │RX │ A │ │ R │ B²│4C │7-65│

│MULTIPLY HALFWORD IMMEDIATE │MHI │RI IR│ │ │ R │ │A7C │7-65│

│MULTIPLY SINGLE │MSR │RRE IR│ │ │ R │ │B252│7-66│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY SINGLE │MS │RX IR│ A │ │ R │ B²│71 │7-66│

│MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B± B²│FC │8-11│

│MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │26 │18-18│

│MULTIPLY (long HFP) │MDR │RR │ SP│Da EU EO │ │ │2C │18-18│

│MULTIPLY (long HFP) │MD │RX │ A SP│Da EU EO │ │ B²│6C │18-18│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │27 │18-18│

│MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B²│67 │18-18│

│MULTIPLY (short HFP) │MEER │RRE HX│ │Da EU EO │ │ │B337│18-18│

│MULTIPLY (short HFP) │MEE │RXE HX│ A │Da EU EO │ │ B²│ED37│18-18│

│MULTIPLY (short to long HFP) │MDER │RR │ SP│Da EU EO │ │ │3C │18-18│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY (short to long HFP) │MER │RR │ SP│Da EU EO │ │ │3C │18-18│

│MULTIPLY (short to long HFP) │MDE │RX │ A SP│Da EU EO │ │ B²│7C │18-18│

│MULTIPLY (short to long HFP) │ME │RX │ A SP│Da EU EO │ │ B²│7C │18-18│

│MULTIPLY (extended BFP) │MXBR │RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B34C│19-41│

│MULTIPLY (long BFP) │MDBR │RRE BF│ │Db Xi Xo Xu Xx│ │ │B31C│19-41│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY (long BFP) │MDB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1C│19-41│

│MULTIPLY (long to extended BFP) │MXDBR│RRE BF│ SP│Db Xi │ │ │B3ð7│19-41│

│MULTIPLY (long to extended BFP) │MXDB │RXE BF│ A SP│Db Xi │ │ B²│EDð7│19-41│

│MULTIPLY (short BFP) │MEEBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │B317│19-41│

│MULTIPLY (short BFP) │MEEB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED17│19-41│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY (short to long BFP) │MDEBR│RRE BF│ │Db Xi │ │ │B3ðC│19-41│

│MULTIPLY (short to long BFP) │MDEB │RXE BF│ A │Db Xi │ │ B²│EDðC│19-41│

│MULTIPLY AND ADD (long BFP) │MADBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B31E│19-43│

│MULTIPLY AND ADD (long BFP) │MADB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1E│19-43│

│MULTIPLY AND ADD (short BFP) │MAEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðE│19-43│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MULTIPLY AND ADD (short BFP) │MAEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðE│19-43│

│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B31F│19-43│

│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1F│19-43│

│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðF│19-43│

│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðF│19-43│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 6 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│OR │OR │RR C │ │ │ R │ │16 │7-66│

│OR │O │RX C │ A │ │ R │ B²│56 │7-66│

│OR (character) │OC │SS C │ A │ │ ST│B± B²│D6 │7-66│

│OR (immediate) │OI │SI C │ A │ │ ST│B± │96 │7-66│

│PACK │PACK │SS │ A │ │ ST│B± B²│F2 │7-67│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│PERFORM LOCKED OPERATION │PLO │SS C PL│ A SP│ $ GM │ R ST│ FC│EE │7-68│

│PROGRAM CALL │PC │S │Q Añ │Zñ T ¢ GM │B R ST│ │B218│1ð-48│

│PROGRAM CALL FAST │PCF │S PC│ Añ │Zõ ¢ G4 │B R ST│ │B218│1ð-59│

│PROGRAM RETURN │PR │E U │ Añ SP│Zô T ¢ò │B R ST│ │ð1ð1│1ð-63│

│PROGRAM TRANSFER │PT │RRE │Q Añ SP│Zò T ¢ │B │ │B228│1ð-66│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│PURGE ALB │PALB │RRE │P │ $ │ │ │B248│1ð-72│

│PURGE TLB │PTLB │S │P │ $ │ │ │B2ðD│1ð-72│

│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P Añ │ │ │ │B22A│1ð-72│

│RESET CHANNEL PATH │RCHP │S C │P │OP ¢ G1 │ │ │B23B│14-7│

│RESUME PROGRAM │RP │S L RP│Q A SP│SW T │B R │ B²│B277│1ð-73│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│RESUME SUBCHANNEL │RSCH │S C │P │OP ¢ GS │ │ │B238│14-8│

│SEARCH STRING │SRST │RRE C SR│ A SP│ Gð │ R │ R²│B25E│7-79│

│SET PROGRAM MASK │SPM │RR L │ │ │ │ │ð4 │7-81│

│SET ACCESS │SAR │RRE │ │ │ │U± │B24E│7-81│

│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │B219│1ð-75│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SET ADDRESS SPACE CONTROL FAST │SACF │S SA│Q SP│SW │ │ │B279│1ð-75│

│SET CLOCK │SCK │S C │P A SP│ │ │ B²│B2ð4│1ð-76│

│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B²│B2ð6│1ð-77│

| │SET CLOCK PROGRAMMABLE FIELD │SCKPF│E EK│P SP│ Gð │ │ │ð1ð7│1ð-78│

│SET CPU TIMER │SPT │S │P A SP│ │ │ B²│B2ð8│1ð-78│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SET PREFIX │SPX │S │P A SP│ $ │ │ B²│B21ð│1ð-78│

│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │B2ðA│1ð-79│

│SET SECONDARY ASN │SSAR │RRE │ Añ │Zó T ¢ │ │ │B225│1ð-79│

│SET STORAGE KEY EXTENDED │SSKE │RRE │P Añ │ ¢ │ │ │B22B│1ð-83│

│SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B²│8ð │1ð-83│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SET ADDRESS LIMIT │SAL │S │P │OP ¢ G1 │ │ │B237│14-1ð│

│SET CHANNEL MONITOR │SCHM │S │P │OP ¢ GM │ │ │B23C│14-11│

│SET FPC │SFPC │RRE BF│ SP│Db │ │ │B384│19-45│

│SET ROUNDING MODE │SRNM │S BF│ │Db │ │ │B299│19-45│

│SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ R │ │8F │7-81│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ R │ │8D │7-82│

│SHIFT LEFT SINGLE │SLA │RS C │ │ IF │ R │ │8B │7-83│

│SHIFT LEFT SINGLE LOGICAL │SLL │RS │ │ │ R │ │89 │7-83│

│SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ R │ │8E │7-83│

│SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ R │ │8C │7-84│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SHIFT RIGHT SINGLE │SRA │RS C │ │ │ R │ │8A │7-84│

│SHIFT RIGHT SINGLE LOGICAL │SRL │RS │ │ │ R │ │88 │7-85│

│SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B± │Fð │8-12│

│SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ R │ │AE │1ð-83│

│SQUARE ROOT (extended HFP) │SQXR │RRE HX│ SP│Da SQ │ │ │B336│18-2ð│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 7 of 9). Instructions Arranged by Name

  Appendix B. Lists of Instructions B-9



  
 

┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│SQUARE ROOT (long HFP) │SQDR │RRE QR│ SP│Da SQ │ │ │B244│18-2ð│

│SQUARE ROOT (long HFP) │SQD │RXE HX│ A │Da SQ │ │ B²│ED35│18-2ð│

│SQUARE ROOT (short HFP) │SQER │RRE QR│ SP│Da SQ │ │ │B245│18-2ð│

│SQUARE ROOT (short HFP) │SQE │RXE HX│ A │Da SQ │ │ B²│ED34│18-2ð│

│SQUARE ROOT (extended BFP) │SQXBR│RRE BF│ SP│Db Xi Xx│ │ │B316│19-46│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SQUARE ROOT (long BFP) │SQDBR│RRE BF│ │Db Xi Xx│ │ │B315│19-46│

│SQUARE ROOT (long BFP) │SQDB │RXE BF│ A │Db Xi Xx│ │ B²│ED15│19-46│

│SQUARE ROOT (short BFP) │SQEBR│RRE BF│ │Db Xi Xx│ │ │B314│19-46│

│SQUARE ROOT (short BFP) │SQEB │RXE BF│ A │Db Xi Xx│ │ B²│ED14│19-46│

│START SUBCHANNEL │SSCH │S C │P A SP│OP ¢ GS │ │ B²│B233│14-13│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STORE │ST │RX │ A │ │ ST│ B²│5ð │7-85│

│STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│9B │7-85│

│STORE CHARACTER │STC │RX │ A │ │ ST│ B²│42 │7-86│

│STORE CHARACTERS UNDER MASK │STCM │RS │ A │ │ ST│ B²│BE │7-86│

│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B²│B2ð5│7-87│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │STORE CLOCK EXTENDED │STCKE│S C EK│ A │ $ │ ST│ B²│B278│7-87│

│STORE HALFWORD │STH │RX │ A │ │ ST│ B²│4ð │7-89│

│STORE MULTIPLE │STM │RS │ A │ │ ST│ B²│9ð │7-89│

│STORE (long) │STD │RX │ A SP│Da │ ST│ B²│6ð │9-13│

│STORE (short) │STE │RX │ A SP│Da │ ST│ B²│7ð │9-13│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B²│B2ð7│1ð-85│

│STORE CONTROL │STCTL│RS │P A SP│ │ ST│ B²│B6 │1ð-85│

│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B²│B212│1ð-85│

│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B²│B2ð2│1ð-86│

│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B²│B2ð9│1ð-86│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STORE PREFIX │STPX │S │P A SP│ │ ST│ B²│B211│1ð-87│

| │STORE SYSTEM INFORMATION │STSI │S C SN│P A SP│ │ R ST│ B²│B27D│1ð-87│

│STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B± │AC │1ð-96│

│STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B± │AD │1ð-97│

│STORE USING REAL ADDRESS │STURA│RRE │P Añ SP│ │ SU│ │B246│1ð-97│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STORE CHANNEL PATH STATUS │STCPS│S │P A SP│ ¢ │ ST│ B²│B23A│14-14│

│STORE CHANNEL REPORT WORD │STCRW│S C │P A SP│ ¢ │ ST│ B²│B239│14-15│

│STORE SUBCHANNEL │STSCH│S C │P A SP│OP ¢ GS │ ST│ B²│B234│14-15│

│STORE FPC │STFPC│S BF│ A │Db │ ST│ B²│B29C│19-46│

│SUBTRACT │SR │RR C │ │ IF │ R │ │1B │7-9ð│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SUBTRACT │S │RX C │ A │ IF │ R │ B²│5B │7-9ð│

│SUBTRACT HALFWORD │SH │RX C │ A │ IF │ R │ B²│4B │7-9ð│

│SUBTRACT LOGICAL │SLR │RR C │ │ │ R │ │1F │7-9ð│

│SUBTRACT LOGICAL │SL │RX C │ A │ │ R │ B²│5F │7-9ð│

│SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B± B²│FB │8-13│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │37 │18-21│

│SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ SP│Da EU EO LS │ │ │2B │18-21│

│SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A SP│Da EU EO LS │ │ B²│6B │18-21│

│SUBTRACT NORMALIZED (short HFP) │SER │RR C │ SP│Da EU EO LS │ │ │3B │18-21│

│SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A SP│Da EU EO LS │ │ B²│7B │18-21│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 8 of 9). Instructions Arranged by Name
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┌────────────────────────────────────┬─────┬────────────────────────────────────────────────┬────┬───────┐

│ │Mne- │ │Op │ Page │

│ Name │monic│ Characteristics │Code│ No. │

├────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ SP│Da EO LS │ │ │2F │18-22│

│SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A SP│Da EO LS │ │ B²│6F │18-22│

│SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ SP│Da EO LS │ │ │3F │18-22│

│SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A SP│Da EO LS │ │ B²│7F │18-22│

│SUBTRACT (extended BFP) │SXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34B│19-46│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SUBTRACT (long BFP) │SDBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31B│19-46│

│SUBTRACT (long BFP) │SDB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1B│19-46│

│SUBTRACT (short BFP) │SEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðB│19-46│

│SUBTRACT (short BFP) │SEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðB│19-46│

│SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │ðA │7-91│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│TEST AND SET │TS │S C │ A │ $ │ ST│ B²│93 │7-91│

│TEST UNDER MASK │TM │SI C │ A │ │ │B± │91 │7-92│

│TEST UNDER MASK HIGH │TMH │RI C IR│ │ │ │ │A7ð │7-92│

│TEST UNDER MASK LOW │TML │RI C IR│ │ │ │ │A71 │7-92│

│TEST ACCESS │TAR │RRE C │ Añ │AS │ │U± │B24C│1ð-98│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│TEST BLOCK │TB │RRE C │P Añ │II $ Gð │ R │ │B22C│1ð-1ð1│

│TEST PROTECTION │TPROT│SSE C │P Añ │ │ │B± │E5ð1│1ð-1ð3│

│TEST PENDING INTERRUPTION │TPI │S C │P Añ SP│ ¢ │ ST│ B²│B236│14-16│

│TEST SUBCHANNEL │TSCH │S C │P A SP│OP ¢ GS │ ST│ B²│B235│14-17│

│TEST DATA CLASS (extended BFP) │TCXB │RXE C BF│ SP│Db │ │ │ED12│19-47│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│TEST DATA CLASS (long BFP) │TCDB │RXE C BF│ │Db │ │ │ED11│19-47│

│TEST DATA CLASS (short BFP) │TCEB │RXE C BF│ │Db │ │ │ED1ð│19-47│

│TRACE │TRACE│RS │P A SP│ T ¢ │ │ B²│99 │1ð-1ð6│

│TRANSLATE │TR │SS │ A │ │ ST│B± B²│DC │7-93│

│TRANSLATE AND TEST │TRT │SS C │ A │ GM │ R │B± B²│DD │7-94│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │TRANSLATE EXTENDED │TRE │RRE C ET│ A SP│ │ R ST│R± R²│B2A5│7-94│

│TRAP │TRAP2│E TR│ A │SO T GM │B R ST│ │ð1FF│1ð-1ð6│

│TRAP │TRAP4│S TR│ A │SO T GM │B R ST│ │B2FF│1ð-1ð6│

│UNPACK │UNPK │SS │ A │ │ ST│B± B²│F3 │7-97│

│UPDATE TREE │UPT │E C │ A SP│II GM │ R ST│I4 │ð1ð2│7-97│

├────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B± B²│F8 │8-13│

└────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-1 (Part 9 of 9). Instructions Arranged by Name
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│ │DIAGNOSE │ DM │P DM │ │ │ MD│83 │1ð-16│

│A │ADD │RX C │ A │ IF │ R │ B²│5A │7-1ð│

│AD │ADD NORMALIZED (long HFP) │RX C │ A SP│Da EU EO LS │ │ B²│6A │18-8│

│ADB │ADD (long BFP) │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1A│19-18│

│ADBR │ADD (long BFP) │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31A│19-18│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ADR │ADD NORMALIZED (long HFP) │RR C │ SP│Da EU EO LS │ │ │2A │18-8│

│AE │ADD NORMALIZED (short HFP) │RX C │ A SP│Da EU EO LS │ │ B²│7A │18-8│

│AEB │ADD (short BFP) │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðA│19-18│

│AEBR │ADD (short BFP) │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðA│19-18│

│AER │ADD NORMALIZED (short HFP) │RR C │ SP│Da EU EO LS │ │ │3A │18-8│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│AH │ADD HALFWORD │RX C │ A │ IF │ R │ B²│4A │7-1ð│

│AHI │ADD HALFWORD IMMEDIATE │RI C IR│ │ IF │ R │ │A7A │7-1ð│

│AL │ADD LOGICAL │RX C │ A │ │ R │ B²│5E │7-11│

│ALR │ADD LOGICAL │RR C │ │ │ R │ │1E │7-11│

│AP │ADD DECIMAL │SS C │ A │Dd DF │ ST│B± B²│FA │8-5│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│AR │ADD │RR C │ │ IF │ R │ │1A │7-1ð│

│AU │ADD UNNORMALIZED (short HFP) │RX C │ A SP│Da EO LS │ │ B²│7E │18-9│

│AUR │ADD UNNORMALIZED (short HFP) │RR C │ SP│Da EO LS │ │ │3E │18-9│

│AW │ADD UNNORMALIZED (long HFP) │RX C │ A SP│Da EO LS │ │ B²│6E │18-9│

│AWR │ADD UNNORMALIZED (long HFP) │RR C │ SP│Da EO LS │ │ │2E │18-9│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│AXBR │ADD (extended BFP) │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34A│19-18│

│AXR │ADD NORMALIZED (extended HFP) │RR C │ SP│Da EU EO LS │ │ │36 │18-8│

│BAKR │BRANCH AND STACK │RRE │ Añ │SF T │B ST│ │B24ð│1ð-9│

│BAL │BRANCH AND LINK │RX │ │ │B R │ │45 │7-12│

│BALR │BRANCH AND LINK │RR │ │ T │B R │ │ð5 │7-12│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BAS │BRANCH AND SAVE │RX │ │ │B R │ │4D │7-13│

│BASR │BRANCH AND SAVE │RR │ │ T │B R │ │ðD │7-13│

│BASSM│BRANCH AND SAVE AND SET MODE │RR │ │ T │B R │ │ðC │7-13│

│BC │BRANCH ON CONDITION │RX │ │ │B │ │47 │7-14│

│BCR │BRANCH ON CONDITION │RR │ │ ¢ñ │B │ │ð7 │7-14│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BCT │BRANCH ON COUNT │RX │ │ │B R │ │46 │7-15│

│BCTR │BRANCH ON COUNT │RR │ │ │B R │ │ð6 │7-15│

│BRAS │BRANCH RELATIVE AND SAVE │RI IR│ │ │B R │ │A75 │7-17│

│BRC │BRANCH RELATIVE ON CONDITION │RI IR│ │ │B │ │A74 │7-17│

│BRCT │BRANCH RELATIVE ON COUNT │RI IR│ │ │B R │ │A76 │7-18│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BRXH │BRANCH RELATIVE ON INDEX HIGH │RSI IR│ │ │B R │ │84 │7-19│

│BRXLE│BRANCH RELATIVE ON INDEX LOW OR EQ. │RSI IR│ │ │B R │ │85 │7-19│

│BSA │BRANCH AND SET AUTHORITY │RRE BS│Q Añ │SO T │B R │ │B25A│1ð-6│

│BSG │BRANCH IN SUBSPACE GROUP │RRE SG│ Añ │SO T │B R │ R²│B258│1ð-12│

│BSM │BRANCH AND SET MODE │RR │ │ │B R │ │ðB │7-14│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│BXH │BRANCH ON INDEX HIGH │RS │ │ │B R │ │86 │7-16│

│BXLE │BRANCH ON INDEX LOW OR EQUAL │RS │ │ │B R │ │87 │7-16│

│C │COMPARE │RX C │ A │ │ │ B²│59 │7-23│

│CD │COMPARE (long HFP) │RX C │ A SP│Da │ │ B²│69 │18-1ð│

│CDB │COMPARE (long BFP) │RXE C BF│ A │Db Xi │ │ B²│ED19│19-23│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 1 of 9). Instructions Arranged by Mnemonic
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│CDBR │COMPARE (long BFP) │RRE C BF│ │Db Xi │ │ │B319│19-23│

│CDFBR│CONVERT FROM FIXED (32 to long BFP) │RRE BF│ │Db │ │ │B395│19-26│

│CDFR │CONVERT FROM FIXED (32 to long HFP) │RRE HX│ │Da │ │ │B3B5│18-11│

│CDR │COMPARE (long HFP) │RR C │ SP│Da │ │ │29 │18-1ð│

│CDS │COMPARE DOUBLE AND SWAP │RS C │ A SP│ $ │ R ST│ B²│BB │7-27│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CE │COMPARE (short HFP) │RX C │ A SP│Da │ │ B²│79 │18-1ð│

│CEB │COMPARE (short BFP) │RXE C BF│ A │Db Xi │ │ B²│EDð9│19-23│

│CEBR │COMPARE (short BFP) │RRE C BF│ │Db Xi │ │ │B3ð9│19-23│

│CEFBR│CONVERT FROM FIXED (32 to short BFP)│RRE BF│ │Db Xx│ │ │B394│19-26│

│CEFR │CONVERT FROM FIXED (32 to short HFP)│RRE HX│ │Da │ │ │B3B4│18-11│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CER │COMPARE (short HFP) │RR C │ SP│Da │ │ │39 │18-1ð│

│CFC │COMPARE AND FORM CODEWORD │S C │ A SP│II GM │ R │I1 │B21A│7-23│

│CFDBR│CONVERT TO FIXED (long BFP to 32) │RRF C BF│ SP│Db Xi Xx│ R │ │B399│19-27│

│CFDR │CONVERT TO FIXED (long HFP to 32) │RRF C HX│ SP│Da │ R │ │B3B9│18-11│

│CFEBR│CONVERT TO FIXED (short BFP to 32) │RRF C BF│ SP│Db Xi Xx│ R │ │B398│19-27│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CFER │CONVERT TO FIXED (short HFP to 32) │RRF C HX│ SP│Da │ R │ │B3B8│18-11│

│CFXBR│CONVERT TO FIXED (ext. BFP to 32) │RRF C BF│ SP│Db Xi Xx│ R │ │B39A│19-27│

│CFXR │CONVERT TO FIXED (ext. HFP to 32) │RRF C HX│ SP│Da │ R │ │B3BA│18-11│

│CH │COMPARE HALFWORD │RX C │ A │ │ │ B²│49 │7-29│

│CHI │COMPARE HALFWORD IMMEDIATE │RI C IR│ │ │ │ │A7E │7-29│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CKSM │CHECKSUM │RRE C CK│ A SP│ │ R │ R²│B241│7-2ð│

│CL │COMPARE LOGICAL │RX C │ A │ │ │ B²│55 │7-29│

│CLC │COMPARE LOGICAL (character) │SS C │ A │ │ │B± B²│D5 │7-29│

│CLCL │COMPARE LOGICAL LONG │RR C │ A SP│II │ R │R± R²│ðF │7-3ð│

│CLCLE│COMPARE LOGICAL LONG EXTENDED │RS C CM│ A SP│ │ R │R± R³│A9 │7-32│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CLI │COMPARE LOGICAL (immediate) │SI C │ A │ │ │B± │95 │7-29│

│CLM │COMPARE LOGICAL C. UNDER MASK │RS C │ A │ │ │ B²│BD │7-3ð│

│CLR │COMPARE LOGICAL │RR C │ │ │ │ │15 │7-29│

│CLST │COMPARE LOGICAL STRING │RRE C SR│ A SP│ Gð │ R │R± R²│B25D│7-34│

│CP │COMPARE DECIMAL │SS C │ A │Dd │ │B± B²│F9 │8-6│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CPYA │COPY ACCESS │RRE │ │ │ │U± U²│B24D│7-45│

│CR │COMPARE │RR C │ │ │ │ │19 │7-23│

│CS │COMPARE AND SWAP │RS C │ A SP│ $ │ R ST│ B²│BA │7-27│

│CSCH │CLEAR SUBCHANNEL │S C │P │OP ¢ GS │ │ │B23ð│14-4│

│CUSE │COMPARE UNTIL SUBSTRING EQUAL │RRE C │ A SP│II GM │ │R± R²│B257│7-36│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │CUTFU│CONVERT UTF-8 TO UNICODE │RRE C ET│ A SP│ │ R ST│R± R²│B2A7│7-42│

| │CUUTF│CONVERT UNICODE TO UTF-8 │RRE C ET│ A SP│ │ R ST│R± R²│B2A6│7-4ð│

│CVB │CONVERT TO BINARY │RX │ A │Dd IK │ R │ B²│4F │7-39│

│CVD │CONVERT TO DECIMAL │RX │ A │ │ ST│ B²│4E │7-39│

│CXBR │COMPARE (extended BFP) │RRE C BF│ SP│Db Xi │ │ │B349│19-23│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│CXFBR│CONVERT FROM FIXED (32 to ext. BFP) │RRE BF│ SP│Db │ │ │B396│19-26│

│CXFR │CONVERT FROM FIXED (32 to ext. HFP) │RRE HX│ SP│Da │ │ │B3B6│18-11│

│CXR │COMPARE (extended HFP) │RRE C HX│ SP│Da │ │ │B369│18-1ð│

│D │DIVIDE │RX │ A SP│ IK │ R │ B²│5D │7-45│

│DD │DIVIDE (long HFP) │RX │ A SP│Da EU EO FK │ │ B²│6D │18-12│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 2 of 9). Instructions Arranged by Mnemonic
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│DDB │DIVIDE (long BFP) │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│ED1D│19-29│

│DDBR │DIVIDE (long BFP) │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B31D│19-29│

│DDR │DIVIDE (long HFP) │RR │ SP│Da EU EO FK │ │ │2D │18-12│

│DE │DIVIDE (short HFP) │RX │ A SP│Da EU EO FK │ │ B²│7D │18-12│

│DEB │DIVIDE (short BFP) │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│EDðD│19-29│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DEBR │DIVIDE (short BFP) │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │B3ðD│19-29│

│DER │DIVIDE (short HFP) │RR │ SP│Da EU EO FK │ │ │3D │18-12│

│DIDBR│DIVIDE TO INTEGER (long BFP) │RRF C BF│ SP│Db Xi Xu Xx│ │ │B35B│19-3ð│

│DIEBR│DIVIDE TO INTEGER (short BFP) │RRF C BF│ SP│Db Xi Xu Xx│ │ │B353│19-3ð│

│DP │DIVIDE DECIMAL │SS │ A SP│Dd DK │ ST│B± B²│FD │8-6│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│DR │DIVIDE │RR │ SP│ IK │ R │ │1D │7-45│

│DXBR │DIVIDE (extended BFP) │RRE BF│ SP│Db Xi Xz Xo Xu Xx│ │ │B34D│19-29│

│DXR │DIVIDE (extended HFP) │RRE │ SP│Da EU EO FK │ │ │B22D│18-12│

│EAR │EXTRACT ACCESS │RRE │ │ │ R │ U²│B24F│7-47│

│ED │EDIT │SS C │ A │Dd │ ST│B± B²│DE │8-7│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│EDMK │EDIT AND MARK │SS C │ A │Dd G1 │ R ST│B± B²│DF │8-11│

│EFPC │EXTRACT FPC │RRE BF│ │Db │ │ │B38C│19-35│

│EPAR │EXTRACT PRIMARY ASN │RRE │Q │SO │ R │ │B226│1ð-17│

│EREG │EXTRACT STACKED REGISTERS │RRE │ Añ │SE │ R │U± U²│B249│1ð-18│

│ESAR │EXTRACT SECONDARY ASN │RRE │Q │SO │ R │ │B227│1ð-17│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ESTA │EXTRACT STACKED STATE │RRE C │ Añ SP│SE │ R │ │B24A│1ð-2ð│

│EX │EXECUTE │RX │ AI SP│ EX │ │ │44 │7-46│

│FIDBR│LOAD FP INTEGER (long BFP) │RRF BF│ SP│Db Xi Xx│ │ │B35F│19-37│

│FIDR │LOAD FP INTEGER (long HFP) │RRE HX│ │Da │ │ │B37F│18-15│

│FIEBR│LOAD FP INTEGER (short BFP) │RRF BF│ SP│Db Xi Xx│ │ │B357│19-37│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│FIER │LOAD FP INTEGER (short HFP) │RRE HX│ │Da │ │ │B377│18-15│

│FIXBR│LOAD FP INTEGER (extended BFP) │RRF BF│ SP│Db Xi Xx│ │ │B347│19-37│

│FIXR │LOAD FP INTEGER (extended HFP) │RRE HX│ SP│Da │ │ │B367│18-15│

│HDR │HALVE (long HFP) │RR │ SP│Da EU │ │ │24 │18-13│

│HER │HALVE (short HFP) │RR │ SP│Da EU │ │ │34 │18-13│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│HSCH │HALT SUBCHANNEL │S C │P │OP ¢ GS │ │ │B231│14-5│

│IAC │INSERT ADDRESS SPACE CONTROL │RRE C │Q │SO │ R │ │B224│1ð-21│

│IC │INSERT CHARACTER │RX │ A │ │ R │ B²│43 │7-47│

│ICM │INSERT CHARACTERS UNDER MASK │RS C │ A │ │ R │ B²│BF │7-47│

│IPK │INSERT PSW KEY │S │Q │ G2 │ R │ │B2ðB│1ð-22│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│IPM │INSERT PROGRAM MASK │RRE │ │ │ R │ │B222│7-48│

│IPTE │INVALIDATE PAGE TABLE ENTRY │RRE │P Añ │ $ │ │ │B221│1ð-24│

│ISKE │INSERT STORAGE KEY EXTENDED │RRE │P Añ │ │ │ │B229│1ð-23│

│IVSK │INSERT VIRTUAL STORAGE KEY │RRE │Q Añ │SO │ R │ R²│B223│1ð-23│

│KDB │COMPARE AND SIGNAL (long BFP) │RXE C BF│ A │Db Xi │ │ B²│ED18│19-24│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│KDBR │COMPARE AND SIGNAL (long BFP) │RRE C BF│ │Db Xi │ │ │B318│19-24│

│KEB │COMPARE AND SIGNAL (short BFP) │RXE C BF│ A │Db Xi │ │ B²│EDð8│19-24│

│KEBR │COMPARE AND SIGNAL (short BFP) │RRE C BF│ │Db Xi │ │ │B3ð8│19-24│

│KXBR │COMPARE AND SIGNAL (extended BFP) │RRE C BF│ SP│Db Xi │ │ │B348│19-24│

│L │LOAD │RX │ A │ │ R │ B²│58 │7-48│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 3 of 9). Instructions Arranged by Mnemonic

B-14 ESA/390 Principles of Operation  



  
 

┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│LA │LOAD ADDRESS │RX │ │ │ R │ │41 │7-49│

│LAE │LOAD ADDRESS EXTENDED │RX │ │ │ R │U± BP│51 │7-49│

│LAM │LOAD ACCESS MULTIPLE │RS │ A SP│ │ │ UB│9A │7-49│

│LASP │LOAD ADDRESS SPACE PARAMETERS │SSE C │P Añ SP│AS │ │B± │E5ðð│1ð-26│

│LCDBR│LOAD COMPLEMENT (long BFP) │RRE C BF│ │Db │ │ │B313│19-36│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LCDR │LOAD COMPLEMENT (long HFP) │RR C │ SP│Da │ │ │23 │18-14│

│LCEBR│LOAD COMPLEMENT (short BFP) │RRE C BF│ │Db │ │ │B3ð3│19-36│

│LCER │LOAD COMPLEMENT (short HFP) │RR C │ SP│Da │ │ │33 │18-14│

│LCR │LOAD COMPLEMENT │RR C │ │ IF │ R │ │13 │7-5ð│

│LCTL │LOAD CONTROL │RS │P A SP│ │ │ B²│B7 │1ð-35│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LCXBR│LOAD COMPLEMENT (extended BFP) │RRE C BF│ SP│Db │ │ │B343│19-36│

│LCXR │LOAD COMPLEMENT (extended HFP) │RRE C HX│ SP│Da │ │ │B363│18-14│

│LD │LOAD (long) │RX │ A SP│Da │ │ B²│68 │9-12│

│LDE │LOAD LENGTHENED (short to long HFP) │RXE HX│ A │Da │ │ B²│ED24│18-15│

│LDEBR│LOAD LENGTHENED (short to long BFP) │RRE BF│ │Db Xi │ │ │B3ð4│19-39│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LDEB │LOAD LENGTHENED (short to long BFP) │RXE BF│ A │Db Xi │ │ B²│EDð4│19-39│

│LDER │LOAD LENGTHENED (short to long HFP) │RRE HX│ │Da │ │ │B324│18-15│

│LDR │LOAD (long) │RR │ SP│Da │ │ │28 │9-12│

│LDXBR│LOAD ROUNDED (extended to long BFP) │RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B345│19-4ð│

│LDXR │LOAD ROUNDED (extended to long HFP) │RR │ SP│Da EO │ │ │25 │18-17│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LE │LOAD (short) │RX │ A SP│Da │ │ B²│78 │9-12│

│LEDBR│LOAD ROUNDED (long to short BFP) │RRE BF│ │Db Xi Xo Xu Xx│ │ │B344│19-4ð│

│LEDR │LOAD ROUNDED (long to short HFP) │RR │ SP│Da EO │ │ │35 │18-17│

│LER │LOAD (short) │RR │ SP│Da │ │ │38 │9-12│

│LEXBR│LOAD ROUNDED (extended to short BFP)│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B346│19-4ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LEXR │LOAD ROUNDED (extended to short HFP)│RRE HX│ SP│Da EO │ │ │B366│18-17│

│LFPC │LOAD FPC │S BF│ A SP│Db │ │ B²│B29D│19-38│

│LH │LOAD HALFWORD │RX │ A │ │ R │ B²│48 │7-51│

│LHI │LOAD HALFWORD IMMEDIATE │RI IR│ │ │ R │ │A78 │7-51│

│LM │LOAD MULTIPLE │RS │ A │ │ R │ B²│98 │7-51│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LNDBR│LOAD NEGATIVE (long BFP) │RRE C BF│ │Db │ │ │B311│19-39│

│LNDR │LOAD NEGATIVE (long HFP) │RR C │ SP│Da │ │ │21 │18-16│

│LNEBR│LOAD NEGATIVE (short BFP) │RRE C BF│ │Db │ │ │B3ð1│19-39│

│LNER │LOAD NEGATIVE (short HFP) │RR C │ SP│Da │ │ │31 │18-16│

│LNR │LOAD NEGATIVE │RR C │ │ │ R │ │11 │7-51│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LNXBR│LOAD NEGATIVE (extended BFP) │RRE C BF│ SP│Db │ │ │B341│19-39│

│LNXR │LOAD NEGATIVE (extended HFP) │RRE C HX│ SP│Da │ │ │B361│18-16│

│LPDBR│LOAD POSITIVE (long BFP) │RRE C BF│ │Db │ │ │B31ð│19-4ð│

│LPDR │LOAD POSITIVE (long HFP) │RR C │ SP│Da │ │ │2ð │18-17│

│LPEBR│LOAD POSITIVE (short BFP) │RRE C BF│ │Db │ │ │B3ðð│19-4ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LPER │LOAD POSITIVE (short HFP) │RR C │ SP│Da │ │ │3ð │18-17│

│LPR │LOAD POSITIVE │RR C │ │ IF │ R │ │1ð │7-52│

│LPSW │LOAD PSW │S L │P A SP│ ¢ │ │ B²│82 │1ð-35│

│LPXBR│LOAD POSITIVE (extended BFP) │RRE C BF│ SP│Db │ │ │B34ð│19-4ð│

│LPXR │LOAD POSITIVE (extended HFP) │RRE C HX│ SP│Da │ │ │B36ð│18-17│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 4 of 9). Instructions Arranged by Mnemonic

  Appendix B. Lists of Instructions B-15



  
 

┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│LR │LOAD │RR │ │ │ R │ │18 │7-48│

│LRA │LOAD REAL ADDRESS │RX C │P Añ │AT │ R │ BP│B1 │1ð-36│

│LRDR │LOAD ROUNDED (extended to long HFP) │RR │ SP│Da EO │ │ │25 │19-4ð│

│LRER │LOAD ROUNDED (long to short HFP) │RR │ SP│Da EO │ │ │35 │19-4ð│

│LTDBR│LOAD AND TEST (long BFP) │RRE C BF│ │Db Xi │ │ │B312│19-36│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LTDR │LOAD AND TEST (long HFP) │RR C │ SP│Da │ │ │22 │18-14│

│LTEBR│LOAD AND TEST (short BFP) │RRE C BF│ │Db Xi │ │ │B3ð2│19-36│

│LTER │LOAD AND TEST (short HFP) │RR C │ SP│Da │ │ │32 │18-14│

│LTR │LOAD AND TEST │RR C │ │ │ R │ │12 │7-5ð│

│LTXBR│LOAD AND TEST (extended BFP) │RRE C BF│ SP│Db Xi │ │ │B342│19-36│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LTXR │LOAD AND TEST (extended HFP) │RRE C HX│ SP│Da │ │ │B362│18-14│

│LURA │LOAD USING REAL ADDRESS │RRE │P Añ SP│ │ R │ │B24B│1ð-38│

│LXD │LOAD LENGTHENED (long to ext. HFP) │RXE HX│ A SP│Da │ │ B²│ED25│18-15│

│LXDBR│LOAD LENGTHENED (long to ext. BFP) │RRE BF│ SP│Db Xi │ │ │B3ð5│19-39│

│LXDB │LOAD LENGTHENED (long to ext. BFP) │RXE BF│ A SP│Db Xi │ │ B²│EDð5│19-39│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LXDR │LOAD LENGTHENED (long to ext. HFP) │RRE HX│ SP│Da │ │ │B325│18-15│

│LXE │LOAD LENGTHENED (short to ext. HFP) │RXE HX│ A SP│Da │ │ B²│ED26│18-15│

│LXEBR│LOAD LENGTHENED (short to ext. BFP) │RRE BF│ SP│Db Xi │ │ │B3ð6│19-39│

│LXEB │LOAD LENGTHENED (short to ext. BFP) │RXE BF│ A SP│Db Xi │ │ B²│EDð6│19-39│

│LXER │LOAD LENGTHENED (short to ext. HFP) │RRE HX│ SP│Da │ │ │B326│18-15│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│LXR │LOAD (extended) │RRE FX│ SP│Da │ │ │B365│9-12│

│LZDR │LOAD ZERO (long) │RRE FX│ │Da │ │ │B375│9-13│

│LZER │LOAD ZERO (short) │RRE FX│ │Da │ │ │B374│9-13│

│LZXR │LOAD ZERO (extended) │RRE FX│ SP│Da │ │ │B376│9-13│

│M │MULTIPLY │RX │ A SP│ │ R │ B²│5C │7-65│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MADBR│MULTIPLY AND ADD (long BFP) │RRF BF│ │Db Xi Xo Xu Xx│ │ │B31E│19-43│

│MADB │MULTIPLY AND ADD (long BFP) │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1E│19-43│

│MAEBR│MULTIPLY AND ADD (short BFP) │RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðE│19-43│

│MAEB │MULTIPLY AND ADD (short BFP) │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðE│19-43│

│MC │MONITOR CALL │SI │ SP│ MO │ │ │AF │7-52│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MD │MULTIPLY (long HFP) │RX │ A SP│Da EU EO │ │ B²│6C │18-18│

│MDB │MULTIPLY (long BFP) │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1C│19-41│

│MDBR │MULTIPLY (long BFP) │RRE BF│ │Db Xi Xo Xu Xx│ │ │B31C│19-41│

│MDE │MULTIPLY (short to long HFP) │RX │ A SP│Da EU EO │ │ B²│7C │18-18│

│MDEBR│MULTIPLY (short to long BFP) │RRE BF│ │Db Xi │ │ │B3ðC│19-41│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MDEB │MULTIPLY (short to long BFP) │RXE BF│ A │Db Xi │ │ B²│EDðC│19-41│

│MDER │MULTIPLY (short to long HFP) │RR │ SP│Da EU EO │ │ │3C │18-18│

│MDR │MULTIPLY (long HFP) │RR │ SP│Da EU EO │ │ │2C │18-18│

│ME │MULTIPLY (short to long HFP) │RX │ A SP│Da EU EO │ │ B²│7C │18-18│

│MEE │MULTIPLY (short HFP) │RXE HX│ A │Da EU EO │ │ B²│ED37│18-18│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MEEBR│MULTIPLY (short BFP) │RRE BF│ │Db Xi Xo Xu Xx│ │ │B317│19-41│

│MEEB │MULTIPLY (short BFP) │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│ED17│19-41│

│MEER │MULTIPLY (short HFP) │RRE HX│ │Da EU EO │ │ │B337│18-18│

│MER │MULTIPLY (short to long HFP) │RR │ SP│Da EU EO │ │ │3C │18-18│

│MH │MULTIPLY HALFWORD │RX │ A │ │ R │ B²│4C │7-65│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 5 of 9). Instructions Arranged by Mnemonic

B-16 ESA/390 Principles of Operation  



  
 

┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│MHI │MULTIPLY HALFWORD IMMEDIATE │RI IR│ │ │ R │ │A7C │7-65│

│MP │MULTIPLY DECIMAL │SS │ A SP│Dd │ ST│B± B²│FC │8-11│

│MR │MULTIPLY │RR │ SP│ │ R │ │1C │7-65│

│MS │MULTIPLY SINGLE │RX IR│ A │ │ R │ B²│71 │7-66│

│MSCH │MODIFY SUBCHANNEL │S C │P A SP│OP ¢ GS │ │ B²│B232│14-6│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MSDBR│MULTIPLY AND SUBTRACT (long BFP) │RRF BF│ │Db Xi Xo Xu Xx│ │ │B31F│19-43│

│MSDB │MULTIPLY AND SUBTRACT (long BFP) │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1F│19-43│

│MSEBR│MULTIPLY AND SUBTRACT (short BFP) │RRF BF│ │Db Xi Xo Xu Xx│ │ │B3ðF│19-43│

│MSEB │MULTIPLY AND SUBTRACT (short BFP) │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðF│19-43│

│MSR │MULTIPLY SINGLE │RRE IR│ │ │ R │ │B252│7-66│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MSTA │MODIFY STACKED STATE │RRE │ Añ SP│SE │ ST│ │B247│1ð-38│

│MVC │MOVE (character) │SS │ A │ │ ST│B± B²│D2 │7-53│

│MVCDK│MOVE WITH DESTINATION KEY │SSE │Q A │ GM │ ST│B± B²│E5ðF│1ð-45│

│MVCIN│MOVE INVERSE │SS MI│ A │ │ ST│B± B²│E8 │7-53│

│MVCK │MOVE WITH KEY │SS C │Q A │ │ ST│B± B²│D9 │1ð-46│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MVCL │MOVE LONG │RR C │ A SP│II │ R ST│R± R²│ðE │7-54│

│MVCLE│MOVE LONG EXTENDED │RS C CM│ A SP│ │ R ST│R± R³│A8 │7-57│

│MVCP │MOVE TO PRIMARY │SS C │Q A │SO ¢ │ ST│ │DA │1ð-43│

│MVCS │MOVE TO SECONDARY │SS C │Q A │SO ¢ │ ST│ │DB │1ð-43│

│MVCSK│MOVE WITH SOURCE KEY │SSE │Q A │ GM │ ST│B± B²│E5ðE│1ð-47│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MVI │MOVE (immediate) │SI │ A │ │ ST│B± │92 │7-53│

│MVN │MOVE NUMERICS │SS │ A │ │ ST│B± B²│D1 │7-6ð│

│MVO │MOVE WITH OFFSET │SS │ A │ │ ST│B± B²│F1 │7-63│

│MVPG │MOVE PAGE (facility 1) │RRE C M1│ Añ SP│ Gð │ ST│R± R²│B254│7-6ð│

│MVPG │MOVE PAGE (facility 2) │RRE C M2│Q Añ SP│ Gð │ ST│R± R²│B254│7-6ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MVST │MOVE STRING │RRE C SR│ A SP│ Gð │ R ST│R± R²│B255│7-62│

│MVZ │MOVE ZONES │SS │ A │ │ ST│B± B²│D3 │7-64│

│MXBR │MULTIPLY (extended BFP) │RRE BF│ SP│Db Xi Xo Xu Xx│ │ │B34C│19-41│

│MXD │MULTIPLY (long to extended HFP) │RX │ A SP│Da EU EO │ │ B²│67 │18-18│

│MXDBR│MULTIPLY (long to extended BFP) │RRE BF│ SP│Db Xi │ │ │B3ð7│19-41│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│MXDB │MULTIPLY (long to extended BFP) │RXE BF│ A SP│Db Xi │ │ B²│EDð7│19-41│

│MXDR │MULTIPLY (long to extended HFP) │RR │ SP│Da EU EO │ │ │27 │18-18│

│MXR │MULTIPLY (extended HFP) │RR │ SP│Da EU EO │ │ │26 │18-18│

│N │AND │RX C │ A │ │ R │ B²│54 │7-11│

│NC │AND (character) │SS C │ A │ │ ST│B± B²│D4 │7-11│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│NI │AND (immediate) │SI C │ A │ │ ST│B± │94 │7-11│

│NR │AND │RR C │ │ │ R │ │14 │7-11│

│O │OR │RX C │ A │ │ R │ B²│56 │7-66│

│OC │OR (character) │SS C │ A │ │ ST│B± B²│D6 │7-66│

│OI │OR (immediate) │SI C │ A │ │ ST│B± │96 │7-66│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│OR │OR │RR C │ │ │ R │ │16 │7-66│

│PACK │PACK │SS │ A │ │ ST│B± B²│F2 │7-67│

│PALB │PURGE ALB │RRE │P │ $ │ │ │B248│1ð-72│

│PC │PROGRAM CALL │S │Q Añ │Zñ T ¢ GM │B R ST│ │B218│1ð-48│

│PCF │PROGRAM CALL FAST │S PC│ Añ │Zõ ¢ G4 │B R ST│ │B218│1ð-59│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 6 of 9). Instructions Arranged by Mnemonic
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│PLO │PERFORM LOCKED OPERATION │SS C PL│ A SP│ $ GM │ R ST│ FC│EE │7-68│

│PR │PROGRAM RETURN │E U │ Añ SP│Zô T ¢ò │B R ST│ │ð1ð1│1ð-63│

│PT │PROGRAM TRANSFER │RRE │Q Añ SP│Zò T ¢ │B │ │B228│1ð-66│

│PTLB │PURGE TLB │S │P │ $ │ │ │B2ðD│1ð-72│

│RCHP │RESET CHANNEL PATH │S C │P │OP ¢ G1 │ │ │B23B│14-7│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│RP │RESUME PROGRAM │S L RP│Q A SP│SW T │B R │ B²│B277│1ð-73│

│RRBE │RESET REFERENCE BIT EXTENDED │RRE C │P Añ │ │ │ │B22A│1ð-72│

│RSCH │RESUME SUBCHANNEL │S C │P │OP ¢ GS │ │ │B238│14-8│

│S │SUBTRACT │RX C │ A │ IF │ R │ B²│5B │7-9ð│

│SAC │SET ADDRESS SPACE CONTROL │S │Q SP│SW ¢ │ │ │B219│1ð-75│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SACF │SET ADDRESS SPACE CONTROL FAST │S SA│Q SP│SW │ │ │B279│1ð-75│

│SAL │SET ADDRESS LIMIT │S │P │OP ¢ G1 │ │ │B237│14-1ð│

│SAR │SET ACCESS │RRE │ │ │ │U± │B24E│7-81│

│SCHM │SET CHANNEL MONITOR │S │P │OP ¢ GM │ │ │B23C│14-11│

│SCK │SET CLOCK │S C │P A SP│ │ │ B²│B2ð4│1ð-76│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SCKC │SET CLOCK COMPARATOR │S │P A SP│ │ │ B²│B2ð6│1ð-77│

| │SCKPF│SET CLOCK PROGRAMMABLE FIELD │E EK│P SP│ Gð │ │ │ð1ð7│1ð-78│

│SD │SUBTRACT NORMALIZED (long HFP) │RX C │ A SP│Da EU EO LS │ │ B²│6B │18-21│

│SDB │SUBTRACT (long BFP) │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│ED1B│19-46│

│SDBR │SUBTRACT (long BFP) │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B31B│19-46│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SDR │SUBTRACT NORMALIZED (long HFP) │RR C │ SP│Da EU EO LS │ │ │2B │18-21│

│SE │SUBTRACT NORMALIZED (short HFP) │RX C │ A SP│Da EU EO LS │ │ B²│7B │18-21│

│SEB │SUBTRACT (short BFP) │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│EDðB│19-46│

│SEBR │SUBTRACT (short BFP) │RRE C BF│ │Db Xi Xo Xu Xx│ │ │B3ðB│19-46│

│SER │SUBTRACT NORMALIZED (short HFP) │RR C │ SP│Da EU EO LS │ │ │3B │18-21│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SFPC │SET FPC │RRE BF│ SP│Db │ │ │B384│19-45│

│SH │SUBTRACT HALFWORD │RX C │ A │ IF │ R │ B²│4B │7-9ð│

│SIGP │SIGNAL PROCESSOR │RS C │P │ $ │ R │ │AE │1ð-83│

│SL │SUBTRACT LOGICAL │RX C │ A │ │ R │ B²│5F │7-9ð│

│SLA │SHIFT LEFT SINGLE │RS C │ │ IF │ R │ │8B │7-83│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SLDA │SHIFT LEFT DOUBLE │RS C │ SP│ IF │ R │ │8F │7-81│

│SLDL │SHIFT LEFT DOUBLE LOGICAL │RS │ SP│ │ R │ │8D │7-82│

│SLL │SHIFT LEFT SINGLE LOGICAL │RS │ │ │ R │ │89 │7-83│

│SLR │SUBTRACT LOGICAL │RR C │ │ │ R │ │1F │7-9ð│

│SP │SUBTRACT DECIMAL │SS C │ A │Dd DF │ ST│B± B²│FB │8-13│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SPKA │SET PSW KEY FROM ADDRESS │S │Q │ │ │ │B2ðA│1ð-79│

│SPM │SET PROGRAM MASK │RR L │ │ │ │ │ð4 │7-81│

│SPT │SET CPU TIMER │S │P A SP│ │ │ B²│B2ð8│1ð-78│

│SPX │SET PREFIX │S │P A SP│ $ │ │ B²│B21ð│1ð-78│

│SQD │SQUARE ROOT (long HFP) │RXE HX│ A │Da SQ │ │ B²│ED35│18-2ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SQDBR│SQUARE ROOT (long BFP) │RRE BF│ │Db Xi Xx│ │ │B315│19-46│

│SQDB │SQUARE ROOT (long BFP) │RXE BF│ A │Db Xi Xx│ │ B²│ED15│19-46│

│SQDR │SQUARE ROOT (long HFP) │RRE QR│ SP│Da SQ │ │ │B244│18-2ð│

│SQE │SQUARE ROOT (short HFP) │RXE HX│ A │Da SQ │ │ B²│ED34│18-2ð│

│SQEBR│SQUARE ROOT (short BFP) │RRE BF│ │Db Xi Xx│ │ │B314│19-46│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 7 of 9). Instructions Arranged by Mnemonic
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│SQEB │SQUARE ROOT (short BFP) │RXE BF│ A │Db Xi Xx│ │ B²│ED14│19-46│

│SQER │SQUARE ROOT (short HFP) │RRE QR│ SP│Da SQ │ │ │B245│18-2ð│

│SQXBR│SQUARE ROOT (extended BFP) │RRE BF│ SP│Db Xi Xx│ │ │B316│19-46│

│SQXR │SQUARE ROOT (extended HFP) │RRE HX│ SP│Da SQ │ │ │B336│18-2ð│

│SR │SUBTRACT │RR C │ │ IF │ R │ │1B │7-9ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SRA │SHIFT RIGHT SINGLE │RS C │ │ │ R │ │8A │7-84│

│SRDA │SHIFT RIGHT DOUBLE │RS C │ SP│ │ R │ │8E │7-83│

│SRDL │SHIFT RIGHT DOUBLE LOGICAL │RS │ SP│ │ R │ │8C │7-84│

│SRL │SHIFT RIGHT SINGLE LOGICAL │RS │ │ │ R │ │88 │7-85│

│SRNM │SET ROUNDING MODE │S BF│ │Db │ │ │B299│19-45│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SRP │SHIFT AND ROUND DECIMAL │SS C │ A │Dd DF │ ST│B± │Fð │8-12│

│SRST │SEARCH STRING │RRE C SR│ A SP│ Gð │ R │ R²│B25E│7-79│

│SSAR │SET SECONDARY ASN │RRE │ Añ │Zó T ¢ │ │ │B225│1ð-79│

│SSCH │START SUBCHANNEL │S C │P A SP│OP ¢ GS │ │ B²│B233│14-13│

│SSKE │SET STORAGE KEY EXTENDED │RRE │P Añ │ ¢ │ │ │B22B│1ð-83│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SSM │SET SYSTEM MASK │S │P A SP│SO │ │ B²│8ð │1ð-83│

│ST │STORE │RX │ A │ │ ST│ B²│5ð │7-85│

│STAM │STORE ACCESS MULTIPLE │RS │ A SP│ │ ST│ UB│9B │7-85│

│STAP │STORE CPU ADDRESS │S │P A SP│ │ ST│ B²│B212│1ð-85│

│STC │STORE CHARACTER │RX │ A │ │ ST│ B²│42 │7-86│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STCK │STORE CLOCK │S C │ A │ $ │ ST│ B²│B2ð5│7-87│

| │STCKE│STORE CLOCK EXTENDED │S C EK│ A │ $ │ ST│ B²│B278│7-87│

│STCKC│STORE CLOCK COMPARATOR │S │P A SP│ │ ST│ B²│B2ð7│1ð-85│

│STCM │STORE CHARACTERS UNDER MASK │RS │ A │ │ ST│ B²│BE │7-86│

│STCPS│STORE CHANNEL PATH STATUS │S │P A SP│ ¢ │ ST│ B²│B23A│14-14│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STCRW│STORE CHANNEL REPORT WORD │S C │P A SP│ ¢ │ ST│ B²│B239│14-15│

│STCTL│STORE CONTROL │RS │P A SP│ │ ST│ B²│B6 │1ð-85│

│STD │STORE (long) │RX │ A SP│Da │ ST│ B²│6ð │9-13│

│STE │STORE (short) │RX │ A SP│Da │ ST│ B²│7ð │9-13│

│STFPC│STORE FPC │S BF│ A │Db │ ST│ B²│B29C│19-46│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STH │STORE HALFWORD │RX │ A │ │ ST│ B²│4ð │7-89│

│STIDP│STORE CPU ID │S │P A SP│ │ ST│ B²│B2ð2│1ð-86│

│STM │STORE MULTIPLE │RS │ A │ │ ST│ B²│9ð │7-89│

│STNSM│STORE THEN AND SYSTEM MASK │SI │P A │ │ ST│B± │AC │1ð-96│

│STOSM│STORE THEN OR SYSTEM MASK │SI │P A SP│ │ ST│B± │AD │1ð-97│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│STPT │STORE CPU TIMER │S │P A SP│ │ ST│ B²│B2ð9│1ð-86│

│STPX │STORE PREFIX │S │P A SP│ │ ST│ B²│B211│1ð-87│

│STSCH│STORE SUBCHANNEL │S C │P A SP│OP ¢ GS │ ST│ B²│B234│14-15│

| │STSI │STORE SYSTEM INFORMATION │S C SN│P A SP│ │ R ST│ B²│B27D│1ð-87│

│STURA│STORE USING REAL ADDRESS │RRE │P Añ SP│ │ SU│ │B246│1ð-97│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│SU │SUBTRACT UNNORMALIZED (short HFP) │RX C │ A SP│Da EO LS │ │ B²│7F │18-22│

│SUR │SUBTRACT UNNORMALIZED (short HFP) │RR C │ SP│Da EO LS │ │ │3F │18-22│

│SVC │SUPERVISOR CALL │RR │ │ ¢ │ │ │ðA │7-91│

│SW │SUBTRACT UNNORMALIZED (long HFP) │RX C │ A SP│Da EO LS │ │ B²│6F │18-22│

│SWR │SUBTRACT UNNORMALIZED (long HFP) │RR C │ SP│Da EO LS │ │ │2F │18-22│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 8 of 9). Instructions Arranged by Mnemonic
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┌─────┬────────────────────────────────────┬────────────────────────────────────────────────┬────┬───────┐

│Mne- │ │ │Op │ Page │

│monic│ Name │ Characteristics │Code│ No. │

├─────┼────────────────────────────────────┼─────────┬───────┬─────────────────┬──────┬─────┼────┼───────┤

│SXBR │SUBTRACT (extended BFP) │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │B34B│19-46│

│SXR │SUBTRACT NORMALIZED (extended HFP) │RR C │ SP│Da EU EO LS │ │ │37 │18-21│

│TAR │TEST ACCESS │RRE C │ Añ │AS │ │U± │B24C│1ð-98│

│TB │TEST BLOCK │RRE C │P Añ │II $ Gð │ R │ │B22C│1ð-1ð1│

│TBDR │CONVERT HFP TO BFP (long) │RRF C FX│ SP│Da │ │ │B351│9-11│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│TBEDR│CONVERT HFP TO BFP (long to short) │RRF C FX│ SP│Da │ │ │B35ð│9-11│

│TCDB │TEST DATA CLASS (long BFP) │RXE C BF│ │Db │ │ │ED11│19-47│

│TCEB │TEST DATA CLASS (short BFP) │RXE C BF│ │Db │ │ │ED1ð│19-47│

│TCXB │TEST DATA CLASS (extended BFP) │RXE C BF│ SP│Db │ │ │ED12│19-47│

│THDER│CONVERT BFP TO HFP (short to long) │RRE C FX│ │Da │ │ │B358│9-1ð│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│THDR │CONVERT BFP TO HFP (long) │RRE C FX│ │Da │ │ │B359│9-1ð│

│TM │TEST UNDER MASK │SI C │ A │ │ │B± │91 │7-92│

│TMH │TEST UNDER MASK HIGH │RI C IR│ │ │ │ │A7ð │7-92│

│TML │TEST UNDER MASK LOW │RI C IR│ │ │ │ │A71 │7-92│

│TPI │TEST PENDING INTERRUPTION │S C │P Añ SP│ ¢ │ ST│ B²│B236│14-16│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│TPROT│TEST PROTECTION │SSE C │P Añ │ │ │B± │E5ð1│1ð-1ð3│

│TR │TRANSLATE │SS │ A │ │ ST│B± B²│DC │7-93│

│TRACE│TRACE │RS │P A SP│ T ¢ │ │ B²│99 │1ð-1ð6│

│TRAP2│TRAP │E TR│ A │SO T GM │B R ST│ │ð1FF│1ð-1ð6│

│TRAP4│TRAP │S TR│ A │SO T GM │B R ST│ │B2FF│1ð-1ð6│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

| │TRE │TRANSLATE EXTENDED │RRE C ET│ A SP│ │ R ST│R± R²│B2A5│7-94│

│TRT │TRANSLATE AND TEST │SS C │ A │ GM │ R │B± B²│DD │7-94│

│TS │TEST AND SET │S C │ A │ $ │ ST│ B²│93 │7-91│

│TSCH │TEST SUBCHANNEL │S C │P A SP│OP ¢ GS │ ST│ B²│B235│14-17│

│UNPK │UNPACK │SS │ A │ │ ST│B± B²│F3 │7-97│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│UPT │UPDATE TREE │E C │ A SP│II GM │ R ST│I4 │ð1ð2│7-97│

│X │EXCLUSIVE OR │RX C │ A │ │ R │ B²│57 │7-45│

│XC │EXCLUSIVE OR (character) │SS C │ A │ │ ST│B± B²│D7 │7-45│

│XI │EXCLUSIVE OR (immediate) │SI C │ A │ │ ST│B± │97 │7-45│

│XR │EXCLUSIVE OR │RR C │ │ │ R │ │17 │7-45│

├─────┼────────────────────────────────────┼─────────┼───────┼─────────────────┼──────┼─────┼────┼───────┤

│ZAP │ZERO AND ADD │SS C │ A │Dd DF │ ST│B± B²│F8 │8-13│

└─────┴────────────────────────────────────┴─────────┴───────┴─────────────────┴──────┴─────┴────┴───────┘

Figure B-2 (Part 9 of 9). Instructions Arranged by Mnemonic
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│ð1ð1│PROGRAM RETURN │PR │E U │ Añ SP│Zô T ¢ò │B R ST│ │1ð-63│

│ð1ð2│UPDATE TREE │UPT │E C │ A SP│II GM │ R ST│I4 │7-97│

| │ð1ð7│SET CLOCK PROGRAMMABLE FIELD │SCKPF│E EK│P SP│ Gð │ │ │1ð-78│

│ð1FF│TRAP │TRAP2│E TR│ A │SO T GM │B R ST│ │1ð-1ð6│

│ð4 │SET PROGRAM MASK │SPM │RR L │ │ │ │ │7-81│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│ð5 │BRANCH AND LINK │BALR │RR │ │ T │B R │ │7-12│

│ð6 │BRANCH ON COUNT │BCTR │RR │ │ │B R │ │7-15│

│ð7 │BRANCH ON CONDITION │BCR │RR │ │ ¢ñ │B │ │7-14│

│ðA │SUPERVISOR CALL │SVC │RR │ │ ¢ │ │ │7-91│

│ðB │BRANCH AND SET MODE │BSM │RR │ │ │B R │ │7-14│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│ðC │BRANCH AND SAVE AND SET MODE │BASSM│RR │ │ T │B R │ │7-13│

│ðD │BRANCH AND SAVE │BASR │RR │ │ T │B R │ │7-13│

│ðE │MOVE LONG │MVCL │RR C │ A SP│II │ R ST│R± R²│7-54│

│ðF │COMPARE LOGICAL LONG │CLCL │RR C │ A SP│II │ R │R± R²│7-3ð│

│1ð │LOAD POSITIVE │LPR │RR C │ │ IF │ R │ │7-52│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│11 │LOAD NEGATIVE │LNR │RR C │ │ │ R │ │7-51│

│12 │LOAD AND TEST │LTR │RR C │ │ │ R │ │7-5ð│

│13 │LOAD COMPLEMENT │LCR │RR C │ │ IF │ R │ │7-5ð│

│14 │AND │NR │RR C │ │ │ R │ │7-11│

│15 │COMPARE LOGICAL │CLR │RR C │ │ │ │ │7-29│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│16 │OR │OR │RR C │ │ │ R │ │7-66│

│17 │EXCLUSIVE OR │XR │RR C │ │ │ R │ │7-45│

│18 │LOAD │LR │RR │ │ │ R │ │7-48│

│19 │COMPARE │CR │RR C │ │ │ │ │7-23│

│1A │ADD │AR │RR C │ │ IF │ R │ │7-1ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│1B │SUBTRACT │SR │RR C │ │ IF │ R │ │7-9ð│

│1C │MULTIPLY │MR │RR │ SP│ │ R │ │7-65│

│1D │DIVIDE │DR │RR │ SP│ IK │ R │ │7-45│

│1E │ADD LOGICAL │ALR │RR C │ │ │ R │ │7-11│

│1F │SUBTRACT LOGICAL │SLR │RR C │ │ │ R │ │7-9ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│2ð │LOAD POSITIVE (long HFP) │LPDR │RR C │ SP│Da │ │ │18-17│

│21 │LOAD NEGATIVE (long HFP) │LNDR │RR C │ SP│Da │ │ │18-16│

│22 │LOAD AND TEST (long HFP) │LTDR │RR C │ SP│Da │ │ │18-14│

│23 │LOAD COMPLEMENT (long HFP) │LCDR │RR C │ SP│Da │ │ │18-14│

│24 │HALVE (long HFP) │HDR │RR │ SP│Da EU │ │ │18-13│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│25 │LOAD ROUNDED (extended to long HFP) │LDXR │RR │ SP│Da EO │ │ │18-17│

│25 │LOAD ROUNDED (extended to long HFP) │LRDR │RR │ SP│Da EO │ │ │19-4ð│

│26 │MULTIPLY (extended HFP) │MXR │RR │ SP│Da EU EO │ │ │18-18│

│27 │MULTIPLY (long to extended HFP) │MXDR │RR │ SP│Da EU EO │ │ │18-18│

│28 │LOAD (long) │LDR │RR │ SP│Da │ │ │9-12│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│29 │COMPARE (long HFP) │CDR │RR C │ SP│Da │ │ │18-1ð│

│2A │ADD NORMALIZED (long HFP) │ADR │RR C │ SP│Da EU EO LS │ │ │18-8│

│2B │SUBTRACT NORMALIZED (long HFP) │SDR │RR C │ SP│Da EU EO LS │ │ │18-21│

│2C │MULTIPLY (long HFP) │MDR │RR │ SP│Da EU EO │ │ │18-18│

│2D │DIVIDE (long HFP) │DDR │RR │ SP│Da EU EO FK │ │ │18-12│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 1 of 9). Instructions Arranged by Operation Code
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│2E │ADD UNNORMALIZED (long HFP) │AWR │RR C │ SP│Da EO LS │ │ │18-9│

│2F │SUBTRACT UNNORMALIZED (long HFP) │SWR │RR C │ SP│Da EO LS │ │ │18-22│

│3ð │LOAD POSITIVE (short HFP) │LPER │RR C │ SP│Da │ │ │18-17│

│31 │LOAD NEGATIVE (short HFP) │LNER │RR C │ SP│Da │ │ │18-16│

│32 │LOAD AND TEST (short HFP) │LTER │RR C │ SP│Da │ │ │18-14│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│33 │LOAD COMPLEMENT (short HFP) │LCER │RR C │ SP│Da │ │ │18-14│

│34 │HALVE (short HFP) │HER │RR │ SP│Da EU │ │ │18-13│

│35 │LOAD ROUNDED (long to short HFP) │LEDR │RR │ SP│Da EO │ │ │18-17│

│35 │LOAD ROUNDED (long to short HFP) │LRER │RR │ SP│Da EO │ │ │19-4ð│

│36 │ADD NORMALIZED (extended HFP) │AXR │RR C │ SP│Da EU EO LS │ │ │18-8│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│37 │SUBTRACT NORMALIZED (extended HFP) │SXR │RR C │ SP│Da EU EO LS │ │ │18-21│

│38 │LOAD (short) │LER │RR │ SP│Da │ │ │9-12│

│39 │COMPARE (short HFP) │CER │RR C │ SP│Da │ │ │18-1ð│

│3A │ADD NORMALIZED (short HFP) │AER │RR C │ SP│Da EU EO LS │ │ │18-8│

│3B │SUBTRACT NORMALIZED (short HFP) │SER │RR C │ SP│Da EU EO LS │ │ │18-21│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│3C │MULTIPLY (short to long HFP) │MDER │RR │ SP│Da EU EO │ │ │18-18│

│3C │MULTIPLY (short to long HFP) │MER │RR │ SP│Da EU EO │ │ │18-18│

│3D │DIVIDE (short HFP) │DER │RR │ SP│Da EU EO FK │ │ │18-12│

│3E │ADD UNNORMALIZED (short HFP) │AUR │RR C │ SP│Da EO LS │ │ │18-9│

│3F │SUBTRACT UNNORMALIZED (short HFP) │SUR │RR C │ SP│Da EO LS │ │ │18-22│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│4ð │STORE HALFWORD │STH │RX │ A │ │ ST│ B²│7-89│

│41 │LOAD ADDRESS │LA │RX │ │ │ R │ │7-49│

│42 │STORE CHARACTER │STC │RX │ A │ │ ST│ B²│7-86│

│43 │INSERT CHARACTER │IC │RX │ A │ │ R │ B²│7-47│

│44 │EXECUTE │EX │RX │ AI SP│ EX │ │ │7-46│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│45 │BRANCH AND LINK │BAL │RX │ │ │B R │ │7-12│

│46 │BRANCH ON COUNT │BCT │RX │ │ │B R │ │7-15│

│47 │BRANCH ON CONDITION │BC │RX │ │ │B │ │7-14│

│48 │LOAD HALFWORD │LH │RX │ A │ │ R │ B²│7-51│

│49 │COMPARE HALFWORD │CH │RX C │ A │ │ │ B²│7-29│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│4A │ADD HALFWORD │AH │RX C │ A │ IF │ R │ B²│7-1ð│

│4B │SUBTRACT HALFWORD │SH │RX C │ A │ IF │ R │ B²│7-9ð│

│4C │MULTIPLY HALFWORD │MH │RX │ A │ │ R │ B²│7-65│

│4D │BRANCH AND SAVE │BAS │RX │ │ │B R │ │7-13│

│4E │CONVERT TO DECIMAL │CVD │RX │ A │ │ ST│ B²│7-39│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│4F │CONVERT TO BINARY │CVB │RX │ A │Dd IK │ R │ B²│7-39│

│5ð │STORE │ST │RX │ A │ │ ST│ B²│7-85│

│51 │LOAD ADDRESS EXTENDED │LAE │RX │ │ │ R │U± BP│7-49│

│54 │AND │N │RX C │ A │ │ R │ B²│7-11│

│55 │COMPARE LOGICAL │CL │RX C │ A │ │ │ B²│7-29│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│56 │OR │O │RX C │ A │ │ R │ B²│7-66│

│57 │EXCLUSIVE OR │X │RX C │ A │ │ R │ B²│7-45│

│58 │LOAD │L │RX │ A │ │ R │ B²│7-48│

│59 │COMPARE │C │RX C │ A │ │ │ B²│7-23│

│5A │ADD │A │RX C │ A │ IF │ R │ B²│7-1ð│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 2 of 9). Instructions Arranged by Operation Code
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│5B │SUBTRACT │S │RX C │ A │ IF │ R │ B²│7-9ð│

│5C │MULTIPLY │M │RX │ A SP│ │ R │ B²│7-65│

│5D │DIVIDE │D │RX │ A SP│ IK │ R │ B²│7-45│

│5E │ADD LOGICAL │AL │RX C │ A │ │ R │ B²│7-11│

│5F │SUBTRACT LOGICAL │SL │RX C │ A │ │ R │ B²│7-9ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│6ð │STORE (long) │STD │RX │ A SP│Da │ ST│ B²│9-13│

│67 │MULTIPLY (long to extended HFP) │MXD │RX │ A SP│Da EU EO │ │ B²│18-18│

│68 │LOAD (long) │LD │RX │ A SP│Da │ │ B²│9-12│

│69 │COMPARE (long HFP) │CD │RX C │ A SP│Da │ │ B²│18-1ð│

│6A │ADD NORMALIZED (long HFP) │AD │RX C │ A SP│Da EU EO LS │ │ B²│18-8│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│6B │SUBTRACT NORMALIZED (long HFP) │SD │RX C │ A SP│Da EU EO LS │ │ B²│18-21│

│6C │MULTIPLY (long HFP) │MD │RX │ A SP│Da EU EO │ │ B²│18-18│

│6D │DIVIDE (long HFP) │DD │RX │ A SP│Da EU EO FK │ │ B²│18-12│

│6E │ADD UNNORMALIZED (long HFP) │AW │RX C │ A SP│Da EO LS │ │ B²│18-9│

│6F │SUBTRACT UNNORMALIZED (long HFP) │SW │RX C │ A SP│Da EO LS │ │ B²│18-22│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│7ð │STORE (short) │STE │RX │ A SP│Da │ ST│ B²│9-13│

│71 │MULTIPLY SINGLE │MS │RX IR│ A │ │ R │ B²│7-66│

│78 │LOAD (short) │LE │RX │ A SP│Da │ │ B²│9-12│

│79 │COMPARE (short HFP) │CE │RX C │ A SP│Da │ │ B²│18-1ð│

│7A │ADD NORMALIZED (short HFP) │AE │RX C │ A SP│Da EU EO LS │ │ B²│18-8│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│7B │SUBTRACT NORMALIZED (short HFP) │SE │RX C │ A SP│Da EU EO LS │ │ B²│18-21│

│7C │MULTIPLY (short to long HFP) │MDE │RX │ A SP│Da EU EO │ │ B²│18-18│

│7C │MULTIPLY (short to long HFP) │ME │RX │ A SP│Da EU EO │ │ B²│18-18│

│7D │DIVIDE (short HFP) │DE │RX │ A SP│Da EU EO FK │ │ B²│18-12│

│7E │ADD UNNORMALIZED (short HFP) │AU │RX C │ A SP│Da EO LS │ │ B²│18-9│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│7F │SUBTRACT UNNORMALIZED (short HFP) │SU │RX C │ A SP│Da EO LS │ │ B²│18-22│

│8ð │SET SYSTEM MASK │SSM │S │P A SP│SO │ │ B²│1ð-83│

│82 │LOAD PSW │LPSW │S L │P A SP│ ¢ │ │ B²│1ð-35│

│83 │DIAGNOSE │ │ DM │P DM │ │ │ MD│1ð-16│

│84 │BRANCH RELATIVE ON INDEX HIGH │BRXH │RSI IR│ │ │B R │ │7-19│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│85 │BRANCH RELATIVE ON INDEX LOW OR EQ. │BRXLE│RSI IR│ │ │B R │ │7-19│

│86 │BRANCH ON INDEX HIGH │BXH │RS │ │ │B R │ │7-16│

│87 │BRANCH ON INDEX LOW OR EQUAL │BXLE │RS │ │ │B R │ │7-16│

│88 │SHIFT RIGHT SINGLE LOGICAL │SRL │RS │ │ │ R │ │7-85│

│89 │SHIFT LEFT SINGLE LOGICAL │SLL │RS │ │ │ R │ │7-83│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│8A │SHIFT RIGHT SINGLE │SRA │RS C │ │ │ R │ │7-84│

│8B │SHIFT LEFT SINGLE │SLA │RS C │ │ IF │ R │ │7-83│

│8C │SHIFT RIGHT DOUBLE LOGICAL │SRDL │RS │ SP│ │ R │ │7-84│

│8D │SHIFT LEFT DOUBLE LOGICAL │SLDL │RS │ SP│ │ R │ │7-82│

│8E │SHIFT RIGHT DOUBLE │SRDA │RS C │ SP│ │ R │ │7-83│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│8F │SHIFT LEFT DOUBLE │SLDA │RS C │ SP│ IF │ R │ │7-81│

│9ð │STORE MULTIPLE │STM │RS │ A │ │ ST│ B²│7-89│

│91 │TEST UNDER MASK │TM │SI C │ A │ │ │B± │7-92│

│92 │MOVE (immediate) │MVI │SI │ A │ │ ST│B± │7-53│

│93 │TEST AND SET │TS │S C │ A │ $ │ ST│ B²│7-91│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 3 of 9). Instructions Arranged by Operation Code
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│94 │AND (immediate) │NI │SI C │ A │ │ ST│B± │7-11│

│95 │COMPARE LOGICAL (immediate) │CLI │SI C │ A │ │ │B± │7-29│

│96 │OR (immediate) │OI │SI C │ A │ │ ST│B± │7-66│

│97 │EXCLUSIVE OR (immediate) │XI │SI C │ A │ │ ST│B± │7-45│

│98 │LOAD MULTIPLE │LM │RS │ A │ │ R │ B²│7-51│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│99 │TRACE │TRACE│RS │P A SP│ T ¢ │ │ B²│1ð-1ð6│

│9A │LOAD ACCESS MULTIPLE │LAM │RS │ A SP│ │ │ UB│7-49│

│9B │STORE ACCESS MULTIPLE │STAM │RS │ A SP│ │ ST│ UB│7-85│

│A7ð │TEST UNDER MASK HIGH │TMH │RI C IR│ │ │ │ │7-92│

│A71 │TEST UNDER MASK LOW │TML │RI C IR│ │ │ │ │7-92│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│A74 │BRANCH RELATIVE ON CONDITION │BRC │RI IR│ │ │B │ │7-17│

│A75 │BRANCH RELATIVE AND SAVE │BRAS │RI IR│ │ │B R │ │7-17│

│A76 │BRANCH RELATIVE ON COUNT │BRCT │RI IR│ │ │B R │ │7-18│

│A78 │LOAD HALFWORD IMMEDIATE │LHI │RI IR│ │ │ R │ │7-51│

│A7A │ADD HALFWORD IMMEDIATE │AHI │RI C IR│ │ IF │ R │ │7-1ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│A7C │MULTIPLY HALFWORD IMMEDIATE │MHI │RI IR│ │ │ R │ │7-65│

│A7E │COMPARE HALFWORD IMMEDIATE │CHI │RI C IR│ │ │ │ │7-29│

│A8 │MOVE LONG EXTENDED │MVCLE│RS C CM│ A SP│ │ R ST│R± R³│7-57│

│A9 │COMPARE LOGICAL LONG EXTENDED │CLCLE│RS C CM│ A SP│ │ R │R± R³│7-32│

│AC │STORE THEN AND SYSTEM MASK │STNSM│SI │P A │ │ ST│B± │1ð-96│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│AD │STORE THEN OR SYSTEM MASK │STOSM│SI │P A SP│ │ ST│B± │1ð-97│

│AE │SIGNAL PROCESSOR │SIGP │RS C │P │ $ │ R │ │1ð-83│

│AF │MONITOR CALL │MC │SI │ SP│ MO │ │ │7-52│

│B1 │LOAD REAL ADDRESS │LRA │RX C │P Añ │AT │ R │ BP│1ð-36│

│B2ð2│STORE CPU ID │STIDP│S │P A SP│ │ ST│ B²│1ð-86│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B2ð4│SET CLOCK │SCK │S C │P A SP│ │ │ B²│1ð-76│

│B2ð5│STORE CLOCK │STCK │S C │ A │ $ │ ST│ B²│7-87│

│B2ð6│SET CLOCK COMPARATOR │SCKC │S │P A SP│ │ │ B²│1ð-77│

│B2ð7│STORE CLOCK COMPARATOR │STCKC│S │P A SP│ │ ST│ B²│1ð-85│

│B2ð8│SET CPU TIMER │SPT │S │P A SP│ │ │ B²│1ð-78│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B2ð9│STORE CPU TIMER │STPT │S │P A SP│ │ ST│ B²│1ð-86│

│B2ðA│SET PSW KEY FROM ADDRESS │SPKA │S │Q │ │ │ │1ð-79│

│B2ðB│INSERT PSW KEY │IPK │S │Q │ G2 │ R │ │1ð-22│

│B2ðD│PURGE TLB │PTLB │S │P │ $ │ │ │1ð-72│

│B21ð│SET PREFIX │SPX │S │P A SP│ $ │ │ B²│1ð-78│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B211│STORE PREFIX │STPX │S │P A SP│ │ ST│ B²│1ð-87│

│B212│STORE CPU ADDRESS │STAP │S │P A SP│ │ ST│ B²│1ð-85│

│B218│PROGRAM CALL │PC │S │Q Añ │Zñ T ¢ GM │B R ST│ │1ð-48│

│B218│PROGRAM CALL FAST │PCF │S PC│ Añ │Zõ ¢ G4 │B R ST│ │1ð-59│

│B219│SET ADDRESS SPACE CONTROL │SAC │S │Q SP│SW ¢ │ │ │1ð-75│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B21A│COMPARE AND FORM CODEWORD │CFC │S C │ A SP│II GM │ R │I1 │7-23│

│B221│INVALIDATE PAGE TABLE ENTRY │IPTE │RRE │P Añ │ $ │ │ │1ð-24│

│B222│INSERT PROGRAM MASK │IPM │RRE │ │ │ R │ │7-48│

│B223│INSERT VIRTUAL STORAGE KEY │IVSK │RRE │Q Añ │SO │ R │ R²│1ð-23│

│B224│INSERT ADDRESS SPACE CONTROL │IAC │RRE C │Q │SO │ R │ │1ð-21│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 4 of 9). Instructions Arranged by Operation Code
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│B225│SET SECONDARY ASN │SSAR │RRE │ Añ │Zó T ¢ │ │ │1ð-79│

│B226│EXTRACT PRIMARY ASN │EPAR │RRE │Q │SO │ R │ │1ð-17│

│B227│EXTRACT SECONDARY ASN │ESAR │RRE │Q │SO │ R │ │1ð-17│

│B228│PROGRAM TRANSFER │PT │RRE │Q Añ SP│Zò T ¢ │B │ │1ð-66│

│B229│INSERT STORAGE KEY EXTENDED │ISKE │RRE │P Añ │ │ │ │1ð-23│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B22A│RESET REFERENCE BIT EXTENDED │RRBE │RRE C │P Añ │ │ │ │1ð-72│

│B22B│SET STORAGE KEY EXTENDED │SSKE │RRE │P Añ │ ¢ │ │ │1ð-83│

│B22C│TEST BLOCK │TB │RRE C │P Añ │II $ Gð │ R │ │1ð-1ð1│

│B22D│DIVIDE (extended HFP) │DXR │RRE │ SP│Da EU EO FK │ │ │18-12│

│B23ð│CLEAR SUBCHANNEL │CSCH │S C │P │OP ¢ GS │ │ │14-4│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B231│HALT SUBCHANNEL │HSCH │S C │P │OP ¢ GS │ │ │14-5│

│B232│MODIFY SUBCHANNEL │MSCH │S C │P A SP│OP ¢ GS │ │ B²│14-6│

│B233│START SUBCHANNEL │SSCH │S C │P A SP│OP ¢ GS │ │ B²│14-13│

│B234│STORE SUBCHANNEL │STSCH│S C │P A SP│OP ¢ GS │ ST│ B²│14-15│

│B235│TEST SUBCHANNEL │TSCH │S C │P A SP│OP ¢ GS │ ST│ B²│14-17│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B236│TEST PENDING INTERRUPTION │TPI │S C │P Añ SP│ ¢ │ ST│ B²│14-16│

│B237│SET ADDRESS LIMIT │SAL │S │P │OP ¢ G1 │ │ │14-1ð│

│B238│RESUME SUBCHANNEL │RSCH │S C │P │OP ¢ GS │ │ │14-8│

│B239│STORE CHANNEL REPORT WORD │STCRW│S C │P A SP│ ¢ │ ST│ B²│14-15│

│B23A│STORE CHANNEL PATH STATUS │STCPS│S │P A SP│ ¢ │ ST│ B²│14-14│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B23B│RESET CHANNEL PATH │RCHP │S C │P │OP ¢ G1 │ │ │14-7│

│B23C│SET CHANNEL MONITOR │SCHM │S │P │OP ¢ GM │ │ │14-11│

│B24ð│BRANCH AND STACK │BAKR │RRE │ Añ │SF T │B ST│ │1ð-9│

│B241│CHECKSUM │CKSM │RRE C CK│ A SP│ │ R │ R²│7-2ð│

│B244│SQUARE ROOT (long HFP) │SQDR │RRE QR│ SP│Da SQ │ │ │18-2ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B245│SQUARE ROOT (short HFP) │SQER │RRE QR│ SP│Da SQ │ │ │18-2ð│

│B246│STORE USING REAL ADDRESS │STURA│RRE │P Añ SP│ │ SU│ │1ð-97│

│B247│MODIFY STACKED STATE │MSTA │RRE │ Añ SP│SE │ ST│ │1ð-38│

│B248│PURGE ALB │PALB │RRE │P │ $ │ │ │1ð-72│

│B249│EXTRACT STACKED REGISTERS │EREG │RRE │ Añ │SE │ R │U± U²│1ð-18│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B24A│EXTRACT STACKED STATE │ESTA │RRE C │ Añ SP│SE │ R │ │1ð-2ð│

│B24B│LOAD USING REAL ADDRESS │LURA │RRE │P Añ SP│ │ R │ │1ð-38│

│B24C│TEST ACCESS │TAR │RRE C │ Añ │AS │ │U± │1ð-98│

│B24D│COPY ACCESS │CPYA │RRE │ │ │ │U± U²│7-45│

│B24E│SET ACCESS │SAR │RRE │ │ │ │U± │7-81│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B24F│EXTRACT ACCESS │EAR │RRE │ │ │ R │ U²│7-47│

│B252│MULTIPLY SINGLE │MSR │RRE IR│ │ │ R │ │7-66│

│B254│MOVE PAGE (facility 1) │MVPG │RRE C M1│ Añ SP│ Gð │ ST│R± R²│7-6ð│

│B254│MOVE PAGE (facility 2) │MVPG │RRE C M2│Q Añ SP│ Gð │ ST│R± R²│7-6ð│

│B255│MOVE STRING │MVST │RRE C SR│ A SP│ Gð │ R ST│R± R²│7-62│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B257│COMPARE UNTIL SUBSTRING EQUAL │CUSE │RRE C │ A SP│II GM │ │R± R²│7-36│

│B258│BRANCH IN SUBSPACE GROUP │BSG │RRE SG│ Añ │SO T │B R │ R²│1ð-12│

│B25A│BRANCH AND SET AUTHORITY │BSA │RRE BS│Q Añ │SO T │B R │ │1ð-6│

│B25D│COMPARE LOGICAL STRING │CLST │RRE C SR│ A SP│ Gð │ R │R± R²│7-34│

│B25E│SEARCH STRING │SRST │RRE C SR│ A SP│ Gð │ R │ R²│7-79│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 5 of 9). Instructions Arranged by Operation Code

  Appendix B. Lists of Instructions B-25



  
 

┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│B277│RESUME PROGRAM │RP │S L RP│Q A SP│SW T │B R │ B²│1ð-73│

| │B278│STORE CLOCK EXTENDED │STCKE│S C EK│ A │ $ │ ST│ B²│7-87│

│B279│SET ADDRESS SPACE CONTROL FAST │SACF │S SA│Q SP│SW │ │ │1ð-75│

| │B27D│STORE SYSTEM INFORMATION │STSI │S C SN│P A SP│ │ R ST│ B²│1ð-87│

│B299│SET ROUNDING MODE │SRNM │S BF│ │Db │ │ │19-45│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B29C│STORE FPC │STFPC│S BF│ A │Db │ ST│ B²│19-46│

│B29D│LOAD FPC │LFPC │S BF│ A SP│Db │ │ B²│19-38│

| │B2A5│TRANSLATE EXTENDED │TRE │RRE C ET│ A SP│ │ R ST│R± R²│7-94│

| │B2A6│CONVERT UNICODE TO UTF-8 │CUUTF│RRE C ET│ A SP│ │ R ST│R± R²│7-4ð│

| │B2A7│CONVERT UTF-8 TO UNICODE │CUTFU│RRE C ET│ A SP│ │ R ST│R± R²│7-42│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B2FF│TRAP │TRAP4│S TR│ A │SO T GM │B R ST│ │1ð-1ð6│

│B3ðð│LOAD POSITIVE (short BFP) │LPEBR│RRE C BF│ │Db │ │ │19-4ð│

│B3ð1│LOAD NEGATIVE (short BFP) │LNEBR│RRE C BF│ │Db │ │ │19-39│

│B3ð2│LOAD AND TEST (short BFP) │LTEBR│RRE C BF│ │Db Xi │ │ │19-36│

│B3ð3│LOAD COMPLEMENT (short BFP) │LCEBR│RRE C BF│ │Db │ │ │19-36│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B3ð4│LOAD LENGTHENED (short to long BFP) │LDEBR│RRE BF│ │Db Xi │ │ │19-39│

│B3ð5│LOAD LENGTHENED (long to ext. BFP) │LXDBR│RRE BF│ SP│Db Xi │ │ │19-39│

│B3ð6│LOAD LENGTHENED (short to ext. BFP) │LXEBR│RRE BF│ SP│Db Xi │ │ │19-39│

│B3ð7│MULTIPLY (long to extended BFP) │MXDBR│RRE BF│ SP│Db Xi │ │ │19-41│

│B3ð8│COMPARE AND SIGNAL (short BFP) │KEBR │RRE C BF│ │Db Xi │ │ │19-24│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B3ð9│COMPARE (short BFP) │CEBR │RRE C BF│ │Db Xi │ │ │19-23│

│B3ðA│ADD (short BFP) │AEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │19-18│

│B3ðB│SUBTRACT (short BFP) │SEBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │19-46│

│B3ðC│MULTIPLY (short to long BFP) │MDEBR│RRE BF│ │Db Xi │ │ │19-41│

│B3ðD│DIVIDE (short BFP) │DEBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │19-29│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B3ðE│MULTIPLY AND ADD (short BFP) │MAEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │19-43│

│B3ðF│MULTIPLY AND SUBTRACT (short BFP) │MSEBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │19-43│

│B31ð│LOAD POSITIVE (long BFP) │LPDBR│RRE C BF│ │Db │ │ │19-4ð│

│B311│LOAD NEGATIVE (long BFP) │LNDBR│RRE C BF│ │Db │ │ │19-39│

│B312│LOAD AND TEST (long BFP) │LTDBR│RRE C BF│ │Db Xi │ │ │19-36│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B313│LOAD COMPLEMENT (long BFP) │LCDBR│RRE C BF│ │Db │ │ │19-36│

│B314│SQUARE ROOT (short BFP) │SQEBR│RRE BF│ │Db Xi Xx│ │ │19-46│

│B315│SQUARE ROOT (long BFP) │SQDBR│RRE BF│ │Db Xi Xx│ │ │19-46│

│B316│SQUARE ROOT (extended BFP) │SQXBR│RRE BF│ SP│Db Xi Xx│ │ │19-46│

│B317│MULTIPLY (short BFP) │MEEBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │19-41│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B318│COMPARE AND SIGNAL (long BFP) │KDBR │RRE C BF│ │Db Xi │ │ │19-24│

│B319│COMPARE (long BFP) │CDBR │RRE C BF│ │Db Xi │ │ │19-23│

│B31A│ADD (long BFP) │ADBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │19-18│

│B31B│SUBTRACT (long BFP) │SDBR │RRE C BF│ │Db Xi Xo Xu Xx│ │ │19-46│

│B31C│MULTIPLY (long BFP) │MDBR │RRE BF│ │Db Xi Xo Xu Xx│ │ │19-41│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B31D│DIVIDE (long BFP) │DDBR │RRE BF│ │Db Xi Xz Xo Xu Xx│ │ │19-29│

│B31E│MULTIPLY AND ADD (long BFP) │MADBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │19-43│

│B31F│MULTIPLY AND SUBTRACT (long BFP) │MSDBR│RRF BF│ │Db Xi Xo Xu Xx│ │ │19-43│

│B324│LOAD LENGTHENED (short to long HFP) │LDER │RRE HX│ │Da │ │ │18-15│

│B325│LOAD LENGTHENED (long to ext. HFP) │LXDR │RRE HX│ SP│Da │ │ │18-15│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 6 of 9). Instructions Arranged by Operation Code

B-26 ESA/390 Principles of Operation  



  
 

┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│B326│LOAD LENGTHENED (short to ext. HFP) │LXER │RRE HX│ SP│Da │ │ │18-15│

│B336│SQUARE ROOT (extended HFP) │SQXR │RRE HX│ SP│Da SQ │ │ │18-2ð│

│B337│MULTIPLY (short HFP) │MEER │RRE HX│ │Da EU EO │ │ │18-18│

│B34ð│LOAD POSITIVE (extended BFP) │LPXBR│RRE C BF│ SP│Db │ │ │19-4ð│

│B341│LOAD NEGATIVE (extended BFP) │LNXBR│RRE C BF│ SP│Db │ │ │19-39│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B342│LOAD AND TEST (extended BFP) │LTXBR│RRE C BF│ SP│Db Xi │ │ │19-36│

│B343│LOAD COMPLEMENT (extended BFP) │LCXBR│RRE C BF│ SP│Db │ │ │19-36│

│B344│LOAD ROUNDED (long to short BFP) │LEDBR│RRE BF│ │Db Xi Xo Xu Xx│ │ │19-4ð│

│B345│LOAD ROUNDED (extended to long BFP) │LDXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │19-4ð│

│B346│LOAD ROUNDED (extended to short BFP)│LEXBR│RRE BF│ SP│Db Xi Xo Xu Xx│ │ │19-4ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B347│LOAD FP INTEGER (extended BFP) │FIXBR│RRF BF│ SP│Db Xi Xx│ │ │19-37│

│B348│COMPARE AND SIGNAL (extended BFP) │KXBR │RRE C BF│ SP│Db Xi │ │ │19-24│

│B349│COMPARE (extended BFP) │CXBR │RRE C BF│ SP│Db Xi │ │ │19-23│

│B34A│ADD (extended BFP) │AXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │19-18│

│B34B│SUBTRACT (extended BFP) │SXBR │RRE C BF│ SP│Db Xi Xo Xu Xx│ │ │19-46│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B34C│MULTIPLY (extended BFP) │MXBR │RRE BF│ SP│Db Xi Xo Xu Xx│ │ │19-41│

│B34D│DIVIDE (extended BFP) │DXBR │RRE BF│ SP│Db Xi Xz Xo Xu Xx│ │ │19-29│

│B35ð│CONVERT HFP TO BFP (long to short) │TBEDR│RRF C FX│ SP│Da │ │ │9-11│

│B351│CONVERT HFP TO BFP (long) │TBDR │RRF C FX│ SP│Da │ │ │9-11│

│B353│DIVIDE TO INTEGER (short BFP) │DIEBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │19-3ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B357│LOAD FP INTEGER (short BFP) │FIEBR│RRF BF│ SP│Db Xi Xx│ │ │19-37│

│B358│CONVERT BFP TO HFP (short to long) │THDER│RRE C FX│ │Da │ │ │9-1ð│

│B359│CONVERT BFP TO HFP (long) │THDR │RRE C FX│ │Da │ │ │9-1ð│

│B35B│DIVIDE TO INTEGER (long BFP) │DIDBR│RRF C BF│ SP│Db Xi Xu Xx│ │ │19-3ð│

│B35F│LOAD FP INTEGER (long BFP) │FIDBR│RRF BF│ SP│Db Xi Xx│ │ │19-37│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B36ð│LOAD POSITIVE (extended HFP) │LPXR │RRE C HX│ SP│Da │ │ │18-17│

│B361│LOAD NEGATIVE (extended HFP) │LNXR │RRE C HX│ SP│Da │ │ │18-16│

│B362│LOAD AND TEST (extended HFP) │LTXR │RRE C HX│ SP│Da │ │ │18-14│

│B363│LOAD COMPLEMENT (extended HFP) │LCXR │RRE C HX│ SP│Da │ │ │18-14│

│B365│LOAD (extended) │LXR │RRE FX│ SP│Da │ │ │9-12│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B366│LOAD ROUNDED (extended to short HFP)│LEXR │RRE HX│ SP│Da EO │ │ │18-17│

│B367│LOAD FP INTEGER (extended HFP) │FIXR │RRE HX│ SP│Da │ │ │18-15│

│B369│COMPARE (extended HFP) │CXR │RRE C HX│ SP│Da │ │ │18-1ð│

│B374│LOAD ZERO (short) │LZER │RRE FX│ │Da │ │ │9-13│

│B375│LOAD ZERO (long) │LZDR │RRE FX│ │Da │ │ │9-13│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B376│LOAD ZERO (extended) │LZXR │RRE FX│ SP│Da │ │ │9-13│

│B377│LOAD FP INTEGER (short HFP) │FIER │RRE HX│ │Da │ │ │18-15│

│B37F│LOAD FP INTEGER (long HFP) │FIDR │RRE HX│ │Da │ │ │18-15│

│B384│SET FPC │SFPC │RRE BF│ SP│Db │ │ │19-45│

│B38C│EXTRACT FPC │EFPC │RRE BF│ │Db │ │ │19-35│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B394│CONVERT FROM FIXED (32 to short BFP)│CEFBR│RRE BF│ │Db Xx│ │ │19-26│

│B395│CONVERT FROM FIXED (32 to long BFP) │CDFBR│RRE BF│ │Db │ │ │19-26│

│B396│CONVERT FROM FIXED (32 to ext. BFP) │CXFBR│RRE BF│ SP│Db │ │ │19-26│

│B398│CONVERT TO FIXED (short BFP to 32) │CFEBR│RRF C BF│ SP│Db Xi Xx│ R │ │19-27│

│B399│CONVERT TO FIXED (long BFP to 32) │CFDBR│RRF C BF│ SP│Db Xi Xx│ R │ │19-27│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 7 of 9). Instructions Arranged by Operation Code

  Appendix B. Lists of Instructions B-27



  
 

┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│B39A│CONVERT TO FIXED (ext. BFP to 32) │CFXBR│RRF C BF│ SP│Db Xi Xx│ R │ │19-27│

│B3B4│CONVERT FROM FIXED (32 to short HFP)│CEFR │RRE HX│ │Da │ │ │18-11│

│B3B5│CONVERT FROM FIXED (32 to long HFP) │CDFR │RRE HX│ │Da │ │ │18-11│

│B3B6│CONVERT FROM FIXED (32 to ext. HFP) │CXFR │RRE HX│ SP│Da │ │ │18-11│

│B3B8│CONVERT TO FIXED (short HFP to 32) │CFER │RRF C HX│ SP│Da │ R │ │18-11│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│B3B9│CONVERT TO FIXED (long HFP to 32) │CFDR │RRF C HX│ SP│Da │ R │ │18-11│

│B3BA│CONVERT TO FIXED (ext. HFP to 32) │CFXR │RRF C HX│ SP│Da │ R │ │18-11│

│B6 │STORE CONTROL │STCTL│RS │P A SP│ │ ST│ B²│1ð-85│

│B7 │LOAD CONTROL │LCTL │RS │P A SP│ │ │ B²│1ð-35│

│BA │COMPARE AND SWAP │CS │RS C │ A SP│ $ │ R ST│ B²│7-27│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│BB │COMPARE DOUBLE AND SWAP │CDS │RS C │ A SP│ $ │ R ST│ B²│7-27│

│BD │COMPARE LOGICAL C. UNDER MASK │CLM │RS C │ A │ │ │ B²│7-3ð│

│BE │STORE CHARACTERS UNDER MASK │STCM │RS │ A │ │ ST│ B²│7-86│

│BF │INSERT CHARACTERS UNDER MASK │ICM │RS C │ A │ │ R │ B²│7-47│

│D1 │MOVE NUMERICS │MVN │SS │ A │ │ ST│B± B²│7-6ð│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│D2 │MOVE (character) │MVC │SS │ A │ │ ST│B± B²│7-53│

│D3 │MOVE ZONES │MVZ │SS │ A │ │ ST│B± B²│7-64│

│D4 │AND (character) │NC │SS C │ A │ │ ST│B± B²│7-11│

│D5 │COMPARE LOGICAL (character) │CLC │SS C │ A │ │ │B± B²│7-29│

│D6 │OR (character) │OC │SS C │ A │ │ ST│B± B²│7-66│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│D7 │EXCLUSIVE OR (character) │XC │SS C │ A │ │ ST│B± B²│7-45│

│D9 │MOVE WITH KEY │MVCK │SS C │Q A │ │ ST│B± B²│1ð-46│

│DA │MOVE TO PRIMARY │MVCP │SS C │Q A │SO ¢ │ ST│ │1ð-43│

│DB │MOVE TO SECONDARY │MVCS │SS C │Q A │SO ¢ │ ST│ │1ð-43│

│DC │TRANSLATE │TR │SS │ A │ │ ST│B± B²│7-93│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│DD │TRANSLATE AND TEST │TRT │SS C │ A │ GM │ R │B± B²│7-94│

│DE │EDIT │ED │SS C │ A │Dd │ ST│B± B²│8-7│

│DF │EDIT AND MARK │EDMK │SS C │ A │Dd G1 │ R ST│B± B²│8-11│

│E5ðð│LOAD ADDRESS SPACE PARAMETERS │LASP │SSE C │P Añ SP│AS │ │B± │1ð-26│

│E5ð1│TEST PROTECTION │TPROT│SSE C │P Añ │ │ │B± │1ð-1ð3│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│E5ðE│MOVE WITH SOURCE KEY │MVCSK│SSE │Q A │ GM │ ST│B± B²│1ð-47│

│E5ðF│MOVE WITH DESTINATION KEY │MVCDK│SSE │Q A │ GM │ ST│B± B²│1ð-45│

│E8 │MOVE INVERSE │MVCIN│SS MI│ A │ │ ST│B± B²│7-53│

│EDð4│LOAD LENGTHENED (short to long BFP) │LDEB │RXE BF│ A │Db Xi │ │ B²│19-39│

│EDð5│LOAD LENGTHENED (long to ext. BFP) │LXDB │RXE BF│ A SP│Db Xi │ │ B²│19-39│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│EDð6│LOAD LENGTHENED (short to ext. BFP) │LXEB │RXE BF│ A SP│Db Xi │ │ B²│19-39│

│EDð7│MULTIPLY (long to extended BFP) │MXDB │RXE BF│ A SP│Db Xi │ │ B²│19-41│

│EDð8│COMPARE AND SIGNAL (short BFP) │KEB │RXE C BF│ A │Db Xi │ │ B²│19-24│

│EDð9│COMPARE (short BFP) │CEB │RXE C BF│ A │Db Xi │ │ B²│19-23│

│EDðA│ADD (short BFP) │AEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│19-18│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│EDðB│SUBTRACT (short BFP) │SEB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│19-46│

│EDðC│MULTIPLY (short to long BFP) │MDEB │RXE BF│ A │Db Xi │ │ B²│19-41│

│EDðD│DIVIDE (short BFP) │DEB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│19-29│

│EDðE│MULTIPLY AND ADD (short BFP) │MAEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│19-43│

│EDðF│MULTIPLY AND SUBTRACT (short BFP) │MSEB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│19-43│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 8 of 9). Instructions Arranged by Operation Code
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┌────┬────────────────────────────────────┬─────┬────────────────────────────────────────────────┬───────┐

│Op │ │Mne- │ │ Page │

│Code│ Name │monic│ Characteristics │ No. │

├────┼────────────────────────────────────┼─────┼─────────┬───────┬─────────────────┬──────┬─────┼───────┤

│ED1ð│TEST DATA CLASS (short BFP) │TCEB │RXE C BF│ │Db │ │ │19-47│

│ED11│TEST DATA CLASS (long BFP) │TCDB │RXE C BF│ │Db │ │ │19-47│

│ED12│TEST DATA CLASS (extended BFP) │TCXB │RXE C BF│ SP│Db │ │ │19-47│

│ED14│SQUARE ROOT (short BFP) │SQEB │RXE BF│ A │Db Xi Xx│ │ B²│19-46│

│ED15│SQUARE ROOT (long BFP) │SQDB │RXE BF│ A │Db Xi Xx│ │ B²│19-46│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│ED17│MULTIPLY (short BFP) │MEEB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│19-41│

│ED18│COMPARE AND SIGNAL (long BFP) │KDB │RXE C BF│ A │Db Xi │ │ B²│19-24│

│ED19│COMPARE (long BFP) │CDB │RXE C BF│ A │Db Xi │ │ B²│19-23│

│ED1A│ADD (long BFP) │ADB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│19-18│

│ED1B│SUBTRACT (long BFP) │SDB │RXE C BF│ A │Db Xi Xo Xu Xx│ │ B²│19-46│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│ED1C│MULTIPLY (long BFP) │MDB │RXE BF│ A │Db Xi Xo Xu Xx│ │ B²│19-41│

│ED1D│DIVIDE (long BFP) │DDB │RXE BF│ A │Db Xi Xz Xo Xu Xx│ │ B²│19-29│

│ED1E│MULTIPLY AND ADD (long BFP) │MADB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│19-43│

│ED1F│MULTIPLY AND SUBTRACT (long BFP) │MSDB │RXF BF│ A │Db Xi Xo Xu Xx│ │ B²│19-43│

│ED24│LOAD LENGTHENED (short to long HFP) │LDE │RXE HX│ A │Da │ │ B²│18-15│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│ED25│LOAD LENGTHENED (long to ext. HFP) │LXD │RXE HX│ A SP│Da │ │ B²│18-15│

│ED26│LOAD LENGTHENED (short to ext. HFP) │LXE │RXE HX│ A SP│Da │ │ B²│18-15│

│ED34│SQUARE ROOT (short HFP) │SQE │RXE HX│ A │Da SQ │ │ B²│18-2ð│

│ED35│SQUARE ROOT (long HFP) │SQD │RXE HX│ A │Da SQ │ │ B²│18-2ð│

│ED37│MULTIPLY (short HFP) │MEE │RXE HX│ A │Da EU EO │ │ B²│18-18│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│EE │PERFORM LOCKED OPERATION │PLO │SS C PL│ A SP│ $ GM │ R ST│ FC│7-68│

│Fð │SHIFT AND ROUND DECIMAL │SRP │SS C │ A │Dd DF │ ST│B± │8-12│

│F1 │MOVE WITH OFFSET │MVO │SS │ A │ │ ST│B± B²│7-63│

│F2 │PACK │PACK │SS │ A │ │ ST│B± B²│7-67│

│F3 │UNPACK │UNPK │SS │ A │ │ ST│B± B²│7-97│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│F8 │ZERO AND ADD │ZAP │SS C │ A │Dd DF │ ST│B± B²│8-13│

│F9 │COMPARE DECIMAL │CP │SS C │ A │Dd │ │B± B²│8-6│

│FA │ADD DECIMAL │AP │SS C │ A │Dd DF │ ST│B± B²│8-5│

│FB │SUBTRACT DECIMAL │SP │SS C │ A │Dd DF │ ST│B± B²│8-13│

│FC │MULTIPLY DECIMAL │MP │SS │ A SP│Dd │ ST│B± B²│8-11│

├────┼────────────────────────────────────┼─────┼─────────┼───────┼─────────────────┼──────┼─────┼───────┤

│FD │DIVIDE DECIMAL │DP │SS │ A SP│Dd DK │ ST│B± B²│8-6│

└────┴────────────────────────────────────┴─────┴─────────┴───────┴─────────────────┴──────┴─────┴───────┘

Figure B-3 (Part 9 of 9). Instructions Arranged by Operation Code
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 Appendix C. Condition-Code Settings

This appendix lists the condition-code setting for
instructions in ESA/390 which set the condition
code. In addition to those instructions listed which
set the condition code, the condition code is set
unpredictably by PROGRAM RETURN, and it may
be changed by DIAGNOSE and the target of
EXECUTE. The condition code is loaded by
LOAD PSW, by SET PROGRAM MASK, and by
an interruption. The condition code is set to zero
by initial CPU reset and is loaded by the suc-
cessful conclusion of the initial-program-loading
sequence.

The condition codes for the vector facility are not
included in this appendix. See the publication IBM
Enterprise Systems Architecture/390 Vector Oper-
ations, SA22-7207 for the condition codes set by
vector instructions.

Some models may offer instructions which set the
condition code and do not appear in this docu-
ment, such as those provided for assists or as
part of special or custom features.

┌────────────────────────────┬───────────────────────────────────────────────────────────────┐

│ │ Condition Code │

│ ├───────────────┬───────────────┬───────────────┬───────────────┤

│ Instruction │ ð │ 1 │ 2 │ 3 │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│ADD (gen), ADD HALFWORD, ADD│Zero │< zero │> zero │Overflow │

│ HALFWORD IMMEDIATE │ │ │ │ │

│ADD (BFP) │Zero │< zero │> zero │NaN │

│ADD DECIMAL │Zero │< zero │> zero │Overflow │

│ADD LOGICAL │Zero, │Not zero, │Zero, │Not zero, │

│ │ no carry │ no carry │ carry │ carry │

│ADD NORMALIZED │Zero │< zero │> zero │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│ADD UNNORMALIZED │Zero │< zero │> zero │-- │

│AND │Zero │Not zero │-- │-- │

│CHECKSUM │Checksum │-- │-- │CPU-determined │

│ │ complete │ │ │ completion │

│CLEAR SUBCHANNEL │Function │-- │-- │Not operational│

│ │ initiated │ │ │ │

│COMPARE (gen, HFP) │Equal │Low │High │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│COMPARE (BFP) │Equal │Low │High │Unordered │

│COMPARE AND SIGNAL │Equal │Low │High │Unordered │

│COMPARE HALFWORD, COMPARE │Equal │Low │High │-- │

│ HALFWORD IMMEDIATE │ │ │ │ │

│COMPARE AND FORM CODEWORD │Equal │OCB=ð: low │OCB=ð: high │-- │

│ │ │OCB=1: high │OCB=1: low │ │

│COMPARE AND SWAP │Equal │Not equal │-- │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│COMPARE DECIMAL │Equal │Low │High │-- │

│COMPARE DOUBLE AND SWAP │Equal │Not equal │-- │-- │

│COMPARE LOGICAL │Equal │Low │High │-- │

│COMPARE LOGICAL CHARACTERS │Equal │Low │High │-- │

│ UNDER MASK │ │ │ │ │

│COMPARE LOGICAL LONG │Equal │Low │High │-- │

└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 1 of 4). Summary of Condition-Code Settings
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┌────────────────────────────┬───────────────────────────────────────────────────────────────┐

│ │ Condition Code │

│ ├───────────────┬───────────────┬───────────────┬───────────────┤

│ Instruction │ ð │ 1 │ 2 │ 3 │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│COMPARE LOGICAL LONG │Equal │Low │High │CPU-determined │

│ EXTENDED │ │ │ │ completion │

│COMPARE LOGICAL STRING │Equal │Low │High │CPU-determined │

│ │ │ │ │ completion │

│COMPARE UNTIL SUBSTRING │Equal │Last bytes │Last bytes │CPU-determined │

│ EQUAL │ substrings │ equal │ unequal │ completion │

│CONVERT BFP TO HFP │Zero │< zero │> zero │Special case │

│CONVERT HFP TO BFP │Zero │< zero │> zero │Special case │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│CONVERT TO FIXED │Zero │< zero │> zero │Special case │

| │CONVERT UNICODE TO UTF-8 │Data processed │Op1 full │-- │CPU-determined │

| │ EQUAL │ │ │ │ completion │

| │CONVERT UTF-8 TO UNICODE │Data processed │Op1 full │-- │CPU-determined │

| │ EQUAL │ │ │ │ completion │

│DIVIDE TO INTEGER │Remainder │Remainder │Remainder │Remainder │

│ │ complete; │ complete; │ incomplete; │ incomplete; │

│ │ normal │ quotient │ normal │ quotient │

│ │ quotient │ overflow or │ quotient │ overflow or │

│ │ │ NaN │ │ NaN │

│EDIT, EDIT AND MARK │Zero │< zero │> zero │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│EXCLUSIVE OR │Zero │Not zero │-- │-- │

│EXTRACT STACKED STATE │Branch state │Program-call │-- │-- │

│ │ entry │ state entry │ │ │

│HALT SUBCHANNEL │Function │Status-pending │Busy │Not operational│

│ │ initiated │ with other │ │ │

│ │ │ than interme-│ │ │

│ │ │ diate status │ │ │

│INSERT ADDRESS SPACE CONTROL│Primary-space │Secondary-space│Access-register│Home-space mode│

│ │ mode │ mode │ mode │ │

│INSERT CHARACTERS UNDER MASK│All zeros │First bit one │First bit zero │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│LOAD ADDRESS SPACE │Parameters │Primary ASN │Secondary ASN │Space-switch │

│ PARAMETERS │ loaded │ not available│ not available│ event │

│ │ │ │ or not │ │

│ │ │ │ authorized │ │

│LOAD AND TEST (BFP) │Zero │< zero │> zero │NaN │

│LOAD AND TEST (gen, HFP) │Zero │< zero │> zero │-- │

│LOAD COMPLEMENT (gen) │Zero │< zero │> zero │Overflow │

│LOAD COMPLEMENT (BFP) │Zero │< zero │> zero │NaN │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│LOAD COMPLEMENT (HFP) │Zero │< zero │> zero │-- │

│LOAD NEGATIVE (BFP) │Zero │< zero │-- │NaN │

│LOAD NEGATIVE (gen, HFP) │Zero │< zero │-- │-- │

│LOAD POSITIVE (BFP) │Zero │-- │> zero │NaN │

│LOAD POSITIVE (gen) │Zero │-- │> zero │Overflow │

│ │ available │ invalid │ invalid │ not available│

│ │ │ │ │ or length │

│ │ │ │ │ violation │

└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 2 of 4). Summary of Condition-Code Settings
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┌────────────────────────────┬───────────────────────────────────────────────────────────────┐

│ │ Condition Code │

│ ├───────────────┬───────────────┬───────────────┬───────────────┤

│ Instruction │ ð │ 1 │ 2 │ 3 │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│LOAD POSITIVE (HFP) │Zero │-- │> zero │-- │

│LOAD REAL ADDRESS │Translation │ST entry │PT entry │ST designation │

│MODIFY SUBCHANNEL │SCHIB informa- │Status-pending │Busy │Not operational│

│ │ tion placed │ │ │ │

│ │ in subchannel│ │ │ │

│MOVE LONG │Length equal │Length low │Length high │Destructive │

│ │ │ │ │ overlap │

│MOVE LONG EXTENDED │Length equal │Length low │Length high │CPU-determined │

│ │ │ │ │ completion │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│MOVE PAGE │Data moved │Operand 1 │Operand 2 │-- │

│ │ │ invalid, both│ invalid │ │

│ │ │ valid in ES, │ │ │

│ │ │ locked, or │ │ │

│ │ │ ES error │ │ │

│MOVE STRING │-- │Data moved │-- │CPU-determined │

│ │ │ │ │ completion │

│MOVE TO PRIMARY, MOVE TO │Length =< 256 │-- │-- │Length > 256 │

│ SECONDARY │ │ │ │ │

│MOVE WITH KEY │Length =< 256 │-- │-- │Length > 256 │

│OR │Zero │Not zero │-- │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│PERFORM LOCKED OPERATION if │Equal │Op1 not equal │Op1 equal, op3 │-- │

│ test bit zero │ │ │ not equal │ │

│ │ │ │ (dcs only) │ │

│PERFORM LOCKED OPERATION if │Function code │-- │-- │Function code │

│ test bit one │ valid │ │ │ invalid │

│RESET CHANNEL PATH │Function │-- │Busy │Not operational│

│ │ initiated │ │ │ │

│RESET REFERENCE BIT │R bit zero, │R bit zero, │R bit one, │R bit one, │

│ EXTENDED │ C bit zero │ C bit one │ C bit zero │ C bit one │

│RESUME SUBCHANNEL │Function │Status pending │Function not │Not operational│

│ │ initiated │ │ applicable │ │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│SEARCH STRING │-- │Found │Not found │CPU-determined │

│ │ │ │ │ completion │

│SET CLOCK │Set │Secure │-- │Not operational│

│SHIFT AND ROUND DECIMAL │Zero │< zero │> zero │Overflow │

│SHIFT LEFT (DOUBLE/SINGLE) │Zero │< zero │> zero │Overflow │

│SHIFT RIGHT (DOUBLE/SINGLE) │Zero │< zero │> zero │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│SIGNAL PROCESSOR │Order accepted │Status stored │Busy │Not operational│

│START SUBCHANNEL │Function │Status-pending │Busy │Not operational│

│ │ initiated │ │ │ │

│STORE CHANNEL REPORT WORD │CRW stored │Zeros stored │-- │-- │

| │STORE CLOCK │Set │Not set │Error │Stopped or not │

| │ │ │ │ │ operational │

| │STORE CLOCK EXTENDED │Set │Not set │Error │Stopped or not │

| │ │ │ │ │ operational │

└────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┘

Figure C-1 (Part 3 of 4). Summary of Condition-Code Settings
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┌────────────────────────────┬───────────────────────────────────────────────────────────────┐

│ │ Condition Code │

│ ├───────────────┬───────────────┬───────────────┬───────────────┤

│ Instruction │ ð │ 1 │ 2 │ 3 │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│STORE SUBCHANNEL │SCHIB stored │-- │-- │Not operational│

| │STORE SYSTEM INFORMATION │Information │-- │-- │Information not│

| │ │ provided │ │ │ available │

│SUBTRACT, SUBTRACT HALFWORD │Zero │< zero │> zero │Overflow │

│SUBTRACT (BFP) │Zero │< zero │> zero │NaN │

│SUBTRACT DECIMAL │Zero │< zero │> zero │Overflow │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│SUBTRACT LOGICAL │-- │Not zero, │Zero, │Not zero, │

│ │ │ no carry │ carry │ carry │

│SUBTRACT NORMALIZED (HFP) │Zero │< zero │> zero │-- │

│SUBTRACT UNNORMALIZED (HFP) │Zero │< zero │> zero │-- │

│TEST ACCESS │ALET ð │DU access list,│PS access list,│ALET 1 or │

│ │ │ no exceptions│ no exceptions│ exceptions │

│TEST AND SET │Left bit zero │Left bit one │-- │-- │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│TEST BLOCK │Usable │Not usable │-- │-- │

│TEST DATA CLASS │Zero (no match)│One (match) │-- │-- │

│TEST PENDING INTERRUPTION │Interruption │Interruption │-- │-- │

│ │ code not │ code stored │ │ │

│ │ stored │ │ │ │

│TEST PROTECTION │Can fetch, │Can fetch, │Cannot fetch, │Translation not│

│ │ can store │ cannot store │ cannot store │ available │

│TEST SUBCHANNEL │IRB stored; │IRB stored; │-- │Not operational│

│ │ subchannel │ subchannel │ │ │

│ │ status- │ not status- │ │ │

│ │ pending │ pending │ │ │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│TEST UNDER MASK │All zeros │Mixed │-- │All ones │

│TEST UNDER MASK (HIGH/LOW) │All zeros │Mixed, left bit│Mixed, left bit│All ones │

│ │ │ zero │ one │ │

│TRANSLATE AND TEST │All zeros │Incomplete │Complete │-- │

| │TRANSLATE EXTENDED │Data processed │Op1 byte equal │-- │CPU-determined │

| │ │ │ test byte │ │ completion │

│UPDATE TREE │Equal │Not equal or │-- │GR5 nonzero, │

│ │ │ no comparison│ │ GRð negative │

├────────────────────────────┼───────────────┼───────────────┼───────────────┼───────────────┤

│ZERO AND ADD │Zero │< zero │> zero │Overflow │

├────────────────────────────┴───────────────┴───────────────┴───────────────┴───────────────┤

│Explanation: │

│ │

│ > zero Result greater than zero. │

│ < zero Result less than zero. │

│ =< 256 Equal to, or less than, 256. │

│ > 256 Greater than 256. │

│ gen General instruction. │

│ BFP Binary-floating-point instruction. │

│ High First operand high. │

│ HFP Hexadecimal-floating-point instruction. │

│ Low First operand low. │

│ Length Length of first operand. │

│ NaN Not-a-number. │

│ OCB Operand-control bit. │

└────────────────────────────────────────────────────────────────────────────────────────────┘

Figure C-1 (Part 4 of 4). Summary of Condition-Code Settings
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Appendix D. Comparison between ESA/370 and ESA/390

This appendix provides (1)  a list of the facilities
that are new in ESA/390 and not provided in
ESA/370, and (2) a description of the handling in
ESA/390 of the facilities available in ESA/370.
This appendix applies to only the facilities that are
described in detail in this publication. A summary
of other facilities that are new in ESA/390 is in
“Highlights of ESA/390” on page 1-1.

New Facilities in ESA/390
The following facilities are new in ESA/390 and
are not provided in ESA/370. Access-list-
controlled protection is provided by all ESA/390
models. Concurrent sense, PER 2, storage-
protection override, move-page facility 2, square
root, string instruction, suppression on protection
with virtual-address enhancement, set address
space control fast, subspace group, called-space
identification, checksum, compare and move
extended, immediate and relative instruction,
branch and set authority, perform locked opera-
tion, additional floating-point, program call fast,

| resume program, trap, extended TOD clock,
| TOD-clock-control override, store system informa-
| tion, and extended translation are provided by

some ESA/390 models. A model provides move-
page facility 1 if it does not provide move-page
facility 2.

 Access-List-Controlled Protection
Bit 6 in the access-list entry is assigned as the
fetch-only bit. If the fetch-only bit is one when a
store-type storage reference is attempted using
the access-list entry, a protection exception for
access-list-controlled protection is recognized.

 Additional Floating-Point
“Additional floating-point facilities” is an informal
name referring to a set of four facilities related to
hexadecimal floating point (HFP) and binary
floating point (BFP). The four facilities are:

� Basic floating-point extensions,  which
includes:

– Twelve additional floating-point (AFP) reg-
isters, to make a total of 16 floating-point
registers.

– A 32-bit floating-point-control (FPC) reg-
ister.

– An AFP-register-control bit, bit 13 of
control register 0, which controls whether
the new registers and the binary-floating-
point instructions can be used.

– The storing of a data-exception code
(DXC) at real locations 144-147 during a
program interruption for a data exception.

– An extended-save-area control, bit 2 of
control register 14, and an extended-save-
area address at real and absolute
locations 212-215. All 16 of the floating-
point registers and the FPC register are
saved in the extended save area during a
store-status operation or a machine-check
program interruption.

– A new SIGNAL PROCESSOR order,
store-extended-status-at-address, that per-
forms the store-status-at-address opera-
tion and also saves the contents of the 16
floating-point registers and the FPC reg-
ister.

� Floating-point-support (FPS) extensions,
which provides eight new instructions,
including four to convert data between the
HFP and BFP formats.

� Hexadecimal-floating-point (HFP) exten-
sions,  which provides 26 new instructions to
operate on data in the HFP format. All of
these are counterparts to new instructions pro-
vided by the BFP facility, including conversion
between floating-point and fixed-point formats,
and a more complete set of operations on the
extended format.

� Binary floating-point (BFP),  which defines
short, long, and extended BFP data formats
and provides 87 new instructions to operate
on data in these formats. The BFP formats
and operations provide everything necessary
to conform to the IEEE standard, except for
binary-decimal conversion, which must be pro-
vided in software.

The new floating-point instructions are listed in
“Summary of All Floating-Point Instructions” on
page 9-13.
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Branch and Set Authority
When the BRANCH AND SET AUTHORITY (BSA)
instruction is executed in the base authority state,
bits 32-63 of the current PSW, including the
updated instruction address, are saved in word 8
of the dispatchable-unit control table (DUCT), the
PSW key mask (PKM), PSW key, and problem-
state bit are saved in word 9 of the DUCT, and bit
28 in word 9 is set to one to indicate the reduced-
authority state. The PKM and PSW key are
replaced from general register R±, PSW bits 32-63
are replaced from general register R², and the
problem-state bit is set to one.

When BSA is executed in the reduced-authority
state, bits 32-63 of the PSW and the PKM, PSW
key, and problem-state bit are replaced with the
values saved in the DUCT, and bit 28 in word 9 of
the DUCT is set to zero to indicate the base-
authority state.

 Called-Space Identification
Bytes 144-147 of the linkage-stack state entry
formed by the stacking PROGRAM CALL instruc-
tion are assigned as the called-space identification
(CSI). If the PROGRAM CALL operation was
space switching, bytes 0 and 1 of the CSI contain
the new primary ASN, and bytes 2 and 3 contain
the rightmost two bytes of the ASTE sequence
number in the new primary ASN-second-table
entry. If the operation was the to-current-primary
operation, the CSI is all zeros.

 Checksum
The CHECKSUM instruction computes a 32-bit
checksum for a specified operand in storage. The
program can easily use the 32-bit checksum to
compute a 16-bit checksum if that is desired.

Compare and Move Extended
The COMPARE LOGICAL LONG EXTENDED and
MOVE LONG EXTENDED instructions are new
versions of the COMPARE LOGICAL LONG and
MOVE LONG instructions. The new versions
increase the size of the operand-length specifica-
tions from 24 bits to 32 bits, and they periodically

complete to allow software polling in a multiproc-
essing system.

 Concurrent Sense
When permitted by the program, the channel sub-
system may retrieve sense data from the device
when a unit-check condition is reported and
provide the sense data to the program at the time
of the interruption due to the unit-check condition.
This avoids the need to obtain the sense informa-
tion by means of a separate I/O operation. In par-
ticular, concurrent sense allows a control unit to
be released more quickly from a contingent alle-
giance.

| Extended TOD Clock
| The facility extends the TOD clock from 64 to 104
| bits and provides the TOD programmable register,
| the privileged SET CLOCK PROGRAMMABLE
| FIELD instruction, and the STORE CLOCK
| EXTENDED instruction. Bits 16-31 of the 32-bit
| TOD programmable register are the TOD pro-
| grammable field, which can be set by SET
| CLOCK PROGRAMMABLE FIELD. STORE
| CLOCK EXTENDED stores in a 16-byte storage
| operand; it stores zeros in bit positions 0-7 of the
| operand, bits 0-103 of the TOD clock in bit posi-
| tions 8-111 of the operand, and the TOD program-
| mable field in bit positions 112-127 of the
| operand. When the TOD clock is further extended
| in the future to have an additional leftmost byte
| (for when there is a carry from the current bit posi-
| tion 0 in the year 2042, if the standard epoch is
| used), STORE CLOCK EXTENDED will store that
| additional byte in bit positions 0-7 of its operand.

|  Extended Translation
| The facility provides the following instructions:

| � CONVERT UNICODE TO UTF-8
| � CONVERT UTF-8 TO UNICODE
|  � TRANSLATE EXTENDED

| The conversion instructions convert between two-
| byte Unicode characters and one-to-four-byte
| UTF-8 characters. TRANSLATE EXTENDED can
| be used in place of a TRANSLATE AND TEST
| instruction that locates an escape character, fol-
| lowed by a TRANSLATE instruction that translates
| the bytes preceding the escape character.
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Immediate and Relative
Instruction
The facility provides the following instructions:

� ADD HALFWORD IMMEDIATE
� BRANCH RELATIVE AND SAVE
� BRANCH RELATIVE ON CONDITION
� BRANCH RELATIVE ON COUNT
� BRANCH RELATIVE ON INDEX HIGH
� BRANCH RELATIVE ON INDEX LOW OR

EQUAL
� COMPARE HALFWORD IMMEDIATE
� LOAD HALFWORD IMMEDIATE
� MULTIPLY SINGLE (two instructions)
� MULTIPLY HALFWORD IMMEDIATE
� TEST UNDER MASK HIGH
� TEST UNDER MASK LOW

The instructions have new instruction formats
named RI and RSI, except that MULTIPLY
SINGLE has formats RRE and RX. The
instructions with “IMMEDIATE” in their names use
a 16-bit signed binary integer in an I² field. The
TEST UNDER MASK HIGH/LOW instructions use
a 16-bit mask in an I² field. MULTIPLY SINGLE
and MULTIPLY HALFWORD IMMEDIATE return
only the rightmost 32 bits of the product. The
branch instructions have an I² field whose con-
tents are a signed binary integer specifying the
number of halfwords that is added to the address
of the instruction to generate the branch address.
The branch instructions allow branching to a
location at an offset of up to plus 64K - 2 bytes or
minus 64K bytes relative to the location of the
branch instruction.

Move-Page Facility 2
The MOVE PAGE instruction moves a page of
data from main storage to main storage or
expanded storage or from expanded storage to
main storage. An invalid page is indicated by a
page-translation exception if the condition-code-
option bit in general register 0 is zero, or it is indi-
cated by a setting of the condition code if the
condition-code-option bit is one. General register
0 also contains (1) a destination-reference-
intention bit that causes a page-translation-
exception condition instead of movement to
expanded storage, and (2) an access key that can
be specified to apply to either the source operand
or the destination operand. The definition of
MOVE PAGE of move-page facility 2 is in
Chapter 10, “Control Instructions.” MOVE PAGE

of move-page facility 1 was introduced in ESA/370
and is on some ESA/390 models, and its definition
is in Chapter 7, “General Instructions.”

 PER 2
Bit 8 in control register 9 is assigned as the
branch-address control, and bit 10 is assigned as
the storage-alteration-space control. The branch-
address control specifies, when one, that a
successful-branching event is to occur only if the
branch-target location is within the storage area
designated by means of control registers 10 and
11 (the designated storage area). The storage-
alteration-space control specifies, when one, that
a storage-alteration event is to occur only for a
reference to the designated storage area within
designated address spaces. Bit 24 in the
segment-table designation is assigned as the
storage-alteration-event bit. When this bit is one,
storage-alteration events are to occur in the
address space specified by the segment-table
designation. Monitoring for general-register-
alteration events is omitted.

Bit 4 in real locations 150-151 is assigned to indi-
cate a store-using-real-address event. A store-
using-real-address event is indicated when bits 2
and 4 in locations 150-151 are both ones. Bits
9-13 of locations 150-151 are assigned as the
addressing-and-translation-mode identification
(ATMID). The ATMID indicates the values of
PSW bits 32, 5, 16, and 17 at the beginning of
execution of any instruction that causes a PER
event and changes any of PSW bits 5, 16, and 17.
Bits 14 and 15 of locations 150-151 are assigned
as the PER STD identification, which identifies the
segment-table designation (STD) that was used to
translate a reference that causes a storage-
alteration event. The PER access identification at
real location 161 is predictable even if the instruc-
tion that caused the storage-alteration event
turned DAT off.

Perform Locked Operation
The PERFORM LOCKED OPERATION instruction
uses a program-lock-token (PLT) logical address
as a designator of a lock internal to the configura-
tion. A PLT is a value produced by a model-
dependent transformation of the PLT logical
address. Programs being executed by different
CPUs can be assured of specifying the same lock
only by specifying PLT logical addresses that are
the same and that can be transformed to the
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same real address by the different CPUs. After
obtaining the lock selected by the PLT, the
instruction performs any of six operations specified
by a function code: compare and load, compare
and swap, double compare and swap, compare
and swap and store, compare and swap and
double store, and compare and swap and triple
store. The function code further specifies word or
doubleword operands. All operations on multiple
storage operands by a PERFORM LOCKED
OPERATION instruction appear to occur entirely
either before or after all operations on the same
operands by another PERFORM LOCKED OPER-
ATION instruction executed by another CPU, pro-
vided that both of the instructions use the same
lock.

Program Call Fast
The PROGRAM CALL FAST instruction has the
same op code as PROGRAM CALL. When the
program-call-fast control, bit 28 of control register
0, is one and bits 12-23 (the linkage-index part) of
the second-operand address (the PC number)
have the value 31 (01F hex), either the
PROGRAM CALL FAST definition or the
PROGRAM CALL definition applies. When either
of those two conditions is not met, the PROGRAM
CALL definition applies. PROGRAM CALL FAST
uses bits 25-31 of the second-operand address as
an entry index to select an entry in the PCF entry
table whose real origin is at real locations
196-199. PROGRAM CALL FAST forms a
linkage-stack entry the same as stacking
PROGRAM CALL, except that the called-space
identification for PROGRAM CALL FAST is always
all zeros. PROGRAM CALL FAST with space
switching obtains the new primary segment-table
designation directly from the PCF-entry-table
entry.

 Resume Program
The second-operand address of the RESUME
PROGRAM instruction is formed by means of the
B² and D² field of the instruction and designates a
save area, which is intended to contain the
access-register and general-register contents and
certain PSW fields of an interrupted program. The
PSW fields are the address space control, condi-
tion code, program mask, addressing mode, and
instruction address. A problem-state interruption-
handling program can return to the interrupted

program by first restoring the contents of all regis-
ters except for one access-and-general register
pair and then issuing a RESUME PROGRAM
instruction whose B² field designates that
remaining pair. RESUME PROGRAM restores the
contents of the B² access register and general
register and the PSW fields from the save area. A
parameter list that immediately follows the
RESUME PROGRAM instruction contains the
offsets in the save area of the fields to be
restored.

Set Address Space Control Fast
The SET ADDRESS SPACE CONTROL FAST
(SACF) instruction performs the functions of the
SET ADDRESS SPACE CONTROL (SAC) instruc-
tion, except that SACF does not perform serializa-
tion or checkpoint synchronization or cause
prefetched instructions to be discarded.

 Square Root
The SQUARE ROOT instruction (SQDR and
SQER) extracts the square root of a floating-point
operand in either the long (SQDR) or the short
(SQER) format. Program-interruption code 001D
hex is assigned to the square-root exception,
which is recognized if the input operand is less
than zero.

 Storage-Protection Override
Bit 7 of control register 0 is assigned as the
storage-protection-override control. When bit 7 is
one, key-controlled protection is ignored for refer-
ences by the CPU to storage locations having an
associated storage-key value of 9.

| Store System Information
| The facility consists of the privileged STORE
| SYSTEM INFORMATION instruction, which can
| obtain information about any of three levels of
| configuration at or below the level that is exe-
| cuting the program: level 1, the basic machine;
| level 2, a logical partition; and level 3, a virtual
| machine. A function code in general register 0
| specifies whether the current-level number is to be
| provided by the instruction or whether information
| about a specified level is to be provided. In the
| latter case, values, called selectors, in general
| registers 0 and 1 specify the information to be pro-
| vided.
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 String Instruction
The MOVE STRING instruction moves a string of
bytes from a source location to a destination
location until an ending character (one byte) speci-
fied in a general register has been moved. The
COMPARE LOGICAL STRING instruction com-
pares two byte strings until an ending character
specified in a general register is found in either
string or an inequality is found. The SEARCH
STRING instruction searches a byte string of a
specified length until a character specified in a
general register is found. MOVE STRING and
COMPARE LOGICAL STRING are particularly
useful in a C-programming-language program in
which strings are normally delimited by an all-
zeros byte.

 Subspace Group
A subspace group is a group of address spaces
consisting of a base space and subspaces. A
dispatchable unit can use the BRANCH IN SUB-
SPACE GROUP (BSG) instruction to transfer
control within a subspace group that is associated
with the dispatchable unit. The following fields are
assigned:

� Bit 22 of the segment-table designation (STD),
the subspace-group-control bit (G), indicates,
when one, that the address space specified by
the STD is a base space or a subspace.

� Bit 31 of the ASN-second-table entry (ASTE),
the base-space bit (B), indicates, when one,
that the address space specified by the ASTE
is a base space.

� Bits 1-25 of word 0 of the dispatchable-unit
control table (DUCT), the base-ASTE origin
(BASTEO), designate the ASTE for the base
space of a subspace group associated with
the dispatchable unit that is represented by
the DUCT.

� Bit 0 of word 1 of the DUCT, the subspace-
active bit (SA), indicates, when zero, that the
dispatchable unit either last used BSG to
transfer control to its base space or has not
used BSG at all, or, when one, that the
dispatchable unit last used BSG to transfer
control to a subspace.

� Bits 1-25 of word 1 of the DUCT, the
subspace-ASTE origin (SSASTEO), designate
the ASTE for the subspace that was last
transferred to by means of BSG.

� Bits 0-31 of word 3 of the DUCT, the
subspace-ASTE sequence number
(SSASTESN), are a copy of the ASTE
seqence number that was in the ASTE for the
subspace that was last transferred to by
means of BSG.

BSG uses an access-list-entry token (ALET) as a
specification of its destination address space. The
subspaces of a dispatchable unit's subspace
group are designated by entries on the
dispatchable-unit access list. ALET 0 designates
the base space, and ALET 1 designates the last
entered subspace.

The following instructions are modified to perform
operations called subspace-replacement opera-
tions: LOAD ADDRESS SPACE PARAMETERS,
PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, and SET SECONDARY
ASN. When one of the named instructions estab-
lishes a new primary or secondary STD that des-
ignates the base space of the current dispatchable
unit when the dispatchable unit is subspace
active, the instruction replaces bits 1-23 and 25-31
of the STD with the corresponding bits of the STD
in the subspace ASTE.

A branch trace entry is made for BSG if branch
tracing is on and ASN tracing is off, or a BSG
trace entry is made if ASN tracing is on.

Suppression on Protection
During a program interruption due to a protection
exception, bit 29 of real locations 144-147 is set to
zero or one. If it is set to one, the instruction exe-
cution during which the exception was recognized
was suppressed, and the protected location is
identified in other bit positions of locations
144-147 and in real location 160. If bit 29 is zero,
the instruction execution may have been termi-
nated, and the contents of those other bit posi-
tions and of location 160 are unpredictable. Bit 29
is set to one if the protection exception is due to
access-list-controlled protection or page pro-
tection. Bit 29 may be set to one if the protection
exception is due to key-controlled protection or
low-address protection. If the virtual-address
enchancement of suppression on protection is
installed, bit 29 is set to one when DAT was on
only if the address stored is one that was to be
translated by DAT.
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|  TOD-Clock-Control Override
| The facility consists of the TOD-clock-control-
| override control, bit 10 of control register 14.
| When this bit is one, the TOD clock can be set by
| the SET CLOCK instruction regardless of the set-
| tings of the manual TOD-clock controls in the con-
| figuration.

 Trap
The TRAP (TRAP2 and TRAP4) instruction can
overlay instructions in a program to give control to
a trap program that can simulate the overlaid
instructions and perform fix-up operations on data
being processed. TRAP2 is for overlaying a two-
byte instruction, and TRAP4 is for overlaying a
four-byte instruction or the first four bytes of a six
byte instruction. TRAP uses a trap-control-block
address and TRAP-enabled bit in bytes 44-47 of
the dispatchable-unit control table. The trap
control block designates a trap save area and a
trap program. The trap control block and trap
save area are in the home address space. The
trap program is in the primary address space.

Comparison of Facilities
Figure D-1 shows the facilities offered in ESA/370
and how each facility is provided in ESA/390.

┌────────────────────────────────────┬─────────┐

│ │Availa- │

│ │bility in│

│ ESA/37ð Facility │ ESA/39ð │

├────────────────────────────────────┼─────────┤

│Basic ESA/37ð facilities │ B │

│Compare until substring equal │ B │

│Expanded storage │ ES │

│Move inverse │ MI │

│Move page │ Bñ │

│Private space │ B │

│Vector │ V │

├────────────────────────────────────┴─────────┤

│Explanation: │

│ │

│ñ Either the move-page facility 1 or the │

│ move-page facility 2 is basic in ESA/39ð │

│ mode. │

│B Basic in ESA/39ð mode. │

│ES Provided in both ESA/37ð and ESA/39ð as the│

│ expanded-storage facility. │

│MI Provided in both ESA/37ð and ESA/39ð as the│

│ move-inverse facility. │

│V Provided in both ESA/37ð and ESA/39ð as the│

│ vector facility. │

└──────────────────────────────────────────────┘

Figure D-1. Availability of ESA/370 Facilities in
ESA/390
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Appendix E. Comparison between 370-XA and ESA/370

New Facilities in ESA/370 . . . . . . . . . . .  E-1
Access Registers . . . . . . . . . . . . . . . E-1
Compare until Substring Equal . . . . . . .  E-1
Home Address Space . . . . . . . . . . . .  E-1
Linkage Stack . . . . . . . . . . . . . . . . . E-1
Load and Store Using Real Address . . .  E-2
Move Page Facility 1 . . . . . . . . . . . .  E-2
Move with Source or Destination Key . . .  E-2
Private Space . . . . . . . . . . . . . . . . . E-2

Comparison of Facilities . . . . . . . . . . . .  E-2
Summary of Changes . . . . . . . . . . . . . .  E-2

New Instructions Provided . . . . . . . . .  E-2
Comparison of PSW Formats . . . . . . .  E-3
New Control-Register Assignments . . . .  E-3
New Assigned Storage Locations . . . . .  E-3
New Exceptions  . . . . . . . . . . . . . . . E-4
Change to Secondary-Space Mode . . . .  E-4

Changes to ASN-Second-Table Entry and
ASN Translation  . . . . . . . . . . . . . . E-4

Changes to Entry-Table Entry and
PC-Number Translation  . . . . . . . . . . E-4

Changes to PROGRAM CALL . . . . . . .  E-5
Changes to SET ADDRESS SPACE

CONTROL  . . . . . . . . . . . . . . . . . E-5
Effects in New Translation Modes . . . . . .  E-5

Effects on Interlocks for Virtual-Storage
References  . . . . . . . . . . . . . . . . . E-5

Effect on INSERT ADDRESS SPACE
CONTROL  . . . . . . . . . . . . . . . . . E-5

Effect on LOAD REAL ADDRESS . . . . .  E-5
Effect on TEST PENDING

INTERRUPTION  . . . . . . . . . . . . . . E-6
Effect on TEST PROTECTION  . . . . . . E-6

This appendix provides (1)  a list of the facilities
that are new in ESA/370 and not provided in
370-XA, (2) a description of the handling in
ESA/370 of the facilities available in 370-XA, (3)
a list of changes between 370-XA and ESA/370,
and (4) a list of how 370-XA facilities are affected
by the new translation modes in ESA/370.

New Facilities in ESA/370
The following facilities are new in ESA/370 and
are not provided in 370-XA. Access registers,
home address space, linkage stack, load and
store using real address, and move with source or
destination key are provided by all ESA/370
models. Compare until substring equal, move
page, and private space are provided by some
ESA/370 models.

 Access Registers
Sixteen access registers and a translation mode
named the access-register mode allow designation
of storage operands in up to sixteen different
address spaces by means of the B fields of
instructions and the R fields of certain instructions.
The dispatchable-unit and primary-space access
lists contain the addressing capabilities that are
usable by means of the access registers. The use
of an access-list entry is controlled by the
extended authorization index in control register 8.

Instructions are provided for examining and
changing the contents of the access registers and
for purging the access-register-translation-
lookaside buffer.

Compare until Substring Equal
An instruction is provided for comparing two byte
strings until equal substrings of a specified length
are found or the end of the longer operand is
reached.

Home Address Space
A translation mode named the home-space mode
allows the control program to quickly gain control
in and access the home address space, which is
where the control program keeps the principal
control blocks for a dispatchable unit. The space-
switch event can indicate a transfer of control to or
from the home address space.

 Linkage Stack
A bit in the entry-table entry controls whether
PROGRAM CALL performs the 370-XA, or basic,
operation or the stacking operation. The stacking
operation allows increased status changing, and it
saves status in a linkage-stack state entry, from
which status is restored by the PROGRAM
RETURN instruction. The linkage stack can also
be used in a branch-type linkage. Instructions are
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provided for examining and changing the contents
of the last state entry and for testing the contents
of an access register by means of a specified
extended authorization index.

Load and Store Using Real
Address
Instructions are provided for loading and storing
from a general register through the use of a real
address. The storing operation can be indicated
by a store-using-real-address PER event.

Move Page Facility 1
The MOVE PAGE instruction moves a page of
data from main storage to main storage or
expanded storage or from expanded storage to
main storage. An invalid page is indicated by a
setting of the condition code.

Move with Source or Destination
Key
Instructions are provided for moving data with a
specified access key that applies to the references
to either the source or the destination storage
area; the PSW key applies to the references to
the other storage area.

 Private Space
A bit in the segment-table designation can be set
to one to prevent the use of translation-lookaside-
buffer entries for common segments and to
prevent the application of low-address protection
and fetch-protection override to the specified
address space.

Comparison of Facilities
Figure E-1 shows the facilities offered in 370-XA
and how each facility is provided in ESA/370.

┌────────────────────────────────────┬─────────┐

│ │Availa- │

│ │bility in│

│ 37ð-XA Facility │ ESA/37ð │

├────────────────────────────────────┼─────────┤

│Basic 37ð-XA facilities │ Bñ │

│Expanded storage │ ES │

│Move inverse │ MI │

│Vector │ V │

├────────────────────────────────────┴─────────┤

│Explanation: │

│ │

│ñ Compatibility for privileged programs is │

│ not provided when the address-space- │

│ function control, bit 15 of control │

│ register ð, is one. │

│B Basic in ESA/37ð mode. │

│ES Provided in both 37ð-XA and ESA/37ð as the │

│ expanded-storage facility. │

│MI Provided in both 37ð-XA and ESA/37ð as the │

│ move-inverse facility. │

│V Provided in both 37ð-XA and ESA/37ð as the │

│ vector facility. │

└──────────────────────────────────────────────┘

Figure E-1. Availability of 370-XA Facilities in
ESA/370

Summary of Changes
This section summarizes the changes between
370-XA and ESA/370. Most of these changes are
simply additions in ESA/370 beyond 370-XA or
apply only when the ESA/370 address-space-
function (ASF) control, bit 15 of control register 0,
is one. Some of the changes apply regardless of
the value of the ASF control.

New Instructions Provided
Figure E-2 on page E-3 shows those instructions
which are basic in ESA/370 but not provided in
370-XA. All 370-XA instructions are provided in
ESA/370.
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┌──────────────────────────────┬─────┬────┬───────┐

│ │Mne- │Op │Availa-│

│ Instruction Name │monic│Code│bility │

├──────────────────────────────┼─────┼────┼───────┤

│BRANCH AND STACK │BAKR │B24ð│ Bñ │

│COMPARE UNTIL SUBSTRING EQUAL │CUSE │B257│ CU │

│COPY ACCESS │CPYA │B24D│ B │

│EXTRACT ACCESS │EAR │B24F│ B │

│EXTRACT STACKED REGISTERS │EREG │B249│ Bñ │

│EXTRACT STACKED STATE │ESTA │B24A│ Bñ │

├──────────────────────────────┼─────┼────┼───────┤

│LOAD ACCESS MULTIPLE │LAM │9A │ B │

│LOAD ADDRESS EXTENDED │LAE │51 │ B │

│LOAD USING REAL ADDRESS │LURA │B24B│ B │

│MODIFY STACKED STATE │MSTA │B247│ Bñ │

│MOVE PAGE │MVPG │B254│ M1 │

├──────────────────────────────┼─────┼────┼───────┤

│MOVE WITH DESTINATION KEY │MVCDK│E5ðF│ B │

│MOVE WITH SOURCE KEY │MVCSK│E5ðE│ B │

│PROGRAM RETURN │PR │ð1ð1│ Bñ │

│PURGE ALB │PALB │B248│ B │

│SET ACCESS │SAR │B24E│ B │

│STORE ACCESS MULTIPLE │STAM │9B │ B │

├──────────────────────────────┼─────┼────┼───────┤

│STORE USING REAL ADDRESS │STURA│B246│ B │

│TEST ACCESS │TAR │B24C│ Bñ │

├──────────────────────────────┴─────┴────┴───────┤

│Explanation: │

│ │

│ñ Instruction can be executed successfully │

│ only when the address-space-function │

│ control, bit 15 of control register ð, is │

│ one. │

│B Instruction is basic. │

│CU Compare-until-substring-equal facility. │

│M1 Move-page facility 1. │

└─────────────────────────────────────────────────┘

Figure E-2. New Instructions Provided

Comparison of PSW Formats
In 370-XA, PSW bit 16 is the address-space
control, and a one in bit position 17 of the PSW is
invalid. In ESA/370, PSW bits 16 and 17 are the
address-space control.

 New Control-Register
Assignments
Figure E-3 shows those assignments of control-
register bits and fields that are new in ESA/370
compared to 370-XA.

┌────┬─────┬───────────────────────────────────┐

│Ctrl│ │ │

│Reg │Bits │ Name of Bit or Field │

├────┼─────┼───────────────────────────────────┤

│ ð │ 15 │Address-space-function control │

├────┼─────┼───────────────────────────────────┤

│ 1 │ ð │Primary space-switch-event controlñ│

│ 1 │ 23 │Primary private-space control │

├────┼─────┼───────────────────────────────────┤

│ 2 │ 1-25│Dispatchable-unit-control-table │

│ │ │ origin │

├────┼─────┼───────────────────────────────────┤

│ 5 │ 1-25│Primary-ASN-second-table-entry │

│ │ │ originò │

├────┼─────┼───────────────────────────────────┤

│ 7 │ 23 │Secondary private-space control │

├────┼─────┼───────────────────────────────────┤

│ 8 │ ð-15│Extended authorization index │

├────┼─────┼───────────────────────────────────┤

│ 9 │ 4 │Store-using-real-address-event mask│

├────┼─────┼───────────────────────────────────┤

│ 13 │ ð │Home space-switch-event control │

│ 13 │ 1-19│Home segment-table origin │

│ 13 │ 23 │Home private-space control │

│ 13 │25-31│Home segment-table length │

├────┼─────┼───────────────────────────────────┤

│ 15 │ 1-28│Linkage-stack-entry address │

├────┴─────┴───────────────────────────────────┤

│Explanation: │

│ │

│ñ Only the name of this bit is new. The │

│ bit has the same position and function as│

│ the space-switch-event control of 37ð-XA.│

│ò This assignment applies only if bit 15 of│

│ control register ð is one. If bit 15 is │

│ zero, control register 5 contains the │

│ linkage-table designation as in 37ð-XA. │

└──────────────────────────────────────────────┘

Figure E-3. New Control-Register Assignments

In 370-XA, and in ESA/370 when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is zero, control register 5 contains the
linkage-table designation. In ESA/370 when the
ASF control is one, control register 5 contains the
primary ASN-second-table-entry origin, and the
linkage-table designation is in the primary
ASN-second-table entry.

New Assigned Storage Locations
Figure E-4 on page E-4 shows those storage
locations that are assigned in ESA/370 and not
assigned in 370-XA.
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┌───────────────────────────────┬────────┐

│ │Assigned│

│ │Storage │

│ │Location│

│ │and │

│ Name of Field │Length\ │

├───────────────────────────────┼────────┤

│Exception access identification│R 16ð 1│

│PER access identification │R 161 1│

│Machine-check access-register │R 288 64│

│ save area │ │

│Store-status access-register │A 288 64│

│ save area │ │

├───────────────────────────────┴────────┤

│Explanation: │

│ │

│\ The first number is the address, the │

│ second the length. │

│A Absolute location. │

│R Real location. │

└────────────────────────────────────────┘

Figure E-4. New Assigned Storage Locations

Bit 33 of the machine-check-interruption code, the
access-register-validity bit, is assigned in ESA/370
and not assigned in 370-XA.

In both 370-XA and ESA/370, the translation-
exception identification is stored at real locations
144-147 during a program interruption due to a
segment-translation or page-translation exception.
In 370-XA, bits 20-31 of this translation-exception
identification are unpredictable. In ESA/370, bits
20-29 are unpredictable, and bits 30-31 are set to
identify the type of virtual address that caused the
exception.

 New Exceptions
Figure E-5 shows those new exceptions that may
be recognized in ESA/370 and are not recognized
in 370-XA.

┌────────────────────┬──────────┐

│ │Interrup- │

│ │tion Code │

│ Exception Name │ (hex) │

├────────────────────┼──────────┤

│ALET specificationñ │ ðð28 │

│ALEN translationñ │ ðð29 │

│ALE sequenceñ │ ðð2A │

│ASTE validityñ │ ðð2B │

│ASTE sequenceñ │ ðð2C │

│Extended authorityñ │ ðð2D │

│Stack fullò │ ðð3ð │

│Stack emptyò │ ðð31 │

│Stack specificationò│ ðð32 │

│Stack typeò │ ðð33 │

│Stack operationò │ ðð34 │

├────────────────────┴──────────┤

│Explanation: │

│ │

│ñ May be recognized during │

│ access-register translation.│

│ò May be recognized during │

│ linkage-stack operations. │

└───────────────────────────────┘

Figure E-5. New Exceptions

Change to Secondary-Space
Mode
In 370-XA in the secondary-space mode, it is
unpredictable whether instructions are fetched
from the primary address space or the secondary
address space. In ESA/370 in the secondary-
space mode, instructions are fetched from the
primary address space.

Changes to ASN-Second-Table
Entry and ASN Translation
In 370-XA, and in ESA/370 when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0 is zero, the ASN-second-table entry has a
length of 16 bytes and is aligned on a 16-byte
boundary. In ESA/370 when the ASF control is
one, the ASN-second-table entry has a length of
64 bytes and is aligned on a 64-byte boundary.
ASN translation is affected by this change.

Changes to Entry-Table Entry
and PC-Number Translation
In 370-XA, and in ESA/370 when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0 is zero, the entry-table entry has a length of
16 bytes. In ESA/370 when the ASF control is
one, the entry-table entry has a length of 32 bytes.
PC-number translation is affected by this change
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and also by the change to the location of the
linkage-table designation described in “New
Control Register Assignments” in this appendix.

Changes to PROGRAM CALL
In 370-XA, and in ESA/370 when the address-
space-function (ASF) control, bit 15 of control reg-
ister 0 is zero, a space-switching PROGRAM
CALL obtains the address of the
ASN-second-table entry for the new primary
address space by means of ASN translation. In
ESA/370 when the ASF control is one,
PROGRAM CALL obtains the address of the
ASN-second-table entry either by means of ASN
translation or directly from the entry-table entry,
and which of these occurs is unpredictable.

In ESA/370 when the ASF control is zero or when
the ASF control is one and the PC-type bit, bit 128
of the 32-byte entry-table entry, is zero,
PROGRAM CALL performs the 370-XA operation,
called the basic operation. In ESA/370 when both
the ASF control and the PC-type bit are ones,
PROGRAM CALL performs a different operation,
called the stacking operation.

Changes to SET ADDRESS
SPACE CONTROL
In 370-XA, for SET ADDRESS SPACE
CONTROL, bit 22 of the second-operand address
must be zero; otherwise, a specification exception
is recognized. In ESA/370, bit 22 may be one in
order to specify the setting of either the access-
register mode or the home-space mode,
depending on bit 23.

Effects in New Translation Modes
ESA/370 has two new translation modes named
the access-register mode and the home-space
mode. These modes result when DAT is on and
PSW bits 16 and 17 are 01 or 11 binary, respec-
tively. This section summarizes the effects of the
new translation modes on operations that would
otherwise be the same as in 370-XA. For LOAD
REAL ADDRESS, the effect applies whether DAT
is on or off.

Effects on Interlocks for
Virtual-Storage References
In 370-XA and ESA/370, in the real mode,
primary-space mode, or secondary-space mode,
when a store is made to a location from which a
succeeding instruction is fetched and the same
effective address is used for both the store and
the fetch, the results of the store appear to be
completed before the fetch. Thus, it is possible
for an instruction to modify the next succeeding
instruction in storage. In ESA/370, in the access-
register mode or home-space mode, an instruction
that is a store-type operand of a preceding instruc-
tion may appear to be fetched before the store
occurs. Thus, it is not assured that an instruction
can modify the succeeding instruction.

In 370-XA and ESA/370, for those instructions
which alter the contents of storage and have more
than one operand, the instruction definition
normally describes the results that are obtained
when the operands overlap in storage. In 370-XA,
and in ESA/370 in other than the access-register
mode, operand overlap is recognized if the effec-
tive addresses of the two operands are the same.
In ESA/370, in the access-register mode, recogni-
tion of operand overlap additionally requires that
the effective space designations of the two oper-
ands be the same. The effective space desig-
nation for an operand is the contents of the
access register used to access the operand,
except that, if access register 0 is used, the con-
tents are treated as being all zeros.

Effect on INSERT ADDRESS
SPACE CONTROL
In 370-XA, INSERT ADDRESS SPACE
CONTROL sets bit 22 of general register R± to
zero, and it sets the condition code to 0 or 1. In
ESA/370, because of the new translation modes,
INSERT ADDRESS SPACE CONTROL may set
bit 22 to one, and it may set the condition code to
2 or 3.

Effect on LOAD REAL ADDRESS
In 370-XA, when LOAD REAL ADDRESS sets any
of condition codes 1-3, indicating an exception sit-
uation, it places an address related to the situation
in general register R±, and it sets bit 0 of the reg-
ister to zero. Condition code 3 indicates that the
segment-table or page-table length is exceeded.
In ESA/370, when PSW bits 16 and 17 are 01
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binary, condition code 3 may alternatively indicate
an exception situation encountered during access-
register translation, in which case the interruption
code assigned to the exception is placed in
general register R±, and bit 0 of the register is set
to one.

Effect on TEST PENDING
INTERRUPTION
In 370-XA and ESA/370, a zero second-operand
address of TEST PENDING INTERRUPTION
specifies a store at real locations 184-191. In this
case, in ESA/370 in the access-register mode, it is
unpredictable whether access-register translation
occurs for the access register designated by the

B² field. If access-register translation occurs and
the access register is in error, an exception is
recognized. If the translation occurs and there is
no exception, the resulting segment-table desig-
nation is not used; that is, the store still occurs at
real locations 184-191.

 Effect on TEST PROTECTION
In 370-XA, TEST PROTECTION sets condition
code 3 if it encounters an exception situation
during dynamic address translation. In ESA/370
in the access-register mode, TEST PROTECTION
may alternatively set condition code 3 because of
an exception situation encountered during access-
register translation.
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This appendix provides (1) a list of the facilities
that are new in 370-XA and not provided in
System/370, (2) a description of the handling in
370-XA of the facilities available in System/370,
and (3) a list of changes between System/370
and 370-XA.

New Facilities in 370-XA
The following facilities are new in 370-XA and are
not provided in System/370.

 Bimodal Addressing
Two modes of operation are provided: a 24-bit
addressing mode, for the execution of old pro-
grams, and a 31-bit addressing mode. The mode
is controlled by bit 32 in the PSW, and unprivi-
leged instructions are provided that examine and
set the mode. These instructions conveniently
permit combining old programs, which must
operate in the 24-bit addressing mode, and new
programs which can take advantage of the 31-bit
addressing mode.

31-Bit Logical Addressing
The 31-bit logical addressing includes the ability to
perform either 24-bit or 31-bit address arithmetic
for operand address generation and includes
extensions to the following addresses, which are
always 31 bits, regardless of the addressing
mode:

� Instruction address in PSW bits 33-63
� PER starting address in control register 10

� PER ending address in control register 11
� Translation-exception identification stored at

real locations 144-147
� PER address stored at real locations 152-155
� Monitor code stored at real locations 156-159
� Entry instruction address in the entry-table

entry

31-Bit Real and Absolute
Addressing
The following fields provide the leftmost part of
31-bit addresses, or the entire address, as appro-
priate, regardless of the setting of the addressing
mode. Except where indicated, the addresses are
real.

� Prefix register (absolute)
� Primary segment-table origin* in control reg-

ister 1
� Linkage-table origin in control register 5
� Secondary segment-table origin* in control

register 7
� ASN-first-table origin in control register 14
� Page-table origin in the segment-table entry
� Page-frame real address in the page-table

entry
� ASN-second-table origin in the AFT entry
� Segment-table origin*, linkage-table origin,

and authority-table origin in the AST entry
� Entry-table origin in the linkage-table entry
� Address in format-1 CCWs (absolute)

*Unpredictable whether address is real or
absolute
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 Page Protection
A page-protection bit is provided in the page-table
entry. Page protection can be used in a manner
similar to the System/370 segment protection,
which is not included in 370-XA.

 Tracing
Included are a trace-table origin, branch trace
control, ASN trace control, and explicit trace-
control bits in control register 12. Also included
are the instruction TRACE and a new program-
interruption condition called trace-table exception.
When branch tracing is on, a trace entry is made
for the successful execution of the following
instructions:

� BRANCH AND LINK (BALR) when the R²

field is nonzero
� BRANCH AND SAVE (BASR) when the R²

field is nonzero
� BRANCH AND SAVE AND SET MODE

(BASSM) when the R² field is nonzero

When ASN tracing is on, an entry is made in the
trace table for each execution of the following
instructions:

 � PROGRAM CALL
 � PROGRAM TRANSFER
� SET SECONDARY ASN

When explicit tracing is on, execution of TRACE
causes a trace entry to be made.

 Incorrect-Length-Indication
Suppression
The incorrect-length-indication-suppression facility
allows the indication of incorrect length to be sup-
pressed when using format-1 CCWs in the same
manner as when using format-0 CCWs or
System/370 CCWs. Bit 24 of word 1 of the ORB
provides the capability of indicating or suppressing
recognition of incorrect length for an immediate
operation.

 Status Verification
The status-verification facility provides an indi-
cation (bit 26 of the subchannel logout in the
extended-status word) when the channel sub-
system detects device status with a combination
of bits that was inappropriate at the time status
was presented.

Comparison of Facilities
Figure F-1 shows the facilities offered in
System/370 and whether or not each facility is
provided in 370-XA.

┌────────────────────────────────────┬─────────┐

│ │Availa- │

│ │bility │

│ System/37ð Facility │in 37ð-XA│

├────────────────────────────────────┼─────────┤

│Commercial instruction set │ Pñ │

│Block-multiplexer channels │ F │

│Branch and save │ B │

│Byte-multiplexer channels │ F │

│Channel indirect data addressing │ B │

├────────────────────────────────────┼─────────┤

│Channel-set switching │ F │

│Clear I/O │ F │

│Command retry │ B │

│Conditional swapping │ B │

│CPU timer and clock comparator │ B │

├────────────────────────────────────┼─────────┤

│Direct control │ - │

│Dual address space │ Pò │

│Expanded storage │ ES │

│Extended │ Pó │

| │Extended-precision floating point │ B │

├────────────────────────────────────┼─────────┤

│Extended real addressing │ Rô │

│External signals │ - │

│Fast release │ F │

│Floating point │ B │

│Halt device │ F │

├────────────────────────────────────┼─────────┤

│I/O extended logout │ - │

│Limited channel logout │ F │

│Move inverse │ MI │

│Multiprocessing │ Bõ │

├────────────────────────────────────┼─────────┤

│PSW-key handling │ B │

│Recovery extensions │ - │

│Segment protection │ Rö │

│Selector channels │ F │

├────────────────────────────────────┼─────────┤

│Service signal │ B │

│Start-I/O-fast queuing │ F │

│Storage-key-instruction extensions │ B │

│Storage-key 4K-byte block │ P÷ │

├────────────────────────────────────┼─────────┤

│Suspend and resume │ F │

│Test block │ B │

│Translation │ Pø │

│Vector │ V │

│31-bit IDAWs │ B │

└────────────────────────────────────┴─────────┘

Figure F-1 (Part 1 of 2). Availability of System/370
Facilities in 370-XA
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┌──────────────────────────────────────────────┐

│Explanation: │

│ │

│- Not provided in 37ð-XA. │

│ñ The following items, which are part of the │

│ basic computing function in System/37ð, are│

│ not provided in 37ð-XA: BC mode, interval │

│ timer, and 2K-byte protection blocks. Also│

│ see the following instructions lists for │

│ those instructions basic in System/37ð │

│ which are not provided in 37ð-XA. │

│ò All of the dual-address-space facility is │

│ provided except for DAS tracing. │

│ó See the following instruction list for │

│ those instructions that are part of the │

│ System/37ð extended facility and that are │

│ provided in 37ð-XA. │

│ô Replaced with 31-bit real addressing. │

│õ With the exception of the inclusion of more│

│ than one CPU, all the functions associated │

│ with the System/37ð multiprocessing facil- │

│ ity are basic. │

│ö Replaced by page protection. │

│÷ Only single-key 4K-byte protection blocks │

│ are provided, but the storage-key-exception│

│ control is not. │

│ø The 37ð-XA translation provides only the │

│ 4K-byte page size and only the 1M-byte seg-│

│ ment size. See also the following instruc-│

│ tion lists. │

│B Basic in 37ð-XA. │

│ES Provided in both System/37ð and 37ð-XA as │

│ the expanded-storage facility. │

│F Not provided, but a comparable function is │

│ provided by the channel subsystem. │

│MI Provided in both System/37ð and 37ð-XA as │

│ the move-inverse facility. │

│P Partially available in 37ð-XA. │

│R Replaced with a comparable facility. │

│V Provided in both System/37ð and 37ð-XA as │

│ the vector facility. │

└──────────────────────────────────────────────┘

Figure F-1 (Part 2 of 2). Availability of System/370
Facilities in 370-XA

Summary of Changes

Changes in Instructions Provided
The following figures show those instructions
which are optional or not provided in either
System/370 or 370-XA. Those instructions which
are basic in both System/370 and 370-XA are not
shown.

┌──────────────────────────────┬─────┬────┬───────┬───────┐

│ │Mne- │Op │System/│ │

│ Instruction Name\ │monic│Code│ 37ð │37ð-XA │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│BRANCH AND SAVE │BASR │ðD │ BS │ B │

│BRANCH AND SAVE │BAS │4D │ BS │ B │

│BRANCH AND SAVE AND SET MODE │BASSM│ðC │ - │ B │

│BRANCH AND SET MODE │BSM │ðB │ - │ B │

│COMPARE AND FORM CODEWORD │CFC │B21A│ - │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│COMPARE AND SWAP │CS │BA │ SW │ B │

│COMPARE DOUBLE AND SWAP │CDS │BB │ SW │ B │

│DIVIDE (extended) │DXR │B22D│ - │ B │

│INSERT PROGRAM MASK │IPM │B222│ - │ B │

│MOVE INVERSE │MVCIN│E8 │ MI │ MI │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│UPDATE TREE │UPT │ð1ð2│ - │ B │

├──────────────────────────────┴─────┴────┴───────┴───────┤

│Explanation: │

│ │

│ - Instruction is not provided. │

│ \ Those instructions which are part of the floating- │

│ point and extended-precision floating-point facil- │

│ ities in System/37ð are basic in 37ð-XA and are │

│ not shown. Similarly, those unprivileged instruc- │

│ tions which are part of the vector facility are │

│ not shown. │

│ B Instruction is basic. │

│ BS Branch-and-save facility. │

│ MI Move-inverse facility. │

│ SW Conditional-swapping facility. │

└─────────────────────────────────────────────────────────┘

Figure F-2. Unprivileged Instructions Provided
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┌──────────────────────────────┬─────┬────┬───────┬───────┐

│ │Mne- │Op │System/│ │

│ Instruction Name\ │monic│Code│ 37ð │37ð-XA │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│CONNECT CHANNEL SET │CONCS│B2ðð│ CS │ - │

│DISCONNECT CHANNEL SET │DISCS│B2ð1│ CS │ - │

│EXTRACT PRIMARY ASN │EPAR │B226│ DU │ B │

│EXTRACT SECONDARY ASN │ESAR │B227│ DU │ B │

│INSERT ADDRESS SPACE CONTROL │IAC │B224│ DU │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│INSERT PSW KEY │IPK │B2ðB│ PK │ B │

│INSERT STORAGE KEY │ISK │ð9 │ B │ - │

│INSERT STORAGE KEY EXTENDED │ISKE │B229│ EK │ B │

│INSERT VIRTUAL STORAGE KEY │IVSK │B223│ DU │ B │

│INVALIDATE PAGE TABLE ENTRY │IPTE │B221│ EF │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│LOAD ADDRESS SPACE PARAMETERS │LASP │E5ðð│ DU │ B │

│LOAD REAL ADDRESS │LRA │B1 │ TR │ B │

│MOVE TO PRIMARY │MVCP │DA │ DU │ B │

│MOVE TO SECONDARY │MVCS │DB │ DU │ B │

│MOVE WITH KEY │MVCK │D9 │ DU │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│PROGRAM CALL │PC │B218│ DU │ B │

│PROGRAM TRANSFER │PT │B228│ DU │ B │

│PURGE TLB │PTLB │B2ðD│ TR │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│READ DIRECT │RDD │85 │ DC │ - │

│RESET REFERENCE BIT │RRB │B213│ TR │ - │

│RESET REFERENCE BIT EXTENDED │RRBE │B22A│ EK │ B │

│SET ADDRESS SPACE CONTROL │SAC │B219│ DU │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│SET CLOCK COMPARATOR │SCKC │B2ð6│ CK │ B │

│SET CPU TIMER │SPT │B2ð8│ CK │ B │

│SET PREFIX │SPX │B21ð│ MP │ B │

│SET PSW KEY FROM ADDRESS │SPKA │B2ðA│ PK │ B │

│SET SECONDARY ASN │SSAR │B225│ DU │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│SET STORAGE KEY │SSK │ð8 │ B │ - │

│SET STORAGE KEY EXTENDED │SSKE │B22B│ EK │ B │

│SIGNAL PROCESSOR │SIGP │AE │ MP │ B │

│STORE CLOCK COMPARATOR │STCKC│B2ð7│ CK │ B │

└──────────────────────────────┴─────┴────┴───────┴───────┘

Figure F-3 (Part 1 of 2). Control Instructions Pro-
vided

┌──────────────────────────────┬─────┬────┬───────┬───────┐

│ │Mne- │Op │System/│ │

│ Instruction Name\ │monic│Code│ 37ð │37ð-XA │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│STORE CPU ADDRESS │STAP │B212│ MP │ B │

│STORE CPU TIMER │STPT │B2ð9│ CK │ B │

│STORE PREFIX │STPX │B211│ MP │ B │

│STORE THEN AND SYSTEM MASK │STNSM│AC │ TR │ B │

│STORE THEN OR SYSTEM MASK │STOSM│AD │ TR │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│TEST BLOCK │TB │B22C│ TB │ B │

│TEST PROTECTION │TPROT│E5ð1│ EF │ B │

│TRACE │TRACE│99 │ - │ B │

│WRITE DIRECT │WRD │84 │ DC │ - │

├──────────────────────────────┴─────┴────┴───────┴───────┤

│Explanation: │

│ │

│ - Instruction is not provided. │

│ \ Those privileged instructions which are part of the│

│ vector facility are not shown. │

│ B Instruction is basic. │

│ CK CPU-timer and clock-comparator facility. │

│ CS Channel-set-switching facility. │

│ DC Direct-control facility. │

│ DU Dual-address-space facility. │

│ EF Extended facility. │

│ EK Storage-key-instruction-extension facility. │

│ MP Multiprocessing facility. │

│ PK PSW-key-handling facility. │

│ TB Test-block facility. │

│ TR Translation facility. │

└─────────────────────────────────────────────────────────┘

Figure F-3 (Part 2 of 2). Control Instructions Pro-
vided
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┌──────────────────────────────┬─────┬────┬───────┬───────┐

│ │Mne- │Op │System/│ │

│ Instruction Name │monic│Code│ 37ð │37ð-XA │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│CLEAR CHANNEL │CLRCH│9Fð1│ RE │ - │

│CLEAR I/O │CLRIO│9Dð1│ B │ - │

│HALT DEVICE │HDV │9Eð1│ HD │ - │

│HALT I/O │HIO │9Eðð│ B │ - │

│RESUME I/O │RIO │9Cð2│ SR │ - │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│START I/O │SIO │9Cðð│ B │ - │

│START I/O FAST RELEASE │SIOF │9Cð1│ FR │ - │

│STORE CHANNEL ID │STIDC│B2ð3│ B │ - │

│TEST CHANNEL │TCH │9Fðð│ B │ - │

│TEST I/O │TIO │9Dðð│ B │ - │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│CLEAR SUBCHANNEL │CSCH │B23ð│ - │ B │

│HALT SUBCHANNEL │HSCH │B231│ - │ B │

│MODIFY SUBCHANNEL │MSCH │B232│ - │ B │

│RESET CHANNEL PATH │RCHP │B23B│ - │ B │

│RESUME SUBCHANNEL │RSCH │B238│ - │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│SET ADDRESS LIMIT │SAL │B237│ - │ B │

│SET CHANNEL MONITOR │SCHM │B23C│ - │ B │

│START SUBCHANNEL │SSCH │B233│ - │ B │

│STORE CHANNEL PATH STATUS │STCPS│B23A│ - │ B │

│STORE CHANNEL REPORT WORD │STCRW│B239│ - │ B │

├──────────────────────────────┼─────┼────┼───────┼───────┤

│STORE SUBCHANNEL │STSCH│B234│ - │ B │

│TEST PENDING INTERRUPTION │TPI │B236│ - │ B │

│TEST SUBCHANNEL │TSCH │B235│ - │ B │

├──────────────────────────────┴─────┴────┴───────┴───────┤

│Explanation: │

│ │

│ - Instruction is not provided. │

│ B Instruction is basic. │

│ FR Performs the SIOF function only when the fast- │

│ release facility is installed in the channel. │

│ HD Performs the HDV function only when the halt-device│

│ facility is installed in the channel. │

│ RE Performs the CLRCH function only when the recovery-│

│ extension facility is installed in the channel. │

│ SR Suspend-and-resume facility. │

└─────────────────────────────────────────────────────────┘

Figure F-4. I/O Instructions Provided

 Input/Output Comparison
The channel subsystem has a different logical
structure from that of the I/O facilities provided in
System/370, with the result that I/O instructions,
channels, channel sets, and I/O addressing are
replaced in 370-XA by a new set of I/O
instructions, by logical device addressing, and by
device-accessing mechanisms.

Compatibility with System/370 has been main-
tained in the CCWs (format 0), 31-bit IDAWs, and
channel programs.

In System/370, subchannels are not shared
among channels, and each subchannel is associ-
ated with only one channel path. In 370-XA, each
subchannel is uniquely associated with one I/O
device, and that I/O device is uniquely associated
with that one subchannel within the channel sub-
system, regardless of the number of channel

paths by which the I/O device is accessible to the
channel subsystem.

Functions are provided in the channel subsystem
in 370-XA to detect malfunctions and recover from
them if possible. Malfunctions are reported to the
program by means of a channel report.

In System/370, I/O interruptions are accepted only
by the CPU to which the channel set is currently
connected. The I/O interruption causes the I/O
address identifying the channel and device
causing the interruption to be stored at locations
186-187, and the measurement byte to be stored
at real location 185. In 370-XA, I/O interruptions
can be accepted by any CPU in the configuration.
The subsystem ID and I/O-interruption parameter
are stored in the doubleword at real location 184.

Associated with the new I/O instructions is a new
program-interruption condition called operand
exception.

Comparison of PSW Formats
Figure F-5 shows those bits and fields in the PSW
which are different between System/370 and
370-XA.

┌───────────────────────────┬───┬───────┬──────┐

│ │PSW│System/│ │

│ Name of Bit or Field │Bit│ 37ð │37ð-XA│

├───────────────────────────┼───┼───────┼──────┤

│PER Mask │ 1│ TR │ B │

│DAT Mode │ 5│ TR │ B │

│EC Mode │ 12│ │ │

│ Bit 12 = ð (BC Mode) │ │ B │ - │

│ Bit 12 = 1 (EC Mode) │ │ TR │ Bñ │

│Address-space control │ 16│ DU │ B │

│Addressing mode │ 32│ - │ B │

│Instruction address │ \│ B │ B │

├───────────────────────────┴───┴───────┴──────┤

│Explanation: │

│ │

│- Mode is not provided. │

│\ The instruction address is in PSW bits 4ð-│

│ 63 in System/37ð and bits 33-63 in 37ð-XA.│

│ñ In 37ð-XA, PSW bit 12 must be one, and the│

│ term "EC mode" is not used. │

│B Basic. │

│DU Provided as part of the dual-address-space│

│ facility. │

│TR Provided as part of the translation fa- │

│ cility. │

└──────────────────────────────────────────────┘

Figure F-5. Comparison of PSW Formats
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Changes in Control-Register
Assignments
Figure F-6 on page F-6 shows those bits and
fields in the control registers which are different
between System/370 and 370-XA.

┌───────────────────────────────┬─────────────────────────┐

│ │Control-Register Position│

│ │ for │

│ ├────────────┬────────────┤

│ Name of Bit or Field │ System/37ð │ 37ð-XA │

├───────────────────────────────┼────────────┼────────────┤

│Block-multiplexing control │ ð.ð │ - │

│Fetch-protection override │ - │ ð.6 │

│Storage-key-exception control │ ð.7 │ - │

│Page-fault-assist control │ ð.13 │ - │

│Interval-timer subclass mask │ ð.24 │ - │

├───────────────────────────────┼────────────┼────────────┤

│External-signal subclass mask │ ð.26 │ - │

│Space-switch-event control │ 1.31 │ 1.ð │

│Primary segment-table origin │ 1.8-1.25 │ 1.1-1.19 │

│Primary segment-table length │ 1.ð-1.7 │ 1.25-1.31 │

│Channel masks │ 2.ð-2.31 │ - │

├───────────────────────────────┼────────────┼────────────┤

│Linkage-table origin │ 5.8-5.24 │ 5.1-5.24 │

│I/O-interruption subclass mask │ - │ 6.ð-6.7 │

│Secondary segment-table length │ 7.ð-7.7 │ 7.25-7.31 │

│Secondary segment-table origin │ 7.8-7.25 │ 7.1-7.19 │

│PER starting address │1ð.8-1ð.31 │1ð.1-1ð.31 │

├───────────────────────────────┼────────────┼────────────┤

│PER ending address │11.8-11.31 │11.1-11.31 │

│Branch-trace control │ - │12.ð │

│Trace-entry address │ - │12.1-12.29 │

│ASN-trace control │ - │12.3ð │

│Explicit-trace control │ - │12.31 │

├───────────────────────────────┼────────────┼────────────┤

│Check-stop control │14.ð │ - │

│Synchronous-MCEL control │14.1 │ - │

│I/O-extended-logout control │14.2 │ - │

│Channel-report-pending subclass│ - │14.3 │

│ mask │ │ │

│Asynchronous-MCEL control │14.8 │ - │

│Asynchronous-fixed-log control │14.9 │ - │

│ASN-first-table origin │14.2ð-14.31 │14.13-14.31 │

│MCEL address │15.8-15.28 │ - │

├───────────────────────────────┴────────────┴────────────┤

│Explanation: │

│ │

│- Bit or field is not provided. │

└─────────────────────────────────────────────────────────┘

Figure F-6. Differences in Control-Register Assign-
ments

Changes in Assigned Storage
Locations
Figure F-7 shows those assigned storage
locations where changes have been made
between System/370 and 370-XA.

┌───────────────────────────────┬──────────────┐

│ │Assigned │

│ │Storage │

│ │Location and │

│ │Length\ for │

│ ├───────┬──────┤

│ │System/│ │

│ Name of Field │ 37ð │37ð-XA│

├───────────────────────────────┼───────┼──────┤

│Channel-status word │ 64 8│- │

│Channel-address word │ 72 4│- │

│Interval timer │ 8ð 4│- │

│Trace-table designation │ 84 4│- │

│Channel ID │168 4│- │

├───────────────────────────────┼───────┼──────┤

│IOEL address │172 4│- │

│Limited channel logout │176 4│- │

│Subsystem ID │ - │184 4│

│Measurement byte │185 1│- │

│I/O address │186 2│- │

├───────────────────────────────┼───────┼──────┤

│I/O-interruption parameter │ - │188 4│

│Region code │252 4│- │

│Fixed-logout area │256 96│256 16│

│Store-status model-dependent │268 4│- │

│ save area │ │ │

│CPU identity │795 1│- │

├───────────────────────────────┴───────┴──────┤

│Explanation: │

│ │

│- Field is not provided. │

│\ The first number is the address, the │

│ second the length. │

└──────────────────────────────────────────────┘

Figure F-7. Differences in Assigned Storage Locations

Changes to SIGNAL
PROCESSOR
Figure F-8 on page F-7 and Figure F-9 on page
F-7 show those SIGNAL PROCESSOR orders
and status codes where changes have been made
between System/370 and 370-XA. In addition to
these changes, a parameter is provided as part of
the SIGNAL PROCESSOR instruction in 370-XA.
The parameter is used by the store-status-at-
address and set-prefix orders.
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┌──────────────────────────────┬───────────────┐

│ │ Order Code │

│ ├────────┬──────┤

│ │System/ │ │

│ Name of Order │ 37ð │37ð-XA│

├──────────────────────────────┼────────┼──────┤

│Initial program reset │ ð7 │ - │

│Program reset │ ð8 │ - │

│Initial microprogram load │ ðA │ - │

│Set prefix │ - │ ðD │

│Store status at address │ - │ ðE │

├──────────────────────────────┴────────┴──────┤

│Explanation: │

│ │

│- Order is not provided. │

└──────────────────────────────────────────────┘

Figure F-8. Signal-Processor Orders

┌────────────────────────────┬─────────────────┐

│ │ Bit Position │

│ ├──────────┬──────┤

│ Name of Status Bit │System/37ð│37ð-XA│

├────────────────────────────┼──────────┼──────┤

│Incorrect state │ - │ 22 │

│Invalid parameter │ - │ 23 │

│Not ready │ 28 │ - │

├────────────────────────────┴──────────┴──────┤

│Explanation: │

│ │

│- Status bit is not provided. │

└──────────────────────────────────────────────┘

Figure F-9. Signal-Processor Status Bits

 Machine-Check Changes
Figure F-10 summarizes those bits and fields in
the machine-check-interruption code (MCIC)
where changes have been made between
System/370 and 370-XA. In addition to these
changes, the region code, the machine-check-
extended logout, and asynchronous fixed logouts
have been eliminated in 370-XA.

┌───────────────────────────────┬──────────────┐

│ │ MCIC Bits │

│ ├───────┬──────┤

│ Machine-Check-Interruption │System/│ │

│ Condition or Field │ 37ð │37ð-XA│

├───────────────────────────────┼───────┼──────┤

│Interval-timer damage │ 3 │ - │

│Channel report pending │ - │ 9 │

│Channel-subsystem damage │ - │ 11 │

│Delayed │ 15 │ - │

│Region-code validity │ 25 │ - │

│Logout validity │ 3ð │ - │

│MCEL length │ 48-63 │ - │

├───────────────────────────────┴───────┴──────┤

│Explanation: │

│ │

│- Condition or field is not provided. │

└──────────────────────────────────────────────┘

Figure F-10. Machine-Check-Interruption-Code Bits

Changes to Addressing
Wraparound
In System/370, addresses wrap from 2òô - 1 to
zero (or vice versa). In 370-XA, for the 24-bit
addressing mode, effective addresses wrap from
2òô - 1 to zero (or vice versa). For the 31-bit
addressing mode, effective addresses wrap from
2óñ - 1 to zero (or vice versa). Except as noted
below, real and absolute addresses wrap from
2óñ - 1 to zero.

In 370-XA, the following items cause an I/O
program check instead of wraparound:

� Successive CCWs of a CCW list
� Successive IDAWs of an IDAW list
� Successive bytes of I/O data

For DAT-table entries, it is model-dependent
whether addresses wrap or cause an addressing
exception.

Changes to LOAD REAL
ADDRESS
For LOAD REAL ADDRESS, the addressing of
DAT tables is changed to be unpredictable with
respect to whether prefixing is applied and to be
unpredictable with respect to whether an
addressing exception is recognized or wraparound
occurs when the calculated address of a page-
table or segment-table entry exceeds 2óñ - 1.
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Changes to 31-Bit Real Operand
Addresses
The following instructions operate by using 31-bit
real addresses in System/370. In 370-XA, these
instructions operate under control of the
addressing mode, bit 32 of the PSW. As a result,
in the 24-bit addressing mode, these instructions
operate by using 24-bit addresses.

� INSERT STORAGE KEY EXTENDED
� RESET REFERENCE BIT EXTENDED
� SET STORAGE KEY EXTENDED

 � TEST BLOCK
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Appendix G. Table of Powers of 2

 PLUS MINUS
1 O 1.
2 1 O.5
4 2 O.25
8 3 O.125

16 4 O.O625
32 5 O.O3125
64 6 O.O1562 5
128 7 O.OO781 25

256 8 O.OO39O 625
512 9 O.OO195 3125

 1,O24 1O O.OOO97 65625
2,O48 11 O.OOO48 82812 5

4,O96 12 O.OOO24 414O6 25
8,192 13 O.OOO12 2O7O3 125
16,384 14 O.OOOO6 1O351 5625
32,768 15 O.OOOO3 O5175 78125

65,536 16 O.OOOO1 52587 89O62 5
131,O72 17 O.OOOOO 76293 94531 25
262,144 18 O.OOOOO 38146 97265 625
524,288 19 O.OOOOO 19O73 48632 8125

1,O48,576 2O O.OOOOO O9536 74316 4O625
2,O97,152 21 O.OOOOO O4768 37158 2O312 5
4,194,3O4 22 O.OOOOO O2384 18579 1O156 25
8,388,6O8 23 O.OOOOO O1192 O9289 55O78 125

16,777,216 24 O.OOOOO OO596 O4644 77539 O625
33,554,432 25 O.OOOOO OO298 O2322 38769 53125
67,1O8,864 26 O.OOOOO OO149 O1161 19384 76562 5
134,217,728 27 O.OOOOO OOO74 5O58O 59692 38281 25

268,435,456 28 O.OOOOO OOO37 2529O 29846 1914O 625
536,87O,912 29 O.OOOOO OOO18 62645 14923 O957O 3125

1,O73,741,824 3O O.OOOOO OOOO9 31322 57461 54785 15625
2,147,483,648 31 O.OOOOO OOOO4 65661 2873O 77392 57812 5

4,294,967,296 32 O.OOOOO OOOO2 3283O 64365 38696 289O6 25
8,589,934,592 33 O.OOOOO OOOO1 16415 32182 69348 14453 125
17,179,869,184 34 O.OOOOO OOOOO 582O7 66O91 34674 O7226 5625
34,359,738,368 35 O.OOOOO OOOOO 291O3 83O45 67337 O3613 28125

68,719,476,736 36 O.OOOOO OOOOO 14551 91522 83668 518O6 64O62 5
137,438,953,472 37 O.OOOOO OOOOO O7275 95761 41834 259O3 32O31 25
274,877,9O6,944 38 O.OOOOO OOOOO O3637 9788O 7O917 12951 66O15 625
549,755,813,888 39 O.OOOOO OOOOO O1818 9894O 35458 56475 83OO7 8125

1,O99,511,627,776 4O O.OOOOO OOOOO OO9O9 4947O 17729 28237 915O3 9O625
2,199,O23,255,552 41 O.OOOOO OOOOO OO454 74735 O8864 64118 95751 95312 5
4,398,O46,511,1O4 42 O.OOOOO OOOOO OO227 37367 54432 32O59 47875 97656 25
8,796,O93,O22,2O8 43 O.OOOOO OOOOO OO113 68683 77216 16O29 73937 98828 125

17,592,186,O44,416 44 O.OOOOO OOOOO OOO56 84341 886O8 O8O14 86968 99414 O625
35,184,372,O88,832 45 O.OOOOO OOOOO OOO28 4217O 943O4 O4OO7 43484 497O7 O3125
7O,368,744,177,664 46 O.OOOOO OOOOO OOO14 21O85 47152 O2OO3 71742 24853 51562 5
14O,737,488,355,328 47 O.OOOOO OOOOO OOOO7 1O542 73576 O1OO1 85871 12426 75781 25

281,474,976,71O,656 48 O.OOOOO OOOOO OOOO3 55271 36788 OO5OO 92935 56213 3789O 625
562,949,953,421,312 49 O.OOOOO OOOOO OOOO1 77635 68394 OO25O 46467 781O6 68945 3125

1,125,899,9O6,842,624 5O O.OOOOO OOOOO OOOOO 88817 84197 OO125 23233 89O53 34472 65625
2,251,799,813,685,248 51 O.OOOOO OOOOO OOOOO 444O8 92O98 5OO62 61616 94526 67236 32812 5

4,5O3,599,627,37O,496 52 O.OOOOO OOOOO OOOOO 222O4 46O49 25O31 3O8O8 47263 33618 164O6 25
9,OO7,199,254,74O,992 53 O.OOOOO OOOOO OOOOO 111O2 23O24 62515 654O4 23631 668O9 O82O3 125
18,O14,398,5O9,481,984 54 O.OOOOO OOOOO OOOOO O5551 11512 31257 827O2 11815 834O4 541O1 5625
36,O28,797,O18,963,968 55 O.OOOOO OOOOO OOOOO O2775 55756 15628 91351 O59O7 917O2 27O5O 78125

72,O57,594,O37,927,936 56 O.OOOOO OOOOO OOOOO O1387 77878 O7814 45675 52953 95851 13525 39O62 5
 144,115,188,O75,855,872 57 O.OOOOO OOOOO OOOOO OO693 88939 O39O7 22837 76476 97925 56762 69531 25
 288,23O,376,151,711,744 58 O.OOOOO OOOOO OOOOO OO346 94469 51953 61418 88238 48962 78381 34765 625
 576,46O,752,3O3,423,488 59 O.OOOOO OOOOO OOOOO OO173 47234 75976 8O7O9 44119 24481 3919O 67382 8125

 1,152,921,5O4,6O6,846,976 6O O.OOOOO OOOOO OOOOO OOO86 73617 37988 4O354 72O59 6224O 69595 33691 4O625
 2,3O5,843,OO9,213,693,952 61 O.OOOOO OOOOO OOOOO OOO43 368O8 68994 2O177 36O29 8112O 34797 66845 7O312 5
 4,611,686,O18,427,387,9O4 62 O.OOOOO OOOOO OOOOO OOO21 684O4 34497 1OO88 68O14 9O56O 17398 83422 85156 25
 9,223,372,O36,854,775,8O8 63 O.OOOOO OOOOO OOOOO OOO1O 842O2 17248 55O44 34OO7 4528O O8699 41711 42578 125

18,446,744,O73,7O9,551,616 64 O.OOOOO OOOOO OOOOO OOOO5 421O1 O8624 27522 17OO3 7264O O4349 7O855 71289 O625

Figure G-1 (Part 1 of 2). Powers of 2
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 18,446,744,O73,7O9,551,616 64
 36,893,488,147,419,1O3,232 65
 73,786,976,294,838,2O6,464 66
 147,573,952,589,676,412,928 67

 295,147,9O5,179,352,825,856 68
 59O,295,81O,358,7O5,651,712 69
 1,18O,591,62O,717,411,3O3,424 7O
 2,361,183,241,434,822,6O6,848 71

 4,722,366,482,869,645,213,696 72
 9,444,732,965,739,29O,427,392 73
 18,889,465,931,478,58O,854,784 74
 37,778,931,862,957,161,7O9,568 75

 75,557,863,725,914,323,419,136 76
 151,115,727,451,828,646,838,272 77
 3O2,231,454,9O3,657,293,676,544 78
 6O4,462,9O9,8O7,314,587,353,O88 79

 1,2O8,925,819,614,629,174,7O6,176 8O
 2,417,851,639,229,258,349,412,352 81
 4,835,7O3,278,458,516,698,824,7O4 82
 9,671,4O6,556,917,O33,397,649,4O8 83

 19,342,813,113,834,O66,795,298,816 84
 38,685,626,227,668,133,59O,597,632 85
 77,371,252,455,336,267,181,195,264 86
 154,742,5O4,91O,672,534,362,39O,528 87

 3O9,485,OO9,821,345,O68,724,781,O56 88
 618,97O,O19,642,69O,137,449,562,112 89
 1,237,94O,O39,285,38O,274,899,124,224 9O
 2,475,88O,O78,57O,76O,549,798,248,448 91

 4,951,76O,157,141,521,O99,596,496,896 92
 9,9O3,52O,314,283,O42,199,192,993,792 93
 19,8O7,O4O,628,566,O84,398,385,987,584 94
 39,614,O81,257,132,168,796,771,975,168 95

 79,228,162,514,264,337,593,543,95O,336 96
 158,456,325,O28,528,675,187,O87,9OO,672 97
 316,912,65O,O57,O57,35O,374,175,8O1,344 98
 633,825,3OO,114,114,7OO,748,351,6O2,688 99

 1,267,65O,6OO,228,229,4O1,496,7O3,2O5,376 1OO
 2,535,3O1,2OO,456,458,8O2,993,4O6,41O,752 1O1
 5,O7O,6O2,4OO,912,917,6O5,986,812,821,5O4 1O2
 1O,141,2O4,8O1,825,835,211,973,625,643,OO8 1O3

 2O,282,4O9,6O3,651,67O,423,947,251,286,O16 1O4
 4O,564,819,2O7,3O3,34O,847,894,5O2,572,O32 1O5
 81,129,638,414,6O6,681,695,789,OO5,144,O64 1O6
 162,259,276,829,213,363,391,578,O1O,288,128 1O7

 324,518,553,658,426,726,783,156,O2O,576,256 1O8
 649,O37,1O7,316,853,453,566,312,O41,152,512 1O9
 1,298,O74,214,633,7O6,9O7,132,624,O82,3O5,O24 11O
 2,596,148,429,267,413,814,265,248,164,61O,O48 111

 5,192,296,858,534,827,628,53O,496,329,22O,O96 112
 1O,384,593,717,O69,655,257,O6O,992,658,44O,192 113
 2O,769,187,434,139,31O,514,121,985,316,88O,384 114
 41,538,374,868,278,621,O28,243,97O,633,76O,768 115

 83,O76,749,736,557,242,O56,487,941,267,521,536 116
 166,153,499,473,114,484,112,975,882,535,O43,O72 117
 332,3O6,998,946,228,968,225,951,765,O7O,O86,144 118
 664,613,997,892,457,936,451,9O3,53O,14O,172,288 119

 1,329,227,995,784,915,872,9O3,8O7,O6O,28O,344,576 12O
 2,658,455,991,569,831,745,8O7,614,12O,56O,689,152 121
 5,316,911,983,139,663,491,615,228,241,121,378,3O4 122
 1O,633,823,966,279,326,983,23O,456,482,242,756,6O8 123

 21,267,647,932,558,653,966,46O,912,964,485,513,216 124
 42,535,295,865,117,3O7,932,921,825,928,971,O26,432 125
 85,O7O,591,73O,234,615,865,843,651,857,942,O52,864 126
17O,141,183,46O,469,231,731,687,3O3,715,884,1O5,728 127

34O,282,366,92O,938,463,463,374,6O7,431,768,211,456 128

Figure G-1 (Part 2 of 2). Powers of 2
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Appendix I. EBCDIC and Other Codes

The following table shows the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC) and

┌───┬───┬────────────────┬───────────────┬──────────────────

│ │ │ │ AS- ISO (1) │BookMaster

│Dec│Hex│ EBCDIC │ CII -8 IBM-PC│Symbol Names(2)

├───┼───┼────────────────┼───────────────┼──────────────────

│ ð│ðð │ NUL │ NUL NUL NUL │

│ 1│ð1 │ SOH │ SOH SOH SOH G │face

│ 2│ð2 │ STX │ STX STX STX W │FACE

│ 3│ð3 │ ETX │ ETX ETX ETX ♥ │HEART

├───┼───┼────────────────┼───────────────┼──────────────────

│ 4│ð4 │ SEL │ EOT EOT EOT ♦ │DIAMOND

│ 5│ð5 │ HT │ ENQ ENQ ENQ ♣ │CLUB

│ 6│ð6 │ RNL │ ACK ACK ACK ♠ │SPADE

│ 7│ð7 │ DEL │ BEL BEL BEL � │bullet

├───┼───┼────────────────┼───────────────┼──────────────────

│ 8│ð8 │ GE │ BS BS BS Z │revbul

│ 9│ð9 │ SPS │ HT HT HT K │circle

│ 1ð│ðA │ RPT │ LF LF LF [ │revcir

│ 11│ðB │ VT │ VT VT VT ♂ │male

├───┼───┼────────────────┼───────────────┼──────────────────

│ 12│ðC │ FF │ FF FF FF ♀ │female

│ 13│ðD │ CR │ CR CR CR ♪ │note18

│ 14│ðE │ SO │ SO SO SO ♫ │note1616

│ 15│ðF │ SI │ SI SI SI M │sun

├───┼───┼────────────────┼───────────────┼──────────────────

│ 16│1ð │ DLE │ DLE DLE DLE 5 │rahead

│ 17│11 │ DC1 │ DC1 DC1 DC1 % │lahead

│ 18│12 │ DC2 │ DC2 DC2 DC2 Ô │udarrow

│ 19│13 │ DC3 │ DC3 DC3 DC3 ‼ │dblxclam

├───┼───┼────────────────┼───────────────┼──────────────────

│ 2ð│14 │ RES/ENP │ DC4 DC4 DC4 ¶ │par

│ 21│15 │ NL │ NAK NAK NAK § │section

│ 22│16 │ BS │ SYN SYN SYN ¯ │overline

│ 23│17 │ POC │ ETB ETB ETB × │udarrowus

├───┼───┼────────────────┼───────────────┼──────────────────

│ 24│18 │ CAN │ CAN CAN CAN ↑ │uarrow

│ 25│19 │ EM │ EM EM EM ↓ │darrow

│ 26│1A │ UBS │ SUB SUB IFS → │rarrow

│ 27│1B │ CU1 │ ESC ESC ESC ← │larrow

├───┼───┼────────────────┼───────────────┼──────────────────

│ 28│1C │ IFS │ FS IFS DEL Ü │lnotusd

│ 29│1D │ IGS │ GS IGS GS ↔ │lrarrow

│ 3ð│1E │ IRS │ RS IRS RS à │uahead

│ 31│1F │ ITB/IUS │ US IUS US á │dahead

└───┴───┴────────────────┴───────────────┴──────────────────

other codes. Details are in the notes on page I-4.

┌───┬───┬────────────────┬───────────────┬────────────────────

│ │ │ │ AS- ISO (1) │BookMaster

│Dec│Hex│ EBCDIC │ CII -8 IBM-PC│Symbol Names(2)

├───┼───┼────────────────┼───────────────┼────────────────────

│ 32│2ð │ DS │ SP SP SP │

│ 33│21 │ SOS │ ! ! ! │xclam

│ 34│22 │ FS │ " " " │sdq

│ 35│23 │ WUS │ # # # │numsign

├───┼───┼────────────────┼───────────────┼────────────────────

│ 36│24 │ BYP/INP │ $ $ $ │dollar

│ 37│25 │ LF │ % % % │percent

│ 38│26 │ ETB │ & & & │amp

│ 39│27 │ ESC │ ' ' ' │ssq(3)

├───┼───┼────────────────┼───────────────┼────────────────────

│ 4ð│28 │ SA │ ( ( ( │lpar

│ 41│29 │ SFE │ ) ) ) │rpar

│ 42│2A │ SM/SW │ \ \ \ │asterisk

│ 43│2B │ CSP │ + + + │plus

├───┼───┼────────────────┼───────────────┼────────────────────

│ 44│2C │ MFA │ , , , │comma

│ 45│2D │ ENQ │ – – – │hyphen or minus

│ 46│2E │ ACK │ . . . │period

│ 47│2F │ BEL │ / / / │divslash or slash

├───┼───┼────────────────┼───────────────┼────────────────────

│ 48│3ð │ │ ð ð ð │

│ 49│31 │ │ 1 1 1 │

│ 5ð│32 │ SYN │ 2 2 2 │

│ 51│33 │ IR │ 3 3 3 │

├───┼───┼────────────────┼───────────────┼────────────────────

│ 52│34 │ PP │ 4 4 4 │

│ 53│35 │ TRN │ 5 5 5 │

│ 54│36 │ NBS │ 6 6 6 │

│ 55│37 │ EOT │ 7 7 7 │

├───┼───┼────────────────┼───────────────┼────────────────────

│ 56│38 │ SBS │ 8 8 8 │

│ 57│39 │ IT │ 9 9 9 │

│ 58│3A │ RFF │ : : : │colon

│ 59│3B │ CU3 │ ; ; ; │semi

├───┼───┼────────────────┼───────────────┼────────────────────

│ 6ð│3C │ DC4 │ < < < │lt

│ 61│3D │ NAK │ ═ ═ ═ │eq

│ 62│3E │ │ > > > │gt

│ 63│3F │ SUB │ ? ? ? │quest

└───┴───┴────────────────┴───────────────┴────────────────────

Control-Character Representations
ACK Acknowledge ENP Enable Presentation ITB Intermediate Transmission SBS Subscript
BEL Bell ENQ Enquiry Block SEL Select
BS Backspace EO Eight Ones IUS International Unit Separator SFE Start Field Extended
BYP Bypass EOT End of Transmission LF Line Feed SI Shift In
CAN Cancel ESC Escape MFA Modify Field Attribute SM Set Mode
CR Carriage Return ETB End of Transmission Block NAK Negative Acknowledge SO Shift Out
CSP Control Sequence Prefix ETX End of Text NBS Numeric Backspace SOH Start of Heading
CU1 Customer Use 1 FF Form Feed NL New Line SOS Start of Significance
CU3 Customer Use 3 FS Field Separator NUL Null SPS Superscript
DC1 Device Control 1 GE Graphic Escape POC Program-Operator STX Start of Text
DC2 Device Control 2 HT Horizontal Tab Communication SUB Substitute
DC3 Device Control 3 IFS Interchange File Separator PP Presentation Position SW Switch
DC4 Device Control 4 IGS Interchange Group Separator RES Restore SYN Synchronous Idle
DEL Delete INP Inhibit Presentation RFF Required Form Feed TRN Transparent
DLE Data Link Escape IR Index Return RNL Required New Line UBS Unit Backspace
DS Digit Select IRS Interchange Record Separator RPT Repeat VT Vertical Tab
EM End of Medium IT Indent Tab SA Set Attribute WUS Word Underscore

Formatting-Character Representations
NSP Numeric Space SP Space RSP Required Space SHY Syllable Hyphen
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┌───┬───┬────────────────────┬───────────┬──────────────────

│ │ │ EBCDIC(4) │AS- ISO IBM│BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│CII -8 -PC│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼──────────────────

│ 64│4ð │SP SP SP SP SP │ @ @ @ │atsign

│ 65│41 │RSP RSP RSP RSP RSP │ A A A │

│ 66│42 │ â â â │ B B B │ac

│ 67│43 │ ä ä ä │ C C C │ae

├───┼───┼────────────────────┼───────────┼──────────────────

│ 68│44 │ à à à │ D D D │ag

│ 69│45 │ á á á │ E E E │aa

│ 7ð│46 │ ã ã ã │ F F F │at

│ 71│47 │ å å å │ G G G │ao

├───┼───┼────────────────────┼───────────┼──────────────────

│ 72│48 │ ç ç ç │ H H H │cc

│ 73│49 │ ñ ñ ñ │ I I I │nt

│ 74│4A │ ¢ ¢ [ ¢ │ J J J │cent, lbrk

│ 75│4B │ . . . . . │ K K K │period

├───┼───┼────────────────────┼───────────┼──────────────────

│ 76│4C │ < < < < < │ L L L │lt

│ 77│4D │ ( ( ( ( ( │ M M M │lpar

│ 78│4E │ + + + + + │ N N N │plus

│ 79│4F │ | | ! | │ O O O │vbar, xclam

├───┼───┼────────────────────┼───────────┼──────────────────

│ 8ð│5ð │ & & & & & │ P P P │amp

│ 81│51 │ é é é │ Q Q Q │ea

│ 82│52 │ ê ê ê │ R R R │ec

│ 83│53 │ ë ë ë │ S S S │ee

├───┼───┼────────────────────┼───────────┼──────────────────

│ 84│54 │ è è è │ T T T │eg

│ 85│55 │ í í í │ U U U │ia

│ 86│56 │ î î î │ V V V │ic

│ 87│57 │ ï ï ï │ W W W │ie

├───┼───┼────────────────────┼───────────┼──────────────────

│ 88│58 │ ì ì ì │ X X X │ig

│ 89│59 │ ß ß ß │ Y Y Y │ss

│ 9ð│5A │ ! ! ] ! │ Z Z Z │xclam, rbrk

│ 91│5B │ $ $ $ $ │ [ [ [ │dollar, lbrk

├───┼───┼────────────────────┼───────────┼──────────────────

│ 92│5C │ \ \ \ \ \ │ \ \ \ │asterisk, bslash

│ 93│5D │ ) ) ) ) ) │ ] ] ] │rpar, rbrk

│ 94│5E │ ; ; ; ; ; │ ^ ^ ^ │semi, hat

│ 95│5F │ ¬ ¬ ^ ^ │ _ _ _ │lnot, hat, us

└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────

│ │ │ EBCDIC(4) │AS- ISO IBM│BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│CII -8 -PC│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼────────────────────

│ 96│6ð │ - - - - - │ ` ` ` │hyphen or minus,

│ │ │ │ │grave

│ 97│61 │ / / / / / │ a a a │divslash or slash

│ 98│62 │ Â Â Â │ b b b │Ac

│ 99│63 │ Ä Ä Ä │ c c c │Ae

├───┼───┼────────────────────┼───────────┼────────────────────

│1ðð│64 │ À À À │ d d d │Ag

│1ð1│65 │ Á Á Á │ e e e │Aa

│1ð2│66 │ Ã Ã Ã │ f f f │At

│1ð3│67 │ Å Å Å │ g g g │Ao

├───┼───┼────────────────────┼───────────┼────────────────────

│1ð4│68 │ Ç Ç Ç │ h h h │Cc

│1ð5│69 │ Ñ Ñ Ñ │ i i i │Nt

│1ð6│6A │ ¦ ¦ ¦ ¦ │ j j j │splitvbar

│1ð7│6B │ , , , , , │ k k k │comma

├───┼───┼────────────────────┼───────────┼────────────────────

│1ð8│6C │ % % % % % │ l l l │percent

│1ð9│6D │ _ _ _ _ _ │ m m m │us

│11ð│6E │ > > > > > │ n n n │gt

│111│6F │ ? ? ? ? ? │ o o o │quest

├───┼───┼────────────────────┼───────────┼────────────────────

│112│7ð │ ø ø ø │ p p p │os

│113│71 │ É É É │ q q q │Ea

│114│72 │ Ê Ê Ê │ r r r │Ec

│115│73 │ Ë Ë Ë │ s s s │Ee

├───┼───┼────────────────────┼───────────┼────────────────────

│116│74 │ È È È │ t t t │Eg

│117│75 │ Í Í Í │ u u u │Ia

│118│76 │ Î Î Î │ v v v │Ic

│119│77 │ Ï Ï Ï │ w w w │Ie

├───┼───┼────────────────────┼───────────┼────────────────────

│12ð│78 │ Ì Ì Ì │ x x x │Ig

│121│79 │ ` ` ` │ y y y │grave

│122│7A │ : : : : : │ z z z │colon

│123│7B │ # # # # │ { { { │numsign, lbrc

├───┼───┼────────────────────┼───────────┼────────────────────

│124│7C │ @ @ @ @ │ | | | │atsign, vbar

│125│7D │ ' ' ' ' ' │ } } } │ssq(3), rbrc

│126│7E │ ═ ═ ═ ═ ═ │ ∼ ∼ ∼ │eq, eqv
│127│7F │ " " " " " │DEL ] ] │sdq, house

└───┴───┴────────────────────┴───────────┴────────────────────

BookMaster Symbols for Character Set 0697 (See Note (4))
Symbol Sym- Symbol Sym- Symbol Sym- Symbol Sym-
Name bol Description Name bol Description Name bol Description Name bol Description
aa á a acute Dstroke Ð D stroke lpar ( left parenthesis rpar ) right parenthesis
Aa Á A acute ea é e acute Lsterling £ pound sterling sdq " straight double quote
ac â a circumflex Ea É E acute lt < less than section § section
acute ´ accent acute ec ê e circumflex minus − minus operation semi ; semicolon
Ac Â A circumflex Ec Ê E circumflex mu µ mu slash / slash right
ae ä a umlaut ee ë e umlaut mult × multiply smultdot ¸ mult. dot small
aelig æ ae ligature Ee Ë E umlaut nt ñ n tilde splitvbar ¦ split vertical bar
Ae Ä A umlaut eg è e grave Nt Ñ N tilde ss ß German es-zet
AElig Æ AE ligature Eg È E grave numsign # number sign ssq ' straight single quote
ag à a grave eq = equals oa ó o acute sup1 ñ superscript 1
Ag À A grave eth ð eth, Icelandic small Oa Ó O acute sup2 ò superscript 2
amp & ampersand Eth Ð Eth, Icelandic capital oc ô o circumflex sup3 ó superscript 3
ao å a overcircle frac12 ½ one half Oc Ô O circumflex thorn þ thorn, Icelandic small
Ao Å A overcircle frac14 ¼ one quarter odqf « French open dbl. quote Thorn Þ Thorn, Icelandic capital
asterisk * asterisk frac34 ¾ three quarters oe ö o umlaut tilde ˜ tilde
at ã a tilde grave ` accent grave Oe Ö O umlaut ua ú u acute
atsign @ at sign gt > greater than og ò o grave Ua Ú U acute
At Ã A tilde hat ∧ hat Og Ò O grave uc û u circumflex
bslash \ back slash hyphen - hyphen os ø o slash Uc Û U circumflex
cc ç c cedilla ia í i acute Os Ø O slash ue ü u umlaut
Cc Ç C cedilla Ia Í I acute ot õ o tilde Ue Ü U umlaut
cdqf » French close dbl. quote ic î i circumflex Ot Õ O tilde ug ù u grave
cedilla ¸ cedilla Ic Î I circumflex overline ¯ overline Ug Ù U grave
cent ¢ cent ie ï i umlaut par ¶ paragraph umlaut ¨ umlaut
colon : colon Ie Ï I umlaut percent % percent us _ underscore
comma , comma ig ì i grave period . period vbar | vertical bar
copyr  copyright Ig Ì I grave plus + plus xclam ! exclamation point
currency ¤ currency international inve ¡ inverted ! pm ± plus-minus ya ý y acute
degree ° degree invq ¿ inverted ? quest ? question mark Ya Ý Y acute
div ÷ divide lbrc { left brace rbrc } right brace ye ÿ y umlaut
divslash / division slash lbrk [ left bracket rbrk ] right bracket yen ¥ yen
dollar $ dollar lnot ¬ logical not regtm  registered trademark
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┌───┬───┬────────────────────┬───────────┬──────────────────

│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│-8 437 85ð│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼──────────────────

│128│8ð │ Ø Ø Ø │ Ç Ç │Os, Cc

│129│81 │ a a a a a │ ü ü │ue

│13ð│82 │ b b b b b │ BPH é é │ea

│131│83 │ c c c c c │ NBH â â │ac

├───┼───┼────────────────────┼───────────┼──────────────────

│132│84 │ d d d d d │ IND ä ä │ae

│133│85 │ e e e e e │ NEL à à │ag

│134│86 │ f f f f f │ SSA å å │ao

│135│87 │ g g g g g │ ESA ç ç │cc

├───┼───┼────────────────────┼───────────┼──────────────────

│136│88 │ h h h h h │ HTS ê ê │ec

│137│89 │ i i i i i │ HTJ ë ë │ee

│138│8A │ « « « │ VTS è è │odqf, eg

│139│8B │ » » » │ PLD ë ë │cdqf, ee

├───┼───┼────────────────────┼───────────┼──────────────────

│14ð│8C │ ð ð ð │ PLU î î │eth, ic

│141│8D │ ý ý ý │ RI ì ì │ya, ig

│142│8E │ þ þ þ │ SS2 Ä Ä │thorn, Ae

│143│8F │ ± ± ± │ SS3 Å Å │pm, Ao

├───┼───┼────────────────────┼───────────┼──────────────────

│144│9ð │ ° ° ° │ DCS É É │degree, Ea

│145│91 │ j j j j j │ PU1 æ æ │aelig

│146│92 │ k k k k k │ PU2 Æ Æ │AElig

│147│93 │ l l l l l │ STS ô ô │oc

├───┼───┼────────────────────┼───────────┼──────────────────

│148│94 │ m m m m m │ CCH ö ö │oe

│149│95 │ n n n n n │ MW ò ò │og

│15ð│96 │ o o o o o │ SPA û û │uc

│151│97 │ p p p p p │ EPA ù ù │ug

├───┼───┼────────────────────┼───────────┼──────────────────

│152│98 │ q q q q q │ SOS ÿ ÿ │ye

│153│99 │ r r r r r │ Ö Ö │Oe

│154│9A │ ª ª ª │ SCI Ü Ü │aus, Ue

│155│9B │ º º º │ CSI ¢ ø │ous, cent, os

├───┼───┼────────────────────┼───────────┼──────────────────

│156│9C │ æ æ æ │ ST £ £ │aelig, Lsterling

│157│9D │ ¸ ¸ ¸ │ OSC ¥ Ø │cedilla, yen, Os

│158│9E │ Æ Æ Æ │ PM | × │AElig, peseta,

│ │ │ │ │mult

│159│9F │ ¤ ¤ ¤ │ ACP ƒ ƒ │currency, fnof(5)

└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────

│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│-8 437 85ð│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼────────────────────

│16ð│Að │ µ µ µ │ RSP á á │mu(6), aa

│161│A1 │ ˜ ˜ ˜ │ ¡ í í │tilde, inve, ia

│162│A2 │ s s s s s │ ¢ ó ó │cent, oa

│163│A3 │ t t t t t │ £ ú ú │Lsterling, ua

├───┼───┼────────────────────┼───────────┼────────────────────

│164│A4 │ u u u u u │ ¤ ñ ñ │currency, nt

│165│A5 │ v v v v v │ ¥ Ñ Ñ │yen, Nt

│166│A6 │ w w w w w │ ¦ ª ª │splitvbar, aus

│167│A7 │ x x x x x │ § º º │section, ous

├───┼───┼────────────────────┼───────────┼────────────────────

│168│A8 │ y y y y y │ ¨ ¿ ¿ │umlaut, invq

│169│A9 │ z z z z z │ © ì ® │copyr, lnotrev,

│ │ │ │ │regtm

│17ð│AA │ ¡ ¡ ¡ │ ª ¬ ¬ │inve, aus, lnot

│171│AB │ ¿ ¿ ¿ │ « ½ ½ │invq, odqf, frac12

├───┼───┼────────────────────┼───────────┼────────────────────

│172│AC │ Ð Ð Ð │ ¬ ¼ ¼ │Dstroke or Eth,

│ │ │ │ │lnot, frac14

│173│AD │ Ý Ý [ │SHY ¡ ¡ |Ya, lbrk, inve

│174│AE │ Þ Þ Þ │ ® « « │Thorn, regtm, odqf

│175│AF │ ® ® ® │ ¯ » » │regtm, overline,

│ │ │ │ │cdqf

├───┼───┼────────────────────┼───────────┼────────────────────

│176│Bð │ ^ ¢ ¬ │ ° Q Q │hat, cent, lnot,

│ │ │ │ │degree, box14

│177│B1 │ £ £ £ │ ± ` ` │Lsterling, pm, box12

│178│B2 │ ¥ ¥ ¥ │ ò q q │yen, sup2, box34

│179│B3 │ ¸ ¸ ¸ │ ó │ │ │smultdot, sup3, bxv

├───┼───┼────────────────────┼───────────┼────────────────────

│18ð│B4 │ © © © │ ´ ┤ ┤ │copyr, acute, bxrj

│181│B5 │ § § § │ µ ╡ Á │section, mu(6),

│ │ │ │ │bx1ð12, Aa

│182│B6 │ ¶ ¶ ¶ │ ¶ ╢ Â │par, bx2ð21, Ac

│183│B7 │ ¼ ¼ ¼ │ ¸ ╖ À │frac14, smultdot,

│ │ │ │ │bxðð21, Ag

├───┼───┼────────────────────┼───────────┼────────────────────

│184│B8 │ ½ ½ ½ │ ¸ ╕ © │frac12, cedilla,

│ │ │ │ │bxðð12, copyr

│185│B9 │ ¾ ¾ ¾ │ ñ ╣ ╣ │frac34, sup1, bx2ð22

│186│BA │ [ ¬ Ý │ º ║ ║ │lbrk, lnot, Ya, ous,

│ │ │ │ │bx2ð2ð

│187│BB │ ] | ¨ │ » ╗ ╗ │rbrk, vbar, umlaut,

│ │ │ │ │cdqf, bxðð22

├───┼───┼────────────────────┼───────────┼────────────────────

│188│BC │ ¯ ¯ ¯ │ ¼ ╝ ╝ │overline, frac14,

│ │ │ │ │bx2ðð2

│189│BD │ ¨ ¨ ] │ ½ ╜ ¢ │umlaut, rbrk,

│ │ │ │ │frac12, bx2ðð1,

│ │ │ │ │cent

│19ð│BE │ ´ ´ ´ │ ¾ ╛ ¥ │acute, frac34,

│ │ │ │ │bx1ðð2, yen

│191│BF │ × × × │ ¿ ┐ ┐ │mult, invq, bxur

└───┴───┴────────────────────┴───────────┴────────────────────

Additional ISO-8 Control-Character Representations
APC Application Program HTS Character Tabulation Set PLU Partial Line Up SS3 Single Shift Three

Command IFS Information Separator Four PM Privacy Message ST String Terminator
BPH Break Permitted Here IGS Information Separator Three PU1 Private Use One STS Set Transmit State
CCH Cancel Character IND Index PU2 Private Use Two US Information Separator One
CSI Control Sequence Introducer IRS Information Separator Two RI Reverse Line Feed (or Index) VTS Line Tabulation Set
DCS Device Control String MW Message Waiting SCI Single Character Introducer
EPA End of Guarded Area NBH No Break Here SOS Start of String
ESA End of Selected Area NEL Next Line SPA Start of Guarded Area
HTJ Character Tabulation with OSC Operating System Command SSA Start of Selected Area

Justification PLD Partial Line Down SS2 Single Shift Two
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┌───┬───┬────────────────────┬───────────┬──────────────────

│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│-8 437 85ð│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼──────────────────

│192│Cð │ { { { │ À └ └ │lbrc, Ag, bxll

│193│C1 │ A A A A A │ Á ┴ ┴ │Aa, bxbj

│194│C2 │ B B B B B │ Â ┬ ┬ │Ac, bxtj

│195│C3 │ C C C C C │ Ã ├ ├ │At, bxlj

├───┼───┼────────────────────┼───────────┼──────────────────

│196│C4 │ D D D D D │ Ä ─ ─ │Ae, bxh

│197│C5 │ E E E E E │ Å ┼ ┼ │Ao, bxcj

│198│C6 │ F F F F F │ Æ ╞ ã │AElig, bx121ð, at

│199│C7 │ G G G G G │ Ç ╟ Ã │Cc, bx212ð, At

├───┼───┼────────────────────┼───────────┼──────────────────

│2ðð│C8 │ H H H H H │ È ╚ À │Eg, bx22ðð, Ag

│2ð1│C9 │ I I I I I │ É ╔ ╔ │Ea, bxð22ð

│2ð2│CA │SHY SHY SHY SHY SHY │ Ê ╩ ╩ │Ec, bx22ð2

│2ð3│CB │ ô ô ô │ Ë ╦ ╦ │oc, Ee, bxð222

├───┼───┼────────────────────┼───────────┼──────────────────

│2ð4│CC │ ö ö ö │ Ì ╠ ╠ │oe, Ig, bx222ð

│2ð5│CD │ ò ò ò │ Í ═ ═ │og, Ia, bxð2ð2

│2ð6│CE │ ó ó ó │ Î ╬ ╬ │oa, Ic, bx2222

│2ð7│CF │ õ õ õ │ Ï ╧ ¤ │ot, Ie, bx12ð2,

│ │ │ │ │currency

├───┼───┼────────────────────┼───────────┼──────────────────

│2ð8│Dð │ } } } │ Ð ╨ ð │rbrc, Dstroke or

│ │ │ │ │Eth, bx21ð1, eth

│2ð9│D1 │ J J J J J │ Ñ ╤ Ð │Nt, bxð212,

│ │ │ │ │Dstroke or Eth

│21ð│D2 │ K K K K K │ Ò ╥ Ê │Og, bxð121, Ec

│211│D3 │ L L L L L │ Ó ╙ Ë │Oa, bx21ðð, Ee

├───┼───┼────────────────────┼───────────┼──────────────────

│212│D4 │ M M M M M │ Ô ╘ È │Oc, bx12ðð, Eg

│213│D5 │ N N N N N │ Õ ╒ ı │Ot, bxð21ð,

│ │ │ │ │idotless

│214│D6 │ O O O O O │ Ö ╓ Í │Oe, bxð12ð, Ia

│215│D7 │ P P P P P │ × ╫ Î │mult, bx2121, Ic

├───┼───┼────────────────────┼───────────┼──────────────────

│216│D8 │ Q Q Q Q Q │ Ø ╪ Ï │Os, bx1212, Ie

│217│D9 │ R R R R R │ Ù ┘ ┘ │Ug, bxlr

│218│DA │ ñ ñ ñ │ Ú ┌ ┌ │sup1, Ua, bxul

│219│DB │ û û û │ Û J J │uc, Uc, BOX

├───┼───┼────────────────────┼───────────┼──────────────────

│22ð│DC │ ü ü ü │ Ü h h │ue, Ue, BOXBOT

│221│DD │ ù ù ù │ Ý w ¦ │ug, Ya, BOXLEFT,

│ │ │ │ │splitvbar

│222│DE │ ú ú ú │ þ x Ì │ua, thorn,

│ │ │ │ │BOXRIGHT, Ig

│223│DF │ ÿ ÿ ÿ │ ß g g │ye, ss, BOXTOP

└───┴───┴────────────────────┴───────────┴──────────────────

┌───┬───┬────────────────────┬───────────┬────────────────────

│ │ │ EBCDIC(4) │ISO IBM-PC │BookMaster

│Dec│Hex│81C 94C ð37 5ðð 1ð47│-8 437 85ð│Symbol Names(2)

├───┼───┼────────────────────┼───────────┼────────────────────

│224│Eð │ \ \ \ │ à α Ó │bslash, ag, alpha,

│ │ │ │ │Oa

│225│E1 │ NSP ÷ ÷ ÷ │ á ß ß │div, aa, ss

│226│E2 │ S S S S S │ â ┌ Ô │ac, Gamma, Oc

│227│E3 │ T T T T T │ ã π Ò │at, pi, Og

├───┼───┼────────────────────┼───────────┼────────────────────

│228│E4 │ U U U U U │ ä Σ õ │ae, Sigma, ot

│229│E5 │ V V V V V │ å σ Õ │ao, sigma, Ot

│23ð│E6 │ W W W W W │ æ µ µ │aelig, mu(6)

│231│E7 │ X X X X X │ ç τ þ │cc, tau, thorn

├───┼───┼────────────────────┼───────────┼────────────────────

│232│E8 │ Y Y Y Y Y │ è Φ Þ │eg, Phi, Thorn

│233│E9 │ Z Z Z Z Z │ é Θ Ú │ea, Theta(5), Ua

│234│EA │ ò ò ò │ ê Ω Û │sup2, ec, Omega, Uc

│235│EB │ Ô Ô Ô │ ë δ Ù │Oc, ee, delta, Ug

├───┼───┼────────────────────┼───────────┼────────────────────

│236│EC │ Ö Ö Ö │ ì ∞ ý │Oe, ig, infinity, ya

│237│ED │ Ò Ò Ò │ í φ Ý │Og, ia, phi, Ya

│238│EE │ Ó Ó Ó │ î ε ¯ │Oa, ic, epsilon,

│ │ │ │ │overline

│239│EF │ Õ Õ Õ │ ï ∩ ´ │Ot, ie, intersect,

│ │ │ │ │acute

├───┼───┼────────────────────┼───────────┼────────────────────

│24ð│Fð │ ð ð ð ð ð │ ð ≡ SHY│eth, identical

│241│F1 │ 1 1 1 1 1 │ ñ ± ± │nt, pm

│242│F2 │ 2 2 2 2 2 │ ò ≥ ═ │og, ge, eq

│243│F3 │ 3 3 3 3 3 │ ó ≤ ¾ │oa, le, frac34

├───┼───┼────────────────────┼───────────┼────────────────────

│244│F4 │ 4 4 4 4 4 │ ô � ¶ │oc, inttop, par

│245│F5 │ 5 5 5 5 5 │ õ � § │ot, intbot, section

│246│F6 │ 6 6 6 6 6 │ ö ÷ ÷ │oe, div

│247│F7 │ 7 7 7 7 7 │ ÷ ≈ ¸ │div, nearly(5),

│ │ │ │ │cedilla

├───┼───┼────────────────────┼───────────┼────────────────────

│248│F8 │ 8 8 8 8 8 │ ø ° ° │os, degree

│249│F9 │ 9 9 9 9 9 │ ù ¹ ¨ │ug, lmultdot, umlaut

│25ð│FA │ ó ó ó │ ú ¸ ¸ │sup3, ua, smultdot

│251│FB │ Û Û Û │ û √ ñ │Uc, uc, sqrt, sup1

├───┼───┼────────────────────┼───────────┼────────────────────

│252│FC │ Ü Ü Ü │ ü û ó │Ue, ue, supn, sup3

│253│FD │ Ù Ù Ù │ ý ò ò │Ug, ya, sup2

│254│FE │ Ú Ú Ú │ þ ■ ■ │Ua, thorn, sqbul

│255│FF │EO EO EO EO EO │ ÿ RSP RSP│ye

└───┴───┴────────────────────┴───────────┴────────────────────

Notes :

(1) The ASCII controls and graphics are from ANSI X3.4. The ISO-8 controls are from ISO 6429, and the graphics
are from ISO 8859-1. The ISO-8 graphics are code page 00819, named ISO/ANSI Multilingual. IBM-PC controls
and graphics are shown. The graphics are common to code page 00437, named Personal Computer, and code
page 00850, named Personal Computer - Multilingual Page. Code pages 00437 and 00850 are shown separately
beginning at X'80', after which they diverge in content.

(2) The symbol names shown are to be preceded by an ampersand (&) and followed by a period (.) to form a symbol.
Source: IBM BookMaster User's Guide Release 4.0, SC34-5009.

(3) ASCII, ISO-8, and IBM-PC X'27' and EBCDIC X'7D' are an apostophe having the appearance of a straight
single quote. The BookMaster “apos” produces a character having the appearance of an accent acute.

(4) Five columns of EBCDIC graphics are shown. The first is the 81-character character set 0640, called the syntactic
character set, that is mapped the same on all EBCDIC code pages. The second is the standard IBM 94-character
character set mapped on code page 00037. The third is code page 00037, named USA/Canada - CECP (Country
Extended Code Page). The fourth is code page 00500, named International #5. The fifth is code page 01047,
named Latin 1/Open Systems. Code pages 00037, 00500, 01047, and 00819 (ISO-8) all map the 189-character
character set 0697. Source: National Language Support Reference Manual Volume 2, SE09-8002.

(5) ƒ, ≈, and Θ are of nonstandard width.
(6) EBCDIC X'A0' and ISO-8 X'B5' are micro but resemble mu. The BookMaster “usec” produces a character of

nonstandard width.
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 Index

Numerics
370-XA architecture 1-7

comparison of facilities with System/370 F-1
comparison with ESA/370 E-1

A
A (ADD) binary instruction 7-10
absolute address 3-4
absolute storage 3-4
access-control bits in storage key 3-8
access exceptions 6-34, 6-39

priority of 6-39
recognition of 6-34

access key 3-9
for channel-program execution 3-9, 15-21
for channel-subsystem monitoring 3-9
for CPU 3-9

access list 5-44
See also access-list entry
accessing capability, revocation of 5-38
allocation and invalidation of entries in 5-35
authorizing the use of entries in 5-36
concepts 5-33
designation (ALD) 5-43
length (ALL) 5-43
origin (ALO) 5-43

access-list-controlled protection 3-11, D-1
exception for 6-28

access-list entry (ALE) 5-44
authorization index (ALEAX) 5-44
number

See ALEN
sequence exception 6-19

as an access exception 6-34
sequence number (ALESN)

in ALE 5-44
in ALET 5-41

token
See ALET

access-register mode 3-28
access-register translation (ART) 5-40

as part of LOAD REAL ADDRESS, TEST ACCESS,
and TEST PROTECTION 5-46

introduction to 5-33
lookaside buffer

See ALB
sequence of table fetches 5-80

access-register-translation (ART) tables 5-42
access registers 2-4, D-1

designation of 5-33

access registers (continued)
functions of 5-32
instructions for use of 5-39
save areas for 3-48
validity bit for 11-23

access to storage 5-75
See also reference
by use of MOVE PAGE 7-60

active
device 16-15
subchannel 16-15

active allegiance 15-11
active communication 15-11
activity-control field (SCSW) 16-13

following TEST SUBCHANNEL 14-18
AD (ADD NORMALIZED) HFP instruction 18-8

example A-38
ADB (ADD) BFP instruction 19-18
ADBR (ADD) BFP instruction 19-18
ADD BFP instructions 19-18
ADD binary instructions 7-10
ADD DECIMAL instruction 8-5

example A-33
ADD HALFWORD IMMEDIATE instruction 7-10
ADD HALFWORD instruction 7-10

example A-7
ADD LOGICAL instructions 7-11
ADD NORMALIZED HFP instructions 18-8

example A-38
ADD UNNORMALIZED HFP instructions 18-9

example A-39
additional floating-point (AFP) registers 9-2
address 3-2

24-bit and 31-bit 3-5, F-1
in branch-address generation 5-9
in operand address generation 5-8

31-bit real and absolute F-1
absolute 3-4
arithmetic 3-5, 5-7

unsigned binary 7-4
backward stack-entry 5-67
base

See base address
branch

See branch address
channel-program

See channel-program address
comparison 12-1

controls for 12-1
effect on CPU state 4-2

CPU
See CPU address
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address (continued)
data (I/O)

See data address
effective

See effective address
extended save area 3-47
failing-storage

See failing-storage address
format 3-2
forward-section-header 5-67
generation 5-7

for storage addressing 3-5
I/O 13-4
instruction

See instruction address
invalid 6-15
logical

See logical address
numbering of for byte locations 3-2
PER

See PER address
prefixing

See prefix
primary virtual

See primary virtual address
real 3-4
secondary virtual

See secondary virtual address
size of 3-5

controlled by addressing mode 5-7
storage 3-2
summary information 3-40
translation

See dynamic address translation, prefix
types 3-3
virtual 3-4
wraparound

See wraparound
address-limit checking (I/O) 17-15

effect of I/O-system reset on 17-11
limit mode (bits in PMCW) 15-2

address-limit-checking control (I/O) 15-22, 16-11
used for IPL 17-13

address space 3-16
AR-specified 5-32
changing of 3-17
control bits

control bit 5-62
in PSW 4-5
use in address translation 3-28

created by DAT 3-27
number

See ASN
address-space-function (ASF) control bit 5-40

use in ASN translation 3-19
use in PC-number translation 5-25

address-and-translation-mode identification
(ATMID) 4-17

addressing exception 6-15
as an access exception 6-34, 6-39

addressing mode 5-7
bit in entry-table entry 5-27
bit in linkage-stack state entry 5-69
bit in PSW 4-6
effect on address size 3-5
effect on operand-address generation 5-8
effect on sequential instruction-address

generation 5-7
effect on wraparound 3-5
in branch-address generation 5-9
in examples A-7
in operand address generation 5-8
set by BRANCH AND SAVE AND SET MODE

instruction 7-13
set by BRANCH AND SET MODE instruction 7-14
use of 5-13

ADR (ADD NORMALIZED) HFP instruction 18-8
AE (ADD NORMALIZED) HFP instruction 18-8

example A-38
AEB (ADD) BFP instruction 19-18
AEBR (ADD) BFP instruction 19-18
AER (ADD NORMALIZED) HFP instruction 18-8
AFP (additional floating-point) registers 9-2
AFP-register data exception 6-21
AFT (ASN first table) 3-19
AFTE (ASN-first-table entry) 3-19
AFTO (ASN-first-table origin) 3-19
AFX (ASN-first-table index) 3-18

invalid bit 3-19
translation exception 6-19

AH (ADD HALFWORD) instruction 7-10
example A-7

AHI (ADD HALFWORD IMMEDIATE) instruction 7-10
AKM (authorization key mask) 5-27
AL (ADD LOGICAL) instruction 7-11
ALB (ART-lookaside buffer) 5-51

entry
clearing of 5-52
effect of translation changes on 5-52

ALD (access-list designation) 5-43
ALE

See access-list entry
ALEAX (access-list-entry authorization index) 5-44
ALEN (access-list-entry number) 5-41

invalid bit 5-44
translation exception 6-19

as an access exception 6-34
alert (class of machine-check condition) 11-12
alert interruption condition (I/O) 16-4
alert-status bit (I/O) 16-16
ALESN (access-list-entry sequence number)

in ALE 5-44
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ALESN (access-list-entry sequence number) (continued)
in ALET 5-41

ALET (access-list-entry token) 5-35, 5-41
specification exception 6-19

as an access exception 6-34
ALL (access-list length) 5-43
allegiance

active 15-11
channel-path 15-10
dedicated 15-11
effect on CLEAR SUBCHANNEL of 15-10
working 15-11

allowed interruptions 6-6
ALO (access-list origin) 5-43
ALR (ADD LOGICAL) instruction 7-11
alter-and-display controls 12-2
alteration

general-register (PER event) 4-23
storage (PER event) 4-22

ancillary-report bit
in channel-report word 17-19
in machine-check-interruption code 11-19
in subchannel logout 16-34

AND instructions 7-11
examples A-7

AP (ADD DECIMAL) instruction 8-5
example A-33

AR (ADD) binary instruction 7-10
AR-specified (access-register-specified) address

space 3-16, 5-32
AR-specified (access-register-specified) virtual

address 3-4
effective segment-table designation for 3-32

architectural mode
indication of 12-2
selection of by IML controls 12-2
selection of by manual controls 12-2

architecture
compatibility 1-9

arithmetic
address

See address arithmetic
binary 7-3

examples A-2
decimal 8-2

examples A-4, A-33
floating-point 9-1

examples A-5, A-38
logical (unsigned binary) 7-4

examples A-3
ART

See access-register translation
art-lookaside buffer

See ALB
ASCII character code

handled by architecture xxi

ASF-control bit
See address-space-function-control bit

ASN (address-space number) 3-17
authorization 3-23
first table (AFT) 3-19
first-table (AFT) origin (AFTO) 3-19
first-table index

See AFX
first table origin (AFTO) 3-19
in entry-table entry 5-27
second table (AST) 3-19
second-table (AST) origin (ASTO) 3-19
second-table address in ETE 5-27
second-table entry (ASTE)

address 5-63
address, in ALE 5-45
basic (16-byte) 3-19
extended (64-byte) 5-45
for subspace groups 5-54
primary (PASTE) 5-26
pseudo 3-17
sequence exception 6-20
sequence exception as an access

exception 6-34
sequence number (ASTESN), in ALE 5-45
sequence number (ASTESN), in ASTE 5-46
validity exception 6-20
validity exception as an access exception 6-34

second-table index
See ASX

trace-control bit 4-11
translation 3-18

exceptions 6-44
specification exception 6-19
specification exception as an access

exception 6-34
translation-control bit 3-18, 5-21

assembler language A-7
instruction formats in

See instruction lists and page numbers in
Appendix B

assigned storage locations 3-43
comparison of 370-XA with System/370 F-6
comparison of ESA/370 with 370-XA E-3

AST (ASN second table) 3-19
AST entry

See ASN-second-table entry
ASTE

See ASN-second-table entry
ASTESN (AST-entry sequence number)

in ALE 5-45
in ASTE 5-46

ASTO (ASN-second-table origin) 3-19
ASX (ASN-second-table index) 3-18

invalid bit 3-20
use in ART 5-45
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ASX (ASN-second-table index) (continued)
translation exception 6-21

asynchronous-data-mover facility 1-6
asynchronous-pageout facility 1-6
AT

See authority table
ATL (authority-table length) 3-20

use in ART 5-46
ATMID (addressing-and-translation-mode

identification) 4-17
ATO (authority-table origin) 3-20

use in ART 5-46
attached ART-table entry 5-51
attached segment-table or page-table entry 3-36
attachment of I/O devices 13-2
AU (ADD UNNORMALIZED) HFP instruction 18-9

example A-39
AUR (ADD UNNORMALIZED) HFP instruction 18-9
authority table (AT) 5-21

designation 3-20, 5-46
length 3-20, 5-46
origin 3-20, 5-46

authorization
ASN 3-23
index (AX) 3-24, 5-21
key mask (AKM) 5-27
mechanisms 5-19

summary of 5-23
testing of 5-60

authorization check 16-36
automatic reconfiguration 1-6
auxiliary storage 3-1, 3-26
availability (characteristic of a system) 1-10
AW (ADD UNNORMALIZED) HFP instruction 18-9
AWR (ADD UNNORMALIZED) HFP instruction 18-9
AX (authorization index) 3-24, 5-21
AXBR (ADD) BFP instruction 19-18
AXR (ADD NORMALIZED) HFP instruction 18-8

B
B field of instruction 5-7
backed-up bit (machine-check condition) 11-19
backup

processing (synchronous machine-check
condition) 11-19

backward stack-entry address 5-67
backward stack-entry validity bit 5-67
BAKR (BRANCH AND STACK) instruction 10-9

examples A-9
BAL (BRANCH AND LINK) instruction 7-12

examples A-8
BALR (BRANCH AND LINK) instruction 7-12

examples A-8
BAS (BRANCH AND SAVE) instruction 7-13

example A-8

base address 5-7
register for 2-3

base-AST-entry origin (BASTEO) 5-53
base space 5-10
base-space bit 5-55
base-authority state 10-6
basic AST entry 3-19
basic entry-table entry 5-26
basic I/O functions 15-1
basic operator facilities 12-1
basic PROGRAM CALL 5-58, 10-50
BASR (BRANCH AND SAVE) instruction 7-13

example A-8
BASSM (BRANCH AND SAVE AND SET MODE)

instruction 7-13
example A-8

BASTEO (base-AST-entry origin) 5-53
BC (BRANCH ON CONDITION) instruction 7-14

example A-11
BCR (BRANCH ON CONDITION) instruction 7-14
BCT (BRANCH ON COUNT) instruction 7-15

example A-12
BCTR (BRANCH ON COUNT) instruction 7-15

example A-12
BFP

data class
testing of 19-47

BFP (binary floating point) 9-1
BFP data 19-4

conversion of 9-10
BFP facility 19-1
BFP-instruction data exception 6-21
bias for exponent 19-4
bimodal addressing 5-7, F-1

See also addressing mode
binary

See also fixed point
arithmetic 7-3

examples A-2
negative zero 7-3
number representation 7-2

examples A-2
overflow 7-3

example A-2
sign bit 7-2

binary floating point (BFP) 9-1
binary integer

conversion from floating point 18-11, 19-27
conversion to floating point 18-11, 19-26

binary-to-decimal conversion 7-39
example A-18

bit 3-2
numbering of within a group of bytes 3-2

block-concurrent storage references 5-84
block number

expanded storage 2-2
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block of I/O data 15-21
block of storage 3-4

See also page
testing for usability of 10-101

borrow 7-91
boundary alignment 3-3

for instructions 5-3
branch address 5-8

control bit 4-15
in linkage-stack state entry 5-69
in trace entry 4-13

BRANCH AND LINK instructions 7-12
examples A-8

BRANCH AND SAVE AND SET MODE
instruction 7-13

examples A-8
BRANCH AND SAVE instructions 7-13

examples A-8
BRANCH AND SET AUTHORITY instruction 10-6
BRANCH AND SET MODE instruction 7-14

examples A-8
BRANCH AND STACK instruction 10-9

examples A-9
BRANCH IN SUBSPACE GROUP instruction 10-12
BRANCH ON CONDITION instructions 7-14

example A-11
BRANCH ON COUNT instructions 7-15

example A-12
BRANCH ON INDEX HIGH instruction 7-16

examples A-12
BRANCH ON INDEX LOW OR EQUAL

instruction 7-16
examples A-13

BRANCH RELATIVE AND SAVE instruction 7-17
BRANCH RELATIVE ON CONDITION instruction 7-17
BRANCH RELATIVE ON COUNT instruction 7-18
BRANCH RELATIVE ON INDEX HIGH

instruction 7-19
BRANCH RELATIVE ON INDEX LOW OR EQUAL

instruction 7-19
branch state entry 5-68, 10-9
branch-trace-control bit 4-10
branching

branch-address generation 5-8
in a channel program 15-36
relative 5-8
to perform decision making, loop control, and sub-

routine linkage 5-9
using the linkage stack 5-59

BRAS (BRANCH RELATIVE AND SAVE)
instruction 7-17

BRC (BRANCH RELATIVE ON CONDITION)
instruction 7-17

BRCT (BRANCH RELATIVE ON COUNT)
instruction 7-18

broadcasted-purging facility 1-5
BRXH (BRANCH RELATIVE ON INDEX HIGH) instruc-

tion 7-19
BRXLE (BRANCH RELATIVE ON INDEX LOW OR

EQUAL) instruction 7-19
BSA (BRANCH AND SET AUTHORITY)

instruction 10-6
BSG (BRANCH IN SUBSPACE GROUP)

instruction 10-12
BSM (BRANCH AND SET MODE) instruction 7-14

example A-8
buffer storage (cache) 3-2
burst mode (channel-path operation) 13-3
busy

in I/O operations 13-7
in SIGNAL PROCESSOR 4-46

BXH (BRANCH ON INDEX HIGH) instruction 7-16
examples A-12

BXLE (BRANCH ON INDEX LOW OR EQUAL) instruc-
tion 7-16

examples A-13
bypassing POST and WAIT A-45
byte 3-2

numbering of in storage 3-2
byte index (BX) 3-27
byte-multiplex mode (channel-path operation) 13-3

C
C (COMPARE) binary instruction 7-23
cache 3-2
called-space identification 5-69
cancel-I/O facility 1-6
capability list 5-37
carry 7-3
CBC (checking-block code) 11-2

invalid 11-2
in registers 11-9
in storage 11-6
in storage keys 11-7

near-valid 11-2
valid 11-2

CCC (channel-control check) 16-27
CCW (channel-command word) 15-23

address of 15-23, 16-19
byte count in 15-25
chaining 15-27
check (in subchannel logout) 16-33
command codes

See commands
contents of 15-24
current 15-23
designation of storage area in 15-24, 15-25
format-0 and format-1 15-24
format control 15-21, 16-10

used for IPL 17-13
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CCW (channel-command word) (continued)
IDA flag in 15-24
in IPL

assigned storage locations for 3-43
indirect data addressing used in 13-7, 15-32
invalid format of 16-26
invalid specification of 16-25
PCI flag in 15-24
prefetch control in 15-22, 16-10

used for IPL 17-13
prefetching 15-29
retry of

See command retry
role in I/O operations of 13-6
skip flag in 15-24
suspend flag in 15-24

CD (COMPARE) HFP instruction 18-10
CDB (COMPARE) BFP instruction 19-23
CDBR (COMPARE) BFP instruction 19-23
CDFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CDFR (CONVERT FROM FIXED) HFP

instruction 18-11
CDR (COMPARE) HFP instruction 18-10

examples A-39
CDS (COMPARE DOUBLE AND SWAP)

instruction 7-27
examples A-43

CE (COMPARE) HFP instruction 18-10
CEB (COMPARE) BFP instruction 19-23
CEBR (COMPARE) BFP instruction 19-23
CEFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CEFR (CONVERT FROM FIXED) HFP

instruction 18-11
central processing unit

See CPU
CER (COMPARE) HFP instruction 18-10
CFC (COMPARE AND FORM CODEWORD)

instruction 7-23
example A-50

CFDBR (CONVERT TO FIXED) BFP instruction 19-27
CFDR (CONVERT TO FIXED) HFP instruction 18-11
CFEBR (CONVERT TO FIXED) BFP instruction 19-27
CFER (CONVERT TO FIXED) HFP instruction 18-11
CFXBR (CONVERT TO FIXED) BFP instruction 19-27
CFXR (CONVERT TO FIXED) HFP instruction 18-11
CH (COMPARE HALFWORD) instruction 7-29

example A-14
chaining check (subchannel status) 16-29
chaining of CCWs 15-27

command
See command chaining of CCWs

data
See data chaining of CCWs

chaining of CRWs 17-18, 17-19
change bit in storage key 3-8
change recording 3-14
channel-command word

See CCW
channel commands

See commands (I/O)
channel-control check (subchannel status) 16-27
channel-data check (subchannel status) 16-27
channel path 13-2

active allegiance for 15-11
available for selection 15-12
dedicated allegiance for 15-11
effect of I/O-system reset on 17-10
masks in SCHIB

See LPM, LPUM, PAM, PIM, PNOM, POM
multipath mode of 15-3, 15-20
not operational 16-12
parallel-I/O-interface type 13-3
serial-I/O-interface type 13-2
storing of status for 14-14
type of 13-2, 13-5
working allegiance for 15-11

channel-path identifier
See CHPID

channel-path reset 17-9
effect of I/O-system reset on 17-11

channel-path-reset function 15-40
completion of 15-41
initiation by RESET CHANNEL PATH 14-7
reset signal issued as part of 17-8
signaling for 15-40

channel-path-status word 14-14
channel-path timeout

indicator for (in ERW) 16-37
channel program 15-23

branching in
See TIC

execution of 13-6, 15-20
resumption of 14-9
suspension of 13-8, 15-34

serialization 5-88
suspend control for 15-21

channel-program address 15-23, 16-19
field-validity flag for in IRB 16-34
used for IPL 17-13

channel report 17-17
generated as a result of RCHP 14-8

channel report pending 11-18, 17-17
effect of I/O-system reset on 17-11
subclass-mask bit for 11-26

channel-report word
See CRW

channel subsystem 2-6, 13-1
addressing used in 13-4
damage 11-19
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channel subsystem (continued)
effect of I/O-system reset on 17-9
effect of power-on reset on 4-39
isolated state of

channel-subsystem-call facility 1-6
channel-subsystem monitoring 17-1

effect of I/O-system reset on 17-11
channel-subsystem recovery 11-4, 17-17
channel-subsystem timer 17-2

effect of I/O-system reset on 17-11
channel-subsystem timing 17-1
channel-subsystem timing-facility bit (in PMCW) 15-4
characteristic (of HFP number) 18-1

See also exponent
characters

represented by eight-bit code xxi
check bits 3-2, 11-2
check stop 4-2, 11-10

as signal-processor status 4-47
during manual operation 12-1
effect on CPU timer 4-33
entering of 11-14
indicator 12-2
malfunction alert for 6-12
system 11-11

checking block 11-2
checking-block code

See CBC
checkpoint 11-2
checkpoint synchronization 11-3

action 11-4
operations 11-3

CHECKSUM instruction 7-20
CHI (COMPARE HALFWORD IMMEDIATE)

instruction 7-29
CHPID (channel-path identifier) 13-5

in PMCW 15-7
used in RESET CHANNEL PATH 14-7

CKSM (CHECKSUM) instruction 7-20
CL (COMPARE LOGICAL) instruction 7-29
class

of BFP data 19-5
testing of 19-47

CLC (COMPARE LOGICAL) instruction 7-29
example A-14

CLCL (COMPARE LOGICAL LONG) instruction 7-30
example A-16

CLCLE (COMPARE LOGICAL LONG EXTENDED)
instruction 7-32

clear function 15-13
bit in SCSW for 16-13
completion of 15-14
initiated by CLEAR SUBCHANNEL 14-4
path management for 15-13
pending 16-15
signaling for 15-14

clear function (continued)
subchannel modification by 15-13

clear reset 4-38
clear signal 17-8

issued as part of clear function 15-14
CLEAR SUBCHANNEL instruction 14-4

See also clear function
effect on device status of 15-14
function initiated by 15-13
use of after RESET CHANNEL PATH 14-8

clearing operation
by clear-reset function 4-38
by load-clear key 12-3
by system-reset-clear key 12-4
by TEST BLOCK instruction 10-101

CLI (COMPARE LOGICAL) instruction 7-29
example A-15

CLM (COMPARE LOGICAL CHARACTERS UNDER
MASK) instruction 7-30

example A-15
clock

See TOD clock
clock comparator 4-32

external interruption 6-11
save areas for 3-47
validity bit for 11-23

clock unit 4-30, 7-89
CLR (COMPARE LOGICAL) instruction 7-29

example A-15
CLST (COMPARE LOGICAL STRING) instruction 7-34

examples A-17
code

ASCII
handled by architecture xxi

checking-block
See CBC

command (in CCW)
See command code in CCW

condition
See condition code

data-exception (DXC) 6-15
decimal digit and sign 8-2
deferred condition (I/O) 16-8
EBCDIC

handled by architecture xxi
table for I-1

eight-bit
handled by architecture xxi

error-recovery (I/O) 17-19
exception-extension 6-15
external-damage 11-24

validity bit for 11-22
I/O-interruption subclass 15-2
instruction-length

See ILC
interruption

See interruption code
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code (continued)
linkage-stack-entry type 5-66
monitor

See monitor code
operation 5-2
PER

See PER code
reporting-source (I/O) 17-19
storage-access (in subchannel logout) 16-34
version 10-86

codeword (for sorting operations) 7-23
example A-51

command chaining of CCWs 15-30
effect of status modifier on 15-30
flag in CCW for 15-24
overview of 13-8

command code in CCW 15-25
See also commands
See also common I/O-device commands
applicable flags 15-36
invalid 16-25

command codes
See command code in CCW

command retry 15-37
effect on PCI of 15-32

commands (I/O) 15-25
See also common I/O-device commands
transfer in channel 15-37

common I/O-device commands
publication referenced xxi

common-segment bit 3-30
COMPARE AND FORM CODEWORD instruction 7-23

example A-50
COMPARE AND SIGNAL BFP instructions 19-24
COMPARE AND SWAP instruction 7-27
COMPARE AND SWAP instruction

examples A-43
COMPARE BFP instructions 19-23
COMPARE binary instructions 7-23
COMPARE DECIMAL instruction 8-6

example A-34
COMPARE DOUBLE AND SWAP instruction 7-27

examples A-43
COMPARE HALFWORD IMMEDIATE instruction 7-29
COMPARE HALFWORD instruction 7-29

example A-14
COMPARE HFP instructions 18-10

examples A-39
COMPARE LOGICAL instructions 7-29
COMPARE LOGICAL CHARACTERS UNDER MASK

instruction 7-30
example A-15

COMPARE LOGICAL instructions
examples A-14

COMPARE LOGICAL LONG EXTENDED
instruction 7-32

COMPARE LOGICAL LONG instruction 7-30
example A-16

COMPARE LOGICAL STRING instruction 7-34
examples A-17

COMPARE UNTIL SUBSTRING EQUAL
instruction 7-36

comparison
address

See address comparison
between 370-XA and ESA/370 E-1
between ESA/370 and ESA/390 D-1
between System/370 and 370-XA F-1
decimal 8-6

example A-34
hexadecimal-floating-point

examples A-39
logical 7-4

examples A-14
of BFP data 19-8
signed-binary 7-4
TOD-clock 4-32

compatibility 1-9
among systems implementing different

architectures 1-9
among systems implementing same

architecture 1-9
control-program 1-9
problem-state 1-10

completion of I/O functions
by channel-path-reset function 15-41
by clear function 15-14
by halt function 15-15
during data transfer 15-39
during initiation 15-37
for immediate commands 15-38

completion of instruction execution 5-15
completion of unit of operation 5-17
compression facility

publication referenced xxii
conceptual sequence 5-75

as related to storage-operand accesses 5-86
conclusion of I/O operations 13-7, 16-1

during data transfer 15-39
during initiation 15-37
for immediate commands 15-38

conclusion of instruction execution 5-15
concurrency of access for storage references 5-84
concurrent sense D-2

in ECW 16-39
indicator for (in ERW) 16-37

concurrent-sense count (in ERW) 16-37
concurrent-sense facility 17-16
condition code 4-6

deferred 16-8
for BFP instructions 19-9
in PSW 4-6
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condition code (continued)
summary C-1
tested by BRANCH ON CONDITION

instruction 7-14
used for decision making 5-9
validity bit for 11-22

conditional-swapping instructions
See COMPARE AND SWAP instruction, COMPARE

DOUBLE AND SWAP instruction
conditions for interruption

See interruption conditions
configuration 2-1

of storage 3-4
configuration-alert facility (I/O) 17-16
connective

See logical connective
consistency (storage operand) 5-83

examples A-46, A-49
console device 12-1
console integration 1-6
control 4-1

instructions 10-1
manual

See manual operation
control-program compatibility 1-9
control register 2-4, 4-6

comparison, 370-XA with System/370 F-6
comparison, ESA/370 with 370-XA E-3
save areas 3-48
validity bit 11-22

control-register assignment 4-8
(CRx.y indicates control register x, bit position y)
CR0.1:

SSM-suppression-control bit 6-30, 10-83
CR0.2:

TOD-clock-sync-control bit 4-27, 4-32
CR0.3:

low-address-protection-control bit 3-12
CR0.4:

extraction-authority-control bit 5-20
CR0.5:

secondary-space-control bit 3-28, 5-21
CR0.6:

fetch-protection-override-control bit 3-11
CR0.7:

storage-protection-override-control bit 3-10
CR0.8-12:

translation format 3-28
CR0.13:

AFP-register-control bit 9-3
CR0.14:

vector-control bit 4-10
CR0.15:

address-space-function-control bit 5-40
CR0.16:

malfunction-alert subclass-mask bit 6-12

control-register assignment (continued)
CR0.17:

emergency-signal subclass-mask bit 6-11
CR0.18:

external-call subclass-mask bit 6-12
CR0.19:

TOD-clock sync-check subclass-mask bit 6-13
CR0.20:

clock-comparator subclass-mask bit 6-11
CR0.21:

CPU-timer subclass-mask bit 6-11
CR0.22:

service-signal subclass-mask bit 6-12
CR0.25:

interrupt-key subclass-mask bit 6-12
CR0.27:
CR0.28:

program-call-fast-control bit 5-22
CR1:

primary segment-table designation (PSTD) 3-28
CR1.0:

primary space-switch-event-control bit 3-28, 6-29
CR1.1-19:

primary segment-table origin (PSTO) 3-29
CR1.22:

primary subspace-group-control bit 3-29
CR1.23:

primary private-space-control bit 3-29
CR1.24:

primary storage-alteration-event-control bit 3-29
CR1.25-31:

primary segment-table length (PSTL) 3-29
CR2.1-25:

dispatchable-unit-control-table origin
(DUCTO) 5-40

CR3.0-15:
PSW-key mask (PKM) 5-20

CR3.16-31:
secondary ASN (SASN) 3-17

CR4.0-15:
authorization index (AX) 3-24, 5-21

CR4.16-31:
primary ASN (PASN) 3-17

CR5.0:
subsystem-linkage-control bit 5-21, 5-25

CR5.1-24:
linkage-table origin (LTO) 5-26

CR5.1-25:
primary-AST-entry origin (PASTEO) 5-26, 5-41

CR5.25-31:
linkage-table length (LTL) 5-26

CR6.0-7:
I/O-interruption subclass mask 6-13

CR7:
secondary segment-table designation

(SSTD) 3-29
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control-register assignment (continued)
CR7.1-19:

secondary segment-table origin (SSTO) 3-29
CR7.22:

secondary subspace-group-control bit 3-29
CR7.23:

secondary private-space-control bit 3-29
CR7.24:

secondary storage-alteration-event-control
bit 3-29

CR7.25-31:
secondary segment-table length (SSTL) 3-29

CR8.0-15:
extended authorization index (EAX) 5-41

CR8.16-31:
monitor-mask bits 6-24

CR9.0:
PER successful-branching-event-mask bit 4-15

CR9.1:
PER instruction-fetching-event-mask bit 4-15

CR9.2:
PER storage-alteration-event-mask bit 4-15

CR9.3:
PER general-register-alteration-event-mask

bit 4-15
CR9.4:

PER store-using-real-address-event-mask
bit 4-15

CR9.8:
PER branch-address-control bit 4-15

CR9.10:
PER storage-alteration-space-control bit 4-15

CR9.16-31:
PER general-register-mask bits 4-16

CR10.1-31:
PER starting address 4-15

CR11.1-31:
PER ending address 4-15

CR12.0:
branch-trace-control bit 4-10

CR12.1-29:
trace-entry address 4-11

CR12.30:
ASN-trace-control bit 4-11

CR12.31:
explicit-trace-control bit 4-11

CR13:
home segment-table designation (HSTD) 3-29

CR13.0:
home space-switch-event-control bit 3-29, 6-29

CR13.1-19:
home segment-table origin (HSTO) 3-30

CR13.23:
home private-space-control bit 3-30

CR13.24:
home storage-alteration-event-control bit 3-30

control-register assignment (continued)
CR13.25-31:

home segment-table length (HSTL) 3-30
CR14.2:

extended-save-area-control bit 4-40, 11-13
CR14.3:

channel-report-pending subclass-mask bit 11-26
CR14.4:

recovery subclass-mask bit 11-26
CR14.5:

degradation subclass-mask bit 11-26
CR14.6:

external-damage subclass-mask bit 11-26
CR14.7:

warning subclass-mask bit 11-26
CR14.10:

TOD-clock-control-override control 4-27
CR14.12:

ASN-translation-control bit 3-18, 5-21
CR14.13-31:

ASN-first-table origin (AFTO) 3-19
CR15.1-28:

linkage-stack-entry address 5-65
control unit 2-7, 13-3

effect of I/O-system reset on 17-9
sharing of 13-4
type of 15-12

control-unit-queuing measurement (I/O) 17-6
control-unit-queuing-time interval (in measurement

block) 17-4
conversion

between HFP and BFP data 9-10
binary-to-decimal 7-39

example A-18
decimal-to-binary 7-39

example A-18
decimal-to-hexadecimal H-1
hexadecimal-floating-point-number

basic example A-6
examples with instructions A-41

hexadecimal-to-decimal H-1
of floating-point format 19-7
of hexadecimal and decimal fractions H-7
of hexadecimal and decimal integers H-6

CONVERT BFP TO HFP floating-point
instructions 9-10

CONVERT FROM FIXED BFP instructions 19-26
CONVERT FROM FIXED HFP instructions 18-11
CONVERT HFP TO BFP floating-point

instructions 9-11
CONVERT TO BINARY instruction 7-39

example A-18
CONVERT TO DECIMAL instruction 7-39

example A-18
CONVERT TO FIXED BFP instructions 19-27
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CONVERT TO FIXED HFP instructions 18-11
CONVERT UNICODE TO UTF-8 instruction 7-40
CONVERT UTF-8 TO UNICODE instruction 7-42
Coordinated Universal Time (UTC) used in TOD

epoch 4-29
COPY ACCESS instruction 7-45
count field

in CCW 15-25
invalid 16-25

in SCSW 16-29
counter updating (example) A-44
counting operations 7-15
coupling facility 1-7
CP (COMPARE DECIMAL) instruction 8-6

example A-34
CPA

See channel-program address
CPU (central processing unit) 2-2

address 4-41
assigned storage locations for 3-44
when stored during external interruptions 6-10

checkpoint 11-2
effect of power-on reset on 4-39
hangup due to string of interruptions 4-3
identification (ID) 10-86
machine-type number 10-86
model number 10-86
registers 2-3

save areas for 3-47
reset 4-37

signal-processor order 4-42
retry 11-2
serialization 5-87
signaling 4-41
state 4-1

check-stop 4-2
load 4-2
no effect on TOD clock 4-27
operating 4-2
stopped 4-2

version code 10-86
CPU timer 4-33

external interruption 6-11
save areas for 3-47
validity bit for 11-23

CPYA (COPY ACCESS) instruction 7-45
CR

See control register
CR (COMPARE) binary instruction 7-23
CRW (channel-report word) 17-19

chaining of 17-18, 17-19
error-recovery code (ERC) in 17-19
overflow in 17-19
reporting-source code (RSC) in 17-19
reporting-source ID (RSID) in 17-20
solicited 17-19

CRW (channel-report word) (continued)
storing of 14-15

cryptographic facility 1-5, 2-6
CS (COMPARE AND SWAP) instruction 7-27

examples A-43
CSCH

See CLEAR SUBCHANNEL instruction
current CCW 15-23

See also CCW
current PSW 4-3, 5-9

See also PSW
stored during interruption 6-2

CUSE (COMPARE UNTIL SUBSTRING EQUAL)
instruction 7-36

CUTFU (CONVERT UTF-8 TO UNICODE)
instruction 7-42

CUUTF (CONVERT UNICODE TO UTF-8)
instruction 7-40

CVB (CONVERT TO BINARY) instruction 7-39
example A-18

CVD (CONVERT TO DECIMAL) instruction 7-39
example A-18

CXBR (COMPARE) BFP instruction 19-23
CXFBR (CONVERT FROM FIXED) BFP

instruction 19-26
CXFR (CONVERT FROM FIXED) HFP

instruction 18-11
CXR (COMPARE) HFP instruction 18-10

D
D (DIVIDE) binary instruction 7-45

example A-19
D field of instruction 5-7
damage

channel-subsystem 11-19
code (external) 11-24

validity bit for 11-22
external 11-17

subclass-mask bit for 11-26
instruction-processing 11-17
processing 11-20
service-processor 11-18
system 11-16
timing-facility 11-17

DAT
See dynamic address translation

DAT mode (bit in PSW) 4-5
use in address translation 3-28

data
blocking of (I/O) 15-21
format for

binary-floating-point instructions 19-4
decimal instructions 8-1
general instructions 7-2
hexadecimal-floating-point instructions 18-3
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data (continued)
indirect addressing of (I/O) 13-7, 15-32
measurement (I/O)

See measurement data
prefetching of for I/O operation 15-26

data address (I/O) 15-25
invalid 16-25
invalid specification of 16-25

data chaining of CCWs 15-29
flag in CCW for 15-24
overview of 13-8

data check
measurement-block 16-33

data exception 6-21
AFP-register 6-21
BFP-instruction 6-21
decimal-operand 6-21, 8-4
IEEE-exception-condition 6-21
priority of program interruptions for 6-15

data-exception code (DXC) 6-15
data streaming (I/O) 13-3

effect of CCW count on 15-30
data-exception code (DXC) 19-15

summary figure 19-15
DCTI (device-connect-time interval)

in ESW 16-38
in measurement block 17-4

DD (DIVIDE) HFP instruction 18-12
DDB (DIVIDE) BFP instruction 19-29
DDBR (DIVIDE) BFP instruction 19-29
DDR (DIVIDE) HFP instruction 18-12
DE (DIVIDE) HFP instruction 18-12
DEB (DIVIDE) BFP instruction 19-29
DEBR (DIVIDE) BFP instruction 19-29
decimal

arithmetic 8-2
comparison 8-6
digit codes 8-2
divide exception 6-21
instructions 8-1

examples A-33
number representation 8-1

examples A-4
operand overlap 8-3
overflow

exception 6-22
mask in PSW 4-6

sign codes 8-2
tables for conversion to hexadecimal H-1

decimal-operand data exception 6-21, 8-4
decimal-to-binary conversion 7-39

example A-18
dedicated allegiance 15-11
default QNaN 19-6
deferred condition code 16-8

degradation (machine-check condition) 11-18
subclass-mask bit for 11-26

degradation, storage (machine-check condition) 11-21
delay in storing 5-82
delayed access exception (machine-check

condition) 11-19
deletion of malfunctioning unit 11-4
denormalized numbers 19-8
DER (DIVIDE) HFP instruction 18-12

examples A-40
designation

access-list 5-42
authority-table 3-20
effective segment-table 3-32
entry-table 5-26
home segment-table 3-29
linkage-table 5-25

in AST entry 3-21
of storage area for data (I/O) 15-25
page-table 3-30
primary segment-table 3-28
secondary segment-table 3-29
segment-table 3-28

in AST entry 3-20
destructive overlap 5-85, 7-55, 7-58

in the access-register mode 5-77
device 2-7, 13-4

connect-time measurement
enable 17-7

console 12-1
effect of I/O-system reset on 17-9

device-active bit 16-15
device address 13-5
device-connect-time interval

See DCTI
device-connect-time measurement 17-6

effect of suspension on 15-35
enable 15-3

device-disconnect-time interval (in measurement
block) 17-4

device identifier 13-5
device number 13-5

assignment of 13-5
in PMCW 15-4

device-number valid (bit in PMCW) 15-4
device status 16-24

field-validity flag for (in subchannel logout) 16-28,
16-34

with inappropriate bit combination 16-35
device status check 16-35
DIAGNOSE instruction 10-16
DIDBR (DIVIDE TO INTEGER) BFP instruction 19-30
DIEBR (DIVIDE TO INTEGER) BFP instruction 19-30
digit codes (decimal) 8-2
digit selector (in EDIT) 8-7
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direct-access storage 3-1
disabling for interruptions 6-6
disallowed interruptions 6-6
dispatchable unit (DU) 5-34

access-list designation (DUALD) 5-42
control table (DUCT) 5-42

origin (DUCTO) 5-40
when branch-and-set-authority facility

installed 10-6
when subspace-group facility installed 5-53
when trap facility installed 10-106

displacement (in relative addressing) 5-7
display (manual controls) 12-2
DIVIDE BFP instructions 19-29
DIVIDE binary instructions 7-45

example A-19
DIVIDE DECIMAL instruction 8-6

example A-34
divide exception

decimal 6-21
fixed-point 6-22
HFP 6-23

DIVIDE HFP instructions 18-12
examples A-40

DIVIDE TO INTEGER BFP instructions 19-30
remainder result of 19-9

divisible instruction execution 5-76
doubleword 3-3
doubleword-concurrent storage references 5-84
DP (DIVIDE DECIMAL) instruction 8-6

example A-34
DR (DIVIDE) binary instruction 7-45
DU (dispatchable unit) 5-34
DUALD (dispatchable-unit access-list

designation) 5-42
DUCT (dispatchable-unit control table) 5-42, 5-53
DUCTO (dispatchable-unit-control-table origin) 5-40
dump (standalone) 12-4
DXBR (DIVIDE) BFP instruction 19-29
DXC (data-exception code) 6-15, 19-15

summary figure 19-15
DXR (DIVIDE) HFP instruction 18-12
dynamic address translation (DAT) 3-26

by LOAD REAL ADDRESS instruction 10-36
control of 3-27
explicit and implicit 3-31
mode bit in PSW 4-5

use in address translation 3-28
sequence of table fetches 5-80

dynamic-reconnection feature 13-2

E
E instruction format 5-5
EAR (EXTRACT ACCESS) instruction 7-47

early exception recognition 6-9
EAX

See extended authorization index
EBCDIC (Extended Binary-Coded-Decimal Interchange

Code)
architecture designed for xxi
character code

table for I-1
ECC (error checking and correction) 11-2
ECW (extended-control word) 16-39

indication in SCSW 16-11
ED (EDIT) instruction 8-7

examples A-34
EDIT AND MARK instruction 8-11

example A-35
EDIT instruction 8-7

examples A-34
editing instructions 8-3

See also ED instruction, EDMK instruction
EDMK (EDIT AND MARK) instruction 8-11

example A-35
effective access-list designation 5-42
effective address 3-5

controlled by addressing mode 5-7
generation 5-7
used for storage interlocks 5-77

effective segment-table designation 3-32
EFPC (EXTRACT FPC) instruction 19-35
EKM (entry key mask) 5-27

use by stacking PROGRAM CALL 5-62
emergency signal (external interruption) 6-11

signal-processor order 4-42
EMIF (ESCON-multiple-image facility) 1-6
enabled (bit for TRAP) 10-107
enabled (bit in PMCW) 15-2
enabling for interruptions 6-6

subchannel 16-5
enabling of subchannel 15-2, 16-5
ending of instruction execution 5-15
Enterprise Systems Connection Architecture (ESCON)

I/O interface
publication referenced xxi

entry
addressing-mode bit 5-62
extended authorization index 5-63
instruction address 5-62
key 5-62
parameter 5-62
problem-state bit 5-62

entry (for tracing) 4-11
entry descriptor 5-65
entry index (EX) 5-25
entry key mask (EKM) 5-27

use by stacking PROGRAM CALL 5-62
entry table (ET)

designation 5-26
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entry table (ET) (continued)
length (ETL) 5-26
origin (ETO) 5-26

entry-table entry (ETE)
basic (16 byte) 5-26
extended (32 byte) 5-61

entry-type code 5-66
EPAR (EXTRACT PRIMARY ASN) instruction 10-17
epoch (for TOD clock) 4-29
equipment check

in signal-processor status 4-47
ERC (error-recovery code) 17-19

See also CRW
EREG (EXTRACT STACKED REGISTERS)

instruction 10-18
error

checking and correction 11-2
from DIAGNOSE instruction 10-17
I/O-error alert 16-35
indirect storage 11-21
intermittent 11-5
PSW-format 6-9
secondary (I/O) 16-35
solid 11-5
state of TOD clock 4-28
storage 11-20
storage-key 11-21

error-recovery code (ERC) 17-19
See also CRW

ERW (extended-report word) 16-32, 16-36
as result of channel-control check 16-28
as result of channel-data check 16-27

ESA/370 architecture 1-7
architectural-mode controls 12-2
comparison of facilities with 370-XA E-1
comparison with ESA/390 D-1
facilities E-1

ESA/390 architecture
comparison of facilities with ESA/370 D-1
highlights of 1-1

ESAR (EXTRACT SECONDARY ASN)
instruction 10-17

ESCON (Enterprise Systems Connection Architecture)
I/O interface 13-2

publication referenced xxi
ESCON channel-to-channel adapter

publication referenced xxi
ESCON-multiple-image facility (EMIF) 1-6
ESTA (EXTRACT STACKED STATE)

instruction 10-20
ESW (extended-status word) 16-32

See also extended status
ESW format bit (in SCSW) 16-8
ET

See entry table

ETE
See entry-table entry

ETL (entry-table length) 5-26
ETO (entry-table origin) 5-26
ETR

external interruption 6-12
ETR (external time reference) 2-6
ETR (external time reference) facility 1-5
event 6-14

monitor 7-52
PER 4-14
space-switch 6-29

EX (entry index) 5-25
translation exception 6-22

EX (EXECUTE)
See EXECUTE instruction

exception access identification 3-46
exception-extension code 6-15
exceptions 6-14

access (collective program-interruption name) 6-34,
6-39

addressing 6-15
AFX-translation 6-19
ALE-sequence 6-19
ALEN-translation 6-19
ALET-specification 6-19
ASN-translation (collective program-interruption

name) 6-44
ASN-translation-specification 6-19
associated with

ART 5-51
stacking process 5-72
unstacking process 5-74

ASTE-sequence 6-20
ASTE-validity 6-20
ASX-translation 6-21
comparison of ESA/370 with 370-XA E-4
data 6-21
decimal-divide 6-21
decimal-overflow 6-22
delayed access (machine-check condition) 11-19
during translation 3-35
EX-translation 6-22
execute 6-22
extended-authority 6-22
fixed-point-divide 6-22
fixed-point-overflow 6-23
HFP-divide 6-23
HFP-exponent-overflow 6-23
HFP-exponent-underflow 6-23
HFP-significance 6-23
HFP-square-root 6-24
LX-translation 6-24
operand (of I/O instruction) 6-25
operation 6-25
page-translation 6-25
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exceptions (continued)
PC-translation-specification 6-26
primary-authority 6-27
privileged-operation 6-27
protection 6-28
PSW-related 6-9
recognition of

early and late 6-9
secondary-authority 6-28
segment-translation 6-29
special-operation 6-30
specification 6-31
stack-empty 6-32
stack-full 6-32
stack-operation 6-32
stack-specification 6-33
stack-type 6-33
subspace-replacement (collective program-

interruption name) 6-44
trace (collective program-interruption name) 6-44
trace-table 6-33
translation-specification 6-33
unnormalized-operand 6-34
vector-operation 6-34

EXCLUSIVE OR instructions 7-45
examples A-19

execute exception 6-22
EXECUTE instruction 7-46

effect of address comparison on 12-1
example A-20
exceptions while fetching target of 6-8
PER event for target of 4-22

exigent machine-check conditions 11-11
expanded storage 2-2

accessed by MOVE PAGE 2-2, 7-60
block number 2-2

explicit address translation 3-31
explicit-trace-control bit 4-11
exponent 18-1

See also characteristic, floating point
See also floating point
overflow

HFP 18-1
underflow

HFP 18-1
mask in PSW 4-6

exponent bias 19-4
extended AST entry 5-45
extended-authority exception 6-22

as an access exception 6-34
extended authorization 5-50
extended authorization index (EAX) 5-41

control bit 5-62
in entry-table entry 5-63
in linkage-stack state entry 5-69

extended binary-floating-point number 19-4
extended control (bit in SCSW) 16-11
extended-control word

See ECW
extended entry-table entry 5-61
extended hexadecimal-floating-point number 18-3
extended-report word

See ERW
extended save area 4-40

address 3-47
extended-sorting facility 1-5
extended status

See also ESW
flags in subchannel logout for 16-32
format-0 16-32
format-1 16-37
format-2 16-38
format-3 16-38

extended-status word 16-32
See also extended status

extended-status-word-format bit 16-8
external call

external interruption 6-12
pending (signal-processor status) 4-47
signal-processor order 4-42

external damage 11-17
subclass-mask bit for 11-26

external-damage code 11-24
assigned storage locations for 3-47
validity bit for 11-22

external interruption 6-10
clock-comparator 4-32, 6-11
CPU-timer 4-33, 6-11
direct conditions 6-10
emergency-signal 6-11
ETR 6-12
external-call 6-12
interrupt-key 6-12
malfunction-alert 6-12
mask in PSW 4-5
parameter 6-10

assigned storage locations for 3-44
pending conditions 6-10
priority of conditions 6-10
service-signal 6-12
TOD-clock-sync-check 6-13

external-time-reference (ETR) facility
external time reference (ETR) 2-6
external time reference (ETR) facility 1-5
externally initiated functions 4-34

I/O 17-13
EXTRACT ACCESS instruction 7-47
EXTRACT FPC instruction 19-35
EXTRACT PRIMARY ASN instruction 10-17
EXTRACT SECONDARY ASN instruction 10-17
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EXTRACT STACKED REGISTERS instruction 10-18
EXTRACT STACKED STATE instruction 10-20
extraction-authority-control bit 5-20

F
facilities of 370-XA (compared with System/370) F-1
facilities of ESA/370 (compared with 370-XA) E-1
facilities of ESA/390 (compared with ESA/370) D-1
failing-storage address 11-24

assigned storage locations for 3-47
in ESW 16-32, 16-37

as result of channel-control check 16-28
as result of channel-data check 16-27

validity bit for 11-22
validity flag for (in ERW) 16-37

failure
vector-facility 11-18

fetch-only bit 5-44
fetch protection 3-9

bit in storage key 3-8
override-control bit 3-11

fetch reference 5-82
access exceptions for 6-37

fetching
handling of invalid CBC in storage keys during 11-8
of ART-table and DAT-table entries 5-80
of instructions 5-79
of PSWs during interruptions 5-86
of storage operands 5-82

FIDBR (LOAD FP INTEGER) BFP instruction 19-37
FIDR (LOAD FP INTEGER) HFP instruction 18-15
FIEBR (LOAD FP INTEGER) BFP instruction 19-37
field 3-2
field separator (in EDIT) 8-7
field-validity flags (in subchannel logout) 16-34

relation to channel-control check of 16-28
FIER (LOAD FP INTEGER) HFP instruction 18-15
FIFO (first in first out) queuing

example for lock and unlock A-46
fill byte (in EDIT) 8-7
FIXBR (LOAD FP INTEGER) BFP instruction 19-37
fixed-length field 3-2
fixed logout

assigned storage locations for 3-47
machine-check 11-26

fixed point
See also binary
divide exception 6-22
overflow exception 6-23

mask in PSW 4-6
FIXR (LOAD FP INTEGER) HFP instruction 18-15
flags

for BFP arithmetic exceptions 19-3
for floating-point arithmetic exceptions
for IEEE exception conditions 19-3

floating interruption conditions 6-6, 11-25
clearing of 4-38

floating point
See also exponent
binary (BFP) 9-1
binary data format 19-4
conversion

between formats 19-7
conversion from binary integer 18-11, 19-26
conversion to binary integer 18-11, 19-27
data

lengthening format of 18-15, 19-39
shortening format of 18-17, 19-40

data class 19-5
hexadecimal (HFP) 9-1
hexadecimal data format 18-3
instructions 9-1
numbers 19-4
registers 2-3, 9-2

clearing of 9-13
save areas for 3-48
validity bit for 11-22, 11-23

shifting
See normalization

floating-point-control (FPC) register 19-2
format

address 3-2
binary-floating-point data 19-4
CCW

See CCW format control
decimal data 8-1
general data 7-2
hexadecimal-floating-point data 18-3
information 3-2
instruction 5-3
PSW 4-5

format-0 access-list designation 5-43
format-0 and format-1 CCWs 15-24
format-1 access-list designation 5-43
forward-section-header address 5-67
forward-section validity bit 5-67
FPC (floating-point-control) register 19-2
fraction 18-1

conversion of between hexadecimal and
decimal H-7

free-pool manipulation
programming example A-48

fullword
See word

function control (I/O) 16-12
function-pending time 17-2

in measurement block 17-4
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G
G (giga) xxi
general instructions 7-2

examples A-7
general registers 2-3

alteration-event-mask bit 4-15
alteration of (PER event) 4-23
PER-mask bits 4-16
save areas for 3-48
validity bit for 11-22

glue module 5-14
GMT (Greenwich Mean Time) obsolete term for

UTC 4-29
Greenwich Mean Time (GMT) obsolete term for Coordi-

nated Universal Time 4-29
guard digit 18-4

H
halfword 3-3
halfword-concurrent storage references 5-84
halt function 15-14

bit in SCSW for 16-12
completion of 15-15
initiated by HALT SUBCHANNEL 14-5
path management for 15-14
pending 16-14
signaling for 15-15

halt signal 17-8
issued as part of halt function 15-15

HALT SUBCHANNEL instruction 14-5
See also halt function
effect on SCSW count field 15-17
function initiated by 15-14
use of after RESET CHANNEL PATH 14-8

HALVE HFP instructions 18-13
example A-40

HDR (HALVE) HFP instruction 18-13
example A-40

header entry 5-67
HER (HALVE) HFP instruction 18-13
hex

See hexadecimal
hexadecimal (hex) representation 5-5

tables H-1
hexadecimal floating point

conversion
examples with instructions A-41

instructions
examples A-38

hexadecimal floating point (HFP) 9-1
conversion

basic example A-6
hexadecimal-floating-point number

examples A-5

HFP (hexadecimal floating point) 9-1
HFP data 18-3

conversion of 9-10
HFP exponent

overflow
exception 6-23

underflow
exception 6-23
mask in PSW 4-6

HFP significance
exception 6-23
mask (in PSW) 4-6

HFP square root
exception 6-24

high-speed data transfer (I/O) 13-3
home address space 3-16, 5-31

facilities 5-31
home segment table

designation (HSTD) 3-29
length (HSTL) 3-30
origin (HSTO) 3-30

home-space mode 3-28
home space-switch-event-control bit 3-29
home storage-alteration-event-control bit 3-30
home virtual address 3-4

effective segment-table designation for 3-32
HSCH

See HALT SUBCHANNEL instruction
HSTD (home segment-table designation) 3-29
HSTL (home segment-table length) 3-30
HSTO (home segment-table origin) 3-30

I
I field of instruction 5-6
I/O (input/output) 2-6

basic functions of 15-1
blocking of data for 15-21
comparison of 370-XA with System/370 F-5
effect on CPU timer 4-33
sense data

See sense data
support functions of 17-1

I/O addressing 13-4
I/O commands

See also commands
publication referenced xxi

I/O device
See device

I/O-error alert (in subchannel logout) 16-35
I/O instructions 14-1, 14-2

deferred condition code for 16-8
operand access by 14-1
role of in I/O operations 13-6

I/O interface
ESCON publication referenced
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I/O interface (continued)
OEMI publication referenced xxi

I/O interruption 6-13, 16-1
See also interruption
action for 16-5
masking of 13-9
priority of 16-4
program-controlled interruption

See PCI
I/O-interruption code 6-13, 14-17

stored by TPI 16-6
I/O-interruption condition 13-9, 16-1

alert 16-4
intermediate 16-4
primary 13-7, 16-4
secondary 13-7, 16-4
solicited 16-3
unsolicited 16-3

I/O-interruption parameter
assigned storage locations for 3-47
in I/O-interruption code 16-6
in ORB 15-21
in PMCW 15-2
used for IPL 17-13

I/O-interruption request
clearing of 13-9
from subchannels 16-5

I/O-interruption subclass 13-9
I/O-interruption subclass code (ISC) 15-2
I/O-interruption subclass mask 6-13, 16-5

relation to priority 16-4
I/O mask in PSW 4-5
I/O operations 13-6

conclusion of
See conclusion of I/O operations

execution of 15-20
immediate 15-38
initiated indication for 16-11
termination of

See conclusion of I/O operations
I/O-system reset 17-9

as part of subsystem reset 4-38
IAC (INSERT ADDRESS SPACE CONTROL) instruc-

tion 10-21
IC (INSERT CHARACTER) instruction 7-47
IC (instruction counter)

See instruction address
ICM (INSERT CHARACTERS UNDER MASK) instruc-

tion 7-47
examples A-21

ID
See CPU identification, sense ID

IDA (indirect-data address) 15-32
flag in CCW 15-24

IDAW (indirect-data-address word) 15-32
check (in subchannel logout) 16-33

IDAW (indirect-data-address word) (continued)
contents of 15-33
invalid address of 16-25
invalid address specification in 16-25
invalid address specification of 16-26

idle state for subchannel 16-13
IEEE-exception-condition data exception 6-21
IEEE exception conditions 19-14

summary figure 19-14
IEEE standard 1-4
IFCC (interface-control check) 16-28
ILC (instruction-length code) 6-7

assigned storage locations for 3-44
for program interruptions 6-14
for supervisor-call interruption 6-45

IML (initial machine loading) controls 12-2
immediate operand 5-6
immediate operation

effect of incorrect-length-indication-suppression
facility on 15-27

SLI flag in CCW for 15-27
immediate operation (I/O) 15-38
implicit address translation 3-31
incorrect length (subchannel status) 16-24

for immediate operations 15-27
incorrect-length-indication mode 15-22
incorrect-length-indication-suppression facility 17-16,

F-2
effect on immediate operation 15-27

incorrect-length-suppression mode 15-22
incorrect state (signal-processor status) 4-47
index

for address generation 5-7
instructions for branching on 7-16
into access list 5-41
into ASN first and second tables 3-18
into authority table 5-21
into entry and linkage tables 5-25
into measurement-block area (I/O) 17-5
register for 2-3

indicator
check-stop 12-2
load 12-3
manual 12-3
mode 12-2
test 12-5
wait 12-5

indirect-data address
See IDA

indirect-data-address word
See IDAW

indirect storage error 11-21
infinities 19-6
information format 3-2
inhibition of unit of operation 5-17
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initial CPU reset 4-38
signal-processor order 4-42

initial-machine-loading (IML) controls 12-2
initial program loading

See IPL
initial-status-interruption control 15-22, 16-11

relation to Z bit 16-11
used for IPL 17-13

inoperative (signal-processor status) 4-48
input/output

See I/O
INSERT ADDRESS SPACE CONTROL

instruction 10-21
INSERT CHARACTER instruction 7-47
INSERT CHARACTERS UNDER MASK

instruction 7-47
examples A-21

INSERT PROGRAM MASK instruction 7-48
INSERT PSW KEY instruction 10-22
INSERT STORAGE KEY EXTENDED

instruction 10-23
INSERT VIRTUAL STORAGE KEY instruction 10-23
installation 2-1
instruction address

as a type of address 3-5
handling by DAT 3-28
in entry-table entry 5-27
in PSW 4-6
validity bit for 11-22

instruction-length code
See ILC

instruction-processing damage 11-17
resulting in processing backup 11-19
resulting in processing damage 11-20

instructions
See also instruction lists and page numbers in

Appendix B
backing up of 11-19
classes of 2-2
comparison of 370-XA with System/370 F-3
comparison of ESA/370 with 370-XA E-2
control 10-1
damage to 11-17, 11-20
decimal 8-1

examples A-33
divisible execution of 5-76
ending of 5-15
examples of use A-6
execution of 5-9
fetching of 5-79

access exception for 6-36
PER event for 4-22
PER-event mask for 4-15

floating-point 9-1
format of 5-3
general 7-2

examples A-7

instructions (continued)
hexadecimal-floating-point

examples A-38
I/O

See I/O instructions
interruptible

See interruptible instructions
length of 5-5
list of B-1
modification by EXECUTE instruction 7-46
prefetching of 5-79
privileged 4-5

for control 10-1
semiprivileged 4-5, 10-1
sequence of execution of 5-2
stepping of (rate control) 12-3

effect on CPU state 4-2
effect on CPU timer 4-33

unprivileged 4-5, 7-2
vector 2-6

integer
binary 7-2

address as 5-7
conversion from floating point 18-11, 19-27
conversion to floating point 18-11, 19-26
examples A-2

conversion of between hexadecimal and
decimal H-6

decimal 8-2
integer quotient 19-30
integral boundary 3-3
interface

ESCON I/O
publication referenced xxi

parallel-I/O
OEMI publication referenced xxi

serial-I/O
publication referenced xxi

interface-control check (subchannel status) 16-28
interlocked-update storage reference 5-82
interlocks for virtual storage references 5-76
intermediate interruption condition (I/O) 16-4
intermediate-status bit (I/O) 16-17
intermittent errors 11-5
interpretive execution

publication referenced xxii
interpretive-execution facility 1-7
interrupt key 12-3

external interruption 6-12
interruptible instructions 5-16

COMPARE AND FORM CODEWORD 7-23
COMPARE LOGICAL LONG 7-31
COMPARE UNTIL SUBSTRING EQUAL 7-38
MOVE LONG 7-55
PER event affecting the ending of 4-20
stopping of 4-2
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interruptible instructions (continued)
TEST BLOCK 10-102
UPDATE TREE 7-97
vector instructions 5-16

interruption 6-1
See also masks
action 6-2

I/O 16-5
machine-check 11-12

classes of 6-5
effect on instruction sequence 5-15
external

See external interruption
I/O

See I/O interruption
machine-check

See machine-check interruption
masking of 6-6
pending 6-6

external 6-10
machine-check 11-13
relation to CPU state 4-2

priority of
See priority

program
See program interruption

program-controlled (I/O)
See PCI

restart 6-45
string

See string of interruptions
supervisor-call 6-45

interruption code 6-5
external 6-10
I/O

See I/O-interruption code
machine-check (MCIC) 3-47, 11-15
program 6-14
summary of 6-2
supervisor-call 6-45

interruption conditions 6-1
clearing of 4-37
floating 6-6, 11-25
I/O

See I/O-interruption condition
interruption parameter

external (assigned storage locations) 3-44
I/O

See I/O-interruption parameter
interruption-response block

See IRB
interruption subclass

See I/O-interruption subclass
invalid

access-list entry 5-44
address 6-15

invalid (continued)
bit in ASN-first-table entry 3-19
bit in ASN-second-table entry 3-20
bit in linkage-table entry 5-26
bit in page-table entry 3-31
bit in segment-table entry 3-30
CBC 11-2

in registers 11-9
in storage 11-6
in storage keys 11-7

operation code 6-25
order (signal-processor status) 4-48
parameter (signal-processor status) 4-47
translation address 3-35
translation format 3-28

exception recognition 3-35
invalid address specification

in channel-program address 16-25
in IDAW 16-26
of data in CCW 16-25
of IDAW 16-25
of TIC CCW 16-25

invalid CCW field
command code 16-25
count 16-25
data address 16-25
suspend flag 16-26

invalid format
of CCW 16-26
of ORB 16-26

invalid sequence of CCWs 16-26
INVALIDATE PAGE TABLE ENTRY instruction 10-24

effect of when CPU is stopped 4-2
inverse move

See MOVE INVERSE instruction, move-inverse
facility

IPK (INSERT PSW KEY) instruction 10-22
IPL (initial program loading) 4-39, 17-13

assigned storage locations for 3-43
effect on CPU state 4-2

IPM (INSERT PROGRAM MASK) instruction 7-48
IPTE (INVALIDATE PAGE TABLE ENTRY)

instruction 10-24
IRB (interruption-response block) 16-6

See also ECW, ERW, ESW, SCSW
storage requirements for 16-11

ISC (I/O-interruption subclass code) 15-2
ISKE (INSERT STORAGE KEY EXTENDED)

instruction 10-23
isolated state 16-36
IVSK (INSERT VIRTUAL STORAGE KEY)

instruction 10-23
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K
K (kilo) xxi
KDB (COMPARE AND SIGNAL) BFP instruction 19-24
KDBR (COMPARE AND SIGNAL) BFP

instruction 19-24
KEB (COMPARE AND SIGNAL) BFP instruction 19-24
KEBR (COMPARE AND SIGNAL) BFP

instruction 19-24
key

access
See access key

manual
See manual operation

PSW
See PSW key

storage
See storage key

subchannel
See subchannel key

key check (in subchannel logout) 16-32
key-controlled protection 3-9

exception for 6-28
key mask

authorization 5-27
entry 5-27
PSW (PKM) 5-20

KXBR (COMPARE AND SIGNAL) BFP
instruction 19-24

L
L (LOAD) binary instruction 7-48

example A-22
L fields of instruction 5-6
LA (LOAD ADDRESS) instruction 7-49

examples A-22
LAE (LOAD ADDRESS EXTENDED) instruction 7-49
LAM (LOAD ACCESS MULTIPLE) instruction 7-49
LASP (LOAD ADDRESS SPACE PARAMETERS)

instruction 10-26
last-path-used mask

See LPUM
late exception recognition 6-9
LCDBR (LOAD COMPLEMENT) BFP instruction 19-36
LCDR (LOAD COMPLEMENT) HFP instruction 18-14
LCEBR (LOAD COMPLEMENT) BFP instruction 19-36
LCER (LOAD COMPLEMENT) HFP instruction 18-14
LCR (LOAD COMPLEMENT) binary instruction 7-50
LCTL (LOAD CONTROL) instruction 10-35
LCXBR (LOAD COMPLEMENT) BFP instruction 19-36
LCXR (LOAD COMPLEMENT) HFP instruction 18-14
LD (LOAD) floating-point instruction 9-12
LDE (LOAD LENGTHENED) HFP instruction 18-15
LDEB (LOAD LENGTHENED) BFP instruction 19-39

LDEBR (LOAD LENGTHENED) BFP instruction 19-39
LDER (LOAD LENGTHENED) HFP instruction 18-15
LDR (LOAD) floating-point instruction 9-12
LDXBR (LOAD ROUNDED) BFP instruction 19-40
LDXR (LOAD ROUNDED) HFP instruction 18-17
LE (LOAD) floating-point instruction 9-12
LEDBR (LOAD ROUNDED) BFP instruction 19-40
LEDR (LOAD ROUNDED) HFP instruction 18-17
left-to-right addressing 3-2
length

field 3-2
instruction 5-5
of BFP data

decreasing 19-40
increasing 19-39

of HFP data
decreasing 18-17
increasing 18-15

register-operand 5-5
second operand same as first 5-5
variable (storage operand) 5-6

LER (LOAD) floating-point instruction 9-12
LEXBR (LOAD ROUNDED) BFP instruction 19-40
LEXR (LOAD ROUNDED) HFP instruction 18-17
LFPC (LOAD FPC) instruction 19-38
LH (LOAD HALFWORD) instruction 7-51

examples A-23
LHI (LOAD HALFWORD IMMEDIATE) instruction 7-51
LIFO (last in first out) queuing

example for lock and unlock A-45
light

See indicator
limit mode (I/O) 15-2
link information

for BRANCH AND LINK instruction 7-12
for BRANCH AND SAVE AND SET MODE instruc-

tion 7-13
for BRANCH AND SAVE instruction 7-13

linkage for subroutines 5-10
linkage index (LX) 5-25
linkage stack 5-57, 5-65

associated PER events 5-61
associated trace entries 5-61
branch state entry 10-9
entry address 5-65
entry descriptor 5-65
entry-type code 5-66
handling of information in 5-60
header entry 5-67
instructions 5-57
introduction 5-63
next-entry size 5-66
operations 5-63

control 5-65
program-call state entry 10-50
remaining free space 5-66
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linkage stack (continued)
section 5-63

identification 5-66
state entry 5-68
trailer entry 5-67

linkage-stack functions 5-57
linkage table (LT) 5-26

designation (LTD) 5-25
in AST entry 3-21

length (LTL) 5-26
in primary AST entry 5-26

origin (LTO) 5-26
in primary AST entry 5-26

LM (LOAD MULTIPLE) instruction 7-51
LNDBR (LOAD NEGATIVE) BFP instruction 19-39
LNDR (LOAD NEGATIVE) HFP instruction 18-16
LNEBR (LOAD NEGATIVE) BFP instruction 19-39
LNER (LOAD NEGATIVE) HFP instruction 18-16
LNR (LOAD NEGATIVE) binary instruction 7-51
LNXBR (LOAD NEGATIVE) BFP instruction 19-39
LNXR (LOAD NEGATIVE) HFP instruction 18-16
LOAD ACCESS MULTIPLE instruction 7-49
LOAD ADDRESS EXTENDED instruction 7-49
LOAD ADDRESS instruction 7-49

examples A-22
LOAD ADDRESS SPACE PARAMETERS

instruction 10-26
LOAD AND TEST BFP instructions 19-36
LOAD AND TEST binary instruction 7-50
LOAD AND TEST HFP instructions 18-14
LOAD binary instructions 7-48

example A-22
load-clear key 12-3
LOAD COMPLEMENT BFP instructions 19-36
LOAD COMPLEMENT binary instruction 7-50
LOAD COMPLEMENT HFP instructions 18-14
LOAD CONTROL instruction 10-35
LOAD floating-point instructions 9-12
LOAD FP INTEGER BFP instructions 19-37
LOAD FP INTEGER HFP instructions 18-15
LOAD FPC instruction 19-38
LOAD HALFWORD IMMEDIATE instruction 7-51
LOAD HALFWORD instruction 7-51

examples A-23
load indicator 12-3
LOAD LENGTHENED BFP instructions 19-39
LOAD LENGTHENED HFP instructions 18-15
LOAD MULTIPLE instruction 7-51
LOAD NEGATIVE BFP instructions 19-39
LOAD NEGATIVE binary instruction 7-51
LOAD NEGATIVE HFP instructions 18-16
load-normal key 12-3
LOAD POSITIVE BFP instructions 19-40
LOAD POSITIVE binary instruction 7-52
LOAD POSITIVE HFP instructions 18-17

LOAD PSW instruction 10-35
LOAD REAL ADDRESS instruction 10-36
LOAD ROUNDED BFP instructions 19-40
LOAD ROUNDED HFP instructions 18-17
load state 4-1, 4-2

during IPL 4-39
load-unit-address controls 12-3
LOAD USING REAL ADDRESS instruction 10-38
LOAD ZERO floating-point instructions 9-13
loading, initial

See IML, IPL
location 3-2

See also address
not available in configuration 6-15

lock A-45
example with FIFO queuing A-47
example with LIFO queuing A-46

lock used by PERFORM LOCKED OPERATION instruc-
tion 7-76

logical
arithmetic (unsigned binary) 7-4
comparison 7-4
connective

AND 7-11
EXCLUSIVE OR 7-46
OR 7-66

data 7-2
logical address 3-4

handling by DAT 3-28
logical-path mask

See LPM
I/O-interruption

See I/O-interruption subclass mask
logical string assist 1-2
logically partitioned (LPAR) mode 1-6, 1-8
logout

fixed
assigned storage locations for 3-47
machine-check 11-26

subchannel (I/O) 16-32
long binary-floating-point number 19-4
long hexadecimal-floating-point number 18-3
long I/O block 16-24
loop control 5-9
loop of interruptions

See string of interruptions
low-address protection 3-11

control bit 3-12
exception for 6-28

LPAR (logically partitioned) mode 1-6, 1-8
LPDBR (LOAD POSITIVE) BFP instruction 19-40
LPDR (LOAD POSITIVE) HFP instruction 18-17
LPEBR (LOAD POSITIVE) BFP instruction 19-40
LPER (LOAD POSITIVE) HFP instruction 18-17
LPM (logical-path mask) 15-4, 15-22

effect on system performance of 15-10
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LPM (logical-path mask) (continued)
used for IPL 17-13

LPR (LOAD POSITIVE) binary instruction 7-52
LPSW (LOAD PSW) instruction 10-35
LPUM (last-path-used mask) 15-5

field-validity flag for (in subchannel logout) 16-34
in ESW 16-34

LPXBR (LOAD POSITIVE) BFP instruction 19-40
LPXR (LOAD POSITIVE) HFP instruction 18-17
LR (LOAD) binary instruction 7-48
LRA (LOAD REAL ADDRESS) instruction 10-36
LRDR (LOAD ROUNDED) HFP instruction 18-17
LRER (LOAD ROUNDED) HFP instruction 18-17
LT (linkage table) 5-26
LTD (linkage-table designation) 5-25
LTDBR (LOAD AND TEST) BFP instruction 19-36
LTDR (LOAD AND TEST) HFP instruction 18-14
LTEBR (LOAD AND TEST) BFP instruction 19-36
LTER (LOAD AND TEST) HFP instruction 18-14
LTL (linkage-table length) 5-26

in primary AST entry 5-26
LTO (linkage-table origin) 5-26

in primary AST entry 5-26
LTR (LOAD AND TEST) binary instruction 7-50
LTXBR (LOAD AND TEST) BFP instruction 19-36
LTXR (LOAD AND TEST) HFP instruction 18-14
LURA (LOAD USING REAL ADDRESS)

instruction 10-38
LX (linkage index) 5-25

invalid bit 5-26
translation exception 6-24

LXD (LOAD LENGTHENED) HFP instruction 18-15
LXDB (LOAD LENGTHENED) BFP instruction 19-39
LXDBR (LOAD LENGTHENED) BFP instruction 19-39
LXDR (LOAD LENGTHENED) HFP instruction 18-15
LXE (LOAD LENGTHENED) HFP instruction 18-15
LXEB (LOAD LENGTHENED) BFP instruction 19-39
LXEBR (LOAD LENGTHENED) BFP instruction 19-39
LXER (LOAD LENGTHENED) HFP instruction 18-15
LXR (LOAD) floating-point instruction 9-12
LZDR (LOAD ZERO) floating-point instruction 9-13
LZER (LOAD ZERO) floating-point instruction 9-13
LZXR (LOAD ZERO) floating-point instruction 9-13

M
M (mega) xxi
M (MULTIPLY) binary instruction 7-65

example A-27
machine check 11-1

See also malfunction
comparison of 370-XA with System/370 F-7
extended save area 11-24
handling of malfunction detected as part of I/O 11-5
interruption 6-14, 11-11

action 11-12
code (MCIC) 3-47, 11-15

machine check (continued)
interruption (continued)

floating conditions 11-25
machine check interruption 11-25
mask in PSW 4-5
subclass masks in control register 11-25

logout 11-26
mask

in PSW 4-5
machine-type number (in CPU ID) 10-86
MADB (MULTIPLY AND ADD) BFP instruction 19-43
MADBR (MULTIPLY AND ADD) BFP instruction 19-43
MAEB (MULTIPLY AND ADD) BFP instruction 19-43
MAEBR (MULTIPLY AND ADD) BFP instruction 19-43
main storage 3-1

See also storage
effect of power-on reset on 4-39
shared (in multiprocessing) 4-41

malfunction 11-1
at channel subsystem 16-27
at I/O device 16-28
correction of 11-2
effect on manual operation 12-1
from DIAGNOSE instruction 10-17
indication of 11-5
machine-check handling for when detected as part of

I/O 11-5
malfunction alert (external interruption) 6-12

when entering check-stop state 11-11
manual indicator 12-3

See also stopped state
manual operation 12-1

controls
address-compare 12-1
alter-and-display 12-2
IML 12-2
load-unit-address 12-3
power 12-3
rate 12-3
TOD-clock 12-5

effect on CPU signaling 4-46
keys

interrupt 12-3
load-clear 12-3
load-normal 12-3
restart 12-4
start 12-4
stop 12-4
store-status 12-4
system-reset-clear 12-4
system-reset-normal 12-5

masks 6-6
See also I/O interruption, interruption
for BFP arithmetic exceptions 19-3
for IEEE exception conditions 19-3
in BRANCH ON CONDITION instruction 7-15
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masks (continued)
in BRANCH RELATIVE ON CONDITION

instruction 7-18
in COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7-30
in INSERT CHARACTERS UNDER MASK

instruction 7-47
in PSW 4-5
in STORE CHARACTERS UNDER MASK

instruction 7-86
in TEST UNDER MASK HIGH instruction 7-92
in TEST UNDER MASK instruction 7-92
in TEST UNDER MASK LOW instruction 7-92
monitor 6-24
path-management 15-2, 15-22
PER-event 4-15
PER general-register 4-16
program-interruption 6-14
subclass

See subclass-mask bits
mathematical assists

publication referenced xxii
maximum negative number 7-3
MC (MONITOR CALL) instruction 7-52
MCIC (machine-check-interruption code) 3-47, 11-15
MD (MULTIPLY) HFP instruction 18-18
MDB (MULTIPLY) BFP instruction 19-41
MDBR (MULTIPLY) BFP instruction 19-41
MDE (MULTIPLY) HFP instruction 18-18
MDEB (MULTIPLY) BFP instruction 19-41
MDEBR (MULTIPLY) BFP instruction 19-41
MDER (MULTIPLY) HFP instruction 18-18
MDR (MULTIPLY) HFP instruction 18-18

example A-40
ME (MULTIPLY) HFP instruction 18-18
measurement

block (I/O)
index 17-5
key 17-5
origin 17-5
update enable 17-6
update mode 17-5

device-connect-time 17-6
measurement-block update (I/O) 17-2

measurement block (I/O) 17-3
data check 16-33
index 15-6
key (MBK)

used as access key 3-9
multiple use of 15-10
program check 16-33
protection check 16-33
update enable 15-3

measurement data (I/O)
accumulated 17-3
effect of CSCH on 14-4

measurement data (I/O) (continued)
effect of HSCH on 14-5

measurement-mode control (I/O) 15-3
MEE (MULTIPLY) HFP instruction 18-18
MEEB (MULTIPLY) BFP instruction 19-41
MEEBR (MULTIPLY) BFP instruction 19-41
MEER (MULTIPLY) HFP instruction 18-18
MER (MULTIPLY) HFP instruction 18-18
message byte (in EDIT) 8-7
MH (MULTIPLY HALFWORD) instruction 7-65

example A-27
MHI (MULTIPLY HALFWORD IMMEDIATE)

instruction 7-65
mode

access-register 3-28
addressing

See addressing mode
architectural

See architectural mode
burst (channel-path operation) 13-3
byte-multiplex (channel-path operation) 13-3
device-connect-time-measurement (I/O) 17-7
home-space 3-28
incorrect-length-indication 15-22
incorrect-length-suppression 15-22
indicator

architectural 12-2
measurement block update (I/O) 17-5
multipath

See multipath mode
primary-space 3-28
real 3-28
requirements for semiprivileged instructions 5-20
rounding 19-7
secondary-space 3-28
single-path 15-3, 15-20
translation 3-28

model number (in CPU ID) 10-86
modifiable area (in linkage-stack state entry) 5-70
MODIFY STACKED STATE instruction 10-38
MODIFY SUBCHANNEL instruction 14-6
MONITOR CALL instruction 7-52
monitor-class number 6-24

assigned storage locations for 3-46
monitor code 6-24

assigned storage locations for 3-46
monitor event 6-24
monitor masks 6-24
monitoring

See also measurement
channel-subsystem 17-1
for PER events

See PER
with MONITOR CALL 6-24, 7-52

MOVE instructions 7-53
examples A-20, A-23
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move-inverse facility 7-53
MOVE INVERSE instruction 7-53

example A-24
MOVE LONG EXTENDED instruction 7-57
MOVE LONG instruction 7-54

examples A-24
MOVE NUMERICS instruction 7-60

example A-25
move-page facility 2 D-3
MOVE PAGE instruction 7-60, 10-40

facility 1 7-60
facility 2 10-40

MOVE STRING instruction 7-62
example A-26

MOVE TO PRIMARY instruction 10-43
MOVE TO SECONDARY instruction 10-43
MOVE WITH DESTINATION KEY instruction 10-45
MOVE WITH KEY instruction 10-46
MOVE WITH OFFSET instruction 7-63

example A-26
MOVE WITH SOURCE KEY instruction 10-47
MOVE ZONES instruction 7-64

example A-26
MP (MULTIPLY DECIMAL) instruction 8-11

example A-36
MR (MULTIPLY) binary instruction 7-65

example A-27
MS (MULTIPLY SINGLE) instruction 7-66
MSCH (MODIFY SUBCHANNEL) instruction 14-6
MSDB (MULTIPLY AND SUBTRACT) BFP

instruction 19-43
MSDBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-43
MSEB (MULTIPLY AND SUBTRACT) BFP

instruction 19-43
MSEBR (MULTIPLY AND SUBTRACT) BFP

instruction 19-43
MSR (MULTIPLY SINGLE) instruction 7-66
MSTA (MODIFY STACKED STATE) instruction 10-38
multipath mode 15-3

entering 15-20
multiple-access storage references 5-84
MULTIPLY AND ADD BFP instructions 19-43
MULTIPLY AND SUBTRACT BFP instructions 19-43
MULTIPLY BFP instructions 19-41
MULTIPLY binary instructions 7-65

examples A-27
MULTIPLY DECIMAL instruction 8-11

example A-36
MULTIPLY HALFWORD IMMEDIATE instruction 7-65
MULTIPLY HALFWORD instruction 7-65

example A-27
MULTIPLY HFP instructions 18-18

example A-40
MULTIPLY SINGLE instructions 7-66

multiprocessing 4-41
manual operations for 12-5
programming considerations for 8-3, A-42
programming examples A-42
timing-facility interruptions for 4-31
TOD clock for 4-26

multiprogramming examples A-42
MVC (MOVE) instruction 7-53

examples A-20, A-23
MVCDK (MOVE WITH DESTINATION KEY)

instruction 10-45
MVCIN (MOVE INVERSE) instruction 7-53

example A-24
MVCK (MOVE WITH KEY) instruction 10-46
MVCL (MOVE LONG) instruction 7-54

examples A-24
MVCLE (MOVE LONG EXTENDED) instruction 7-57
MVCP (MOVE TO PRIMARY) instruction 10-43
MVCS (MOVE TO SECONDARY) instruction 10-43
MVCSK (MOVE WITH SOURCE KEY)

instruction 10-47
MVI (MOVE) instruction 7-53

example A-24
MVN (MOVE NUMERICS) instruction 7-60

example A-25
MVO (MOVE WITH OFFSET) instruction 7-63

example A-26
MVPG (MOVE PAGE) instruction 7-60, 10-40

facility 1 7-60
facility 2 10-40

MVST (MOVE STRING) instruction 7-62
example A-26

MVZ (MOVE ZONES) instruction 7-64
example A-26

MXBR (MULTIPLY) BFP instruction 19-41
MXD (MULTIPLY) HFP instruction 18-18
MXDB (MULTIPLY) BFP instruction 19-41
MXDBR (MULTIPLY) BFP instruction 19-41
MXDR (MULTIPLY) HFP instruction 18-18
MXR (MULTIPLY) HFP instruction 18-18

N
N (AND) instruction 7-11
N condition (I/O) 16-12
NaN (not-a-number) 19-6
NC (AND) instruction 7-11
near-valid CBC 11-2

in storage 11-5
negative zero

binary 7-3
decimal 8-3

example A-5
new PSW 4-3

assigned storage locations for 3-43
fetched during interruption 6-2
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next-entry size (in linkage stack) 5-66
NI (AND) instruction 7-11

example A-8
no-operation

instruction (BRANCH ON CONDITION) 7-15
instruction (BRANCH RELATIVE ON

CONDITION) 7-18
node (of tree structure) 7-97
noninterlocked-update storage reference 5-82
nonnumeric entities

binary 19-6
nonvolatile storage 3-2
normalization

of BFP numbers 19-8
of HFP numbers 18-3

not-a-number (NaN) 19-6
not operational

as channel-path state 16-12
See also path-not-operational bit

as CPU state 4-45
as TOD-clock state 4-28

not set (TOD-clock state) 4-27
NR (AND) instruction 7-11
nullification

exceptions to 5-18
for exigent machine-check conditions 11-11
of instruction execution 5-15
of unit of operation 5-17

numbering
of addresses (byte locations) 3-2
of bits 3-2

numbers
binary 7-2

examples A-2
binary-floating-point 19-4
CPU-model 10-86
decimal 8-1

examples A-4
device 13-5
hexadecimal 5-5, H-1
hexadecimal-floating-point 18-3
hexadecimal-floating-point

examples A-5
machine-type 10-86

numeric bits 8-1
moving of 7-60

O
O (OR) instruction 7-66
OC (OR) instruction 7-66
OEMI (original equipment manufacturers information) for

I/O interface xxi
publication referenced xxi

OI (OR) instruction 7-66
example A-28

OI (OR) instruction (continued)
example of problem with A-42

old PSW 6-2
assigned storage locations for 3-43

one's complement binary notation 7-2
used for SUBTRACT LOGICAL instruction 7-91

op code
See operation code

operand 5-3
access of 5-81

for I/O instructions 14-1
address generation for 5-7
exception 6-25
immediate 5-6
length of 5-3
overlap of

for decimal instructions 8-3
for general instructions 7-2

register for 5-5
sequence of references for 5-81
storage 5-6
types of (fetch, store, update) 5-81
used for result 5-3

operating state 4-1, 4-2
operation

I/O
See I/O operations

unit of 5-16
operation code (op code) 5-2

invalid 6-25
operation exception 6-25
operation-request block

See ORB
operator facilities 2-7, 12-1

basic 12-1
operator intervening (signal-processor status) 4-47
OR instructions 7-66

example of problem with OR immediate A-42
examples A-27

ORB (operation-request block) 15-21
channel-program address in 15-23
interruption parameter in 15-21
invalid 16-26
logical-path mask (LPM) in 15-22

orders (I/O) 13-6, 15-25
orders (signal-processor) 4-41

conditions precluding response to 4-45
CPU reset 4-42
emergency signal 4-42
external call 4-42
initial CPU reset 4-42
restart 4-42
sense 4-42
set prefix 4-43
start 4-42
stop 4-42
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orders (signal-processor) (continued)
stop and store status 4-42
store extended status at address 4-44
store status at address 4-43

overflow
binary 7-3

example A-2
decimal 6-22
exponent

See exponent overflow
fixed-point 6-23, 7-3
in CRW 17-19

overlap
destructive 7-55, 7-58
operand 5-77

for decimal instructions 8-3
for general instructions 7-2

operation 5-76

P
PACK instruction 7-67

example A-28
packed decimal numbers 8-1

conversion of to zoned format 7-97
conversion to from zoned format 7-67
examples A-4

padding byte
for COMPARE LOGICAL LONG EXTENDED instruc-

tion 7-32
for COMPARE LOGICAL LONG instruction 7-30
for MOVE LONG EXTENDED instruction 7-57
for MOVE LONG instruction 7-54

page 3-27
page-frame real address (PFRA) 3-31
page index (PX) 3-27
page-invalid bit (in page-table entry) 3-31
page protection 3-11, F-2

bit for 3-31
exception for 6-28

page swapping 3-26
page table 3-31

designation 3-30
length (PTL) 3-30
lookup 3-35
origin (PTO) 3-30

page-translation exception 6-25
as an access exception 6-34, 6-39

PALB (PURGE ALB) instruction 10-72
PAM (path-available mask) 15-7

effect of reconfiguration on 15-10
effect of resetting on 15-10
effect on allegiance of 15-10

parallel-I/O channel-to-channel adapter
publication referenced xxi

parallel-I/O interface 13-3
OEMI publication referenced xxi

parameter
external-interruption 6-10

assigned storage locations for 3-44
I/O-interruption

See I/O-interruption parameter
register for SIGNAL PROCESSOR 4-43, 10-84
translation 3-27

parity bit 11-2
partial completion of instruction execution 5-16
PASN (primary address-space number) 3-17

in trace entry 4-13
PASTE (primary AST entry) 5-26
PASTEO (primary-AST-entry origin) 5-26, 5-41
path

See channel path
path available for selection 15-12
path management 13-6

for clear function 15-13
for halt function 15-14
for start function and resume function 15-17

path-management-control word
See PMCW

path-management masks
last-path-used mask

See LPUM
logical-path mask

See LPM
path-available mask

See PAM
path-installed mask

See PIM
path-not-operational mask

See PNOM
path-operational mask

See POM
path-not-operational bit (N) in SCSW 16-12
path-not-operational condition 15-4
path verification required

indicator for (in ERW) 16-36
pattern (in EDIT) 8-7
PC (PROGRAM CALL) instruction 10-48
PC-cp (PROGRAM CALL instruction, to current

primary) 10-51
PC number 10-49

in linkage-stack state entry 5-69
in trace entry 4-13
translation 5-25

PC-ss (PROGRAM CALL instruction, with space
switching) 10-51

PC-translation-specification exception 6-26
PC-type bit 5-62
PCF (PROGRAM CALL FAST) instruction 10-59
PCI (program-controlled interruption) 15-31

as flag in CCW 15-24
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PCI (program-controlled interruption) (continued)
intermediate interruption condition for 16-17
subchannel status for 16-24

pending channel reports (effect of I/O-system reset
on) 17-11

pending interruption
See interruption pending

PER (program-event recording) 4-14
access identification 3-46, 4-18
address 4-18

assigned storage locations for 3-46
ATMID (addressing-and-translation-mode identifica-

tion) 4-17
code 4-17

assigned storage locations for 3-46
events 4-14
extensions 1-5
general-register-alteration event 4-23

mask bits 4-16
instruction-fetching event 4-22
masks

bit in PSW 4-5
general-register 4-16
PER-event 4-15

priority of indication 4-20
program-interruption condition 6-26
STD (segment-table-designation) identification 4-18
storage-alteration event 4-22
storage-area designation 4-21

ending address 4-16
starting address 4-16
wraparound 4-21

store-using-real-address event 4-24
successful-branching event 4-21

PER 1 (program-event recording 1) 4-14
PER 2 (program-event recording 2) 4-14
PER 2 (program event recording 2) facility D-3
PERFORM LOCKED OPERATION instruction 7-68

example A-49
PFRA (page-frame real address) 3-31
piecemeal steps of instruction execution 5-76
PIM (path-installed mask) 15-6
PKM (PSW-key mask) 5-20
PLO (PERFORM LOCKED OPERATION)

instruction 7-68
example A-49

PMCW (path-management-control word) 15-2
channel-path identifiers (CHPID) in 15-7

PNOM (path-not-operational mask) 15-4
effect on POM of 15-10
indicated in SCSW 16-12

point of damage 11-14
point of interruption 5-16

for machine check 11-14
POM (path-operational mask) 15-6

effect on PNOM of 15-10

POST (SVC)
example of routine to bypass A-45

postnormalization 18-3
power controls 12-3
power-on reset 4-39
powers of 2

table of G-1
PR (PROGRAM RETURN) instruction 10-63
PR-cp (PROGRAM RETURN instruction, to current

primary) 10-63
PR-ss (PROGRAM RETURN instruction, with space

switching) 10-63
PR/SM (Processor Resource/Systems Manager) 1-6,

1-8
precision (floating-point) 9-1
preferred sign codes 8-2
prefetching

See also CCW prefetch control
access exceptions not recognized for 6-36
channel-control check during 16-28
channel-data check during 16-27
handling of invalid CBC in storage keys during 11-8
of ART-table and DAT-table entries 5-80
of data for I/O 15-26
of instructions 5-79
of operands 5-82

prefix 3-14
set by signal-processor order 4-43
store-status save area for 3-48

prefix area 3-14
prenormalization 18-3
primary address space 3-16
primary ASN (PASN) 3-17

in linkage-stack state entry 5-69
primary AST entry (PASTE)

origin (PASTEO) 5-26, 5-41
primary authority 3-24

exception 6-27
primary interruption condition (I/O) 16-4
primary-list bit 5-41
primary segment table

designation (PSTD) 3-28
length (PSTL) 3-29
origin (PSTO) 3-29

primary-space access-list designation (PSALD) 5-43
primary-space mode 3-28
primary space-switch-event-control bit 3-28
primary-status bit (I/O) 16-18
primary storage-alteration-event-control bit 3-29
primary virtual address 3-4

effective segment-table designation for 3-32
priority

of access exceptions 6-39
of ASN-translation exceptions 6-44
of data exceptions 6-15
of external-interruption conditions 6-10
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priority (continued)
of I/O interruptions 16-4
of interruptions (CPU) 6-45
of PER events 4-20
of program-interruption conditions 6-37

for arithmetic exceptions 6-15
of subspace-replacement exceptions 6-44
of trace exceptions 6-44

private bit 5-44
private-space control

effect on
fetch-protection override 3-11
low-address protection 3-11
use of common segments 3-30

private-space-control bit 3-29
home 3-30
primary 3-29
secondary 3-29

privileged instructions 4-5
control 10-1
I/O 14-1

privileged-operation exception 6-27
problem state 4-5

bit in entry-table entry 5-27
bit in PSW 4-5
compatibility 1-10

processing backup (synchronous machine-check condi-
tion) 11-19

processing damage (synchronous machine-check condi-
tion) 11-20

processor
See CPU

processor-availability facility 1-6
Processor Resource/Systems Manager (PR/SM) 1-6,

1-8
program 5-34

channel
See channel program

exceptions 6-14
execution of 5-2
fields of SCHIB modifiable by 15-8
initial loading of 4-39, 17-13
interruption 6-14

priority of 6-15, 6-37
mask (in PSW) 4-6

program-call-fast-control bit 5-22
PROGRAM CALL FAST instruction 10-59
PROGRAM CALL instruction 10-48

trace entry for 4-13
type of 5-62

program-call state entry 5-68, 10-50
program check

as subchannel status 16-25
measurement-block 16-33

program-controlled interruption (I/O)
See PCI

program-event recording
See PER

program-event-recording facility 2 D-3
program events

See PER events
program mask

validity bit for 11-22
PROGRAM RETURN instruction 10-63
program-status word

See PSW
PROGRAM TRANSFER instruction 10-66

trace entry for 4-13
programmable field of TOD clock 4-29
protection (storage) 3-8

access-list-controlled
See access-list-controlled protection

during tracing 4-14
fetch

See fetch protection
key-controlled

See key-controlled protection
low-address

See low-address protection
page

See page protection
protection check

as subchannel status 16-26
measurement-block 16-33

protection exception 6-28
as an access exception 6-34, 6-39

PSALD (primary-space access-list designation) 5-43
pseudo AST entry 3-17
PSTD (primary segment-table designation) 3-28
PSTL (primary segment-table length) 3-29
PSTO (primary segment-table origin) 3-29
PSW (program-status word) 2-3, 4-3

assigned storage locations for 3-43
comparison of 370-XA with System/370 F-5
comparison of ESA/370 with 370-XA E-3
current 4-3, 5-9

stored during interruption 6-2
exceptions associated with 6-9
format error 6-9
in linkage-stack state entry 5-69
in program execution 5-9
store-status save area for 3-47
validity bits for 11-22

PSW key 4-5
control bit 5-62
in entry-table entry 5-62
in trace entry 4-13
used as access key 3-9
validity bit for 11-22

PSW-key mask (PKM) 5-20
control bit 5-62
in linkage-stack state entry 5-68
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PT (PROGRAM TRANSFER) instruction 10-66
PT-cp (PROGRAM TRANSFER instruction, to current

primary) 10-67
PT-ss (PROGRAM TRANSFER instruction, with space

switching) 10-67
PTL (page-table length) 3-30
PTLB (PURGE TLB) instruction 10-72
PTO (page-table origin) 3-30
publications

other related documents xxi
PURGE ALB instruction 10-72
PURGE TLB instruction 10-72
PX (page index) 3-27

Q
QNaN (quiet NaN) 19-6
queuing

FIFO
example for lock and unlock A-46

LIFO
example for lock and unlock A-45

quiet NaN (QNaN) 19-6

R
R field of instruction 5-5
radix

binary 9-1
hexadecimal 9-1

rate control 12-3
RCHP

See RESET CHANNEL PATH instruction
real address 3-4
real mode 3-28
real storage 3-4
receiver check (signal-processor status) 4-48
reconfiguration of I/O system 17-15
recovery

as class of machine-check condition 11-12
channel-subsystem 17-17
system 11-17

subclass-mask bit for 11-26
reduced-authority state 10-6
redundancy 11-2
reference

bit in storage key 3-8
multiple-access 5-84
recording 3-14
sequence for storage 5-75

See also sequence
single-access 5-83
to expanded storage by MOVE PAGE 7-60

register
access 2-4
base-address 2-3

register (continued)
control 2-4
designation of 5-5
floating-point 2-3, 9-2
floating-point-control 19-2
general 2-3
index 2-3
prefix 3-14
save areas for 3-47, 11-23, 11-24
validation of 11-9
vector-facility 2-6

relative branching 5-8
remainder 19-9

result of DIVIDE TO INTEGER 19-30
remaining free space (in linkage stack) 5-66
remote operating stations 12-1
reporting-source code (RSC) 17-19
reporting-source ID (RSID) 17-20
repressible machine-check conditions 11-12
reset 4-34, 17-8

channel-path 17-9
clear 4-38
CPU 4-37
effect on CPU state 4-2
effect on TOD clock 4-27
I/O-system 17-9

as part of subsystem reset 4-38
initial CPU 4-38
power on 4-39
subsystem 4-38
summary of functions 4-36
summary of functions performed by manual initiation

of 4-35
system-reset-clear key 12-4
system-reset-normal key 12-5

RESET CHANNEL PATH instruction 14-7
See also channel-path-reset function
function initiated by 15-40

RESET REFERENCE BIT EXTENDED
instruction 10-72

reset signal (I/O) 17-8
in channel-path reset 17-9
in I/O-system reset 17-9, 17-10
issued as part of RCHP 15-40

resetting event
See path verification required

resolution
of clock comparator 4-32
of CPU timer 4-33
of TOD clock 4-27

restart
interruption 6-45
key 12-4
signal-processor order 4-42

result operand 5-3
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resume function 13-8, 15-17
See also start function
initiated by RESUME SUBCHANNEL 14-8
path management for 15-18
pending 16-13

RESUME PROGRAM instruction 10-73
RESUME SUBCHANNEL instruction 14-8

See also resume function
channel-program requirements for 14-9
count of in measurement block 17-3
function initiated by 15-17

retry
CPU 11-2
I/O command

See command retry
RI instruction format 5-5
rounding (decimal) 8-12

example A-37
rounding (floating-point)

of BFP result 19-7
of HFP result 18-17

rounding action
summary of 9-3

RP (RESUME PROGRAM) instruction 10-73
RR instruction format 5-5
RRBE (RESET REFERENCE BIT EXTENDED) instruc-

tion 10-72
RRE instruction format 5-5
RRF instruction format 5-5
RS instruction format 5-5
RSC (reporting-source code) 17-19
RSCH

See RESUME SUBCHANNEL instruction
RSI instruction format 5-5
RSID (reporting-source ID) 17-20
running (state of TOD clock) 4-27
RX instruction format 5-5
RXE instruction format 5-5
RXF instruction format 5-5

S
S (SUBTRACT) binary instruction 7-90
S instruction format 5-5
SAC (SET ADDRESS SPACE CONTROL)

instruction 10-75
SACF (SET ADDRESS SPACE CONTROL FAST)

instruction 10-75
SAL (SET ADDRESS LIMIT) instruction 14-10
sample count (in ESW) 17-3
SAR (SET ACCESS) instruction 7-81
SASN (secondary address-space number) 3-17

in trace entry 4-13
save areas for registers 3-47, 4-40, 11-23, 11-24
SCHIB (subchannel-information block) 15-1

as operand of
MODIFY SUBCHANNEL 14-6

SCHIB (subchannel-information block) (continued)
as operand of (continued)

STORE SUBCHANNEL 14-15
model-dependent area in 15-7
path-management-control word (PMCW) in 15-2
subchannel-status word (SCSW) in 15-7
summary of modifiable fields in 15-8

SCHM
See SET CHANNEL MONITOR instruction

SCK (SET CLOCK) instruction 10-76
SCKC (SET CLOCK COMPARATOR)

instruction 10-77
SCKPF (SET CLOCK PROGRAMMABLE FIELD)

instruction 10-78
SCP-initiated reset 1-6
SCSW (subchannel-status word) 16-6

activity-control field in 16-13
CCW address in 16-19
count in 16-29
device-status field in 16-24
function-control field in 16-12
in IRB 16-6
in SCHIB 15-7
status-control field in 16-16
subchannel-control field in 16-11
subchannel-status field in 16-24

SD (SUBTRACT NORMALIZED) HFP
instruction 18-21

SDB (SUBTRACT) BFP instruction 19-46
SDBR (SUBTRACT) BFP instruction 19-46
SDR (SUBTRACT NORMALIZED) HFP

instruction 18-21
SE (SUBTRACT NORMALIZED) HFP

instruction 18-21
SEARCH STRING instruction 7-79

examples A-28
SEB (SUBTRACT) BFP instruction 19-46
SEBR (SUBTRACT) BFP instruction 19-46
secondary address space 3-16
secondary ASN (SASN) 3-17

control bit 5-62
in linkage-stack state entry 5-68

secondary authority 3-24
exception 6-28

secondary error (in subchannel logout) 16-35
secondary interruption condition (I/O) 16-4
secondary segment table

designation (SSTD) 3-29
length (SSTL) 3-29
origin (SSTO) 3-29

secondary-space-control bit 3-28, 5-21
secondary-space mode 3-28
secondary-status bit (I/O) 16-18
secondary storage-alteration-event-control bit 3-29
secondary virtual address 3-4

effective segment-table designation for 3-32
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segment 3-27
segment index (SX) 3-27
segment-invalid bit (in segment-table entry) 3-30
segment table 3-30

length (STL) 3-28
lookup 3-34
origin (STO) 3-28

segment-table designation (STD) 3-28
effective 3-32
home 3-29
obtaining of in access-register translation 5-33
primary 3-28
secondary 3-29
use after ART 5-46

segment-translation exception 6-29
as an access exception 6-34, 6-39

self-describing block of I/O data 15-30
semiprivileged

instructions 4-5
descriptions of 10-1

program authorization 5-19
summary of 5-23

programs 4-5, 5-19
sense

as signal-processor order 4-42
sequence

conceptual 5-75
instruction-execution 5-2
of CCWs which is invalid 16-26
of storage references 5-75

ART-table and DAT-table entries 5-80
for floating-point data 9-2
instructions 5-79
operands 5-81
storage keys 5-81

sequence code (in subchannel logout) 16-35
field-validity flag for 16-34

SER (SUBTRACT NORMALIZED) HFP
instruction 18-21

serial-I/O channel-to-channel adapter
publication referenced xxi

serial-I/O interface 13-2
publication referenced xxi

serialization 5-86
caused by I/O instructions 14-1
channel-program 5-88
CPU 5-87
in completion of store operations 5-82

service-call-logical-processor (SCLP) facility 1-7
service-processor damage 11-18
service processor inoperative (signal-processor

status) 4-48
service-signal external interruption 6-12

subclass-mask bit for 6-12
SET ACCESS instruction 7-81

SET ADDRESS LIMIT instruction 14-10
SET ADDRESS SPACE CONTROL FAST

instruction 10-75
SET ADDRESS SPACE CONTROL instruction 10-75
SET CHANNEL MONITOR instruction 14-11

effect on measurement modes of 17-1
SET CLOCK COMPARATOR instruction 10-77
SET CLOCK instruction 10-76
SET CLOCK PROGRAMMABLE FIELD

instruction 10-78
SET CPU TIMER instruction 10-78
SET FPC instruction 19-45
set prefix (signal-processor order) 4-43
SET PREFIX instruction 10-78
SET PROGRAM MASK instruction 7-81
SET PSW KEY FROM ADDRESS instruction 10-79
SET ROUNDING MODE (SRNM) 19-45
SET SECONDARY ASN instruction 10-79

access registers 5-38
set state (of TOD clock) 4-27
SET STORAGE KEY EXTENDED instruction 10-83
SET SYSTEM MASK instruction 10-83
SFPC (SET FPC) instruction 19-45
SH (SUBTRACT HALFWORD) instruction 7-90
shared storage

See storage sharing
shared TOD clock 4-26
SHIFT AND ROUND DECIMAL instruction 8-12

examples A-36
SHIFT LEFT DOUBLE instruction 7-81

example A-29
SHIFT LEFT DOUBLE LOGICAL instruction 7-82
SHIFT LEFT SINGLE instruction 7-83

example A-29
SHIFT LEFT SINGLE LOGICAL instruction 7-83
SHIFT RIGHT DOUBLE instruction 7-83
SHIFT RIGHT DOUBLE LOGICAL instruction 7-84
SHIFT RIGHT SINGLE instruction 7-84
SHIFT RIGHT SINGLE LOGICAL instruction 7-85
shifting

floating-point
See normalization

short binary-floating-point number 19-4
short hexadecimal-floating-point number 18-3
short I/O block 16-24
SI instruction format 5-5
SID

See subsystem-identification word
sign bit

binary 7-2
floating-point 18-1

sign codes (decimal) 8-2
signal (I/O) 17-7

clear
See clear signal

halt
See halt signal
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signal (I/O) (continued)
reset

See reset signal
SIGNAL PROCESSOR instruction 10-83

comparison of 370-XA with System/370 F-6
orders 4-41
status 4-46

signaling NaN (SNaN) 19-6
signed binary

arithmetic 7-3
comparison 7-4
integer 7-2

examples A-2
significance

loss 18-1
in HFP addition 18-9

mask (in PSW) 4-6
starter (in EDIT) 8-7

significand 19-4
SIGP

See SIGNAL PROCESSOR instruction
SIGP (SIGNAL PROCESSOR) instruction 10-83
single-access reference 5-83
single-path mode 15-3, 15-20
size notation xxi
size of address 3-5

controlled by addressing mode 5-7
in CCW 15-24

skip flag in CCW 15-24
effect on data transfer of 15-31

SL (SUBTRACT LOGICAL) instruction 7-90
SLA (SHIFT LEFT SINGLE) instruction 7-83

example A-29
SLDA (SHIFT LEFT DOUBLE) instruction 7-81

example A-29
SLDL (SHIFT LEFT DOUBLE LOGICAL)

instruction 7-82
SLI (suppress-length-indication) flag in CCW 15-24

for immediate operations 15-27
SLL (SHIFT LEFT SINGLE LOGICAL) instruction 7-83
SLR (SUBTRACT LOGICAL) instruction 7-90
SNaN (signaling NaN) 19-6
solicited interruption condition (I/O) 16-3
solid errors 11-5
sorting

extended 1-5
sorting instructions

See also COMPARE AND FORM CODEWORD
instruction, UPDATE TREE instruction

example A-50
source

vector-facility (machine-check condition) 11-19
source of interruption

identified by interruption code 6-5
SP (SUBTRACT DECIMAL) instruction 8-13

space-switch event 6-29
control

home, in control register 13 3-29
control bit

in ASTE 3-20
primary, in control register 1 3-28

special-operation exception 6-30
special QNaN 19-6
specification exception 6-31
SPKA (SET PSW KEY FROM ADDRESS)

instruction 10-79
SPM (SET PROGRAM MASK) instruction 7-81
SPT (SET CPU TIMER) instruction 10-78
SPX (SET PREFIX) instruction 10-78
SQD (SQUARE ROOT) HFP instruction 18-20
SQDB (SQUARE ROOT) BFP instruction 19-46
SQDBR (SQUARE ROOT) BFP instruction 19-46
SQDR (SQUARE ROOT) HFP instruction 18-20
SQE (SQUARE ROOT) HFP instruction 18-20
SQEB (SQUARE ROOT) BFP instruction 19-46
SQEBR (SQUARE ROOT) BFP instruction 19-46
SQER (SQUARE ROOT) HFP instruction 18-20
square root D-4
SQUARE ROOT BFP instructions 19-46
SQUARE ROOT HFP instructions 18-20
SQXBR (SQUARE ROOT) BFP instruction 19-46
SQXR (SQUARE ROOT) HFP instruction 18-20
SR (SUBTRACT) binary instruction 7-90
SRA (SHIFT RIGHT SINGLE) instruction 7-84
SRDA (SHIFT RIGHT DOUBLE) instruction 7-83
SRDL (SHIFT RIGHT DOUBLE LOGICAL)

instruction 7-84
SRL (SHIFT RIGHT SINGLE LOGICAL)

instruction 7-85
SRNM (SET ROUNDING MODE) 19-45
SRP (SHIFT AND ROUND DECIMAL) instruction 8-12

examples A-36
SRST (SEARCH STRING) instruction 7-79

examples A-28
SS instruction format 5-5
SSAR (SET SECONDARY ASN) instruction 10-79

access registers 5-38
SSAR-cp (SET SECONDARY ASN instruction, to

current primary) 10-80
SSAR-ss (SET SECONDARY ASN instruction, with

space switching) 10-80
SSASTEO (subspace-AST-entry origin) 5-53
SSASTESN (subspace-AST-entry sequence

number) 5-54
SSCH

See START SUBCHANNEL instruction
SSE instruction format 5-5
SSKE (SET STORAGE KEY EXTENDED)

instruction 10-83
SSM (SET SYSTEM MASK) instruction 10-83
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SSM-suppression-control bit 6-30, 10-83
SSTD (secondary segment-table designation) 3-29
SSTL (secondary segment-table length) 3-29
SSTO (secondary segment-table origin) 3-29
ST (STORE) binary instruction 7-85
stack-empty exception 6-32
stack-full exception 6-32
stack-operation exception 6-32
stack-specification exception 6-33
stack-type exception 6-33
stacking process 5-70
stacking PROGRAM CALL 5-58
STAM (STORE ACCESS MULTIPLE) instruction 7-85
standalone dump 12-4
standard epoch (for TOD clock) 4-29
STAP (STORE CPU ADDRESS) instruction 10-85
start (CPU)

function 4-2
key 12-4
signal-processor order 4-42

start function (I/O) 13-6, 15-17
bit in SCSW for 16-12
initiated by START SUBCHANNEL 14-13
path management for 15-18
pending 16-14

START SUBCHANNEL instruction 14-13
See also start function for I/O
count of in measurement block 17-3
deferred condition code for (in SCSW) 16-8
function initiated by 15-17
operation-request block (ORB) used by 15-21

state
CPU

See CPU state
TOD-clock 4-27

state entry 5-68
status

alert 16-16
device 16-24

effect of clear function on 15-14
field-validity flag for (in subchannel logout) 16-34
with inappropriate bit combination 16-35

device-status check 16-35
for SIGNAL PROCESSOR 4-42, 10-84
initial-status interruption

See initial-status-interruption control
intermediate 16-17
primary 16-18
program

See PSW
resulting from signal-processor orders 4-46
secondary 16-18
storing of 4-40

manual key for 12-4
subchannel 16-24

status-control field (in SCSW) 16-16
status modifier (device status)

effect of in command chaining 15-30
status-pending 16-18
status-verification facility 17-15, F-2
status while disabled 14-7
STC (STORE CHARACTER) instruction 7-86
STCK (STORE CLOCK) instruction 7-87
STCKC (STORE CLOCK COMPARATOR)

instruction 10-85
STCKE (STORE CLOCK EXTENDED) instruction 7-87
STCM (STORE CHARACTERS UNDER MASK) instruc-

tion 7-86
examples A-30

STCPS (STORE CHANNEL PATH STATUS)
instruction 14-14

STCRW
See STORE CHANNEL REPORT WORD instruction

STCTL (STORE CONTROL) instruction 10-85
STD

See segment-table designation
STD (STORE) floating-point instruction 9-13
STE (STORE) floating-point instruction 9-13
STFPC (STORE FPC) instruction 19-46
STH (STORE HALFWORD) instruction 7-89
STIDP (STORE CPU ID) instruction 10-86
STL (segment-table length) 3-28
STM (STORE MULTIPLE) instruction 7-89

example A-30
STNSM (STORE THEN AND SYSTEM MASK) instruc-

tion 10-96
STO (segment-table origin) 3-28
stop

function 4-2
key 12-4
signal-processor order 4-42

stop and store status (signal-processor order) 4-42
stopped (signal-processor status) 4-47
stopped state

of CPU 4-1
effect on completion of store operations 5-82

of TOD clock 4-27
storage 3-1, 3-29

absolute 3-4
address wraparound

See wraparound
addressing 3-2

See also address
alteration

space-control bit 4-15
alteration manual controls 12-2
alteration PER event 3-29, 4-22

bits for 3-29
mask for 4-15

assigned locations in 3-43
comparison of 370-XA with System/370 F-6
comparison of ESA/370 with 370-XA E-3
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storage (continued)
auxiliary 3-1, 3-26
block 3-4

testing for usability of 10-101
buffer (cache) 3-2
clearing of

See clearing operation
concurrency of access for references to 5-84
configuration of 3-4
direct-access 3-1
display 12-2
error 11-20

indirect 11-21
expanded 2-2

accessed by MOVE PAGE 7-60
failing address in

See failing-storage address
interlocked update 5-82
interlocks for virtual references 5-76
main 3-1
noninterlocked update of 5-82
nonvolatile 3-2
operand 5-6

reference to (fetch, store, update) 5-82
update reference 5-82

operand consistency 5-83
examples A-46, A-49

prefixing for 3-14
real 3-4
sequence of references to 5-75

for floating-point data 9-2
size

notation for xxi
validation of 11-6
virtual 3-26
volatile 3-2

effect of power-on reset on 4-39
storage-access code (in subchannel logout) 16-34
storage-alteration-event bit 4-16
storage-alteration-event-control bit 3-29

home 3-30
primary 3-29
secondary 3-29

storage-area designation
for I/O operations 15-25
for PER events 4-21

storage degradation (machine-check condition) 11-21
storage key 3-8

error in 11-21
sequence of references to 5-81
testing for usability of 10-101
validation of 11-7

storage-key function 1-6
storage-logical-validity bit 11-23
storage protection 3-8

during tracing 4-14

storage-protection override D-4
storage-protection-override-control bit 3-10
storage reconfiguration 1-6
storage sharing

by address spaces 3-27
by CPUs and the channel subsystem 3-4
examples A-42
in multiprocessing 4-41

STORE ACCESS MULTIPLE instruction 7-85
STORE binary instruction 7-85
STORE CHANNEL PATH STATUS instruction 14-14
STORE CHANNEL REPORT WORD instruction 14-15

channel-report word (CRW) stored by 17-19
STORE CHARACTER instruction 7-86
STORE CHARACTERS UNDER MASK

instruction 7-86
examples A-30

STORE CLOCK COMPARATOR instruction 10-85
STORE CLOCK EXTENDED instruction 7-87
STORE CLOCK instruction 7-87
STORE CONTROL instruction 10-85
STORE CPU ADDRESS instruction 10-85
STORE CPU ID instruction 10-86
STORE CPU TIMER instruction 10-86
store extended status at address (signal-processor

order) 4-44
STORE floating-point instructions 9-13
STORE FPC instruction 19-46
STORE HALFWORD instruction 7-89
STORE MULTIPLE instruction 7-89

example A-30
STORE PREFIX instruction 10-87
store reference 5-82

access exceptions for 6-37
store status 4-40

extended save area 4-40
key 12-4
signal-processor order for 4-42

store status at address (signal-processor order) 4-43
STORE SUBCHANNEL instruction 14-15
STORE SYSTEM INFORMATION instruction 10-87
STORE THEN AND SYSTEM MASK instruction 10-96
STORE THEN OR SYSTEM MASK instruction 10-97
store using real address (PER event) 4-24
store-using-real-address-event mask 4-15
STORE USING REAL ADDRESS instruction 10-97
STOSM (STORE THEN OR SYSTEM MASK) instruc-

tion 10-97
STPT (STORE CPU TIMER) instruction 10-86
STPX (STORE PREFIX) instruction 10-87
string of interruptions 4-3, 6-46

caused by clock comparator 4-32
caused by CPU timer 4-34

STSCH (STORE SUBCHANNEL) instruction 14-15
STSI (STORE SYSTEM INFORMATION)

instruction 10-87
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STURA (STORE USING REAL ADDRESS)
instruction 10-97

SU (SUBTRACT UNNORMALIZED) HFP
instruction 18-22

subchannel 13-2
active allegiance for 15-11
dedicated allegiance for 15-11
effect of I/O-system reset on 17-10
idle 16-13
working allegiance for 15-11

subchannel-active bit 16-15
subchannel addressing 13-5
subchannel control information in SCSW 16-11
subchannel enabled bit in PMCW 15-2
subchannel-information block

See SCHIB
subchannel key 15-21, 16-8

used as access key 3-9
used for IPL 17-13

subchannel key check (in subchannel logout) 16-32
subchannel logout 16-32
subchannel number 13-5
subchannel status 16-24

generated while subchannel is disabled 14-7
subchannel-status word

See SCSW
subclass-mask bits

external-interruption 6-10
I/O-interruption

See I/O-interruption subclass mask
machine-check 11-25

subroutine linkage 5-10
subspace-active bit 5-53
subspace-AST-entry origin (SSASTEO) 5-53
subspace-AST-entry sequence number (SSASTESN)
subspace AST entry sequence number

(SSASTESN) 5-54
subspace-group control 3-29
subspace-group-control bit

primary 3-29
secondary 3-29

subspace groups 5-52
introduction to 5-10

subspace-replacement
exceptions 6-44
operations 5-56

subsystem-identification word (SID)
subsystem-identification word (SID)

assigned storage locations for 3-46
subsystem-linkage-control bit 5-21, 5-25

in primary AST entry 5-26
subsystem reset 4-38
subsystem-identification word (SID) 14-1
SUBTRACT BFP instructions 19-46
SUBTRACT binary instructions 7-90

SUBTRACT DECIMAL instruction 8-13
SUBTRACT HALFWORD instruction 7-90
SUBTRACT LOGICAL instructions 7-90
SUBTRACT NORMALIZED

See SUBTRACT BFP instructions
SUBTRACT NORMALIZED HFP instructions 18-21
SUBTRACT UNNORMALIZED HFP instructions 18-22
successful-branching PER event 4-21

mask for 4-15
SUPERVISOR CALL instruction 7-91
supervisor-call interruption 6-45
supervisor state 4-5
support functions (I/O) 17-1
suppress-length-indication flag in CCW

See SLI
suppress-suspended-interruption control (I/O) 15-22,

16-11
used for IPL 17-13

suppression
exceptions to 5-18
of instruction execution 5-15
of unit of operation 5-17

suppression on protection 3-12
virtual-address enhancement of 3-12

SUR (SUBTRACT UNNORMALIZED) HFP
instruction 18-22

suspend-control bit 15-21, 16-8
used for IPL 17-13

suspend flag in CCW 15-24
invalid 16-26

suspend function 13-8
suspended bit (in SCSW) 16-16
suspension of channel-program execution 15-34

effect on DCTI of 15-35
intermediate interruption condition for 16-17

SVC (SUPERVISOR CALL) instruction 7-91
SW (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7-27

by EXCLUSIVE OR instruction 7-46
SWR (SUBTRACT UNNORMALIZED) HFP

instruction 18-22
SX (segment index) 3-27
SXBR (SUBTRACT) BFP instruction 19-46
SXR (SUBTRACT NORMALIZED) HFP

instruction 18-21
synchronization

checkpoint 11-3
of CPU timer with TOD clock 4-33
of TOD clocks 4-27, 4-31

synchronous machine-check-interruption
conditions 11-19

system
manual control of 12-1
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system (continued)
organization of 2-1

system check stop 11-11
system damage 11-16
system mask (in PSW) 4-3

validity bit for 11-22
system recovery 11-17
system reset

See reset
I/O

See I/O-system reset
system-reset-clear key 12-4
system-reset-normal key 12-5
System/360 and System/370 I/O interface

See parallel-I/O interface
System/370

comparison with 370-XA F-1
compatibility with ESA/390 1-9
effect of PER 2 on 4-15

T
T (tera) xxi
table of powers of 2 G-1
tables

ASN
See ASN first table, ASN second table

authority
See authority table

DAT
See page table, segment table

entry
See entry table

hexadecimal H-1
linkage

See linkage table
page

See page table
segment

See segment table
trace 4-10
translation 3-30

TAR (TEST ACCESS) instruction 10-98
target instruction 7-46
TB (TEST BLOCK) instruction 10-101
TBDER (CONVERT HFP TO BFP) floating-point instruc-

tion
TBDR (CONVERT HFP TO BFP) floating-point instruc-

tion 9-11
TBEDR (CONVERT HFP TO BFP) floating point instruc-

tion 9-11
TCDB (TEST DATA CLASS) BFP instruction 19-47
TCEB (TEST DATA CLASS) BFP instruction 19-47
TCXB (TEST DATA CLASS) BFP instruction 19-47
termination

of I/O operations
See conclusion of I/O operations

termination (continued)
of instruction execution 5-16

for exigent machine-check conditions 11-11
of unit of operation 5-17

for exigent machine-check conditions 11-11
termination code (in subchannel logout) 16-34

field-validity flag for 16-34
TEST ACCESS instruction 10-98
TEST AND SET instruction 7-91
TEST BLOCK instruction 10-101
TEST DATA CLASS BFP instructions 19-47
test indicator 12-5
TEST PENDING INTERRUPTION instruction 14-16

interruption code stored by 16-6
TEST PROTECTION instruction 10-103
TEST SUBCHANNEL instruction 14-17

interruption-response block (IRB)used by 16-6
TEST UNDER MASK HIGH instruction 7-92
TEST UNDER MASK instruction 7-92

examples A-30
TEST UNDER MASK LOW instruction 7-92
testing for storage-block and storage-key

usability 10-101
THDER (CONVERT BFP TO HFP) floating-point

instruction 9-10
THDR (CONVERT BFP TO HFP) floating-point instruc-

tion 9-10
TIC (transfer in channel) 15-37

invalid sequence of 16-26
time-of-day clock

See TOD clock
timer

See CPU timer
timing

channel-subsystem 17-1
timing facilities 4-26
timing-facility bit (in PMCW) 15-4
timing-facility damage 11-17

for TOD clock 4-28
TLB (translation-lookaside buffer) 3-35

entries 3-36
attachment of 3-36
clearing of 3-38
effect of translation changes on 3-38
usable state 3-37

TM (TEST UNDER MASK) instruction 7-92
examples A-30

TMH (TEST UNDER MASK HIGH) instruction 7-92
TML (TEST UNDER MASK LOW) instruction 7-92
TOD clock 4-26

effect of power-on reset on 4-39
effect on clock-comparator interruption 6-11
effect on CPU-timer decrementing 4-33
effect on CPU-timer interruption 6-11
manual control of 4-27, 12-5
unique values of 4-28
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TOD clock (continued)
validation of 11-9
value in trace entry 4-13

TOD-clock-control-override control 4-27
TOD-clock programmable field 4-29
TOD-clock programmable register 4-29
TOD-clock sync check (external interruption) 6-13
TOD-clock-sync-control bit 4-27, 4-32
TOD-clock-synchronization facility 4-31
TPI

See TEST PENDING INTERRUPTION instruction
TPROT (TEST PROTECTION) instruction 10-103
TR (TRANSLATE) instruction 7-93

example A-31
trace 4-10, F-2

entries 4-11
entry address 4-11
exceptions 6-44
table exception 6-33

TRACE instruction 10-106
trace entry for 4-13

trailer entry 5-67
transfer in channel

See TIC
transferring program control 5-58
TRANSLATE AND TEST instruction 7-94

example A-31
TRANSLATE EXTENDED instruction 7-94
TRANSLATE instruction 7-93

example A-31
translation

address 3-26
See also dynamic address translation

exception identification 3-44
lookaside buffer

See TLB
PC-number 5-25
specification exception 6-33
tables for 3-30

translation format 3-28
translation modes 3-28
translation parameters 3-27
trap control block 10-107
TRAP instruction 10-106
trap save area 10-107
TRAP2 (TRAP) instruction 10-106
TRAP4 (TRAP) instruction 10-106
TRE (TRANSLATE EXTENDED) instruction 7-94
tree structure for sorting 7-97

example A-50
trial execution

for editing instructions and TRANSLATE
instruction 5-19

for PER 4-17
TRT (TRANSLATE AND TEST) instruction 7-94

example A-31

true zero (HFP number) 18-1
TS (TEST AND SET) instruction 7-91
TSCH

See TEST SUBCHANNEL instruction
two's complement binary notation 7-2

examples A-2
type of PROGRAM CALL 5-62

U
ulp (unit in the last place) 19-4
underflow

See exponent underflow
unit check (device status)

in establishing dedicated allegiance 15-11
unit of operation 5-16
unlock A-45

example with FIFO queuing A-47
example with LIFO queuing A-46

unnormalized floating-point number 18-3
HFP data only 9-1

unnormalized-operand exception 6-34
unordered (comparison to a NaN) 19-8
unordered comparison 19-23
UNPACK instruction 7-97

example A-33
UNPK (UNPACK) instruction 7-97

example A-33
unprivileged instructions 4-5, 7-2
unsigned binary

arithmetic 7-4
integer 7-2

examples A-3
in address generation 5-7

unsolicited interruption condition (I/O) 16-3
unstack-suppression bit 5-65
unstacking process 5-72
update reference 5-82
UPDATE TREE instruction 7-97

example A-50
UPT (UPDATE TREE) instruction 7-97

example A-50
usable TLB entry 3-37
UTC (Coordinated Universal Time) used in TOD

epoch 4-29

V
valid ART-table entry 5-51
valid CBC 11-2
valid floating-point-register numbers 9-2
valid segment-table or page-table entry 3-36
validation 11-5

of registers 11-9
of storage 11-6
of storage key 11-7
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validation (continued)
of TOD clock 11-9

validity bit for backward stack-entry address 5-67
validity bit for forward-section-header address 5-67
validity bits

in machine-check-interruption code 11-22
in subchannel logout 16-34

variable-length field 3-3
vector facility 1-7, 2-6

effect of power-on reset on 4-39
vector-facility failure (machine-check condition) 11-18
vector-facility source (machine-check condition) 11-19
vector-operation exception 6-34
vector operations

publication referenced xxi
version code 10-86
virtual address 3-4
virtual machine

extensions for 1-6
virtual storage 3-26
virtual-address enhancement of suppression on pro-

tection 3-12
VM-data-space facility 1-6
volatile storage 3-2

effect of power-on reset on 4-39

W
WAIT (SVC)

example of routine to bypass A-45
wait indicator 12-5
wait-state bit

in PSW 4-5
warning (machine-check condition) 11-18

subclass-mask bit for 11-26
word 3-3
word-concurrent storage references 5-84
working allegiance (I/O) 15-11
wraparound

of instruction addresses 5-7
of PER addresses 4-21
of register numbers

for LOAD MULTIPLE instruction 7-51
for STORE MULTIPLE instruction 7-89

of storage addresses 3-5
comparison of 370-XA with System/370 for F-7
controlled by addressing mode 3-5
for MOVE INVERSE instruction 7-53
for MOVE LONG EXTENDED instruction 7-58
for MOVE LONG instruction 7-55

of TOD clock 4-27

X
X (EXCLUSIVE OR) instruction 7-45

X field of instruction 5-7
XA (extended architecture)

See 370-XA architecture
XC (EXCLUSIVE OR) instruction 7-45

examples A-19
XI (EXCLUSIVE OR) instruction 7-45

example A-20
XR (EXCLUSIVE OR) instruction 7-45

Z
Z bit (zero condition-code bit) 16-11

as cause of intermediate interruption
condition 16-17

ZAP (ZERO AND ADD) instruction 8-13
example A-38

zero
instruction-length code 6-7
negative

See negative zero
normal meaning for byte value xxi
setting floating-point register to 9-13
true (HFP number) 18-1

ZERO AND ADD instruction 8-13
example A-38

zero condition code (Z bit in SCSW) 16-11
zone bits 8-1

moving of 7-64
zoned decimal numbers 8-1

examples A-4
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